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What is Data-driven Business Process Management?
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How companies are organized
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Processes are everywhere!

• Order-to-Cash

• Quote-to-Order

• Procure-to-Pay

• Issue-to-Resolution

• Application-to-Approval

• Lead-to-Opportunity

• Contract-to-Renewal

• Hire-to-Retire

• …
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Processes in a university

• Student administration (customer service): Recruiting, enrollment, class 
assignment, recording grades, issuing certificates, counseling, …

• Employee administration (human resources): Issue job postings, 
recruiting, payroll, taxation, travel expense reporting, …

• Finances: Budgeting, accounting, offer handling, purchase acquisition 
handling, inventory management, …

• IT: Server administration, support, user management, …

• …
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Questions about processes
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How long do employees 
have to wait for the 

reimbursement of travel 
expenses?

How many employees 
does the enrollment 

office need to enroll all 
students in time?

Does every employee 
follow the guideline to 
get three offers before 

placing an order?

How can we reduce the 
amount of time needed 

for IT support? 

Why do students have 
to wait so long before 
receiving their grades?
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How do you manage processes?

Ask the people!
• Many processes are enacted by 

people, who know about how 
the process works.

• Those people can be asked to 
learn about the process.

Ask the data!
• Many processes are supported 

by IT systems, which save data 
about the process.

• This data can be analyzed to 
learn about the process
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How do you manage those processes?

Ask the people!
• Pros:

– Low technical effort. 

– May offer explanations.

– Contains „soft“ factors.

• Contras:
– High organizational effort.

– May show the to-be-process 
instead of the as-is-process

– Only offers individual perspectives.

Ask the data!
• Pros:

– Shows the as-is-process instead of 
the to-be-process.

– Contains complete process.

– Low organizational effort.

• Contras:
– High technical effort.

– May not show „soft“ factors.

– Does not offer explanations.
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Process Mining: The Idea
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Process Mining: The Idea
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A (Simple) Process
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One Recorded Process Execution

Case ID Activity  Timestamp
SO1 Create sales order 04.06.2023 17:21
SO1 Select material 04.06.2023 17:22
SO1 Set price 04.06.2023 17:23
SO1 Set price 04.06.2023 17:23
SO1 Set price 04.06.2023 17:23
SO1 Set amount 04.06.2023 17:24
SO1 Set amount 04.06.2023 17:24
SO1 Set amount 04.06.2023 17:24
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One event

One case



One Event Log

Case ID Activity  Timestamp
SO1 Create sales order 04.06.2023 17:21
SO1 Select material 04.06.2023 17:22
SO1 Set price 04.06.2023 17:23
SO1 Set price 04.06.2023 17:23
SO1 Set price 04.06.2023 17:23
SO1 Set amount 04.06.2023 17:24
SO1 Set amount 04.06.2023 17:24
SO1 Set amount 04.06.2023 17:24
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SO2 Create sales order 04.06.2023 17:21
SO2 Set price 04.06.2023 17:22
SO2 Set price 04.06.2023 17:22
SO2 Select material 04.06.2023 17:23
SO2 Set amount 04.06.2023 17:24

SO3 Create sales order 04.06.2023 17:21
SO3 Select material 04.06.2023 17:22
SO3 Set amount 04.06.2023 17:23
SO3 Set amount 04.06.2023 17:23
SO3 Set price 04.06.2023 17:24
SO4 Create sales order 04.06.2023 17:21
SO4 Set price 04.06.2023 17:22
SO4 Set amount 04.06.2023 17:23
SO4 Select material 04.06.2023 17:24

SO5 Create sales order 04.06.2023 17:21
SO5 Set amount 04.06.2023 17:22
SO5 Set customer 04.06.2023 17:23
SO6 Create sales order 04.06.2023 17:21
SO6 Set customer 04.06.2023 17:22
SO6 Set amount 04.06.2023 17:23



Process Mining
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Case ID Activity Timestamp

SO1 Create sales order 04.06.2023 17:21

SO1 Select material 04.06.2023 17:22

SO1 Set price 04.06.2023 17:23

SO1 Set price 04.06.2023 17:23

SO1 Set price 04.06.2023 17:23

SO1 Set amount 04.06.2023 17:24

SO1 Set amount 04.06.2023 17:24

SO1 Set amount 04.06.2023 17:24

Process Design

Process Implementation

Process Mining

Process Execution

To-be process model

IT system Event log

Insights

• What is the process that people really follow?
• Where are the bottlenecks in my process?
• Where do users deviate from the designed process?
• …



What does the executed process look like? 
(Process Discovery)

Where does the log differ from the model?
(Conformance Checking)

How can we improve the executed process?
(Process Enhancement)

Which variants does the process have?
(Trace Clustering)

What is the outcome of a process instance?
(Process Prediction)

Which process instance differs from others?
(Anomaly Detection)
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Source: W. van der Aalst (2022)



Process mining in the press
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Celonis & Signavio: Two Success Stories
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And what exactly is your research about…?

07.11.2024

Prof. Dr. Jana-Rebecca Rehse

20



My three streams of research
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User Behavior Mining

Idea: Apply process mining 
techniques to low-level logs of 
software-user interactions to 
learn about behavior patterns

Rehse, J.-R., Abb, L., Berg, G., Bormann, C., 
Kampik, T., & Warmuth, C. (2024): User Behavior 
Mining: A Research. Business Information 
Systems Engineering (online first).

Conformance Checking in Practice

Idea: Increase the practical value 
of conformance checking for 
managing the compliance of 
business processes

Grohs, M., Pfeiffer, P., & Rehse, J.-R. (2023): 
Business Process Deviation Prediction: Predicting 
Unwanted Process Behavior. In International Con-
ference on Process Mining (pp. 113-120). IEEE.

BPM meets AI

Idea: Explore the opportunities 
that novel AI techniques hold for 
business process management

Dumas, M., Fournier, F., Limonad, L., Marrella, A., 
Montali, M., Rehse, J.-R., & others (2023): 
Augmented Business Process Management 
Systems: A Research Manifesto. ACM 
Transactions on Management Information 
Systems 14 (1), 1-19.



Conformance Checking 

07.11.2024

Prof. Dr. Jana-Rebecca Rehse

22

A_
SUBMITTED

A_PARTLY 
SUBMITTED   

A_PRE
ACCEPTED

A_
ACCEPTED

A_
FINALIZED

A_
APPROVED

A_
REGISTERED

A_
ACTIVATED

⨯ ⨯ ⨯ ⨯ + +

A_
CANCELLED

A_
DECLINED

⨯ ⨯

A_
SUBMITTED

A_PARTLY 
SUBMITTED   

A_PRE
ACCEPTED

A_
ACCEPTED

A_
FINALIZED

A_
REGISTERED

A_
APPROVED

A_
ACTIVATED25,000€

Requested
Amount

A_
SUBMITTED

A_PARTLY 
SUBMITTED   

A_PRE
ACCEPTED

A_
ACCEPTED

A_
FINALIZED

A_
APPROVED

A_
REGISTERED

A_
ACTIVATED10,000€

Requested
Amount

Trace 𝒕𝟏

Trace 𝒕𝟐

Do process executions (traces) conform with the process model? 

Deviation 𝒅𝟏: A_APPROVED missing Deviation 𝒅𝟐: A_APPROVED wrongly executed 



Reactive vs. Proactive Conformance Checking
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Conformance checking 
should detect deviations 

before they occur, so they 
can be prevented.

Vision: Proactive

Conformance checking can 
only detect deviations 

after they occur, so they 
cannot be prevented.

Currently: Reactive

Application of 
(Supervised) 

Machine Learning

Cf. Grohs, M., Pfeiffer, P., Rehse, J.-R. (2025): Proactive 

Conformance Checking: An Approach for Predicting Deviations in 
Business Processes, Information Systems 127, 102461



Business Process Deviation Prediction
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Apply supervised machine learning to incomplete traces to predict which deviations will occur in the future

Goal

...



Challenges of Deviation Prediction
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Assigning labels (i.e., occurring deviations) 
requires a prescriptive process model

Explicit Process Knowledge

Supervised ML approach, trained with data 
obtained from comparing log and model 

Multiple (a trace may deviate more than once)

Prediction Labels

Dynamic (labels change over trace duration)

Imbalanced (deviations occur infrequently)

Separate (binary) ML model per deviation

Each trace prefix labeled individually

Undersampling applied to training data

Deviations in the control flow may be 
caused by context attributes (e.g., amount)  

Context Importance

Traces are encoded with all relevant context 
attributes (Complex Index-Based Encoding) 

High recall (recognize deviations) preferred over 
high precision (not misclassifying conform traces)

Action Orientation

Weighted cross-entropy loss function that 
reduces false negatives (missed deviations)



Our Approach
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Offline Component

Online Component

To-Be Model B

Event Log L

Model 
Learning

Encoded 
Prefixes

Labelled 
Prefixes

Encoding

Labelling

Trace Prefix

Trained 
Classifiers

Trained 
Classifiers

𝒅𝟏: Deviation

𝒅𝟐: Deviation

𝒅𝒎: No Deviation

…

Predictions

Labels are defined from historic data. 
Each prefix is labeled individually.

Encoding (CIBE) 
includes all context 

information.

Training data is undersampled 
(one-sided selection).

We train a 
separate classifier 

per deviation.

We use a weighted 
cross-entropy loss 

function.



Evaluation
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Logs Genga et al. (2017) CatBoost BPDP

BPI12 A

BPI12 O

BPI20 Dom.

BPI20 Int.

BPI20 RfP

BPI20 Prep.

MobIS

Alternative prediction 
approach not based on ML

Alternative ML-based 
prediction approach

Public event 
log data used 

as benchmarks

𝑨𝑼𝑪𝑹𝑶𝑪 = Area under the curve of the 
receiving operator characteristic 
• Standard evaluation metric for binary 

classifications
• Relates true positive to false positive rate 

for different thresholds
• Varies between 0 and 1, with 0.5 

representing a random classifier
• Values > 0.7 are acceptable, 

values > 0.8 are excellent

Our approach

Figure: https://commons.wikimedia.org/wiki/File:Roc_curve.svg



Evaluation
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BPDP outperforms alternative approaches

Performance 
differs 

between 
logs



User Output
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Towards Proactive Conformance Checking
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Novel machine learning approach for 
predicting deviations in the future of 
ongoing traces

Outperforms existing state-of-the-
art by considering the specific 
challenges of deviation prediction

Equipped with graphical user 
interface as well as multiple features 
to support process managers

How can we increase the precision 
and overall accuracy of our 
predictive models?

How can we consider deviation 
patterns, i.e., sets of frequently 
occurring deviations?

How can we establish true causes for 
occurring deviations?

Contributions Remaining Research Questions



Thank you!
Questions?
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