3. Data Structures and Tolerant Retrieval

Dr. Goran Glavaš

Data and Web Science Group
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
Universität Mannheim
After this lecture, you’ll...

- Know what data structures are used for implementing inverted index
- Understand the pros and cons of hash tables and trees
- Know how to handle wildcard queries
- Be familiar with methods for handling spelling errors and typos in IR
Outline

- Recap of Lecture #2
- Data structures for inverted index
- Wild-card queries
- Spelling correction
Recap of the previous lecture

- **Boolean retrieval**
 - Q: How are queries represented in Boolean retrieval?
 - Q: How are documents represented for Boolean retrieval?
 - Q: How do we find relevant documents for a given query?

- **Inverted index and finding relevant documents**
 - Q: What is inverted index and what does it consist of?
 - Q: What are posting lists?
 - Q: How to merge posting lists?
 - Q: What is the computational complexity of the merge algorithm?
 - Q: What are skip pointers and what is their purpose?

- **Phrase and proximity queries**
 - Q: What is a biword index and what are its shortcomings?
 - Q: What is a positional index?
 - Q: How do we use positional index to answer phrase and proximity queries?
Recap of the previous lecture

- **Inverted index** is a data structure for computationally efficient retrieval
- Inverted index contains a list of references to documents for all index terms
 - For each term t we store the list of all documents that contain t
 - Documents are represented with their identifier numbers (ordinal, starting from 1)

 „Frodo“ -> [1, 2, 7, 19, 174, 210, 331, 2046]
 „Sam“ -> [2, 3, 4, 7, 11, 94, 210, 1137]
 „blue“ -> [2, 3, 24, 2001]

- The list of documents that contains a term is called a **posting list** (or just **posting**)
- **Q:** Postings are always sorted. Why?
Recap of the previous lecture

- So far, we learned how to handle
 - Regular Boolean queries
 - Standard merge algorithm over posting lists
 - Multi-term queries – optimizing according to lengths of posting lists
 - Phrase queries
 - Biword index
 - Positional index
 - Proximity queries
 - Positional index

- Today we’ll examine
 - Data structures for implementing the inverted index
 - How to handle wild-card queries and spelling errors
Outline

- Recap of Lecture #2
- Data structures for inverted index
- Wild-card queries
- Spelling correction
Data structures for inverted index

- Conceptually, an inverted index is a **dictionary**
 - Vocabulary terms (i.e., index terms) are keys
 - Posting lists are values

 „Frodo“ -> [1, 2, 7, 19, 174, 210, 331, 2046]
 „Sam“ -> [2, 3, 4, 7, 11, 94, 210, 1137]
 „blue“ -> [2, 3, 24, 2001]

- But the exact implementation is undefined
 - What data structures to use?
 - Where exactly to store different pieces of information – document frequencies, pointers to posting lists, skip pointers, token positions, ...
Data structures for inverted index

- A naïve dictionary – an array of structures

<table>
<thead>
<tr>
<th>Term</th>
<th>Doc. freq.</th>
<th>Pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>656 265</td>
<td>→</td>
</tr>
<tr>
<td>aachen</td>
<td>65</td>
<td>→</td>
</tr>
<tr>
<td>blue</td>
<td>10 321</td>
<td>→</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>frodo</td>
<td>221</td>
<td>→</td>
</tr>
</tbody>
</table>

- Each element of the array is a structure consisting of:
 - The term itself
 - The number of documents in the collection in which the term appears
 - A pointer to the posting list of the term
- Structure size: char[N], int, pointer (int/long)

- **Q:** How to efficiently store the inverted index / dictionary in memory?
- **Q:** How to quickly look up elements at query time?
Data structures for inverted index

- Two main choices for implementing the inverted index dictionary
 - Hash tables
 - Trees

- Both are regularly used in IR systems
- Both have advantages and shortcomings
Inverted index dictionary as a hash table

- **Hash table** is a common data structure for implementing dictionaries, i.e., a structure that maps keys to values as associative arrays.

- Hash tables rely on **hash functions** – functions that for a given input value (i.e., key) computes the index in the array where the value is stored.
 - Perfect hash function – assigns each key a different index.
 - Most hash functions are imperfect – they may compute the same value for several different keys – this is called a collision.
 - **Q:** how to account for collisions?

- Each vocabulary term is „hashed“ into an integer value.
 - $hf(\text{"Frodo"}) = 1, hf(\text{"Sam"}) = 19, hf(\text{"blue"}) = 204$
Inverted index dictionary as a hash table

- $hf(\text{"Frodo"}) = 1$, $hf(\text{"Sam"}) = 19$, $hf(\text{"blue"}) = 204$, $hf(\text{"orc"}) = 1$

- Associative array

![Diagram of hash table]

- If the hash function maps the key to the bucket with more than one entry, then the **linear search through the bucket** is performed.
The main advantage of hash table is **fast lookup**
- **Q:** What is the complexity of the lookup?
- **A:** O(1)

Shortcomings:
- Hash functions are sensitive to minor differences in strings
 - Close strings not assigned same or close buckets
 - E.g., \(hf(\text{"judgment"}) = 12, hf(\text{"judgement"}) = 354 \)
- As such, they do not support prefix search
 - Important for tolerant retrieval
- Constant vocabulary growth means **occasional rehashing for all terms**
 - **Q:** Why do we need to rehash if the vocabulary grows?
Inverted index dictionary as a tree

- Trees divide the vocabulary in the hierarchical form
 - Each node in the tree captures the subset of the vocabulary
 - Nodes closer to the root represent larger vocabulary subsets
 - Nodes closer to leaves encompass narrower subsets
 - Actual vocabulary terms are found in leaf nodes of the tree
 - The division of vocabulary is usually alphabetical

- Trees should be created in a balanced fashion
 - Each node in the tree should have approximately the same number of children
 - Subtrees of nodes of the same depth should have approximately the same number of leaves
Inverted index dictionary as a tree

```
root
  ├── a-i
  │   ├── a-cu
  │       └── aachen
  │   └── cy-ga
  │       └── izzard
  └── j-p
      ├── ge-i
      │   └── ramstein
      └── j-le
          └── li-na
              └── izzard
      └── ne-p
          └── sp-va
              └── zygot
      └── r-z
          └── ve-z
              └── zygot
```

Inverted index dictionary as a tree

- **Q:** What is the lookup complexity for a balanced tree with a node degree N which stores vocabulary containing $|V|$?
 - **A:** Lookup complexity is equal to the depth of the tree, so the complexity is $O(\log_N |V|)$

- The central design decision is the degree of the nodes in an index tree, i.e., the number of child nodes a parent node should have
 - Large node degree N
 - Shallow trees, but a large number of children to go through linearly
 - Small node degree N
 - Small number of children to linearly search, but deep trees

- Advantage
 - Can handle prefix search

- Shortcoming
 - Lookup complexity ($O(\log_N |V|)$) bigger than for hash tables ($O(1)$)
Outline

- Recap of Lecture #2
- Data structures for inverted index
- Wild-card queries
- Spelling correction
Wild-card queries

- **Wild-card queries** are queries in which an asterisk sign stands for any sequence of characters
 - Wild-card term (with an asterisk) represents a group of terms and not a single term
- **Trailing wild-card queries** (* at the end)
 - E.g., „mon*” is looking for all documents containing any word beginning with „mon”
 - Easy to handle with B-tree dictionary: retrieve all words \(w \) in range \(mon \leq w < moo \)
- **Leading wild-card queries** (* at the beginning)
 - E.g., „*mon” is looking for all documents containing any word ending with „mon”
 - Can be handled with an additional B-tree that indexes vocabulary terms backwards
 - Retrieve all words \(w \) in range: \(nom \leq w < non \)
- **Q:** How to handle queries with the wild-card in the middle?
 - Retrieve documents containing any word satisfying the wild-card query „co*tion”?
Wild-card queries

- Example query
 - „co*tion” (we want: coordination, comotion, cohabitation, connotation)

Idea:
1. Lookup „co*” in the forward B-tree of the vocabulary
2. Lookup „*tion” in the backward B-tree of the vocabulary
3. Intersect the two obtained term sets

- Unfortunately, this is too expensive (too slow) for most real-time IR settings
 - We need to fetch the relevant documents with a single lookup into index
 - We need to enrich the index somehow
 - This will increase the index size, but memory is usually not an issue
Wild-card queries and permuterm index

- **The idea**: besides terms themselves, let’s also index their character-level permutations.

- **Permuterm index** additionally stores permutations of vocabulary terms.

- We add a special “end-of-term” character ($) and store all permutations:
 - E.g., „comotion” -> „comotion$”, „n$comotio”, „on$comoti”, „ion$comot”, „tion$como”, „otion$com”, „motion$co”, „omotion$c”

- **Q**: How to use permuterm index for middle-wild-card queries?
 - **A**: Permute the wild-card query until you obtain a trailing query (asterisk at the end)
 - E.g., „co*tion” -> „co*tion$” -> „tion$co*”
 - We know how to handle trailing wild-card queries – „tion$co*” can now be handled by a single permutex index tree
Wild-card queries and permuterm index

- Queries supported by permuterm index
 - Exact queries: for "X" we look up "X$"
 - Trailing wild-card query: for "X*" we look up "$X*
 - Leading wild-card query: for "*X" we look up "X$"
 - General wild-card query: for "X*Y" we look up "Y$X"

- Q: How would you handle the query "X*Y*Z" with the permuterm index?
 - A: Here we have no option but to fire two lookups into the index
 1. Retrieve the postings for "X*Z" (by looking up "$ZX")
 2. Retrieve the posting list for the query "Y*" (by looking for "$Y")
 3. Merge the two retrieved posting lists
Next idea:

- How about we index all character n-grams (sequences of n characters) instead of whole terms?
- We surround all terms with term-boundary symbols and create lists of all sequences of n consecutive character within terms
- Example: „Frodo and Sam fought the orcs” (stopwords removed; lemmatized)
 - Terms: $frodo$$, $sam$$, $fight$$, orc
 - Char. 3-grams: fr, fro, rod, odo, do; sa, sam, am; fi, fig, igh, ght, ht; or, orc, rc

We need to keep the second inverted index

- For each character n-gram maintain the list of vocabulary terms that contain it
- E.g., „$fr” -> [„freak”, „freedom”, ..., „frodo”, „frozen”]
 - „sam” -> [„asamoah”, „balsam”, „disambiguate”, ..., „sam”, „subsample”]
Wild-card queries and character indexes

- Query for character n-grams and merge results (AND operator)
- Example: query “mon*” and 2-gram character indexing
 - Query is transformed into: “$m” AND “mo” AND “on”
 - Q: What might be the issue with this transformation?
 - A: Conjunction of character 2-grams might yield false positives
 - For example: moon, motivation, moderation, etc.
 - Compare this issue with the false positives of biword index from Lecture #2
 - Retrieved terms must be post-filtered against the query to eliminate false positives
 - Term contains “mon”?

- Resulting terms are then looked up in the term-document inverted index
Character indexes

- Comparison with permuterm index
 - **Advantage**: space efficient (less space needed than for permuterm index)
 - **Shortcoming**: slower than using permuterm index
 - A Boolean query (and term-level merges) needs to be performed for every query term

- Wild-card queries in general
 - Often not supported by Web search engines (not at the character level anyways)
 - Found in some desktop or library search systems
 - Wild-cards are **conceptually troubling** as well
 - User must know what they don’t know (i.e., where to put the asterisk)
 - If we have several options in mind, we can just run several concrete queries
Outline

- Recap of Lecture #2
- Data structures for inverted index
- Wild-card queries
- Spelling correction
Spelling correction

- Primary use-cases for spelling correction
 1. Correcting documents during indexing
 2. Correcting user queries on-the-fly

- Two flavors of spelling correction
 1. Isolated words
 - Check each word on its own for errors in spelling
 - Will not catch typos that result in another valid word
 - E.g., "from" → "form"
 2. Context-sensitive spelling correction
 - Correctness evaluated by looking at surrounding words as well
 - E.g., "Frodo went form Gondor to Mordor"
Document correction

- Correction should occur prior to indexing
 - Aiming to have only valid terms in the vocabulary
 - Smaller vocabulary, i.e., the term dictionary contains fewer entries

- We do **not** change the original documents
 - Just perform correction when normalizing terms before indexing

- Common types of errors for certain types of documents
 1. OCR-ed documents – „rn“ vs. „m“, „O“ vs. „D“
 2. Digitally-born documents often have QWERTY keyboard typos – errors from close keys – „O“ vs. „I“, „A“ vs. „S“, etc.
Query correction

- Primary focus is on correcting errors from queries
 - **Q:** Failing to fix errors in queries has more serious consequences than omitting to fix errors in documents. Why?

- With respect to user interface, we have two options
 1. Silently retrieving documents according to the corrected query
 2. Return several suggested „corrected” query alternatives to the user
 - „Did you mean?” option
Isolated word correction

- **The idea:** using *reference lexicon* of correct spellings (i.e., lexicon of valid terms)
- Two approaches for obtaining a reference lexicon
 1. Existing lexicons like
 - Standard wide-coverage lexicon of a language (e.g., Webster’s English dictionary)
 - Domain-specific lexicons (e.g., lexicon of legal terms)
 2. Lexicon built from large corpora
 - E.g., all the words on the web or in Wikipedia
 - **Q:** Do we want to keep absolutely all terms from corpora?
Isolated word correction

- Given a reference lexicon and the query term (a character sequence from the query), we do the following:
 1. Check if the query term Q is in the reference lexicon
 2. If the term Q is not in the reference lexicon, find the entry Q' from the lexicon that is "closest" to the query term Q

- How do we define "closest"?
 - We need some similarity/distance measure
 - We will examine several options
 1. Edit distance (also known as Levenshtein distance)
 2. Weighted edit distance
 3. Character n-gram overlap
Spelling correction – edit distance

- **Edit distance** between two strings S and S' is the **minimal number of operations** required to transform one string into the other.
 - What are the "operations"?
- We typically consider operations at the character level:
 - Character **insertion** ("frod" → "frodo")
 - Character **deletion** ("frpodo" → "frodo")
 - Character **replacement** ("frido" → "frodo")
 - Less often: **transposition of adjacent characters** ("fordo" → "frodo")
 - Transposition equals "deletion" + "insertion"?
 - Q: Why introducing it as a separate operation?
- **Levenshtein distance**: counts insertions, deletions and replacements.
- **Damerau-Levenshtein distance**: additionally counts transpositions as a single operation.
- Algorithm based on **dynamic programming**.
Dynamic programming

- For detailed explanation of dynamic programming see
 Cormen, Leiserson, Rivest, and Stein. „Introduction to Algorithms”

- **Optimal substructure**: the optimal solution of the problem contains within itself the subsolutions, i.e., the optimal solutions to subproblems

- **Overlapping subsolutions**: we can recycle subsolutions – i.e., avoiding repeating the computation for the same subproblems over and over again

- **Q**: What would be a „subproblem” for the edit distance computation?
 - **A**: the edit distance between two prefixes of input strings

- **Q**: Do we have many subproblem repetition for edit distance?
 - **A**: most distances between same pair of prefixes are needed 3 times (as a subproblem of computing distance for insertion, deletion, and substitution)
Levenshtein distance

- Let a and b be two strings between which we measure edit distance (with $|a|$ and $|b|$ being their respective lengths):
- Mathematically, the Levenshtein distance $\text{lev}_{a,b}(|a|, |b|)$ is computed as follows:

$$\text{lev}_{a,b}(i, j) = \begin{cases} \max(i, j) & \text{if } \min(i, j) = 0, \\ \min \begin{cases} \text{lev}_{a,b}(i - 1, j) + 1 \\ \text{lev}_{a,b}(i, j - 1) + 1 \\ \text{lev}_{a,b}(i - 1, j - 1) + 1(a_i \neq b_j) \end{cases} & \text{otherwise.} \end{cases}$$

- Where $1(a_i \neq b_j)$ is the indicator function equal to 0 if $a_i = b_j$ and 1 otherwise
- Once we compute $\text{lev}_{a,b}(i, j)$ for some pair (i, j) we store it in memory so we don’t compute it again when needed in another recursive thread
- Directly implementing this formula requires recursion
Example – Levenshtein recursively

- For the example, we will follow only one thread of recursion (first subproblem)

- „sany” vs. „sam”
 - \(\min(\text{lev}(\text{"san"}, \text{"sam"}) + 1, \text{lev}(\text{"sany"}, \text{"sa"}) + 1, \text{lev}(\text{"san"}, \text{"sa"}) + 1) \)

- „san” vs. „sam”
 - \(\min(\text{lev}(\text{"sa"}, \text{"sam"}) + 1, \text{lev}(\text{"san"}, \text{"sa"}) + 1, \text{lev}(\text{"sa"}, \text{"sa"}) + 1) \)

- „sa” vs. „sam”
 - \(\min(\text{lev}(\text{"s"}, \text{"sam"}) + 1, \text{lev}(\text{"sa"}, \text{"sa"}) + 1, \text{lev}(\text{"s"}, \text{"sa"}) + 1) \)

- „s” vs. „sam”
 - \(\min(\text{lev}(\text{"\"}, \text{"sam"}) + 1, \text{lev}(\text{"s"}, \text{"sa"}) + 1, \text{lev}(\text{"\"}, \text{"sa"}) + 1) \)

- „” vs. „sam”
 - return 3
Levenshtein distance – non-recursive version

- We can avoid the recursion if we start from the recursive algorithm’s end condition – return $\max(i, j)$ if $\min(i, j) = 0$
- Then compute the edit distances of larger prefixes from smaller prefixes

```
LEVENSHTEINDISTANCE(s1, s2)
  1 for i ← 0 to |s1|
  2 do m[i, 0] = i
  3 for j ← 0 to |s2|
  4 do m[0, j] = j
  5 for i ← 1 to |s1|
  6 do for j ← 1 to |s2|
  7    do if s1[i] = s2[j]
  8    then m[i, j] = \min\{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]\}
  9    else m[i, j] = \min\{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]+1\}
 10 return m[|s1|, |s2|]
```
Example – Levenshtein non-recursively

<table>
<thead>
<tr>
<th></th>
<th>_</th>
<th>s</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>s</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>y</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Damerau-Levenshtein distance

- Standard edit distance counts transposition of adjacent characters as two edits
 - E.g., “frodo” vs. “fordo”
 - two character replacements: “r” -> “o” in position 2 and “o” -> “r” in position 3
- However, transposing adjacent characters is a single typing error
 - Damerau-Levenshtein distance introduces transposition as the fourth atomic distance operation
 - Q: How would you integrate transposition as a single distance operation into the edit distance algorithm?
 - A: \(d(i, j) \) additionally needs to consider \(d(i-2, j-2) + 1(a_{i-1} = b_j \& a_i = b_{j-1}) \) when looking the edit distances of prefixes
Weighted edit distance

- Sometimes we want to assign smaller distance to common errors
 - The weight of an operation (deletion, insertion, replacement, transposition) depends on the character(s) involved

- Motivation: better capture common OCR or typing errors
 - E.g., On a QWERTY keyboard, letter “m” is much more likely to be mis-typed as “n” than as “q”
 - Thus, the replacement operation “m” -> “n” should be assigned smaller edit distance than “m” -> “q”

- Additional input required
 - Data structure (e.g., weight matrix) containing operation weights for (combinations of) characters

- Q: How to integrate weighting into the edit distance algorithm based on dynamic programming?
Using edit distances

- Given a (misspelled) query we need to find the closest dictionary term

- Q: How do we know (or assume) that the query is misspelled in the first place?
 - A: We don’t find the query term in the vocabulary dictionary
 - With this strategy, we cannot capture typos like „from” -> „form”

- Finding closest dictionary term
 - Compute edit distance between the query term and each of the dictionary terms?
 - Too slow (the dictionaries are usually rather large)
 - We need to somehow pre-filter the „more promising” dictionary entries
N-gram index for spelling correction

- **Idea:** use n-gram index to pre-filter dictionary candidates

1. Enumerate all character n-grams in the query string
 - E.g., 3-grams in "frodso" -> "fro", "rod", "ods", "dso"
2. Retrieve all vocabulary terms containing any of the obtained character n-grams
 - Using the inverted index of character n-grams
3. Threshold the obtained list of candidates on the number or percentage of matching character n-grams
4. Compute the edit distances between the query term and the remaining dictionary candidates
5. Select the candidate with the smallest edit distance as the correction
Character n-gram overlap

- Can be used as
 - A measure for pre-filtering candidates in order to reduce the number of edit distance computation
 - As a self-standing distance measure, alternative to Levenshtein distance

- Example
 - Suppose the query is “fpodo bigginss” and the text is “frodo baggins” and we are computing the overlap in character 3-grams
 - {“fro”, “rod”, “odo”, “bag”, “agg”, “ggi”, “ins”}
 - We have 3 matching 3-grams: “odo”, “ggi”, and “ins”
 - That’s 3 out of 8 for the query and 3 out of 7 for the text

- Q: What should we take as measure of proximity/distance?
 - Is raw count of matching n-grams good choice?
Character n-gram overlap

- Raw count of matching character n-grams is not a good choice
 - Does not account for the length of terms in comparison
 - Two distinct but long terms may have a large raw count of matching n-grams
 - E.g., „collision“ and „collaboration“ have 3 matching 3-grams
 - We need to normalize the score with the length of terms

- Jaccard coefficient – a commonly used measure of set overlap
 \[
 \frac{|X \cap Y|}{|X \cup Y|}
 \]

- Simple alternative: averaged length-normalized overlap
 \[
 0.5 \cdot \left(\frac{|X \cap Y|}{|X|} + \frac{|X \cap Y|}{|Y|} \right)
 \]
Context-sensitive spelling correction

- Example:
 - Suppose the text is "Frodo fled from Mordor back to Gondor"
 - Suppose the query is "fled form Gondor"

- To identify the misspelling "form" -> "from" we need to take into account the context, i.e., surrounding words

- Context-sensitive error correction steps
 1. For each term of the query, retrieve dictionary terms that are sufficiently close
 - "fled" -> {"fled", "flew", "flea"}; "form" -> {"form", "from"}; "gondor" -> {"gondor"}
 2. Combine all possibilities (i.e., all combinations of candidates for each term)
 - "fled form gondor", "fled from gondor", "flew form gondor", "flew from gondor",
 "flea form gondor", "flea from gondor",
 3. Rank the possibilities according to some criteria
Context-sensitive spelling correction

- **Hit-based** spelling correction
 - Rank the candidate combinations according to the number of hits (relevant documents)
 - Return the candidate with the largest number of hits

- **Log-based** spelling correction
 - Rank the candidates according to the number of appearances in the query logs (i.e., the number of times the same query was posed before)
 - Useful only if you have a lot of users who fire a lot of queries

- **Probabilistic** spelling correction (e.g., based on language modelling)
 - Ranking according to probabilities of term sequences
 - E.g., \(P(\text{"fled form gondor"}) = P(\text{"fled"}) \times P(\text{"form" | "fled"}) \times P(\text{"gondor" | "form"}) \)

- Often useful to break queries into bigrams:
 - "fled form gondor" -> "fled form", "form gondor"
Now you...

- Know what data structures you can use for implementing inverted index
- Understand the pros and cons of hashtables and trees
- Know how to handle wildcard queries
- Are familiar with methods for handling spelling errors and typos in IR