Data-Driven Business Process Management

What data can tell us about how organizations really work

About Me

2009 – 2015 Saarland University (Saarbrücken) B.Sc. and M.Sc. in Business Informatics 2014 Steven's Institute of Technology (Hoboken, NJ) Visiting Researcher 2015 – 2020 German Research Center for Artificial Intelligence (Saarbrücken) Researcher & Project Lead

2019 Saarland University (Saarbrücken) Doctoral degree in business

Since 2020 University of Mannheim Junior Professor & Research Group Lead

Focus: Data-driven business process management by means of process mining & machine learning

What is Data-driven Business Process Management?

REDITE

07.11.2024

Processes are everywhere!

- Order-to-Cash
- Quote-to-Order
- Procure-to-Pay
- Issue-to-Resolution
- Application-to-Approval
- Lead-to-Opportunity
- Contract-to-Renewal
- Hire-to-Retire

Prof. Dr. Jana-Rebecca Rehse

. . .

Processes in a university

- Student administration (customer service): Recruiting, enrollment, class assignment, recording grades, issuing certificates, counseling, ...
- Employee administration (human resources): Issue job postings, recruiting, payroll, taxation, travel expense reporting, ...
- Finances: Budgeting, accounting, offer handling, purchase acquisition handling, inventory management, ...
- IT: Server administration, support, user management, ...

•

Questions about processes

How do you manage processes?

Ask the people!

- Many processes are enacted by people, who know about how the process works.
- Those people can be asked to learn about the process.

07.11.2024

Ask the data!

- Many processes are supported by IT systems, which save data about the process.
- This data can be analyzed to learn about the process

How do you manage those processes?

Ask the people!

🕂 Pros:

- Low technical effort.
- May offer explanations.
- Contains "soft" factors.

Contras:

- High organizational effort.
- May show the to-be-process instead of the as-is-process
- Only offers individual perspectives.

Ask the data!

Pros:

- Shows the as-is-process instead of the to-be-process.
- Contains complete process.
- Low organizational effort.
- Contras:
 - High technical effort.
 - May not show "soft" factors.
 - Does not offer explanations.

Prof. Dr. Jana-Rebecca Rehse

07.11.2024

University

Process Expectations

Park

Mensawiese

University

Process Expectations

Reality

Park

Mensawiese

A (Simple) Process

One Recorded Process Execution

Case ID	Activity	Timestamp	
SO1	Create sales order	04.06.2023 17:21	One event
SO1	Select material	04.06.2023 17:22	
SO1	Set price	04.06.2023 17:23	
SO1	Set price	04.06.2023 17:23	
SO1	Set price	04.06.2023 17:23	
SO1	Set amount	04.06.2023 17:24	
SO1	Set amount	04.06.2023 17:24	
SO1	Set amount	04.06.2023 17:24	

One Event Log

Activity	Timestamp
Create sales order	04.06.2023 17:21
Select material	04.06.2023 17:22
Set price	04.06.2023 17:23
Set price	04.06.2023 17:23
Set price	04.06.2023 17:23
Set amount	04.06.2023 17:24
Set amount	04.06.2023 17:24
Set amount	04.06.2023 17:24
Create sales order	04.06.2023 17:21
Set price	04.06.2023 17:22
Set price	04.06.2023 17:22
Select material	04.06.2023 17:23
Set amount	04.06.2023 17:24
	Activity Create sales order Select material Set price Set price Set amount Set amount Set amount Create sales order Set price Set price Select material Set amount

SO3	Create sales order	04.06.2023 17:21
SO3	Select material	04.06.2023 17:22
SO3	Set amount	04.06.2023 17:23
SO3	Set amount	04.06.2023 17:23
SO3	Set price	04.06.2023 17:24
SO4	Create sales order	04.06.2023 17:21
SO4	Set price	04.06.2023 17:22
SO4	Set amount	04.06.2023 17:23
SO4	Select material	04.06.2023 17:24
SO5	Create sales order	04.06.2023 17:21
SO5	Set amount	04.06.2023 17:22
SO5	Set customer	04.06.2023 17:23
SO6	Create sales order	04.06.2023 17:21
SO6	Set customer	04.06.2023 17:22
SO6	Set amount	04.06.2023 17:23

Process Mining

What does the executed process look like? (Process Discovery)

Where does the log differ from the model? (Conformance Checking)

How can we improve the executed process? (Process Enhancement)

What is the outcome of a process instance? (Process Prediction)

Which process instance differs from others? (Anomaly Detection)

Process mining in the press

Coronavirus Magazine Popular Topics Podcasts Video Store The Big Idea Visual Library

ANALYTICS

Jun 30, 2020, 04:56pm EDI

To Action

CIO Network

Tom Davenport Contributor ①

What Process Mining Is, and Why Companies Should Do It

by Thomas H. Davenport and Andrew Spanyi

Process Mining: From Analytics

NHS England sees significant results with process mining technology

BY DEVONY HOF

England's National Health Services has started adopting Celonis SE's process mining platform to fix a variety of healthcare bottlenecks.

FINISHED VEHICLE LOGISTICS

How process-mining in the automotive supply chain drives efficiency

By Megan Kelly | 12 September 2024

FORBES > INNOVATION

Prof. Dr. Jana-Rebecca Rehse

07.11.2024

Why Being Data-Driven Is A Priority For Global Businesses To Succeed

Kerry Brown Forbes Councils Member Forbes Technology Council COUNCIL POST | Membership (Fee-Based) Gartner Research

Market Guide for Process Mining

Published: 17 June 2019

ID: G00387812

Analyst(s): Marc Kerremans

Summary

New forms of automation (e.g., robotic process automation) and knowledge of the underlying processes/interactions are key to digital transformation. Process mining helps enterprise architecture and technology innovation leaders assess operations and performance, increasing these initiatives' value.

Celonis & Signavio: Two Success Stories

PREMIUM • EDITORS' PICK

Celonis Raises \$1 Billion At \$11 Billion Valuation, Making It New York's —And Germany's — Most Valuable Startup

celonis

Celonis Ranks 13 on Forbes Cloud 100 Acknowledging Its Game Changing Process Intelligence Platform

August 07, 2024

Celonis becomes newest fullfloor tenant at One World Trade Center

By Steve Cuozzo

February 10, 2020 | 9:56pm

Prof. Dr. Jana-Rebecca Rehse

07.11.2024

Why BPI, and why now? SAP Signavio's CEO on how process intelligence changes the enterprise - and how it reveals the true agenda of RISE with SAP

Siemens Healthcare Chooses RISE with SAP for Digital Transformation

November 8, 2023

It's official! Signavio has joined SAP.

And what exactly is your research about...?

My three streams of research

User Behavior Mining

Idea: Apply process mining techniques to low-level logs of software-user interactions to learn about behavior patterns

Rehse, J.-R., Abb, L., Berg, G., Bormann, C., Kampik, T., & Warmuth, C. (2024): User Behavior Mining: A Research. Business Information Systems Engineering (online first).

Conformance Checking in Practice

Idea: Increase the practical value of conformance checking for managing the compliance of business processes

Grohs, M., Pfeiffer, P., & Rehse, J.-R. (2023): Business Process Deviation Prediction: Predicting Unwanted Process Behavior. In International Conference on Process Mining (pp. 113-120). IEEE.

BPM meets AI

Idea: Explore the opportunities that novel AI techniques hold for business process management

Dumas, M., Fournier, F., Limonad, L., Marrella, A., Montali, M., Rehse, J.-R., & others (2023): Augmented Business Process Management Systems: A Research Manifesto. ACM Transactions on Management Information Systems 14 (1), 1-19.

Conformance Checking

Do process executions (traces) conform with the process model?

Prof. Dr. Jana-Rebecca Rehse

07.11.2024

Cf. Grohs, M., Pfeiffer, P., Rehse, J.-R. (2025): Proactive Conformance Checking: An Approach for Predicting Deviations in Business Processes, Information Systems 127, 102461

Business Process Deviation Prediction

9

Goal

Apply supervised machine learning to incomplete traces to predict which deviations will occur in the future

Challenges of Deviation Prediction

1 Explicit Process Knowledge					
Assigning labels (i.e., occurring deviations) requires a prescriptive process model		Supervised ML approach, trained with data obtained from comparing log and model			
2 Prediction Labels					
Multiple (a trace may deviate more than once)		Separate (binary) ML model per deviation			
Dynamic (labels change over trace duration)		Each trace prefix labeled individually			
Imbalanced (deviations occur infrequently)	Imbalanced (deviations occur infrequently)				
3 Context Importance					
Deviations in the control flow may be caused by context attributes (e.g., amount)		Traces are encoded with all relevant context attributes (Complex Index-Based Encoding)			
4 Action Orientation 🗲					
High recall (recognize deviations) preferred over high precision (not misclassifying conform traces)		Weighted cross-entropy loss function that reduces false negatives (missed deviations)			

н^р[н UNIVERSITY OF MANNHEIM **Our Approach** Business School Training data is undersampled Labels are defined from historic data. We train a (one-sided selection). Each prefix is labeled individually. separate classifier per deviation. Offline Co. vent ⊖→♢ Labelling ⊓←Ň We use a weighted Trained To-Be Model B Model Encoded Labelled cross-entropy loss Encoding (CIBE) Prefixes Classifiers Prefixes Learning function. includes all context Encoding **)**; information. Event Log L d_1 : Deviation **Online Component** ► Predictions d_2 : Deviation Trained -► Classifiers $\rightarrow d_m$: No Deviation 🗸 **Trace Prefix**

07.11.2024

Evaluation

Public event log data used as benchmarks receiving operator characteristic

- Standard evaluation metric for binary classifications
- Relates true positive to false positive rate • for different thresholds
- Varies between 0 and 1, with 0.5 representing a random classifier
- Values > 0.7 are acceptable, • values > 0.8 are excellent

Prof. Dr. Jana-Rebecca Rehse

MobIS

BPI20 Dom.

BPI20 Int.

BPI20 RfP

BPI20 Prep.

Evaluation

BPDP outperforms alternative approaches

Logs Genga et al. (2017) CatBoost BPDP BP112 A 0.5166 0.6954 0.7324
BPI12 A 0.5166 0.6954 0.7324
BPI12 0 0.4872 0.6591 0.6665
BPI20 Dom. 0.6372 0.7511 0.8258
BP120 Int. 0.5796 0.6969 0.7270
BPI20 RfP 0.5762 0.6961 0.7620
BPI20 Prep. 0.5521 0.6333 0.7040
MobIS 0.5461 0.5729 0.6534

07.11.2024

User Output

Towards Proactive Conformance Checking

Con	tributions I I	Ren	haining Resear
	Novel machine learning approach for predicting deviations in the future of ongoing traces	Ċ	How can we ir and overall ac predictive mo
	Outperforms existing state-of-the- art by considering the specific challenges of deviation prediction	*	How can we con patterns, i.e., occurring devi
⊖ /⊕ ⊖'•	Equipped with graphical user interface as well as multiple features to support process managers	Q	How can we e occurring devi

Remaining Research Questions

How can we increase the precision and overall accuracy of our predictive models?

How can we consider deviation patterns, i.e., sets of frequently occurring deviations?

How can we establish true causes for occurring deviations?

Thank you! Questions?

