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What does bias look like?
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By Melissa Hogenboom W 25th May 2021

The toys we give to children and the traits they are
assigned can have lasting impacts on their lives, writes
Melissa Hogenboom.
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What would you like to play with?

Toys for Boys

« The difference between men and boys is the price of their toys.” Ohne Frauen ware das
ganze Geld der Welt sinnlos
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Evidence for bias

e Different treatment depending on identity

e Different ideas about someone depending on identity

e Different expectations about someone depending on identity

e Different representation depending on identity

Simone Ponzetto / Data Science in Action
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What is the harm?
Associative vs. allocative harm
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e Associative harm: when systems reinforce the subordination of some
groups along the lines of identity

* An allocative harm: when a system allocates or withholds certain
identity groups an opportunity or a resource

Source: “The Trouble with Bias” NIPS 2017 Keynote - Kate Crawford
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16.09.22 10


https://www.youtube.com/watch?v=fMym_BKWQzk

UNIVERSITY
OF MANNHEIM

School of Business Informatics
and Mathematics

Allocative harm?

e Air conditioning temperatures are set according to the resting metabolic
rate of a 154-pound, 40 year-old man. This overestimates women’s
metabolic rates by 35%+

e As office temperatures get warmer, women perform better on cognitive
tasks while men perform worse

https://www.nature.com/articles/nclimate2741

https://journals.plos.org/plosone/article/authors?id=10.1371/journal.pone.0216362
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More on allocative harm

Amazon's Secret Al Hiring Tool Reportedly

et Emes 'Penalized' Resumes With the Word 'Women's'
Apple Card Investigated After B o s
Gender Discrimination ey

Complaints

A prominent software developer said on Twitter that
the credit card was “sexist” against women applying
for credit.
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The typical “learning from data”
workflow: Data => learn => predict

Media are
filtered, ranked,
aggregated, or
generated

Training data are

collected and Model is trained
annotated

Simone Ponzetto / Data Science in Action Credit/source: EMNLP 2019 Tutorial: Bias and Fairness in Natural Language Processing
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The problems with data...

Human Biases in Data

Ranartina hiac

Selection bias

Uvergeneralization
/ Out-group homogeneity bias

Training data are
collected and
annotated

\ Sampling error
Non-sampling error
Insensitivity to sample size

Correspondence bias

In-group bias

Simone Ponzetto / Data Science in Action
16.09.22

Stereotypical bias Group attribution error

Historical unfairness Halo effect
Implicit associations
Implicit stereotypes

Prejudice

Human Biases in Collection and Annotation

Riae hiind cnad

Neglect of probability
Confirmation bias Anecdotal fallacy
Subjective validation lllusion of validity
Experimenter’s bias

Choice-supportive bias

Credit/source: EMNLP 2019 Tutorial: Bias and Fairness in Natural Language Processing
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Human biases in data and interpretation

Reporting bias: What people share is not a reflection of real-world frequencies
Selection Bias: Selection does not reflect a random sample

Out-group homogeneity bias: People tend to see outgroup members as more alike
than ingroup members when comparing attitudes, values, personality traits, and other
characteristics

Confirmation bias: The tendency to search for, interpret, favor, and recall information
in a way that confirms one's preexisting beliefs or hypotheses

Overgeneralization: Coming to conclusion based on information that is too general
and/or not specific enough

Correlation fallacy: Confusing correlation with causation

Interpretation

Automation bias: Propensity for humans to favor suggestions from automated
decision-making systems over contradictory information without automation

Simone Ponzetto / Data Science in Action Credit/source: EMNLP 2019 Tutorial: Bias and Fairness in Natural Language Processing
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Selection does not reflect a random sample

Example: world Englishes
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Biases in data — Selection Bias
Selection does not reflect a random sample

Gender bias on the Web

 Males are over-represented in the reporting of web-based news articles (Jia, Lansdall-
Welfare, and Cristianini 2015)

 Males are over-represented in twitter conversations (Garcia, Weber, and Garimella
2014)

e Biographical articles about women on Wikipedia disproportionately discuss romantic
relationships or family-related issues (\Wagner et al. 2015)

* |IMDB reviews written by women are perceived as less useful (Otterbacher 2013)

Simone Ponzetto / Data Science in Action
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Biases in the data lead to
biases in the predictions!

No Classification without Renresentation:
Assessing Geodiversity Issues in

Shreya Shankar, Yoni Halpern, Eric Breck, James Atwc

{shankarshreya, yhalpern, ebreck, atwoodj, jim
Google Brain Team

for the Developing W * k
f
| A -
AN

-

’\ ; ceremony, bride, ceremony,
= & Wedd/ng, bride, ceremony, br/de, Weddlng, person, people
w man, groom, wedding, dress, man, groom,
woman, dress woman woman, dress
Wedding photographs (donated by Googlers), labeled by a classifier trained on the Open Images dataset. The classifier's
1 D 642,997 '
Figure2:: Distiibution:of the:geographically identifiaie images label predictions are recorded below each image.
country. Almost a third of the data in our sample was US-based, and 6U% ot the data was trom the
six most represented countries across North America and Europe.
Simone Ponzetto / Data Science in Action
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Biases in the data lead to
biases in the predictions!

&£ _ The Royal Family &
é @RoyalFamily kg
Taking place this week on the river Thames is

'‘Swan Upping' — the annual census of the
swan population on the Thames.

A Mooktar 4 —— R
L] v
&) @bossmukky e

"@Ecstatic_Mi: @bossmukky Ebi like say |
wan dey sick sef wih 'Flu' my whole body
dey weak"uw gee...

da'Rah-zingSun are B
Y4
@TIME7SS i W

@kimguilfoyle prblm | hve wit ur reportng is
its 2 literal, evry1 knos pple tlk diffrnt
evrywhere, u kno wut she means jus like we
do!

o
v
i @Physique_cian ore

@Tblazeen R u a wizard or wat gan sef : ind
mornin- u tweet, afternoon - u tweet, nyt gan
u dey tweet.beta get ur IT placement wiv
twitter

Language identification degrades significantly on African American
Vernacular English (Blodgett et al. 2016)
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 The tendency to search for, interpret, favor, recall information in a way
that confirms preexisting beliefs

CHAINSAWSUIT.COM
1've heard the o t
thetoric Gram beth 18cKpe

5 G()()gic \mr.r.- debated topc ‘ :
si 6QS"‘ hme +o do Found 80,000 resuits
My OwN research on

e Literally the first link that
the real truth

agrees with what you

\ already believe  \g
@ Compietely supports your viewpoint
without challenging it in any way
Another link
= \ 7 ” | e

ittt
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Biases in interpretation:
Confirmation bias

 Crowd workers tend to judge as more truthful news statements coming
from speakers off the same political party that they have recently voted
for [La Barbera et al., 2020]

* Crowd workers are more likely to label a statement as neutral (as
opposed to opinionated) if its stance aligns with their own opinions
[Hube et al., 2019]

[La Barbera et al., 2020] David La Barbera, Kevin Roitero, Gian- luca Demartini, Stefano Mizzaro, and Damiano Spina. Crowd- sourcing truthfulness: The impact of
judgment scale and assessor bias. In European Conference on Information Retrieval, pages 207—214. Springer, 2020.

[Hube et al.,2019] Christoph Hube, Besnik Fetahu, and Ujwal Gadiraju. Understanding and mitigating worker biases in the crowdsourced collection of subjective
judgments. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1-12, 2019.

Simone Ponzetto / Data Science in Action
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The problems with data...

Human Biases in Data

Ranartina hiac

Selection bias

Uvergeneralization
/ Out-group homogeneity bias

Training data are
collected and
annotated

\ Sampling error
Non-sampling error
Insensitivity to sample size

Correspondence bias

In-group bias
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Stereotypical bias Group attribution error

Historical unfairness Halo effect
Implicit associations
Implicit stereotypes

Prejudice

Human Biases in Collection and Annotation

Riae hiind cnad

Neglect of probability
Confirmation bias Anecdotal fallacy
Subjective validation lllusion of validity
Experimenter’s bias

Choice-supportive bias

Credit/source: EMNLP 2019 Tutorial: Bias and Fairness in Natural Language Processing
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The typical “learning from data”
workflow: Data => learn => predict

Media are
filtered, ranked,
aggregated, or
generated

Training data are

collected and Model is trained
annotated

Simone Ponzetto / Data Science in Action Credit/source: EMNLP 2019 Tutorial: Bias and Fairness in Natural Language Processing
16.09.22 23



http://web.cs.ucla.edu/~kwchang/talks/emnlp19-fairnlp/

UNIVERSITY
OF MANNHEIM

School of Business Informatics
and Mathematics

Biases’ reinforcement loop

Human Bias

Human Bias

Media are
Training data are filtered, ranked, People see
collected and Model is trained aqareaated. or output and act
annotated ggreg ’ based on it
generated

Human Bias Human Bias

Feedback Loop

Simone Ponzetto / Data Science in Action Credit/source: EMNLP 2019 Tutorial: Bias and Fairness in Natural Language Processing
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In search of doctors
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How does a nurse look like?

Google e @ ¢ q 5 0 @

All Images News Videos More Settings Tocls Vewnsaved SafeSearch~

.Eﬂn- iz .I>
‘.
— u
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What about a CEO?

Google < @ ¢ o 5 0 @

HOW/ CEQS
?:’(ND THEIR
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The “A.l. Gaydar”

Composite heterosexual faces Composite gay faces Average facial landmarks

St |

A sexual orientation detector
learned from data

Male

* gay
e straight

* Wait... predicting sexuality?!

Female

Wang & Kosinski. Deep neural networks are more accurate than humans at
detecting sexual orientation from facial images. Journal of Personality and
Social Psychology. February 2018, Vol. 114, Issue 2, Pages 246-257.

Simone Ponzetto / Data Science in Action
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Problems with the “A.l. Gaydar”

* Research question
— ldentification of sexual orientation from facial features

 Data collection

— Photos downloaded from a popular American dating website

— 35,326 pictures of 14,776 people, all white, with gay and straight, male and female, all
represented evenly

e Method

— A deep learning model was used to extract facial features + grooming features; then a logistic
regression classifier was applied for classification

* Accuracy
— 81% for men, 74% for women

Simone Ponzetto / Data Science in Action
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A few crucial questions

e Who could benefit from such a technology?

e Who can be harmed by such a technology?

e Representativeness of (training) data

e What are confounding variables and corner cases to control for?
e Can prediction errors have major effect on people’s lives?

e Does the system optimize for the “right” objective?

Simone Ponzetto / Data Science in Action
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Language Technologies and bias

Simone Ponzetto / Data Science in Action
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Natural Language Processing: some
initial thoughts...

— Methods to automatically process (i.e., understand and generate)
natural language data

how do | say "hello world" in french !; Q

Q Al &) Images < Shopping [] Videos [E News : More Settings  Tools

@ Correctness
2 alerts

Rooms that are tiny can be tricky to decorate but they can About 2,660,000 results (0'71 seconds)

also be a lot of fun. So when a client challenged us to give her

pocket size space a summer makeover for under $500 dollars, /Sljtntf:ctear English - detected « ‘_—O French +

we just couldn't say no. Transforming a very small space

doesn't have to blow your budget. Small things like finding a Engagement .

vintage piece of furniture from a relative or adding a fresh abitbland he”O WOrId X BonjOUT Ie monde
coat of paint to your own dated items can add a stylish splash

to any abode. g:gl:iirg’ﬁ

0 ¢ 0 0

Open in Google Translate Feedback

Simone Ponzetto / Data Science in Action
16.09.22 34



UNIVERSITY
=1 OF MANNHEIM

School of Business Informatics
and Mathematics

A few applications of Natural Language
Processing

e Spelling correction
 Grammar checking

e Text completion

* Speech-to-text and vice versa
e Dialogue systems

* Question Answering

* Summarization

 Machine translation

Simone Ponzetto / Data Science in Action
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Example: writing assistant

@ grammarly

Grammar

Please notify Mike or myself
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Example: virtual assistant

‘9‘ C &

"How long is the wait
usually to be seated?”
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e DeepL Translator  Linguee 2 Login =

Example: machine translation

Translate from English (detected) v Translate into German v
Welcome to the webpages of the Data and Web Science Willkommen auf den Webseiten der Data and Web Science
Group. We conduct research and offer teaching in the Group. Wir forschen und lehren in den Bereichen
areas data analytics, artificial intelligence, natural language Datenanalyse, Kunstliche Intelligenz, Naturliche
processing, and data integration. The group consists of 7 Sprachverarbeitung und Datenintegration. Die Gruppe
professors and around 35 researchers and supporting besteht aus 7 Professoren und rund 35 Forschern und
staff members. unterstutzenden Mitarbeitern.
>
(5] Translate document P <L |

Click on a word to get

alternative formulations.
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Bias in NLP models: an example with MT

Translate Turn off instant translation

Bengali English Hungarian Detect language ~ #» English Spanish Hungarian ~

0 egy apolo. X  she's anurse.
0 egy tudos. he is a scientist.
6 egy mérnok. he is an engineer.
0 egy pék. she's a baker.
0 egy tanar. he is a teacher.
0 egy eskuvéi szervezo. She is a wedding organizer.
0 egy vezeérigazgatoja. he's a CEO.
wihDo <
) B v 110/5000

Simone Ponzetto / Data Science in Action
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More examples with MT!

Diane Kim @_DianeKim - Oct 4, 2017 ¥
Bias in Al: when you translate this from English [E3 Turkish, a gender

neutral language, then that same Turkish phrase back to English #GHC17

c@nsiate
French English Turkish Detectlanguage -~ *, Engish French Turush - |
'He igzb—ag;siﬁer x| O bir bebek bakicisi

Shie is a doctor O bir doktor

|0 V- e S voo | B @<

Translate

French English Turkish Detect language -~ % s frencn o - [

9] bir‘b;b;( ‘bvaln(IVClSI e * ' She's a babysitter

O bir doktor He is a doctor

O ¢m- B

QO 342 11 151K Q 241K B,

Source: https://twitter.com/ DianeKim/status/915693210088984576/photo/1

Simone Ponzetto / Data Science in Action
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Bias in NLP models: more MT

= Google Translate

X5 Text B Documents

ENGLISH - DETECTED TURKISH ENGLISH SPANISH v

The doctor asked the nurse to help her in the
procedure

) 55/5000

ENGLISH - DETECTED TURKISH ENGLISH SPANISH v

The doctor asked the nurse to help her in the
procedure

) 55/5000

Simone Ponzetto / Data Science in Action
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= @

Vg SPANISH ITALIAN ENGLISH v

X El médico le pidi6 a la enfermera que la ayudaraen <
el procedimiento.

D 0 7z <
Send feedback
& SPANISH ITALIAN ENGLISH v
X Il medico ha chiesto all'infermiera di aiutarla nella W
procedura
D) 0 7z <

Send feedback
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WhatsApp recommending emaojis...

Delivered Delivered
she's the ced @ i need a female doctor 1)
(‘:a' 3

qgwe T rtyuiop gwer-rtyud.iop
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Gender bias in coreference resolution
and language modeling

Coreference scores and conditional log-likelihood indicate implicit bias in
coreference resolution and language modelling (Lu et al., 2019)

5.08 A B

InPr[B | A]
l5: The doctor ran liég%ause he is late. l5: Heis a | doctor. 9.72
lo: The doctor ran_giiause she is late. 1o: She is a | doctor. -9.77
25: The nurse ran l:ge?zause he is late. 25: Heis a | nurse. -8.99
26: The nurse ran b.ecause she is late. 26: She is a | nurse. -8.97
(a) Coreference resolution (b) Language modeling

Figure 1: Examples of gender bias in coreference resolution and language modeling as measured by
coreference scores (left) and conditional log-likelihood (right).

Simone Ponzetto / Data Science in Action
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Debiasing of semantic spaces

Simone Ponzetto / Data Science in Action
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The story so far: the (potentially
dangerous) social impact of Al/NLP

‘,h? . - happen-
. ‘3 toO\- g T:
cet A recruitin o,
gsmess ™ Sec @EXC
n 5Cfa . ‘ \NQme“ ,‘ ;5‘\‘-7’55,*3 allburLOSt .
mazo a‘“s WMIN READ 11 Likgg It Wa o,
A d b‘as ag ’ . 23 S made B =" Foupoy,
ShO\Ne 25 b.1m 23 f"7a/'20;5 %H O ﬁ ‘ P \
1.0) mﬁch'meaxe ,é.ma
ooy DaSOD el A:\XZX\ ......... __adnot 1k~

" Google says sorry for racist auto-tagin
.photo app

Google Photos labelled a picture of two black people as ‘gorillas’
Google Maps and Flickr have also suffered from race-related
problems
Simone Ponzetto / Data Science in Action
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How does this relate to
mainstream NLP methods?

Simone Ponzetto / Data Science in Action
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A typical NLP workflow

* Text as input
* Encode text into a representation

— e.g., vectors whose dimentions capture "dimentions of meaning”

* Use the text representations as input to a task-specific model

— e.g., a sentiment classifier

Simone Ponzetto / Data Science in Action
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Sequential transfer learning

* Coreidea: pretrain the language/text encoder on large amounts of text, so that it learns
“the language”

— Structure of the language (i.e., syntax)

— Compositionality of meaning in the language (i.e., semantics)

e |f we could ,pre-train” such an encoder, it would be generally useful for a wide
spectrum of NLP tasks

word2vec
. . . GloVv i
Image source: NAACL tutorial on Transfer Pretraining sk(i)p-tehought Adaptation classification
Learning for NLP InferSent

sequence labeling
ELMo Q&A

ULMFIT

GPT
BERT



https://tinyurl.com/y4mard84

Lexical semantic vector representations

* A model of word meaning
focused on similarity

* Define the meaning of a word
as a vector, a list of numbers, a
point in N- dimensional space

e Similar words are "nearby in
space”

Simone Ponzetto / Data Science in Action
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not good

bad
to by ‘ dislike  worst

incredibly bad

that ~ now are worse

a 1

than i

you

is

very good incredibly good

amazing fantastic

(e wonderful

nice

good

Source: Jurafsky & Martin (2018)
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Words in Space - Word Embeddings

* Representing words in a vector space is a standard process in NLP, called
embedding

* Itis called “embedding” because the objects are embedded into a vector
space
* Inour case, we embed words, so we obtain word embeddings

* An embedding of a word is nothing but a numeric vector that aims to
capture some properties (typically meaning) of the word

Simone Ponzetto / Data Science in Action
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Word representations

e Distributional hypothesis: ,you’ll know a word by the company it keeps” (Harris,
1954)

* Word representations are derived from word co-occurrences in a large corpus of
text

...the quick brown || fox||jumps over the ...

* Assumption: the contexts in which the word appears, define its meaning

— This allows to create a (still rather sparse) V x V dimension matrix of co-occurrences between
words

— Word vectors from the co-occurrence matrix can now be compared (similar words will appear
in similar contexts, hence have similar vectors)
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Word representations

Dense representations

 Each word is represented by a dense
vector, a point in a vector space

 The dimension of the semantic
representation d is usually much
smaller than the size of the vocabulary
(d << V)

* All dimensions contain real-valued
numbers (possibly normalized
between -1 and 1)
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- cat
- dog
- kitten
- airplane
= helicopter
Boeing-747
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Word Embeddings
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WORD dl d2 d3 d4 d5 d50
summer 0.12 0.21 0.07 0.25 0.33 0.51
spring 0.19 0.57 099 0.30 0.02 0.73
fall 0.53 0.77 043 0.20 0.29 0.85
light 0.00 0.68 0.84 0.45 0.11 0.03
clear 0.27 050 0.21 0.56 0.25 0.32
blizzard 0.15 0.05 0.64 0.17 0.99 0.23
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Skip-Gram (SG) model

e Start by assigning two different dense random vectors to each word
— Center vector and context vector (each of size d << V)

* For a center word, predict the words will appear in its context

— E.g., given ,fox” predict ,,quick”; ,,brown”; ,,jumps”; , over”
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Skip-Gram (SG) model

words in
vocabulary

Word
representation

V-d

/IR 77 270\ [\

Context
representation

/I
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Continuous bag-of-words (CBOW)

* Inasense, a model inverse to Skip-Gram — predicts the central word from
the context

* Given context, predict the center word

— E.g., given ,quick brown _ jumps over” predict ,fox”
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Continuous bag-of-words (CBOW)

Input layer | Hidden layer | Output layer

Context Word
representation representation
v-d d-v

\

One-hot vector

INN\N\N7/87/\ N\

Probability that a
of the context word is the center
(several ‘1’ word
elements, one \ = :
for each context ’ =
word) = ~ .

i | §:
W w’
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Word embeddings — results

Sh ol fB
and Mather

Airplane
word cosine
plane 0.835

airplanes | 0.777
aircraft | 0.764
planes 0.734
Jet 0.716
airliner | 0.707
jetliner | 0.706
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Cat
word | cosine
cats | 0.810
dog 0.761
kitten | 0.746
feline | 0.732
puppy | 0.707
pup | 0.693
pet 0.689

Dog
word | cosine
dogs | 0.868
puppy | 0.811
pit_bull | 0.780
pooch | 0.763
cat 0.761
pup 0.741
canines | 0.722
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Word

Embeddings

i-th output = P(w, = i| context)

(eee B eee )
’ 7
’
’ ) most| computation here \
’ '
’ ' \‘
! ' \
' ' '
4 ' tanh !
!
' \ s r se) |
’ !
! ]
] ’
| ’
] ¥4
C(Wi—n+ s, [Clw2) Clwr)\ -~
(oo .-.9o) ... (oo ... 9) (oo ... o)
Table . Matrix C
Jook—up messssscssssssssssscfeciusscssessssssesses
: shared
inC across words
index for w,_,.; index for wy—2 index for wy..q

Neural Language Model (Bengio et al, "03)

Documents

Terms

A =

Simone Ponzetto / Data Science in Action

16.09.22

mxn

A -

U

INPUT

w(t)

PROJECTION

Skip-gram

OUTPUT

4 W2

< w(t-1)

4w+

4 w(t+2)

INPUT PROJECTION

w(t-2)
wit-1)
SUM
7
wit+1)
w(t+2)
cBOwW

word2vec (Mikolov et al, "03)

=

N\

\

VT

mxr

U

rxr

D

Latent Semantic Analysis
(Deerwester et al, "90, Turney & Pantel "10)

™xn
VvT

UNIVERSITY
OF MANNHEIM

School of Business Informatics
and Mathematics

QUTPUT

» wit)

59



Embeddings capture relational meaning
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Embeddings capture relational meaning
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Embeddings capture relational meaning

Country and Capital Vectors Projected by PCA

2 T T i T T T T
China
Beijing
1.5 | Russia ]
Japan
Moscow
1k 2l
Turkey Ankara oLt
0.5 E
Poland:

0 F Germany- A

France "Warsaw

» Berlin
-05 | ltaly~ Paris .

» Athens

Greece-
1} Spain Rome i
£ *Madrid
-1.5 - Portugal ke

-2 1 1 1 1 1 1 1

-2 -1.5 -1 -0.5 0 0.5 1 15 2

Simone Ponzetto / Data Science in Action
16.09.22 62



From relational meaning to analogies

* Famously, word embeddings can
(approximately) solve analogies like
man:king :: woman:x

e vector(‘king’) - vector(‘man’) +
vector(‘woman’) = vector(‘queen’)

* Nearest vector to Vy,g = Viman * Vwoman 15
uneen
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From relational meaning to biased
analogies

e Ask “Paris : France :: Tokyo : x”
— X =Japan
* Ask “father : doctor :: mother : x”
— X = nNnurse
* Ask “man : computer programmer :: woman : x”

— X = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word embeddings." In Advances in Neural Information Processing

Simone Ponzetto / Data Science in Action Systems, pp. 4349-4357. 2016.
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Embeddings reflect cultural bias

e Implicit Association test (Greenwald et al 1998): How associated are
— concepts (flowers, insects) & attributes (pleasantness, unpleasantness)?
— Studied by measuring timing latencies for categorization.

white black white
or or or
bad bad good
\ /

N\
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Implicit Association test (Greenwald et al 1998): How associated are

— concepts (flowers, insects) & attributes (pleasantness, unpleasantness)?
— Studied by measuring timing latencies for categorization.

* Psychological findings on US participants:

— African-American names are associated with unpleasant words (more than
European-American names)

— Male names associated more with math, female names with arts

— Old people's names with unpleasant words, young people with pleasant words.

Simone Ponzetto / Data Science in Action
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Embeddings reflect cultural bias

Caliskan et al. replication with embeddings:
* Latency < Cosine similarity

— African-American names (Leroy, Shaniqua) had a higher cosine with unpleasant
words (abuse, stink, ugly)

— European American names (Brad, Greg, Courtney) had a higher cosine with pleasant
words (love, peace, miracle)

Embeddings reflect and replicate all sorts of pernicious biases!

Caliskan, Aylin, Joanna J. Bruson and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain
human-like biases. Science 356:6334, 183-186.
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Text Representations are biased
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Text Representations are biased
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Man is to computer programmer as woman is to home maker

\ A

man — woman computer programmer — homemaker
(Bolukbasi et al., 2016)
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Bias in word embeddings: more analogies

Gender Biased Analogies

man — doctor woman — nurse
woman — receptionist man — supervisor
woman — secretary man — principal
Racially Biased Analogies

black — criminal caucasian — police
asian — doctor caucasian — dad
caucasian — leader black — led
Religiously Biased Analogies

muslim — terrorist christian — civilians
jewish — philanthropist | christian — stooge
christian — unemployed | jewish — pensioners

Table 1: Examples of gender, racial, and religious
biases in analogies generated from word embeddings
trained on the Reddit data from users from the USA. Source: Manzini et al. (NAACL 2019)
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Word embeddings...

Word embeddings...

... get things
normatively wrong
precisely becanse they
get things
descriptively right!

L
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Methods for detecting bias
and attenuating bias in word embeddings

have been proposed!
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Methods for detecting bias
and attenuating bias in word embeddings
have been proposed!

Problems

e Bias definitions mutually differ
* Specific bias types only

* Inconsistent evaluations
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Methods for detecting bias
and attenuating bias in word embeddings
have been proposed!

Problems

* Bias definitions mutually differ
* Specific bias types only

* Inconsistent evaluations

(Gonen and Goldberg, 2019)
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A General Framework
for Implicit and Explicit Debiasing
of Distributional Word Vector Spaces

Main Contributions

Formalization of implicit and explicit biases
Proposal of new debiasing methods
Design of a comprehensive evaluation framework

> w N oe

Demonstration of the cross-lingual transfer of debiasing models

Anne Lauscher, Goran Glavas, Simone Paolo Ponzetto, Ivan Vulic:
A General Framework for Implicit and Explicit Debiasing of Distributional Word Vector Spaces. AAAI 2020: 8131-8138
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Bias specification: Implicit vs. Explicit

woman "
his ‘ father . mother

man hers
brother )
male female sister
him he she
her
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Bias specification: Implicit vs. Explicit

woman
his ‘ father ‘ mother
man hers
brother -
male female sister
him he she
her

Implicit bias specification
Two sets of target terms T, vs. T, with respect to which a bias is expected to
exist in the embedding space: By ,icit=(T1, T)
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Bias specification: Implicit vs. Explicit

woman "
his ‘ father . mother

man hers
brother )
male female sister
him he she
her
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Bias specification: Implicit vs. Explicit

experiment
technology
science
his ‘ father woman mother

man hers

brother sister
male female

him

he her she
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Bias specification: Implicit vs. Explicit

experiment
technology

science (3

brother
male
him he

Explicit bias specification

literature
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painting

oetr 7 ~
p Y ‘. 4 art
L. X 4
2% Y9 ©® dance
woman . mother
hers
sister
female
she

her

In addition to sets T1 and T2, one or more reference attribute sets A, e.g.,

Bexplicitz(Tlr T2/ Alr AZ)
Simone Ponzetto / Data Science in Action
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Augmenting Bias Specifications

Use similarity specialized embedding space (ponti et al., 2018)
and retrieve k closest terms for each word w; in T,, T,, and A,

T1 science technology physics chemistry Einstein NASA experiment astronomy
Initial T> poetry art Shakespeare dance literature novel symphony drama

A1 brother father uncle grandfather son he his him

Ao sister mother aunt grandmother daughter she hers her

automation radiochemistry test biophysics learning electrodynamics biochemistry astrophysics erudition astrometry
technologies experimentation
k= T> orchestra artistry dramaturgy poesy philharmonic craft untried hop poem dancing dissertation treatise new dramatics
Ay beget buddy forefather man nephew own himself theirs boy helium crony cousin grandpa granddad herself
Ao niece girl parent grandma granny woman theirs sire auntie sibling herself jealously stepmother wife

technologies biochemistry astrophysics engineering electrodynamics radiochemistry astronomer erudition education

automation biophysics chromodynamics research learning experimentation test astrometry biology

=3 T groundbreaking craftsmanship dissertation new literatures dramatization philharmonic sinfonietta artistry untried

poems dramaturgy dancing dramatics poem poesy craft hop treatise orchestra waltz

A, granddad granddaddy man helium grandpa_ own himself forefather themself kinsman theirs sire beget boy buddy herself
comrade who crony nephew grandson cousin

A, sire beget stepmother aunty parent woman grandma herself own stepsister female girl jealously sibling auntie theirs
granny niece wife

Simone Ponzetto / UPV post-marathon talk
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Our initial embedding space
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Debiasing Models

We propose
* Generalized Bias-Direction Debiasing (GBDD)
Inspired by previous work in debiasing

e Bias Alignment Model (BAM)
Inspired by previous work in cross-lingual word embeddings

« Explicit Neural Debiasing (DebiasNet)
Inspired by previous work in semantic specialization of word embeddings
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Implicit

Debiasing Models

We propose
e Generalized Bias-Direction Debiasing (GBDD)
Inspired by previous work in debiasing

e Bias Alignment Model (BAM)
Inspired by previous work in cross-lingual word embeddings
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Explicit

« Explicit Neural Debiasing (DebiasNet)
Inspired by previous work in semantic specialization of word embeddings
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Example: explicit neural debiasing %7 OF MANNHEIM
( De b i as N et) and Mathematics
* Inspired by work in semantic specialization (Glavas and Vuli¢, 2018) L
. Idea /T\
. t’il t’jz a’k
— Given Bexplicitz(Tlr T21 A) * * *
— We “specialize” the vector space
by leveraging debiasing constraints: each pair t;; and t; MLP
should be equally distant from each a, in A A 4 4

_ : . - ’ 7\ ’ ’ 2
Debiasing Loss Ly = (cos(t’;;, ') - cos(t’},, a’y)) Embedding Layer

— Regularization Loss Ly = cos(t;;, t’;;) + cos(t;, t';;) + cos(ay, a’y)

— Total Loss L = L + ALy T T T
— X’ = DebiasNet(X, ©)
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Evaluation: trade offs?

Implicit/ Explicit Debiasing Semantic Quality
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Evaluation Framework

 Word Embedding Association Test (Caliskan et al., 2017)

* Embedding Coherence Test (Dev and Phillips, 2019) %

e Bias Analogy Test (new) -

* Implicit Bias Test (Gonen and Goldberg, 2019) E

. SimLex-999 (Hill et al., 2015) g2
. . . E =

e WordSim-353 (Finkelstein et al., 2002) g
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Topology of the Embedding Spaces
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Topology of the Embedding Spaces
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Topology of the Embedding Spaces
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Thanks!

* Alightweight introduction to the topic of
fairness in semantic spaces

e As usual for the important topics in life,
we are left with more guestions than
answers - i.e., there are no easy solutions

* A crucial point: as scientist we should be
aware of the impact our technology can
have on society
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