T
g_‘-@ UNIVERSITY
@Y OF MANNHEIM

Data and Web Science Group
Prof. Dr. Christian Bizer

B6 —B1.15

68159 Mannheim

Data Mining — FSS 2021

Exercise 7: Text Mining
Note: You need to install the Text Mining Extension to be able to complete this exercise!

7.1. Which documents are similar?
1. The file documents.zip is provided in ILIAS and contains three corpora. Load and vectorize
the 4-documents corpus into RapidMiner using the Process Documents from Files operator.
How many different attributes has the generated example set?
Solution: Setup the process. Include the tokenize operator within the nested process
documents from files operator. Have a look at the Meta Data View on the ExampleSet Tab of
your Result View.

Conclusion: 994 regular attributes and 4 special attributes.

2. Examine the generated word list. What are the most common words? Look for the three
most common words that might be helpful for text mining tasks?
Solution: Have a look at the WordList Tab of your Result View. Order the words by the folder
you selected in your Process Documents from Files operator.

Conclusion: It’s hard to find the most common word which would help to mine the text
because the top words are so called stopwords. At position 30 you can find Madrid followed
by United which may indicate a football game. At position 46 League is listed which
underlines the first conclusion.

3. Remove stopwords and apply the porter stemmer. By how many attributes do the operators
reduce the size of your example set?
Solution: Add the stopwords filter operator and the stemmer (porter) operator within your
nested Process Documents from Files operator.

Conclusion: Number of attributes is reduced to 706 regular and 4 special attributes.

4. Use the Data to Similarity operator to generate a similarity matrix for the documents. Which
documents are most similar? Can you confirm the judgment of the algorithm by
reading the documents?
Solution: Connect the Data to Similarity operator with your Process Documents from Files
operator.

Conclusion: Document 2 and 4 and document 3 and 4 are most similar (least distance).



o)l
{BERLUNIVERSITY
i@m MANNHEIM

5. Experiment with different similarity metrics as well as with different vector creation
methods. Which combination produces the best similarity scores?
Solution: The vector creation is setup within the Process Documents from Files operator and
the similarity metrics are setup in the Data to Similarity Operator.

Conclusion: The conclusion for 7.1.4 can be exposed more clearly using TF-IDF with
CosineSimilarity or BinaryTermOccurences with Jaccard Similarity.

7.2. Cluster the 30-Documents Corpus
1. The 30-documents corpus contains postings from three news groups. Vectorize the 30-
documents corpus, remove stopwords and maybe stem the corpus.
Solution: Select all three included subfolders for the Process Documents from Files one by
one to retrieve the classification information via this operator.

Conclusion: After including stemming (porter) and stopwords filter, the data set has 2551
regular attributes.

2. Use the K-Means operator to cluster the corpus. Examine the resulting clustering using the
folder view. How many documents ended up in the wrong cluster? What can you do to
improve the clustering?

Conclusion: Running the k-means clustering with standard setup for TF-IDF vectors all of the
soc.religion documents are clustered correctly. The other two groups of documents are
mixed up with 6 wrongly classified documents (2 from sci.space and 4 from
talk.politics.guns). Without stemming the number of miss-clustered items is the same but
there are wrong documents in each cluster also in soc.religion. Using the term frequency for
the vector generation (with stemming(porter)) and filtering tokens which are smaller than
length 5, the number of miss-clustered items is reduced to 5.

3. Examine the distribution of frequent words over the three different classes in the word list.
Does the distribution give you an idea how you could improve the clustering using any of the
prune methods of the process documents operator?

Solution: Have a look at the table on the WordList Tab in your result view. Order the words
first by total occurrences (desc). Than order the words by the occurrences within the
document groups (desc).

Conclusion: The words appearing more often are almost in all documents (between 20 and
30 document occurrences). Words that are significant for some documents appear less than
10 times within the documents. This is a hint to use e.g. absolute pruning. Using the ranges
above 10 and below 4 the clustering miss-clusters only 2 documents.

7.3. Learn a Classifier for the 300-Documents Corpus
The 300-documents corpus contains postings from three different news groups. Vectorize
the 300-documents corpus and learn a classifier for classifying the postings. Evaluate the
classifying using 10-fold X-Validation. Which accuracy does your classifier reach? Increase the
performance of your classifier by pruning the document vectors.

Conclusion: Without using any pruning or parameter adaption the process using a naive
bayes classifier with TF-IDF comes up with a accuracy of 79.33% (Recall: 79.33%, Precision:
81.79%).



o)l
{BERLUNIVERSITY
i@m MANNHEIM

Hint: check the boxes for “weighted mean recall” and “weighted mean precision” of the
“Performance” operator to obtain Recall and Precision values.

Vector Creator Prune below Prune above Accuracy (%)
TF-IDF 20 90 83.67
TF-IDF 20 70 82.67
Term Freq 20 110 84.00
BTO 10 100 86.33
BTO 0 130 91.00

But: Using Binary Term Occurences without any pruning an accuracy of 91.00% (Recall:
91.00%, Precision: 91.78%) is achieved.

7.4. Learn a Classifier for the Job Postings
1. The Job Postings corpus contains 500 descriptions of open positions belonging to 30 different

job categories. The corpus is provided as an Excel file in ILIAS. Import the corpus into
RapidMiner. Vectorize the corpus using the Process Documents from Data operator. Learn a
Naive Bayes classifier for classifying the job adds. Evaluate the classifying using 10-fold X-
Validation. Analyze the classifier performance and the word list. What do you discover?
Solution: Import the data and set both attributes to text. Set category as label and run the
process. There will be several warnings which do not affect the process. If you want to
remove those warnings you need to assign an Id to each example to use the operators
properly. As there is no Id included in the data set you can use the Generate ID operator.
Select only those attributes (id and job text) which are relevant for the vector creation. Join
the data afterwards so that you get the label (category) back to your data set and run the
validation.

Conclusion: Running the process will lead to the following results: Accuracy: 48.51%, Recall:
27.04%, Precision: 24.61%. Within the wordlist are some HTML fragments which might be
good to be filtered. Also the data set has a low number of text descriptions per class which
might not be enough to learn a good classifier.

2. Experiment with different vector creation and pruning methods as well as different types of
classifiers in order to increase the performance. What is highest accuracy that you can reach?
Which problem concerning precision and recall does remain?

Conclusion: Using Term Frequency and 0/28 pruning the classifier has an accuracy of 50.92%.
Recall and precision are still really low: Recall: 30.28% and Precision: 28.37%



