
Exercise - Data Exchange Formats

Web Data Integration IE683
University of Mannheim, Germany

September 2022

In the following three exercises, you are asked to write Java code for reading
data from XML, JSON and RDF files and for querying the data using the XPath
and SPARQL query languages. Each subsection is dedicated to one of the three
data exchange formats. The tasks are rather basic and the goal is to refresh
your knowledge in Java in general and in particular in parsing those formats.

1 How to start with Java?

After installing Java 11, download and unzip the DataParser project which can
be found in ILIAS. Import the project as a Maven project in Eclipse. In order
to do so, select inside Eclipse File/Import/Import Existing Maven Project and
point Eclipse to the DataParser directory containing the Maven file pom.xml.
Now inspect the structure of the project. Inside the src.main.java folder, you
can find three packages. Each package is dedicated to one data format: JSON,
RDF and XML. For each format, we have prepared some Java classes which will
help you solve the tasks of this exercise.

2 XML

This subsection is dedicated to the XML format. In particular you are asked to
perform XPath queries on the Mondial dataset1. This dataset includes world
geographic information integrated from the CIA World Factbook, the Interna-
tional Atlas and the TERRA database, to name just the pre-dominant sources.
Please inspect the document manually (using a text editor) in order to explore
the structure. You can also have a look at the w3school XPath tutorial2 to solve
the following tasks.

1The file can be downloaded from ILIAS but is also available here: http://aiweb.cs.

washington.edu/research/projects/xmltk/xmldata/data/mondial/mondial-3.0.xml
2https://www.w3schools.com/xml/xpath_intro.asp

1



2.1 Starting point

Locate the XMLReader.java class in the package de.dwslab.lecture.wdi.xml.
This class contains a main method which parses the mondial-3.0.xml file us-
ing the JAXP library and selects its root node.

2.2 Mondial — Print XML node information

TASK 1: In order to get started with parsing of XML files in Java, please write
a Java class which reads the mondial-3.0.xml file using the JAXP library and
prints the name of the root element of the XML document. In order to make your
start easier, the DataParser project contains a file WDI 20200 RG2 Template1.java
which already includes all the imports for solving the task, as well as comments
explaining you which steps need to be performed in which order.

2.3 Mondial — Schema Inspection

Now that we have written our parser and explored the root node we can start
digging deeper into the XML file.

TASK 2: Adapt the class from the previous task that a unique list of all nodes
below the root node is printed. (Hint: In order to prevent that the same node
name is printed multiple times when iterating over the NodeList, you can use a
Java HashSet for remembering which node names have already been printed.)

2.4 Mondial — Basic XPath

Now that we got an idea about the structure of the XML we are interested in
the content.

TASK 3: Adapt the solution of the previous task in the way that it prints
the names of all countries which belong to the continent with the name Europe.
(Hint: Have a look at the schema of the node country to see how it is linked
to the continent.)

2.5 Mondial — XPath Predicates I

With the solution of the previous task we are now able to get the countries for
a selected continent. In a next step we want to extend this query that we can
get countries which belong to two continents.

TASK 4: Extend the XPath for the former task in order to retrieve only
countries which are part of Europe and Asia.

2



2.6 Mondial — XPath Predicates II

In a final step we want to gather all attributes from a selection of nodes, without
explicitly knowing their names.

TASK 5: Extend the solution of the former task in order to navigate (using
XPath) to the country node and print all attribute names and values. (Hint:
You can use the getAttributes() method to detect all available attributes of
the current node).

3 JSON

In the second part of this exercise we focus on the JSON format. As you already
have some experience with the Mondial dataset in a first step, you are asked
to transform parts of the XML into a JSON. In order to do so make use of the
Google Gson Java library3.

3.1 Mondial — XML to JSON

TASK 6: Create a JSON file (*.json) which contains all countries which are
located in Europe with the attributes of the country node from the original
mondial-*.xml. (Hint: Have a look at the last exercise of the former section.
Gson offers a method to simply translate a HashMap into a JSON string, which
then can be written to a file.)

3.2 Mondial — Reading JSON

In a second step we want to create Java objects from the JSON file we just
created, but we are not interested in all attributes.

TASK 7: Write a small program, which reads the JSON file (which was the
output of the former task) and transforms each line into a Java object (named
Country.java). The country should have four values: the id (String), the name
(String), the car code (String), and the population (Long). Do you have to
pay attention to type conversion? What is the total number of inhabitants of
those countries? (Hint: Have a look in the example code of the lecture.)

3You can find the library at the google code page: https://sites.google.com/site/gson/.
A user guide can be found on this page: https://github.com/google/gson/blob/master/

UserGuide.md

3



4 RDF

In the last part of this exercise session we will focus on RDF and SPARQL. In
ILIAS you can find the European countries with their name, population and the
spoken languages stored as RDF file. The file was generated from the original
mondial XML file.4 In the following you will be asked to formulate SPARQL
queries to answer questions about the dataset using the Jena Java Framework5.
In addition to the lecture the W3 site of SPARQL Query Language can help
you to answer the questions.6

4.1 Mondial — Query with SPARQL I

TASK 8: Write a small program, which reads the RDF file (from ILIAS) and
formulate a SPARQL query which returns the name and id of all countries
within the dataset ordered by the name. What is the last country in this list.
In order to explore the property names and namespaces have a look at the RDF
file or at the code which was used to generate the file. (Hint: Have a look at
the example code of the lecture.)

4.2 Mondial — Query with SPARQL II

As we now have setup the code to query against our dataset, we are interested
in the largest countries. But as we already know that Russia and Germany are
pretty large, we want to generate a list of the second top 5 largest countries by
population.

TASK 9: What is the SPARQL query which returns the second five (6th to
10th) most populated countries in Europe? And which countries are these?

4.3 Mondial — Query with SPARQL III

In a last exercise you are asked to write a SPARQL query which selects all
countries whose inhabitants speak a defined language.

TASK 10: How does the SPARQL query look like, which returns a list of
all German-speaking countries with their name and id?

4The code which was used to generate the file can also be found in the Java project of this
(see de.dwslab.lecture.wdi.rdf.Converter.java).

5The documentation of the framework can be found at their website: https://jena.

apache.org/
6https://www.w3.org/TR/rdf-sparql-query/

4


