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Machine Learning Success Story – Computer Vision

CV as been revolutionized by ML since 2012. 

High Accuracies for 
Image Classification

Deployable Results on Object 
Detection and Segmentation

Yolov4 on Cityscapes (Cordts et al., CVPR 2016)

ImageNet 
(Russakovskyl et al., IJCV 2015)



Margret Keuper 3

Machine Learning Success Story – Computer Vision

CV as been revolutionized by ML since 2012.
Recently, large pre-trained models provide a further leap towards solving 
new tasks! 

Zero shot Image 
Classification with

OpenAI’s

Contrastive Language-
Image Pre-Training CLIP

ImageNet 
(Russakovskyl et al., IJCV 2015)
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Machine Learning Success Story – Computer Vision

CV as been revolutionized by ML since 2012.
Recently, large pre-trained models provide a further leap towards solving 
new tasks! 

Zero shot Image 
Classification with

OpenAI’s

Contrastive Language-
Image Pre-Training CLIP

Learning Transferable Visual Models 
From Natural Language Supervision
Alec Radford et al., ICLR 2022

Applicable to diverse classes? 
Example: Understanding Climate Change 
Communications in Social Media.
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Machine Learning Success Story – Computer Vision

CV as been revolutionized by ML since 2012.
Recently, large pre-trained models provide a further leap towards solving 
new tasks! 

Zero shot Image 
Classification with

OpenAI’s

Contrastive Language-
Image Pre-Training CLIP

Learning Transferable Visual Models 
From Natural Language Supervision
Alec Radford et al., ICLR 2022

CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model

https://www.researchgate.net/publication/370981413_CLIP4STR_A_Simple_Baseline_for_Scene_Text_Recognition_with_Pre-trained_Vision-Language_Model?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
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Machine Learning Success Story – Computer Vision
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Machine Learning Success Story – Computer Vision

CV as been revolutionized by ML since 2012.
Recently, large pre-trained models provide a further leap towards solving 
new tasks! 

Zero-Shot Image 
Segmentation:

Meta’s 
Segment Anything
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Machine Learning Success Story – Computer Vision

CV as been revolutionized by ML since 2012.
Recently, large pre-trained models provide a further leap towards solving 
new tasks! 

Meta’s 
Segment Anything

Demo video: https://learnopencv.com/segment-anything/
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Machine Learning Success Story – Computer Vision

CV as been revolutionized by ML since 2012. 

Reasonable Results 
for Object Tracking

Reasonable Results for 
Human Pose Estimation

Reasonable Results for 3D 
Object Detection

MOT17 (Milan et al., 2016)

Leeds sports 
Pose, (Johnson et 
al., BMVC 2010)

KITTI (Geiger et al., CVPR 2012)
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Machine Learning Success Story – CV Example

Optical Flow: Estimate Motion between neighboring frames. 
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Machine Learning Success Story – CV Example

Optical Flow: Estimate Motion between neighboring frames. 
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Machine Learning Success Story

Optical Flow: Estimate Motion between neighboring frames. 
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Machine Learning Success Story

Optical Flow: Estimate Motion between neighboring frames. 

E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, FlowNet 2.0: Evolution of Optical Flow 
Estimation with Deep Networks, CVPR'17
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Machine Learning Success Story
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Machine Learning Success Story

Optical Flow: Estimate Motion between neighboring frames. 

E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, FlowNet 2.0: Evolution of Optical Flow 
Estimation with Deep Networks, CVPR'17

Highly accurate in practice

Improved over the SotA in several 
benchmarks

Fast computation

Several follow up papers (including 
our own)

Collected more than 3000 citations 
(google scholar) 
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Machine Learning Success Story

Optical Flow: Estimate Motion between neighboring frames. 

What if such models can be easily fooled by attackers? 

What are implications for sustainable progress?

Ranjan et al., ICCV 2019
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Machine Learning Success Story   -   Segment Anything?

• Machine learning (ML) is omnipresent in computer vision.

• To be successful, it needs to be reliable.

                                                                                                                   Shot noise

                                                                                                                    Clean data
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Machine Learning Success Story

• Machine learning (ML) is omnipresent in computer vision.

• To be successful, it needs to be reliable.
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Machine Learning Success Story – Computer Vision

CV as been revolutionized by ML since 2012                                            

                                                   

What about very specific application 
domains with little annotated data?

Prof. H. Kümper

(Universität Mannheim)

Benefit in many practical applications:
Example: Categorization of medieval seals with 
little or no supervision.
Collaboration with history department.  
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Machine Learning Success Story

• Machine learning (ML) is omnipresent in computer vision.

• To be successful, it needs to be reliable.

• It also needs to be easily adaptable to low data regimes
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Machine Learning  -  Robustness

• Machine learning (ML) is omnipresent in computer vision.

• To be successful, it needs to be reliable.
‣ Robust Deep Learning for Computer Vision?

Adversarial Attack and Defense on Neural Networks in PyTorch

Current models can be 
easily fooled by 
adversarial attacks.

Current models don’t 
generalize well to 
unseen domains (ACDC 
dataset)

snow

sand

https://towardsdatascience.com/adversarial-attack-and-defense-on-neural-networks-in-pytorch-82b5bcd9171?source=rss----7f60cf5620c9---4


How can we increase Robustness and Reliability 
in Neural Network Predictions?
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Towards Robust and Reliable Predictions in CNNs
What is Robustness?

Stable behavior when

- adding noise to the data.

- (slightly) corrupting the data.

(Low confidence when the label is wrong.)

How can we measure robustness?

Evaluate on common corruptions.

Pro: simple and somewhat informative

Con: limited expressiveness

What happens in the worst case?

Adversarial Attack and Defense on Neural Networks in PyTorch

ImageNet-C, Hendrycks et al., ICLR’19

https://towardsdatascience.com/adversarial-attack-and-defense-on-neural-networks-in-pytorch-82b5bcd9171?source=rss----7f60cf5620c9---4
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How can we measure robustness?
What happens in the worst case? Hardly perceivable input perturbation (within the 
epsilon-ball of the input), that flips the label.  

Idea: Craft adversarial perturbations as a probe.

Optimize using full access to the model!

● FGSM:  Single step white-box attack, not very strong                                          
(Goodfellow et al, ICLR‘15)

● PGD:  Multi-step white-box attack, can be strong                                              
(Kurakin et al., ICLR workshop‘17)

● AutoAttack: Ensemble including adaptive PGD, even stronger                               
(Croce et al., ICML‘20)

Compute 
Cost
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How can we increase robustness?

Hypothesis: The lack of robustness in 
NNs has multiple causes

- Training Procedure

Loss

Data Augmentation

- Particular Architecture Design 
Components

- The overall NN Architecture

Adversarial Attack and Defense on Neural Networks in PyTorch

ImageNet-C, Hendrycks et al., ICLR’19

https://towardsdatascience.com/adversarial-attack-and-defense-on-neural-networks-in-pytorch-82b5bcd9171?source=rss----7f60cf5620c9---4
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How can we increase robustness?

Hypothesis: The lack of robustness in 
NNs has multiple causes

- Training Procedure

Loss

Data Augmentation

- Particular Architecture Design 
Components

- The overall NN Architecture

Intra-Source Style Augmentation for Improved Domain 
Generalization, Li, Zhang, Keuper, Khoreva, WACV’23
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How can we increase robustness?

Hypothesis: The lack of robustness in 
NNs has multiple causes

- Training Procedure

Loss

Data Augmentation

- Particular Architecture Design 
Components

- The overall NN Architecture

Today’s perspective:                              
                           Neural Architecture 
Search

Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li LJ, Fei-Fei L, Yuille A, 
Huang J, Murphy K, “Progressive Neural Architecture Search”, ECCV 2018
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Neural Architecture Search

Overall goal: Find high-scoring and efficient and robust  
networks

Limitations:

1. Time-consuming

2. Trial and error

3. Expert knowledge

Consequence: Automate the architecture design 
process in terms of query efficiency

 ⇝ Neural Architecture Search
Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li LJ, Fei-Fei L, Yuille A, 
Huang J, Murphy K, “Progressive Neural Architecture Search”, ECCV 2018
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Neural Architecture Search

Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li LJ, Fei-Fei L, Yuille A, 
Huang J, Murphy K, “Progressive Neural Architecture Search”, ECCV 2018

Elsken et al,  Neural Architecture Search: A Survey, 2018.
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Neural Architecture Search

Naive NAS methods are expensive

Speedup-techniques to improve the query-search in 
NAS

→ One query implies a full training of the architecture

Elsken et al,  Neural Architecture Search: A Survey, 2018.
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Neural Architecture Search

Naive NAS methods are expensive

Speedup-techniques to improve the query-search in 
NAS

Techniques to improve the query-search in NAS

• One-shot methods

• Predictor-based methods

Elsken et al,  Neural Architecture Search: A Survey, 2018.
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Neural Architecture Search

Naive NAS methods are expensive

Speedup-techniques to improve the query-search in 
NAS

Techniques to improve the query-search in NAS

• One-shot methods

• Predictor-based methods

Elsken et al,  Neural Architecture Search: A Survey, 2018.

1. Predict performance of architectures
before training them fully
2. Can be wrapped in different disguises
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Neural Architecture Representations
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Neural Architecture Representations

Create a latent space of neural architectures to facilitate more efficient NAS

Two-step approach:
● Unsupervised learning of architecture latent space
● Allow for search approaches within latent space by means of generated 

architectures
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Neural Architecture Search
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Neural Architecture Representations

Create a latent space of neural architectures to facilitate more efficient NAS

Two-step approach:
● Unsupervised learning of architecture latent space
● Allow for search approaches within latent space by means of generated 

architectures
● Be able to generate valid architectures from the latent space
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Finetune latent space of generator to generate well-performing architectures.

Contributions:
• Efficient generator training: reconstruction loss without encoder
• First algorithm to optimize directly an NAS architecture latent space
• State of the art results on several NAS Benchmarks and on ImageNet
• Direct application to multi-objective optimization

Generative NAS
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Graph Generator Network for NAS learns to generate architectures of a 
target space using backpropagation

Pretrained on search space

Lukasik, Jung, Keuper: Learning where to look – Generative NAS is surprisingly efficient, ECCV 2022. 

Generative NAS
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Generative NAS - Generator
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Use pretrained generative model and couple with the 
surrogate model for target predictions, e.g. accuracy, 
robustness, latency, etc. 

This model is fully differentiable, which enables a 
stronger coupling with the target for the generation 
process

Generative NAS - Search
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Optimize architecture representation space via weighted retraining ( Tripp et al, 
2020): weight training data and loss

Generative NAS – Improving the Latent Space
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• NAS-Bench-101: 423,624 architectures evaluated on CIFAR-10
• NAS-Bench-201: 15,625 evaluated on CIFAR-10, CIFAR-100, and ImageNet-

16
• NAS-Bench-301: ~ 60k sampled and evaluated architectures on CIFAR-10 in 

the DARTS search space()
• NAS-Bench-NLP:  14,322 sampled and evaluated architectures on Penn 

TreeBank ()
• Hardware-Aware NAS-Bench: NAS-Bench-201 search space, but we have 

latencies for different devices
• Joint optimization (joint=1)
• Constrained Optimization (joint=0)

Robustness?

How to evaluate?
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NAS-Bench-101: 423,624 architectures evaluated on CIFAR-10

Small to medium sized CNNs
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NAS-Bench-201: 15,625 evaluated on CIFAR-10, CIFAR-100, and ImageNet-16

Small CNNs on several datasets
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NAS-Bench-201: 15,625 evaluated on CIFAR-10, CIFAR-100, and ImageNet-16

Small CNNs on several datasets
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NAS-Bench-301: ~ 60 k sampled and evaluated on CIFAR-10 in the DARTS 
Search space

Larger CNNs – proxy benchmark
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DARTS: ImageNet evaluations using NAS-Bench-301 and TENAS 2

Large CNNs
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NAS-Bench-NLP: 14,322 3 sampled and evaluated on Penn TreeBank  in the 
RNN-derived benchmark

Large RNNs
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Hardware-Aware NAS-Bench: NAS-Bench-201 search space, but we have 
latencies for different devices

Account for latencies during LSO

Joint optimization (joint=1)

Constrained Optimization (joint=0)

Small CNNs on optimizing Hardware Properties
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Small CNNs on optimizing Hardware Properties
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What about Robustness?

No dataset available?



Margret Keuper 55

A Novel Dataset

• Idea: Collect robustness evaluations for a whole NAS search space

• Motivation: Evaluating a complete search space lets us investigate small 
architectural changes

• Applications:
• NAS on robustness evaluation
• Proxy measures: training-free robustness metrics
• Architectural design analyses

Jung, Lukasik, Keuper: Neural Architecture Design and Robustness – a Dataset, ICLR 2023.

Neural Architecture Design and Robustness
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• Cell-based:
• 4 nodes: features
• 6 edges: operations

• 15 625 architectures
(6 466 non-isomorphic)

• N = 5, C = 16
• Training data:

• CIFAR-10
• CIFAR-100
• ImageNet16-120

NAS-Bench 201 Search Space
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Data Collection
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Adversarial Attacks
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CIFAR-10 accuracy distributions

Adversarial Attacks
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Kendall tau rank correlation

Correlation between Corruptions
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Networks become more confident
in their wrong decisions… up to a
certain point

Confidences
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Kendall tau rank correlation

Proxies for Robustness?
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Best architectures

Analyzing Design Choices w.r.t. Robustness
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Neighbors of best network according to clean accuracy

Analyzing Design Choices
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Limited cell parameter count: Top 20 architectures

Analyzing Design Choices
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NAS on Robust Accuracy
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NAS on Robust Accuracy

applying
Lukasik, Jung, Keuper: Learning where to look – Generative NAS is surprisingly efficient, ECCV 2022.
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Conclusions

Even generally well-performing models can suffer from low robustness and generalization 
ability – when applying pre-trained models to specific tasks, they don’t always behave the 
way we expect them to behave

Robustness can be improved through data augmentation or regularizations or 
combinations of both

Yet, particular neural architecture properties also relate to a model’s robustness. 
Conducting NAS with respect to multiple objectives, including robustness, can provide 
insights on architecture design choices that have positive impact on a model’s robustness.
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