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Primary paper 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Additional topics 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The Regression Model 

Marginal effect, 
Target of inference 

Dependent variable  Variable of theoretical interest  

Control vector 

Parameters for controls 

Error term 



The Regression Model:  
Valid Inference on a Marginal Effect 

   is the marginal effect or average partial effect 

● The  effect of a one-unit move in the treatment on the outcome, after adjusting for covariates. 
 



The Regression Model: 
Valid Inference on a Marginal Effect

We will say an estimate    allows for valid inference on    if

➔ p-values, confidence intervals, etc.



The Regression Model and its Discontents: 
The Specification Critique 

Issue #1: A Correct Control Specification is Never Known  

What to do? 
● Include all of the relevant covariates and none of the 

irrelevant ones (King, Keohane, Verba 1994) 
● Include at most three covariates (Achen 2002) 
● …or just not all of them (Achen 2005) 
● …or maybe none of them (Lenz and Sahn 2021) 



The Regression Model and its Discontents: 
The Causal Critique (Aronow and Samii 2016)  

Issue #2: The Regression Coefficient is not Unbiased for an Average Causal Effect  

What to do? 
● Run experiments, or maybe focus on natural experiments 
● Characterize the nature of the bias in an observational study 
● “The thousands of well-specified regressions that populate our 

journals are not without value…”  



The Regression Model and its Discontents: 
The Interference Critique 

Issue #3: Unmodeled Interference can Lead to Invalid Inference  

What to do? 
● Model interference → must be known in advance (network, geography) 
● Does not handle moderation (different effects of interference by, say, age) 
● Homophily vs. heterophily 



Contributions of the Proposed Method 

The proposed method  
● Learns a control specification → adjust for nonlinearities/interactions 
● Allows causal effect estimation, even with a continuous treatment 
● Learns and adjust for unspecified interference 
● Accommodates random effects 
● Allows for diagnostics 

 
…while still returning a regression coefficient and standard error 



The Regression Model and Robust Standard Errors  

Error term

Robust standard errors
● Allow for inference 

without specifying the 
error distribution.



The Regression Model and Robust Standard Errors  

Error term

Robust standard errors
● Allow for inference 

without specifying the 
error distribution.

….but can we conduct inference 
on θ without specifying a control 
specification?



Semiparametric Inference 
 

Statistical inference on a parameter when part of the model is unspecified 
 
Ex. 
 
1) “Robust” standard errors → inference without specifying error variance 
2) Cox proportional hazards model → inference without specifying hazard function 
3) Inverse propensity weighting → inference without specifying a propensity function 

 



The Partially Linear Model: 
Addressing the Specification Critique 

Estimate nuisance functions using machine learning 
● Random forests 
● Neural nets 
● High-dimensional regression 
● Bayesian additive regression trees 
● Splines 
● etc. 

(Chernozhukov, et al. 2018, Athey, et al. 2018, 2019) 
 
More: Semiparametric efficiency 
 



Double Machine Learning (Chernozhukov, et al. 2018)  

1. Split-sample  
a. Split data in half (S1 and S2) 

b. Use data in S1 to learn  

c. Using data in S2, regress              on  

The Double Machine Learning Algorithm 

1.  
2. Cross-fitting 

a. Repeat (1) with roles of S1 and S2  flipped. 
b. Aggregate the two estimates 1.  

2.  
3. Repeated Cross-fitting 

a. Aggregate over cross-fits 

Theoretical contribution: Approximation error on               can be order 
n1/4 (which ML algorithms can hit) rather than n1/2 (which they cannot) 



The Partially Linear Model: 
Addressing the Causal Critique 

Extensions 
● Modeling the treatment variance → causal estimation with continuous or binary treatment 
● Learning patterns of interference from the data 
● Random effects 
● Second-order se 
●  
●  

More: Characterizing the bias between the regression coefficient and average causal effect  
More: Causal assumptions 



The Partially Linear Model: 
Addressing the Interference Critique 

Extensions 
● Modeling the treatment variance → causal estimation with continuous or binary treatment 
● Learning patterns of interference from the data 

More: Types of interference adjusted for 
More: Structure of bases and interference terms 



The Partially Linear Model: 
Random Effects  

Extensions 
● Modeling the treatment variance → causal estimation with continuous or binary treatment 
● Learning patterns of interference from the data 
● Random effects 

 



Causal Inference + Machine Learning:  
Extending the Partially Linear Model  

Extensions 
● Modeling the treatment variance → causal estimation with continuous or binary treatment 
● Learning patterns of interference from the data 
● Random effects 
● Diagnostics 

 

More: Diagnostics 
More: Second order semiparametric efficiency 



Causal Inference + Machine Learning:  
Extending the Partially Linear Model  

Full Data 

Subsample S₀   Subsample S₁   Subsample S₂  

Generate Models of 
Treatment and Interference 

Learn a Set of Control Covariates, 
Using Models from Earlier Split 

Regress Outcome on 
Treatment and Learned 

Covariates 

 
 
 



More: Details on the interference term and simulations 

Baseline Model:  

Treatment Effect Heterogeneity:  

Random Effects:  

Interference:  

Outcome Model   Treatment Model  

In each setting, the marginal effect is set to    

Illustrative Simulation:  
The Setup  



Illustrative Simulation:  
Methods 

Methods Implemented in the Simulation 
● PLCE: Partially Linear Causal Effect Model 
● DML: Double Machine Learning (Chernozhukov, et al. 2018) 
● GRF: Generalized Random Forests (Athey, et al. 2018, 2019)  
● KRLS: Kernel Regularized Least Squares (Hainmueller and Hazlet 2013)  
● CBPS: Covariate Balancing Propensity Score (Fong, et al. 2018) 
● OLS: Least Squares Regression 



Simulation Results: 
Baseline Model 



Simulation Results: 
Random Effects 



Simulation Results: 
Treatment Effect Heterogeneity 



Simulation Results: 
Random Effects + Treatment Effect Heterogeneity 



Simulation Results: 
Interference + Baseline 



Simulation Results: 
Interference + Random Effects + Treatment Effect Heterogeneity 



Maintaining Efficiency: 
Analyzing Experimental Data (Mattes and Weeks 2019) 

Hawks Doves

PLCE Diff-in-Mean OLS PLCE Diff-in-Mean OLS

Effect 11.83 11.98 11.97 36.03 35.43 35.19

SE 3.56 3.80 3.80 2.71 3.12 2.85



Causal Inference with a Continuous Treatment: 
Estimating Racial Threat 

Estimating Racial Threat (Enos 2015) 
● Setup: Chicago demolished public housing → 

as-if random removal of Black residents 
● Outcome: Change in Turnout: 2004-2000 
● Treatment: Distance from demolished project 
● Controls: 1998, 1996 turnout; gender; age and 

age squared; median income for census block; 
value of dwelling place; deed in name of voter 
 

Identification Strategy: Difference-in-difference using 
dichotomized distance 



Estimating Racial Threat (Enos 2015) 
● Setup: Chicago demolished public housing → 

as-if random removal of Black residents 
● Outcome: Change in Turnout: 2004-2000 
● Treatment: Distance from demolished project 
● Controls: 1998, 1996 turnout; gender; age and 

age squared; median income for census block; 
value of dwelling place; deed in name of voter 

●  
Identification Strategy: Difference-in-difference using 
dichotomized distance 

Causal Inference with a Continuous Treatment: 
Estimating Racial Threat 



● The proposed method estimates a causal effect 
with a continuous treatment (distance) 
○ Random effect by public housing project  
○ Adjusts for interference 

Causal Inference with a Continuous Treatment: 
Estimating Racial Threat 

●  
○ Random effect by public housing project  
○ Adjusts for interference 

 
More: Additional application: the “pink tax”  

#


Overview of My Research 

Research Areas 
● Propensity score estimation 
● Heterogeneous treatment effects 
● Semiparametric causal effect estimation 
● Inference on a treatment effect curve 

 
Common Thread 
● Facilitating inference in the social sciences that does not rely on 

arbitrary modeling choices 



Overview of My Research 

Research Areas 
● Propensity score estimation 
● Heterogeneous treatment effects 
● Semiparametric causal effect estimation 
● Inference on a treatment effect curve 

 
Common Thread 
● Facilitating inference in the social sciences that does not rely on 

arbitrary modeling choices 

 
More: Inference on a treatment effect curve (2023 JOP) 



Current Work

The Team

The Machine

The Degree



Semiparametric Efficiency 



The Pink Tax 



Causal Inference + Machine Learning:  
Inference on a Partial Effect Curve 

The Problem: constructing a curvewise interval around a 
partial effect (slope at each point) 

“Estimation and Inference on Nonlinear and Heterogeneous Effects.”  2023. Journal of Politics. 

Simulation Setup 
 

Target of Inference 
 Average Coverage 
● The 100✕(1-𝛼)% interval contains the true curve at 

100✕(1-𝛼)% of the observations 
Contributions 
● Conformal inference: using the estimated residuals to 

construct intervals 
● Extended conformal intervals to contain not just 

predicted values but the true value 
 



The Partially Linear Model: 
Semiparametric Efficiency 

The Infeasible Model 

   from the infeasible model  
● is optimal → we would not expect any feasible model to perform better (Stein 1956) 
● Its variance is the semiparametric efficiency bound 



The Partially Linear Model: 
Semiparametric Efficiency 

The Feasible Model 

   from the feasible model is semiparametrically efficient if it  
● Allows for valid inference on    
● Has the same variance as the estimate from the infeasible model 

⇒ A semiparametrically efficient is asymptotically indistinguishable from an estimate were 
    known in advance 



The Partially Linear Model: 
Semiparametric Efficiency 



The Partially Linear Model: 
Semiparametric Efficiency 



The Partially Linear Model: 
Semiparametric Efficiency as a Measurement Error Problem 

What do we need for the terms            to be asymptotically negligible? 

View it as a measurement error problem 
 
● Attenuation bias due to the variance of the approximation errors 

● Approximation errors should be uncorrelated with error terms 

 
Return 
 



The Gap Between the Regression Coefficient and the Causal Effect 

Denote as     the effect for observation   , with             : 

Not modeling the heterogeneity induces a bias of the form: 



The Gap Between the Regression Coefficient and the Causal Effect 

 
Return 
 

The bias is 

And so least squares is biased when either 
● There is no treatment effect heterogeneity,  
● Treatment assignment is equivariant, 



Causal Assumptions 

 
Return 
 

Identification Assumptions 

● Single Version of Each Treatment 

○ Conceptual, to be determined by researcher 

● Positivity 

○ Treatment assignment is stochastic for every observation 

○  

● Ignorability 

○ No omitted confounders 

○ Note that we do not need to assume that observation-level covariates are 

sufficient to break confounding → we are adjusting for interference 

○  



Interference Adjusted for (and Not) 

 
Return 

Adjusted for 
● One observation’s covariates impacting another’s treatment level 
● One observation’s covariates or treatment impacting another’s outcome 

 
NOT adjusted for 
● One observation’s treatment impacting another’s treatment level 
● One observation’s outcome impacting another’s treatment level or outcome 



Diagnostics 
 

1. Regression diagnostics 

a. Methods of Cinelli and Hazlett (2020) implemented 

2. Positivity diagnostic 

a. Kurtosis is the fourth moment of a random variable 

i. Measure of how fat- or thin-tailed a distribution is 

ii. Informally: the variance of the variance 

b. The statistic is measured for the treatment residuals, over splits S: 



Diagnostics 
Positivity 

 
Return 



Details on Simulations and Interference Term 
 

1. Sample size n=1000 presented, more sample sizes in online materials 

2. Data are generated from standard normal covariates 

 

But each method is given 

 

3. The interference terms are constructed as 

 

 
Return 



Causal Inference + Machine Learning:  
Inference on a Partial Effect Curve 



Causal Inference + Machine Learning:  
Inference on a Partial Effect Curve 

Target of Inference 
 

Confidence Band 
 



Causal Inference + Machine Learning:  
Inference on a Partial Effect Curve 



Causal Inference + Machine Learning:  
Inference on a Partial Effect Curve 

The Problem: constructing a curvewise interval around a 
partial effect (slope at each point) 

Simulation Setup 
 

Target of Inference 
 Average Coverage 
● The 100✕(1-𝛼)% interval contains the true curve at 

100✕(1-𝛼)% of the observations 
Contributions 
● Conformal inference: using the estimated residuals to 

construct intervals 
● Extended conformal intervals to contain not just 

predicted values but the true value 
 



Causal Inference + Machine Learning:  
Inference on a Partial Effect Curve 

Methods Assessed 
● MDEI (proposed method) 
● GRF (Athey, et al.) 
● KRLS (Hainmueller and Hazlett) 

 

Simulation Setup 
 

Target of Inference 
 

 
Return 



Structure of Bases and Interference Term 



Structure of Bases and Interference Term 

 
Return 

For observations i, i'’ and basis variable j and basis 
function k, the learned proximity measure is of the form 

Then the interference term learned is of the form 



Second Order Semiparametric Efficiency 

First-order semiparametric efficiency: 

Second-order semiparametric efficiency: 



Second Order Semiparametric Efficiency 

 
Return 

First-order semiparametric efficiency: 

Second-order semiparametric efficiency: 


