Relaxing Assumptions, Improving Inference: Integrating Machine Learning And the Linear Regression

Marc Ratkovic University of Mannheim Prepared for Data Science in Action November 16, 2023

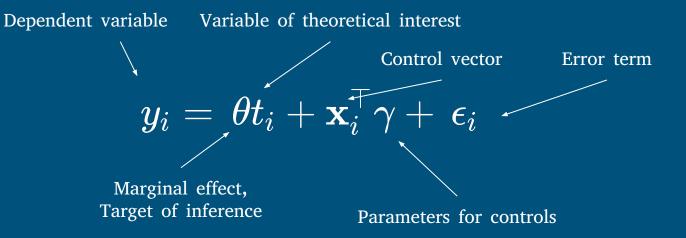
Primary paper

Ratkovic, Marc. 2023. "Relaxing Assumptions, Improving Inference: Integrating Machine Learning and the Linear Regression." *American Political Science Review* 117(3): 1053-1069. <u>(link)</u>

Additional topics

Ratkovic, Marc and Dustin Tingley. 2023. "Estimation and Inference on Nonlinear and Heterogeneous Effects." *Journal of Politics* 85(2): 421-435. (link)

The Regression Model



The Regression Model: Valid Inference on a Marginal Effect

$$y_i = \left. oldsymbol{ heta} t_i + \mathbf{x}_i^{ op} \gamma + \, \epsilon_i
ight.$$

heta is the marginal effect or average partial effect

• The effect of a one-unit move in the treatment on the outcome, after adjusting for covariates.

The Regression Model: Valid Inference on a Marginal Effect

$$y_i = \left. oldsymbol{ heta} t_i + \mathbf{x}_i^{ op} \gamma + \, \epsilon_i
ight.$$

We will say an estimate $\hat{ heta}$ allows for valid inference on heta if

$$\sqrt{n}\left(rac{\hat{ heta}- heta}{\hat{\sigma}_{\hat{ heta}}}
ight) \rightsquigarrow \mathcal{N}(heta, \ 1)$$

→ p-values, confidence intervals, etc.

The Regression Model and its Discontents: The Specification Critique

$$y_i = \left. heta t_i + \mathbf{x}_i^{ op} \gamma + \left. \epsilon_i
ight.$$

Issue #1: A Correct Control Specification is Never Known

What to do?

- Include all of the relevant covariates and none of the irrelevant ones (King, Keohane, Verba 1994)
- Include at most three covariates (Achen 2002)
- ...or just not all of them (Achen 2005)
- ...or maybe none of them (Lenz and Sahn 2021)

The Regression Model and its Discontents: The Causal Critique (Aronow and Samii 2016)

$$y_i = \, heta t_i + {f x}_i^{ op} \gamma + \, \epsilon_i$$

Issue #2: The Regression Coefficient is not Unbiased for an Average Causal Effect

What to do?

- Run experiments, or maybe focus on natural experiments
- Characterize the nature of the bias in an observational study
- "The thousands of well-specified regressions that populate our journals are not without value..."

The Regression Model and its Discontents: The Interference Critique

$$y_i = \, heta t_i + \mathbf{x}_i^ op \gamma + \, \epsilon_i$$

Issue #3: Unmodeled Interference can Lead to Invalid Inference

What to do?

- Model interference \rightarrow must be known in advance (network, geography)
- Does not handle moderation (different effects of interference by, say, age)
- Homophily vs. heterophily

Contributions of the Proposed Method

The proposed method

- Learns a control specification \rightarrow adjust for nonlinearities/interactions
- Allows causal effect estimation, even with a continuous treatment
- Learns and adjust for unspecified interference
- Accommodates random effects
- Allows for diagnostics

...while still returning a regression coefficient and standard error

The Regression Model and Robust Standard Errors

$y_i = heta t_i + \mathbf{x}_i^ op \gamma + oldsymbol{\epsilon_i}$

Error term

Robust standard errors

• Allow for inference without specifying the error distribution.

The Regression Model and Robust Standard Errors

 $\overline{|y_i|} = \overline{ heta t}_i + \mathbf{x}_i^{ op} oldsymbol{\gamma} + \overline{|\epsilon_i|}$

Error term

Robust standard errors

• Allow for inference without specifying the error distribution.

....but can we conduct inference on θ without specifying a control specification?

Semiparametric Inference

Statistical inference on a parameter when part of the model is unspecified

Ex.

- 1) "Robust" standard errors \rightarrow inference without specifying error variance
- 2) Cox proportional hazards model \rightarrow inference without specifying hazard function
- 3) Inverse propensity weighting \rightarrow inference without specifying a propensity function

The Partially Linear Model: Addressing the Specification Critique

 $y_i = heta t_i + f(\mathbf{x}_i) + \epsilon_i$ $egin{array}{c} y_i & \ t_i = g(\mathbf{x}_i) + v_i \end{pmatrix}$

Estimate nuisance functions using machine learning

- Random forests
- Neural nets
- High-dimensional regression
- Bayesian additive regression trees
- Splines
- etc.

(Chernozhukov, et al. 2018, Athey, et al. 2018, 2019)

Double Machine Learning (Chernozhukov, et al. 2018)

The Double Machine Learning Algorithm

- 1. Split-sample
 - a. Split data in half $(S_1 \text{ and } S_2)$
 - b. Use data in S_i to learn $\hat{f}(\mathbf{x}_i), \hat{g}(\mathbf{x}_i)$
 - c. Using data in $S_{2'}$ regress $y_i = \hat{f}(\mathbf{x}_i)$ on $t_i = \hat{g}(\mathbf{x}_i)$
- 2. Cross-fitting
 - a. Repeat (1) with roles of S_1 and S_2 flipped.
 - b. Aggregate the two estimates
- 3. Repeated Cross-fitting
 - a. Aggregate over cross-fits

Theoretical contribution: Approximation error on $\hat{f}(\mathbf{x}_i), \hat{g}(\mathbf{x}_i)$ can be order $n^{1/4}$ (which ML algorithms can hit) rather than $n^{1/2}$ (which they cannot)

The Partially Linear Model: Addressing the Causal Critique

$$egin{aligned} y_i &= heta t_i + f(\mathbf{x}_i) + \epsilon_i \ t_i &= g(\mathbf{x}_i) + oldsymbol{g_2}(\mathbf{x}_i) oldsymbol{ ilde v}_i + v_i \end{aligned}$$

Extensions

• Modeling the treatment variance \rightarrow causal estimation with continuous or binary treatment

More: <u>Characterizing the bias between the regression coefficient and average causal effect</u> More: <u>Causal assumptions</u>

The Partially Linear Model: Addressing the Interference Critique

$$egin{aligned} y_i &= heta t_i + f(\mathbf{x}_i) + oldsymbol{\phi_y}(\mathbf{X}_{-i},\,t_{-i};\,\mathbf{h}_y) + \epsilon_i \ t_i &= g(\mathbf{x}_i) + g_2(\mathbf{x}_i) ilde{v}_i + oldsymbol{\phi_t}(\mathbf{X}_{-i};\,\mathbf{h}_t) + v_i \end{aligned}$$

Extensions

- Modeling the treatment variance \rightarrow causal estimation with continuous or binary treatment
- Learning patterns of interference from the data

More: <u>Types of interference adjusted for</u> More: <u>Structure of bases and interference terms</u>

The Partially Linear Model: Random Effects

$$egin{aligned} y_i &= heta t_i + f(\mathbf{x}_i) + \phi_y(\mathbf{X}_{-i},\,t_{-i};\,\mathbf{h}_y) + oldsymbol{a_{j[i]}} + \epsilon_i \ t_i &= g(\mathbf{x}_i) + g_2(\mathbf{x}_i) ilde{v}_i + \phi_t(\mathbf{X}_{-i};\,\mathbf{h}_t) + oldsymbol{b_{j[i]}} + v_i \end{aligned}$$

Extensions

- Modeling the treatment variance \rightarrow causal estimation with continuous or binary treatment
- Learning patterns of interference from the data
- Random effects

Causal Inference + Machine Learning: Extending the Partially Linear Model

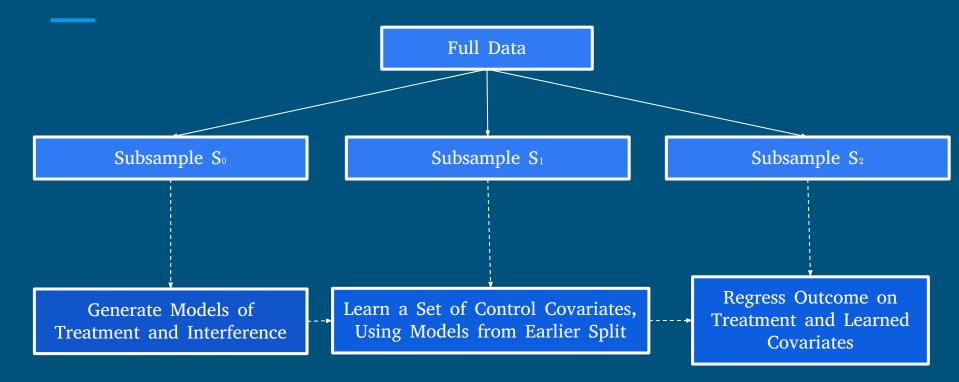
$$egin{aligned} y_i &= heta t_i + f(\mathbf{x}_i) + \phi_y(\mathbf{X}_{-i},\,t_{-i};\,\mathbf{h}_y) + a_{j[i]} + \epsilon_i \ t_i &= g(\mathbf{x}_i) + g_2(\mathbf{x}_i) ilde{v}_i + \phi_t(\mathbf{X}_{-i};\,\mathbf{h}_t) + b_{j[i]} + v_i \end{aligned}$$

Extensions

- Modeling the treatment variance \rightarrow causal estimation with continuous or binary treatment
- Learning patterns of interference from the data
- Random effects
- Diagnostics

More: <u>Diagnostics</u> More: <u>Second order semiparametric efficiency</u>

Causal Inference + Machine Learning: Extending the Partially Linear Model



Illustrative Simulation: The Setup

Outcome Model **Treatment Model**

 Baseline Model: $y_i = t_i + x_{i1}^2 + \epsilon_i$ $t_i = x_{i1} + \epsilon_i$; $\epsilon_i \sim \mathcal{N}(0, 1)$

 Treatment Effect Heterogeneity: $y_i = t_i \times x_{i1}^2 + \epsilon_i$ $t_i = x_{i1} + \epsilon_i$; $\epsilon_i \sim \mathcal{N}\left(0, \frac{x_{i1}^2 + 1}{2}\right)$
 $t_i = \cdot + a_{j[i]}$ Random Effects: $y_i = \ \cdot + a_{i[i]}$ $t_i = \cdot + \psi_{x,i}$ Interference: $y_i = \cdot + \psi_{t,i}$ In each setting, the marginal effect is set to $\theta = 1$.

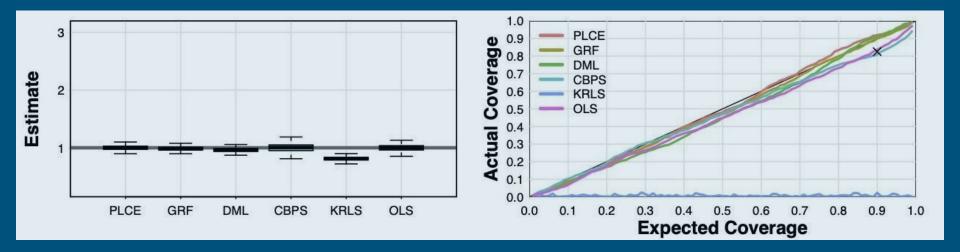
More: Details on the interference term and simulations

Illustrative Simulation: Methods

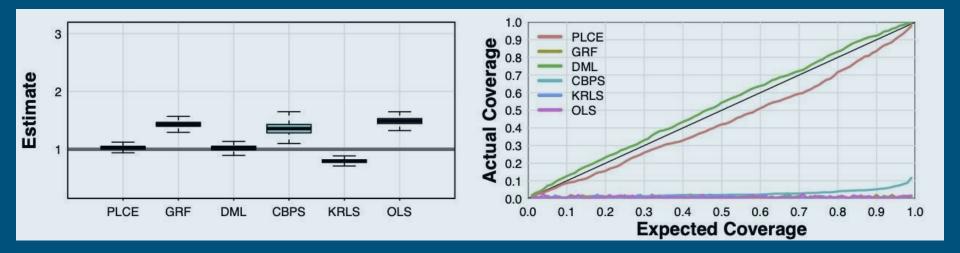
Methods Implemented in the Simulation

- PLCE: Partially Linear Causal Effect Model
- DML: Double Machine Learning (Chernozhukov, et al. 2018)
- GRF: Generalized Random Forests (Athey, et al. 2018, 2019)
- KRLS: Kernel Regularized Least Squares (Hainmueller and Hazlet 2013)
- CBPS: Covariate Balancing Propensity Score (Fong, et al. 2018)
- OLS: Least Squares Regression

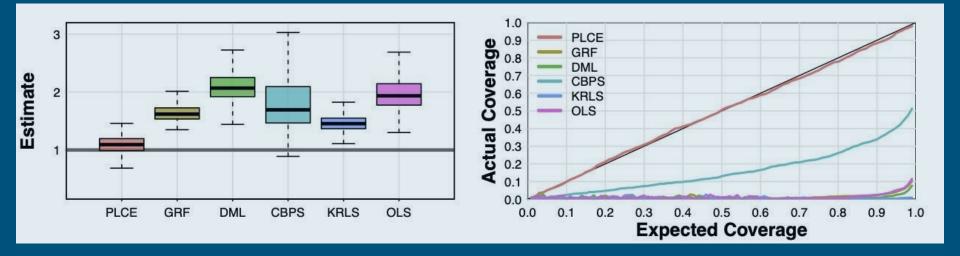
Simulation Results: Baseline Model



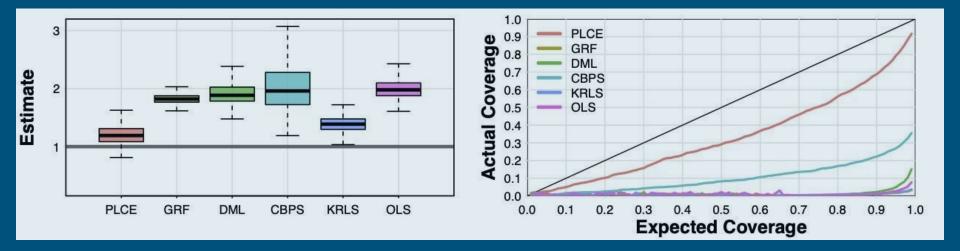
Simulation Results: Random Effects



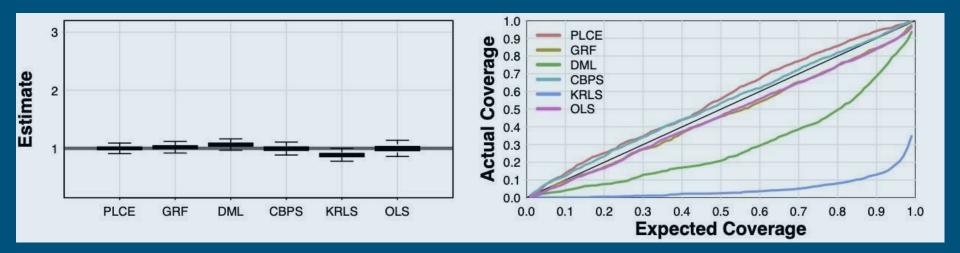
Simulation Results: Treatment Effect Heterogeneity



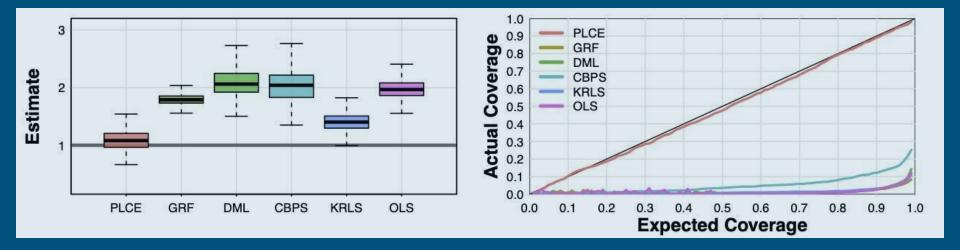
Simulation Results: Random Effects + Treatment Effect Heterogeneity



Simulation Results: Interference + Baseline



Simulation Results: Interference + Random Effects + Treatment Effect Heterogeneity



Maintaining Efficiency: Analyzing Experimental Data (Mattes and Weeks 2019)

	Hawks			Doves		
	PLCE	Diff-in-Mean	OLS	PLCE Diff-in-Mean OLS		
Effect	11.83	11.98	11.97	36.03 35.43 35.19		
SE	3.56	3.80	3.80	2.71 3.12 2.85		

Causal Inference with a Continuous Treatment: Estimating Racial Threat

Estimating Racial Threat (Enos 2015)

- Setup: Chicago demolished public housing → as-if random removal of Black residents
- Outcome: Change in Turnout: 2004-2000
- Treatment: Distance from demolished project
- Controls: 1998, 1996 turnout; gender; age and age squared; median income for census block; value of dwelling place; deed in name of voter

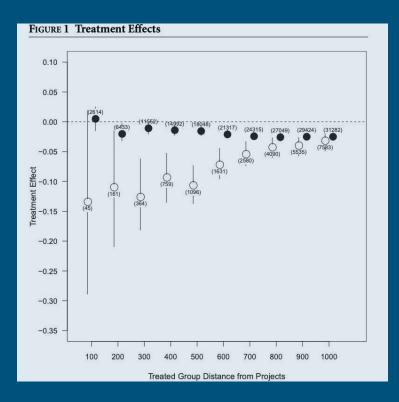
Identification Strategy: Difference-in-difference using dichotomized distance

Causal Inference with a Continuous Treatment: Estimating Racial Threat

Estimating Racial Threat (Enos 2015)

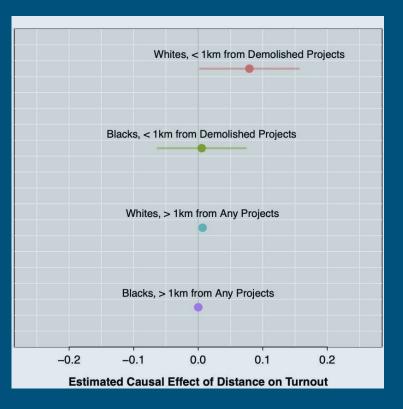
- Setup: Chicago demolished public housing \rightarrow as-if random removal of Black residents
- Outcome: Change in Turnout: 2004-2000
- Treatment: Distance from demolished project
- Controls: 1998, 1996 turnout; gender; age and age squared; median income for census block; value of dwelling place; deed in name of voter

Identification Strategy: Difference-in-difference using dichotomized distance



Causal Inference with a Continuous Treatment: Estimating Racial Threat

- The proposed method estimates a causal effect with a continuous treatment (distance)
 - Random effect by public housing project
 - Adjusts for interference



Overview of My Research

Research Areas

- Propensity score estimation
- Heterogeneous treatment effects
- Semiparametric causal effect estimation
- Inference on a treatment effect curve

Common Thread

• Facilitating inference in the social sciences that does not rely on arbitrary modeling choices

Overview of My Research

Research Areas

- Propensity score estimation
- Heterogeneous treatment effects
- Semiparametric causal effect estimation
- Inference on a treatment effect curve

Common Thread

• Facilitating inference in the social sciences that does not rely on arbitrary modeling choices

Current Work

The Team

The Degree

Data Science (M.Sc.)

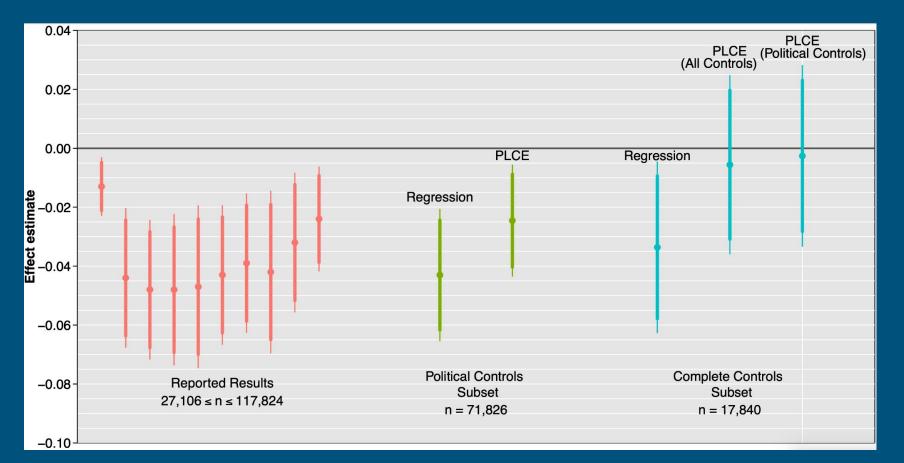
Uni Mannheim

The Machine

4U Server **AIME A8000**

Semiparametric Efficiency

The Pink Tax



The Problem: constructing a curvewise interval around a partial effect (slope at each point)

Simulation Setur

$$\mathbf{p} \quad y_i \,=\, rac{1}{2} t_i^2 + \, \epsilon_i; \;\; t_i, \, \epsilon_i \,\sim \mathcal{N}(0,1)$$

 $= t_i$

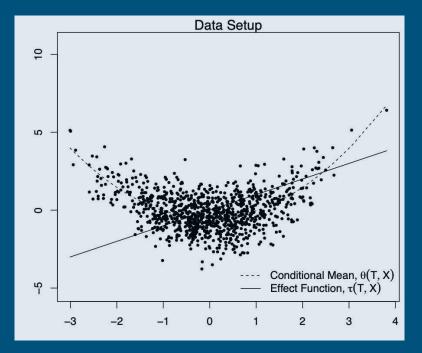
Target of Inference
$$au(t_i, \mathbf{x}_i)$$

Average Coverage

The 100×(1-α)% interval contains the true curve at 100×(1-α)% of the observations

Contributions

- Conformal inference: using the estimated residuals to construct intervals
- Extended conformal intervals to contain not just predicted values but the true value



"Estimation and Inference on Nonlinear and Heterogeneous Effects." 2023. Journal of Politics.

The Infeasible Model

$$y_i = heta t_i + \left[f(\mathbf{x}_i), \, g(\mathbf{x}_i)
ight]^ op \gamma + \, \epsilon_i$$

 $\hat{ heta}$ from the infeasible model

- is optimal \rightarrow we would not expect any feasible model to perform better (Stein 1956)
- Its variance is the semiparametric efficiency bound

The Feasible Model

$$y_i = heta t_i + \left[\hat{f}\left(\mathbf{x}_i
ight), \, \hat{g}(\mathbf{x}_i)
ight]^{+} \gamma + \, \epsilon_i$$

heta from the feasible model is **semiparametrically efficient** if it

- Allows for valid inference on θ
- Has the same variance as the estimate from the infeasible model
- \Rightarrow A semiparametrically efficient is asymptotically indistinguishable from an estimate were $f,g\,$ known in advance

$$egin{aligned} y_i &= heta t_i + \left[\hat{f}\left(\mathbf{x}_i
ight), \, \hat{g}(\mathbf{x}_i)
ight]^ op \gamma + \epsilon_i \ &= heta t_i + \left[f(\mathbf{x}_i), \, g(\mathbf{x}_i)
ight]^ op \gamma + \left[\hat{f}\left(\mathbf{x}_i
ight) - f(\mathbf{x}_i), \, \hat{g}(\mathbf{x}_i) - g(\mathbf{x}_i)
ight]^ op \gamma_2 + \, \epsilon_i \ &\widehat{\Delta}_{f,i} &= \hat{f}\left(\mathbf{x}_i
ight) - f(\mathbf{x}_i) \ &\widehat{\Delta}_{g,i} &= \hat{g}(\mathbf{x}_i) - g(\mathbf{x}_i) \end{aligned}$$

$$egin{aligned} y_i &= heta t_i + \left[\widehat{f}\left(\mathbf{x}_i
ight), \, \widehat{g}(\mathbf{x}_i)
ight]^ op \gamma + \, \epsilon_i \ &= heta t_i + \left[f(\mathbf{x}_i), \, g(\mathbf{x}_i)
ight]^ op \gamma + \left[\widehat{\Delta}_{f,i}, \, \widehat{\Delta}_{g,i}
ight]^ op \gamma_2 + \, \epsilon_i \end{aligned}$$

The Partially Linear Model: Semiparametric Efficiency as a Measurement Error Problem

$$\left[y_i
ight] = \left. heta t_i + \left[f(\mathbf{x}_i), \, g(\mathbf{x}_i)
ight]^ op \gamma + \left[\widehat{\Delta}_{f,i}, \, \widehat{\Delta}_{g,i}
ight]^ot \gamma_2 + \, \epsilon_i$$

What do we need for the terms $\widehat{\Delta}_{f,i}$, $\widehat{\Delta}_{g,i}$ to be asymptotically negligible? View it as a **measurement error** problem

- Attenuation bias due to the variance of the approximation errors
- Approximation errors should be uncorrelated with error terms

The Gap Between the Regression Coefficient and the Causal Effect

Denote as $heta_i$ the effect for observation i, with $heta=\mathbb{E}(heta_i)$:

$$egin{array}{rll} y_i &= heta_i t_i + \left[f(\mathbf{x}_i), \, g(\mathbf{x}_i)
ight]^ op \gamma + \, \epsilon_i \ &= heta t_i + \, (heta_i - heta) t_i + \, \left[f(\mathbf{x}_i), \, g(\mathbf{x}_i)
ight]^ op \gamma + \, \epsilon_i \end{array}$$

Not modeling the heterogeneity induces a bias of the form:

$$\mathbb{E}ig(\hat{ heta}^{LS} - heta ig) = rac{\mathbb{E}\{Cov(t_i, t_i(heta_i - heta) \mid \mathbf{x}_i)\}}{\mathbb{E}\{Var(t_i \mid \mathbf{x}_i)\}} \ = rac{\mathbb{E}ig\{v_i^2(heta_i - heta)ig\}}{\mathbb{E}ig\{v_i^2ig\}}$$

The Gap Between the Regression Coefficient and the Causal Effect

The bias is

$$\mathbb{E}ig(\hat{ heta}^{LS} - heta ig) = rac{\mathbb{E}ig\{ v_i^2(heta_i - heta)ig\}}{\mathbb{E}ig\{ v_i^2ig\}}$$

And so least squares is biased when either

- There is no treatment effect heterogeneity, $heta_i = heta \, orall i$
- Treatment assignment is equivariant, $\mathbb{E}(v_i^2 \mid \mathbf{x}_i) = \sigma_T^2$

Causal Assumptions

Identification Assumptions

- Single Version of Each Treatment
 - Conceptual, to be determined by researcher
- Positivity
 - Treatment assignment is stochastic for every observation
 - \circ \mathbb{V} ar $(t_i \mid \mathbf{x}_i, \, \mathbf{X}_{-i}) > 0 \, orall i$
- Ignorability
 - No omitted confounders
 - Note that we do *not* need to assume that observation-level covariates are sufficient to break confounding \rightarrow we are adjusting for interference
 - $egin{array}{lll} \circ & y_i(t_i) \perp t_i \mid \mathbf{t}_{-i}, \mathbf{x}_i, \, \mathbf{X_{-i}} \ & t_i \perp \mathbf{t}_{-i} \mid \mathbf{x}_i, \, \mathbf{X_{-i}} \end{array}$

Interference Adjusted for (and Not)

Adjusted for

- One observation's covariates impacting another's treatment level
- One observation's covariates or treatment impacting another's outcome

NOT adjusted for

- One observation's treatment impacting another's treatment level
- One observation's outcome impacting another's treatment level or outcome

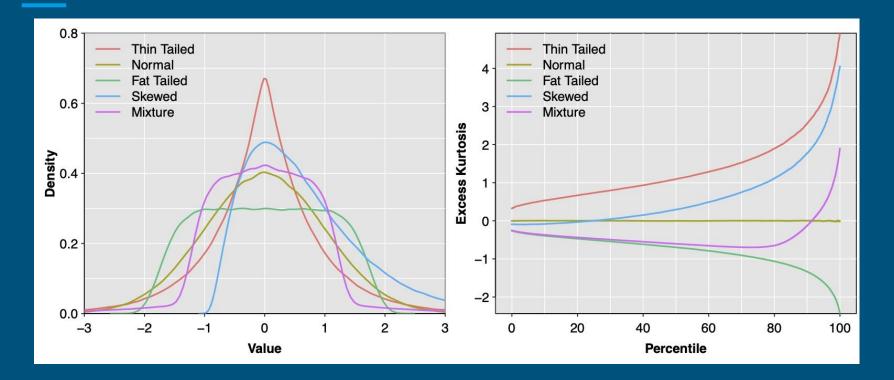
Diagnostics

1. Regression diagnostics

- a. Methods of Cinelli and Hazlett (2020) implemented
- 2. Positivity diagnostic
 - a. Kurtosis is the fourth moment of a random variable
 - i. Measure of how fat- or thin-tailed a distribution is
 - ii. Informally: the variance of the variance
 - b. The statistic is measured for the treatment residuals, over splits S:

$$\widehat{\kappa}_i = rac{rac{1}{S}\sum_{s=1}^S \widehat{v}_{i,s}^4}{\left(rac{1}{S}\sum_{s=1}^S \widehat{v}_{i,s}^2
ight)^2}$$

Diagnostics Positivity



Details on Simulations and Interference Term

- 1. Sample size n=1000 presented, more sample sizes in online materials
- 2. Data are generated from standard normal covariates

 $[x_{i1}, x_{i2}, x_{i3}, x_{i4}, x_{i5}]$ But each method is given

$$[x_{i1}^*, x_{i2}^*, x_{i3}^*, x_{i4}^*, x_{i5}^*] = \ [x_{i1} - .5 \cdot x_{i2}, \, x_{i2} - .5 \cdot x_{i1} \, , x_{i3}, x_{i4}, x_{i5}]$$

3. The interference terms are constructed as

$$\psi_{t,i} = \sum_{i
eq i'}
ho_{i,i'} t_i
onumber \ \psi_{x,i} = \sum_{i
eq i'}
ho_{i,i'} x_{i1}^2$$

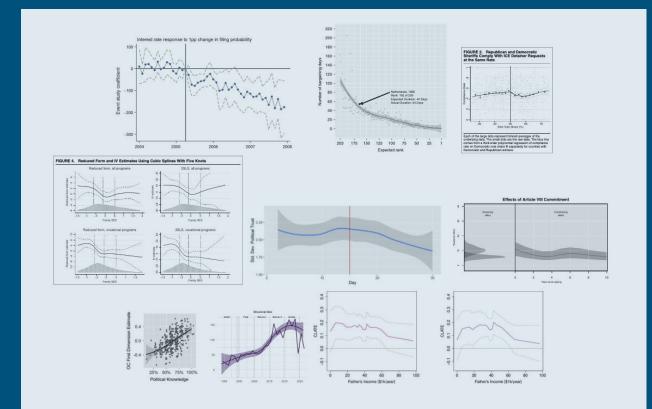
$$where \;
ho_{i,i'} = rac{e^{-(x_{i1}-x_{i'1})^2}}{\sum_{i
eq i'} e^{-(x_{i1}-x_{i'1})^2}}$$

<u>Return</u>

$$egin{aligned} y_i &= eta t_i + f(\mathbf{x}_i) + eta_i \ t_i &= g(\mathbf{x}_i) + v_i \end{aligned}$$

$$egin{aligned} y_i &= oldsymbol{ heta}(t_i, \mathbf{x}_i) + \ f(\mathbf{x}_i) + \ \epsilon_i \ t_i &= g(\mathbf{x}_i) + v_i \end{aligned}$$

Target of Inference
$$au(t_i, \mathbf{x}_i) = \frac{\partial \theta(t_i, \mathbf{x}_i)}{\partial t_i}$$
Confidence Band $\hat{\tau}(t_i, \mathbf{x}_i) \pm \widehat{C}_{1-\alpha/2} \sqrt{\widehat{\mathbb{V}}(\hat{\tau}(t_i, \mathbf{x}_i))}$



The Problem: constructing a curvewise interval around a partial effect (slope at each point)

Simulation Setur

$$\mathbf{P} \quad y_i \,=\, rac{1}{2} t_i^2 + \, \epsilon_i; \;\; t_i, \, \epsilon_i \,\sim \mathcal{N}(0,1)$$

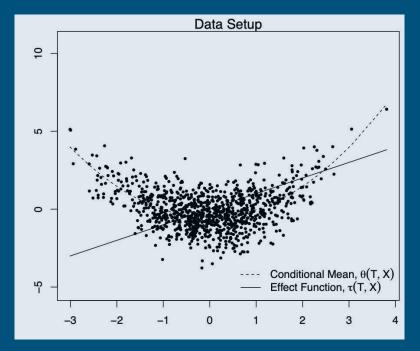
Target of Inference
$$au(t_i, \mathbf{x}_i)$$

Average Coverage

The 100×(1-α)% interval contains the true curve at 100×(1-α)% of the observations

Contributions

- Conformal inference: using the estimated residuals to construct intervals
- Extended conformal intervals to contain not just predicted values but the true value



Simulation Setup

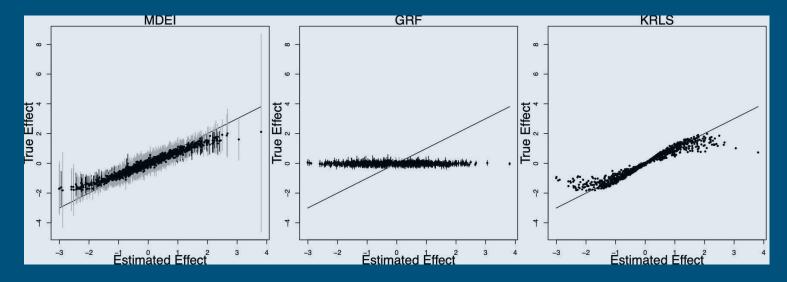
$$y_i \,=\, rac{1}{2} t_i^2 + \, \epsilon_i; \;\; t_i, \, \epsilon_i \,\sim \mathcal{N}(0,1)$$
 .

Target of Inference

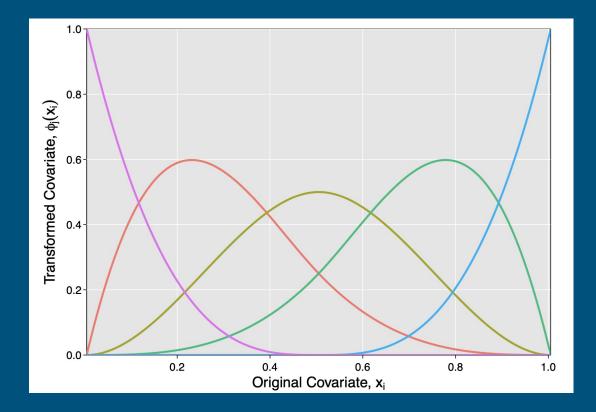
 $au(t_i, \mathbf{x}_i) = t_i$

Methods Assessed

- MDEI (proposed method)
- GRF (Athey, et al.)
- KRLS (Hainmueller and Hazlett)



Structure of Bases and Interference Term



Structure of Bases and Interference Term

For observations i, i'' and basis variable j and basis function k, the learned proximity measure is of the form

$$p_{i,i'}(
u_{jk}) = rac{e^{-rac{1}{
u_{jk}} \left(\phi_k(x_{ij}) - \phi_k(x_{i'j})
ight)^2}}{\sum_{i
eq i'} e^{-rac{1}{
u_{jk}} \left(\phi_k(x_{ij}) - \phi_k(x_{i'j})
ight)^2}}$$

Then the interference term learned is of the form

$$\psi_{j,k,j',k'}(\mathbf{x}_i,\mathbf{X}_{-i}) = \sum_{i'
eq i} p_{i,i'}(
u_{jk}) imes \phi_{k'}(x_{i'j'})$$

Second Order Semiparametric Efficiency

First-order semiparametric efficiency:

 $\hat{f}\left(\mathbf{X}
ight)\,pprox f(\mathbf{X})$

Second-order semiparametric efficiency:

$$\hat{f}\left(\mathbf{X}
ight) \, pprox f(\mathbf{X}) + \left(\mathrm{Var}\!\left(\hat{f}\left(\mathbf{X}
ight)
ight)
ight)^{1/2}\! \mathbf{z}; \; \mathbf{z} \sim \mathcal{N}(\mathbf{0_n}, \, \mathbf{I_n})$$

Second Order Semiparametric Efficiency

First-order semiparametric efficiency:

 $\hat{f}\left(\mathbf{\overline{X}}
ight) \, pprox f(\mathbf{\overline{X}})$

Second-order semiparametric efficiency:

$$\hat{f}\left(\mathbf{X}
ight) \, pprox f(\mathbf{X}) + \underbrace{\left(\mathrm{Var}ig(\hat{f}\left(\mathbf{X}
ight)ig)
ight)^{1/2}}_{U_{f}^{ op}\gamma} \mathbf{z}$$