
1

9.3.2020.

Data and Web Science Group
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Universität Mannheim

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

4. Term Weighting and Vector Space Model
Prof. Dr. Goran Glavaš

2

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

After this lecture, you’ll...

 Be familiar with your first ranked retrieval model (VSM)

 Understand the TF-IDF term weighting scheme

 Know how to rank documents according to cosine similarity

 Know about some methods for speeding up VSM’s ranking

 Be familiar with the multi-criteria ranking

3

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Outline

 Recap of Lecture #3

 Ranked retrieval and scoring

 Vector space model
 Term weighting (TF-IDF)

 Ranking with cosine similarity

 Speeding up VSM retrieval

 Query parsing and multi-criteria ranking

4

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Recap of the previous lecture

 Data structures for inverted index
 Q: What are the different data structures we may use for indexing?

 Q: How do we build index with a hash table (pros and cons)?

 Q: How do we build index with a balanced tree (pros and cons)?

 Tolerant retrieval: wild-card queries
 Q: What are the different options for handling wild-card queries?

 Q: What is a permuterm index and how do we use it for wild-card queries?

 Q: How to use character indexes to support wild-card queries?

 Tolerant retrieval: error correction
 Q: How to correct the spelling by observing the terms in isolation?

 Q: How do we use the edit distance to fix for misspellings?

 Q: What are the different options for spelling correction in context?

5

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Recap of the previous lecture(s)

 Inverted index is a data structure for computationally efficient retrieval

 We’ve examined different variants of the inverted index for different queries
 Regular inverted index for simple Boolean queries
 Positional index for phrase and proximity queries
 Permuterm index for tolerant retrieval

 Boolean retrieval has a major drawback
 The results are not ranked
 Without ranking: either too few or too many results

 Document dj is represented by term vector [w1j, w2j, ..., wtj] where t is the number of
index terms
 Let g be the function that computes the weights, i.e., wij = g(ki, dj)
 Different choices for the weight-computation function g and the ranking function r define

different IR models

 Today, we examine the first model for ranked retrieval – vector space model (VSM)
 We examine what g and r are for VSM

6

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Outline

 Recap of Lecture #3

 Ranked retrieval and scoring

 Vector space model
 Term weighting (TF-IDF)

 Ranking with cosine similarity

 Speeding up VSM retrieval

 Query parsing and multi-criteria ranking

7

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Beyond Boolean retrieval

 So far, all our queries were some variant of Boolean (simple, phrase, positional)
 Document either match or not

 Suitable for expert users with precise understanding of both
 Their information needs

 The document collection against which they spawn queries

 Also suitable for applications: easily consume 1000s of results

 Not suitable for most human users
 Most users find it difficult (unnatural) to write Boolean queries

 Most users cannot go through thousands of results the Boolean retrieval engine
returns on large collections (e.g., web)

8

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Beyond Boolean retrieval

 Boolean queries often yield either too few (even 0) or too many (1000s) results
 Q1: „standard user dlink 650”

 200K hits

 Q2: „standard user dlink 650 no card found”
 0 hits

 It takes a lot of skill, experience, and sometimes time to design a query that
produces a manageable number of hits
 AND operator often drastically reduces the number of hits
 OR operator often drastically increases the number of hits
 Hard to find the balance

 Solution: rank the documents and return the top N ranked hits
 User directly chooses N, i.e., how many hits to process

9

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Ranked retrieval

 IR models for ranked retrieval
 Produce the ordering over the documents in the collection

 Selection of top-ranked documents
 May be done by the IR system

 Cut the documents below rank N (i.e., top N)
 Cut documents below some treshold score value

 May be left to the user
 Entire ranking is returned (e.g., with paging)

 Free text search
 No query language with operators and expressions
 Query is simply one or more words in natural language

 Two separate design-decisions, but often go together
 Free text search & ranked retrieval

10

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Ranked retrieval

 Assumption: The ranking of the documents is based on the relevance
 The ranking/scoring function (r) captures the extent of relevance of the document

for the query

 All IR models that we will cover from now onwards are ranked retrieval models
 They differ in the scoring function r they use

 Common-sense assumptions
 Let’s start from a single-term query qt

 If the term does not occur in the document d – r(qt, d) = 0

 The more frequent the query term in the document, the higher the score should be
 r(q, d) ∝ ft,d

11

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Ranked retrieval: naive approach

 First idea: use Jaccard coefficient – a measure of overlap of two sets A and B:

Jaccard(A, B) = |A ∩ B| / |A ∪ B|

Jaccard(A, A) = 1

Jaccard(A, B) = 0 iff A ∩ B = Ø

 The Jaccard index is always between 0 and 1

 Sets A and B don’t have to be of the same size

 Shortcomings of using Jaccard coefficient as a scoring function
1. Term frequency in each of the documents is not taken into account

2. The overall frequency of the term in the collection (or language in general) is not
accounted for – rare terms are more informative

3. There are more sophisticated ways to normalize for the document length

12

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Outline

 Recap of Lecture #3

 Ranked retrieval and scoring

 Vector space model
 Term weighting (TF-IDF)

 Ranking with cosine similarity

 Speeding up VSM retrieval

 Query parsing and multi-criteria ranking

13

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Term frequency

 Term frequency tf(t,d) is a measure that denotes how frequently the term t
appears in the document d

 Q: Shall we use the raw frequency (i.e., raw number of occurrences of t in d) as a
measure of term frequency?
 A document d1 with 10 occurrences of a query term t is probably more relevant than

a document d2 with 1 occurrence. But is it 10 times more relevant?

 A document d1 contains 100.000 tokens and 4 occurrences of term t whereas the
document d2 contains 500 tokens and 3 occurrences of term t. Which document is
more relevant?

 Relevance does not increase linearly with term frequency

 Raw term frequency does not account for document length

14

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Term frequency

 Let’s fix for the previous two observations

1. Relevance does not increase linearly with term frequency
 Let’s take the logarithm of the raw frequency

tf(t,d) = 1 + log10(ft,d), if ft,d > 0, otherwise 0

2. Raw term frequency does not account for document length
 Let’s normalize with the frequency of the most frequent term in the document

tf(t,d) = ft,d / max{ft’,d : t’ ∈ d}

 Combining the two:
tf(t,d) = (1 + log10(ft,d)) / (1 + log10 (max{ft’,d : t’ ∈ d}))

 if ft,d > 0, otherwise 0

15

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Global frequency

 Assumption: rare terms are more informative/important than frequent terms

 Consider the query „arachnocentric shop”
 A document containing rare term „arachnocentric” is more likely to be relevant than

the document containing the more frequent term „shop”

 We want a higher weight for rare terms like „arachnocentric”

 We will use document frequency, i.e., the number of documents in the collection
to account for global rarity/frequency of the terms

16

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Inverse document frequency

 Assumption: the informativeness of the term t is inversely proportional to the
number of documents in the collection in which the term appears
 The less documents in which the term appears – the bigger weight

 Inverse document frequency (on the document collection D)

idf(t) = log10(|D| / |{d’ ∈ D : t ∈ d’}|)

 The logarithm is used to „dampen” the effect for terms that appear in very few
documents
 E.g., only in one or two documents

 The base of the logarithm is not particularly important

17

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Inverse document frequency – example

 Term frequency (TF) value of the term is computed for every document
 N documents (d1, d2, ..., dN) N different TF scores for some term ti

 tf(ti, d1), tf(ti, d2), ..., tf(ti, dN)

 Inverse document frequency (IDF) is a single value for the term on the whole
document collection D (does not depend on particular document)

 idf(ti) = idf(ti, D)

 Example: N = 1 million documents

 Q: What is the effect of idf for
single-term queries?

 A: None. Q: Why?

term df(term) idf(term)

Frodo 10000 2

Sam 1000 3

stab 100 4

the 1000000 1

18

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Collection frequency vs. Document frequency

 Collection frequency is the total number of occurrences of the term in the entire
collection, i.e., in all of the documents
 I.e., counting multiple occurrences in documents

 Using (inverse) collection frequency could be an alternative to (inverse)
document frequency

 Q: Which is better?
 Q: Should „Frodo” or „blue”

get a higher weight?
Word Collection

frequency
Document
frequency

Frodo 100442 5135

blue 100350 20452

19

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

TF-IDF

 Finally, the weight for the term ti within the document dj is computed by
multiplying the TF (local) and IDF (global) components:

wij = tf(ti, dj) * idf(ti)

tf(ti, dj) = (1 + log10(fti,dj)) / (1 + log10 (max{ft’,dj : t’ ∈ dj}))

idf(ti) = log10(|D| / |{d’ ∈ D : ti ∈ d’}|)

 TF-IDF is the best known weighting scheme in IR

 TF-IDF score of term t within document d is larger
 The larger the number of occurrences of t within d

 The smaller the number of other documents d’ in which t occurs

20

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Outline

 Recap of Lecture #3

 Ranked retrieval and scoring

 Vector space model
 Term weighting (TF-IDF)

 Ranking with cosine similarity

 Speeding up VSM retrieval

 Query parsing and multi-criteria ranking

21

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Vector space model

 Vector space model
 Documents and queries considered to be bags of words

 Both documents and queries are represented as vectors of TF-IDF weights of
vocabulary terms
 TF-IDF score of vocabulary term not contained in the query/document is 0

 Ranking function: similarity/distance between the two TF-IDF vectors (i.e., the
vector of the document and the vector of the query)
 Q: What distance metric to use?

 Euclidean distance?

 Any other distance/similarity metric?

22

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Euclidean distance

 Euclidean distance
 Measures the distance between the ends (points) of the two vectors

 The Euclidean distance between q and d2 is large
 But the distribution of terms in the query q

and the distribution of terms in the document d2

are very similar.

 E.g., q = [1, 2, 3, 4, 5],

d2 = [2, 4, 6, 8, 10]

23

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Euclidean distance – shortcomings

 Take a document d and append it N times to itself – the obtained document is d’

 Semantically, d and d’ have the same content
 If N is large (i.e., we appended d to itself many times) the Euclidean distance

between d and d’ is going to be large
 Yet, d and d’ are semantically identical – d’ is as relevant for any query q as d is

 However, the angle between vectors of d and d’ is going to be zero
 These two vectors have exactly the same direction
 Angle between the vectors better captures the actual similarity

 Key idea: rank documents according to the angle their vectors close with the
vector of the query

24

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Cosine similarity

 The smaller the angle between two vectors is, the larger is the value of the cosine
of that angle
 Cosine is a monotonically decreasing function on the [0°, 180°] interval

25

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Cosine similarity

 Cosine similarity of two vectors is the cosine of the angle between them

 Cosine similarity is not affected by the length of the input vectors (norms in the
denominator)

 Cosine distance dC is simply computed as dC(x, y) = 1 – cos(x, y)

26

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Normalization of vector length

 Q: If the length is the issue for Euclidean distance, why don’t we simply compute the
Euclidean distance between unit-normalized vectors?

 Q: What is the relation between Euclidean distance of unit-normalized vectors and
cosine distance?

 A: Cosine distance between two vectors is quadratically proportional to the Euclidean
distance between unit-normalized versions of those vectors

 A: The ranking produced by cosine distance is going to be the same as the ranking
produced by Euclidean distance between unit-normalized vectors

 Cosine similarity between unit-normalized vectors amounts to their dot (scalar) product

27

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Normalized Euclidean vs. Cosine distance

28

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Ranking based on cosine similarity

29

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Vector space model – example

 Query: „Frodo stabs orc”

 Document collection
 D1: „Frodo accidentally stabbed Sam and then some orcs”
 d2: „Frodo was stabbing regular orcs but never stabbed super orcs – Uruk-Hais”

 d3: „Sam was having a barbecue with some friendly orcs”

1. For all documents, compute the TF-IDF score for each query term
idf(„Frodo”) = log10(3/2) = 0.176; tf(„Frodo”, d1) = 1, tf(„Frodo”, d2) = 1, tf(„Frodo”, d3) = 0
idf(„stab”) = log10(3/2) = 0.176; tf(„stab”, d1) = 1, tf(„stab”, d2) = 2, tf(„stab”, d3) = 0
idf(„orc”) = log10(3/3) = 0; tf(„orc”, d1) = 1, tf(„orc”, d2) = 2, tf(„orc”, d3) = 1
tf(„Frodo”, q) = 1, tf(„stab”, q) = 1, tf(„orc”, q) = 1

2. Compute cosine similarities between vectors of q and each document
 Q: Which term can we ignore for cosine similarity?
 Q: Do we need to compute the norm of the query vector?

30

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Alternative weighting and normalization schemes

 Most commonly implemented in IR systems:
 TF: logarithmic, augmented, log average / log max – equally common
 IDF: logarithmic
 Normalization: L2 (Euclidian) norm (cosine similarity does it implicitly)

 Sometimes, the weighting schemes for query and documents may differ

31

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Outline

 Recap of Lecture #3

 Ranked retrieval and scoring

 Vector space model
 Term weighting (TF-IDF)

 Ranking with cosine similarity

 Speeding up VSM retrieval

 Query parsing and multi-criteria ranking

32

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Speeding up retrieval with VSM

 Ranking all documents in the collection
 Requires comparing the query TF-IDF vector with TF-IDF vectors of all documents

 Infeasible for real-time querying on large collections

 We need to reduce the cost of cosine (dot product) computations
1. By reducing the total number of cosines we compute

a) Prefiltering candidate documents for ranking (e.g., via Boolean retrieval)

b) By pre-clustering documents (based on their mutual similarity)

2. By reducing the set of query terms we consider (e.g., according to IDF scores)
 Smaller set of candidate documents

 Faster cosine computation (shorter vectors for dot product)

33

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Index-based elimination

 Documents that do not contain any of the query terms will have the cosine
similarity of 0 with the query anyway

 Idea: Fetch only the documents that contain at least one query term
 Using the inverted index

 For the free text query „t1 t2 ... tn” we spawn the Boolean query „t1 OR t2 OR ... OR tn”

 Further possible speed-ups:
1. Fetch only documents that contain more than N query terms

2. Do not consider query terms with low IDF values
 Q: Why?

 A: Terms with low IDF scores appear in many (all?) documents in the collection, thus
matching such terms between query and documents does not affect the ranking much

 A: Posting lists of terms with low IDF are long – cosine computation for many docs

34

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Pre-clustering documents

 If the document collection contains N documents, we randomly select N
documents, which we call leaders

 For every other document in the collection
1. Compute the similarities (cosine of the angle between TF-IDF vectors) with all

leaders

2. Add the document to the cluster of the most similar leader

 On average, a cluster will have N documents

 Random sampling of clusters is desirable (reflects the document distribution)
 Faster than any other strategy for selecting leaders

 Leaders reflect the data distribution
 Dense regions will have more leaders than sparse regions

35

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Pre-clustering documents

 Retrieval with document pre-clustering is much faster
1. Measure the similarity of the query with cluster leaders

 N cosine computations

2. Select the leader document dL which is most similar to the query

3. Compute the cosine similarities between the query vector and all documents in
the selected leader’s (dL) cluster

 N cosine computations

4. (optional) if the users requires more results than there is documents in the cluster
of the most similar leader dL, proceed to the cluster of the next most similar leader

 With pre-clustering, total of 2 N cosine computations O(N)
 Quadratically lower complexity than before (without preclustering O(N))

 Shortcoming: pre-clustering may lead to lower recall
 Some relevant documents may not be in the cluster of the most similar leader

36

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Approximate cosine similarity

 Idea: reduce the length of the vectors on which we compute cosine similarity

 Only makes sense for queries with very many terms
 If query has |V| terms, the cosine computation has complexity O(|V|)

 Goal is to represent the query and document with a significantly shorter vector of
length M, M << V

 Cosine computation on lower dimensional vectors is then faster, O(M)

 Key question: how to select the lower-dimensional vector space in such a way
that relations between the original cosine similarities are preserved?

37

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Locality sensitive hashing

 A vector space of lower dimensions that (perfectly or imperfectly) retains the
distances from the original space is called a low-dimensional embedding

 Locality sensitive hashing (LSH)
 A family of dimensionality reduction techniques that map the original vector space

into a lower-dimensional space

 Maximizing the extent to which the new vector space retains the topology of the
original one

 One simple LSH method we will examine closer:
 Random projections

38

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Random projections

 A locality sensitive hashing method based on similarities with random vectors

 Hashing algorithm
1. Choose a set of M random vectors {r1, r2, ..., rM} in the original high-dimensional

vectors space (vector length |V|)
2. For each document TF-IDF vector d do

 Compute the inner (dot) product of d and each random vector r: θ(r, d) = 𝑖
|𝑉|
𝑟𝑖 ∗ 𝑑𝑖

 Hash each inner product: h(d, rk) = 1 if θ(r, d) > t (treshold), else 0

3. Compute a new vector of hashes:
 d’ = [h(d, r1), h(d, r2), ..., h(d, rM)]
 The number of selected random vectors, M, is the dimensionality of hashed vectors

 Q: How does this hashing method preserve the relations between document
distances of the original space?
 If d1 and d2 are more similar than d2 and d3 in original space, why is it likely that d’1

and d’2 will be more similar than d’2 and d’3 in the projected space?

39

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Champion lists

 For each term ti store only the docs dj with highest scores wij

 I.e., Store only the documents for which this term is relatively informative

 Since idf(ti) is the same for all documents, we rank documents according to the TF
values, i.e., tf(ti, dj)

 Put differently, if the term is relatively rare in the document, we treat it like it didn’t
appear in the document at all
 Don’t keep that document index in the term posting

 Such reduced term posting lists are called champion lists (also fancy lists)

 The documents in the champion list can be decided in two different ways
1. Taking the top N documents with highest tf(ti, dj) scores

 Posting lists of terms of same length N (unless the original posting was shorter)

2. Taking all documents for which the tf(ti, dj) is above some treshold value
 Different lengths of postings for different terms

40

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Champion lists

 Building the champion lists during indexing
 Independent of any query that will be posed

 When query is posed, it is possible that users wants more ranked results than what is
the length of the champion list for some term

 If champion lists are the only postings we kept, we cannot provide more results

 Solution: two-layer indexing
 Champion lists and regular (full) posting lists

1. We try to answer the query using only the champion lists first

2. If the number of hits using champion lists is smaller than the number of results
user is looking for, return the hits using full posting lists

41

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Tiered index

 Generalization of the two layer index
 We can have posting lists of more than two layers (several segments)

 Tiered index is the index in which the postings are broken down hierarchically
into several lists
 Tiers of decreasing importance

 For term ti, break-down of documents is usually done according to the tf(ti, d) scores

 In each tier, however, the documents are sorted according to docID, not tf(ti, d)
 We still need to perform posting merges in linear time

 Look-up in tiered index
 We first look into the the top tier, i.e., merge the term postings of the first tier

 If the merges over the top-tier postings result in too few hits, we continue to merge
lists of the lower tiers

42

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Tiered index – example

 „Frodo” -> T1: [2, 19, 24, 126]

-> T2: [1, 3, 12, 27, 69, 111]

-> T3: [7, 20, 76]

 „Sam” -> T1: [2, 18, 24, 158]

-> T2: [1, 6, 69, 126]

-> T3: [44, 90]

 Query: „Frodo and Sam”, we need to return at least 3 results!
 Merge at T1: [2, 24] only 2 results, we need to go to T2 as well

 Second iteration
 Q: merge(„Frodo”, „Sam”, T1) ∪merge(„Frodo”, „Sam”, T2)?

 A: No, we have to do – merge(sort(„Frodo”, T1, T2), sort(„Sam”, T1, T2))

 Final result: [1, 2, 24, 69, 126]

43

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Outline

 Recap of Lecture #3

 Ranked retrieval and scoring

 Vector space model
 Term weighting (TF-IDF)

 Ranking with cosine similarity

 Speeding up VSM retrieval

 Query parsing and multi-criteria ranking

44

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Phrase queries and scoring function

 Remember the phrase queries from Lecture 2?
 E.g., „Frodo Baggins”, „Las Angeles”, „hot potato”

 We handled the phrase queries with the positional index

 The vanilla vector space model uses the regular index
 No positional information, bag-of-words document representation

 How can we account for phrase queries with VSM ranking?
1. If proximity is a hard requirement from the users

 Build the positional index and combine it with VSM ranking

2. If the proximity is a soft requirement (i.e., documents where query terms are
closer together are preferred)
 Incorporate a „measure of query term proximity” into a ranking function for documents

 We still need the positional index . Q: Why?

45

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Query parsing and multiple query spawning

 IR systems often have query parsing components to analyse the queries
 Based on the results of the analysis, the initial query can be „rewritten”
 Some terms might be ommitted

 Your original query might not be the actual query to be matched against
document collection
 Your original query may be replaced with several queries
 E.g., „rising interest rates” „rising interest” and „interest rates”

 Example sequence of queries by query parser:
1. Run the query as a phrase query „rising interest rates”

 If enough hits, proceed to ranking

2. If not enough hits in 1., spawn „rising interest” and „interest rates”
 If enough hits, proceed to ranking of all documents fetched in 1. and 2.

3. If still not enough hits, spawn „rising”, „interest”, and „rates”
 Rank all retrieved documents in 1., 2., and 3. with VSM

46

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Document quality

 Intuitive assumptions:
 Documents have intrinsic quality which is independent of a particular query

 E.g., more reliable (e.g., Wikipedia) vs. less reliable sources (spam sites)

 In case when two documents have similar relevance for the query, we would like to
rank one with higher quality above the one with lower quality

 Static document quality
 Intrinsic property of the document itself, does not depend on other documents

 E.g., digitally born documents have higher quality than OCR-ed ones

 E.g., on the Web, we might consider Wikipedia pages to be of high quality

 Dynamic document quality
 Depends on the associations with other documents

 Link analysis based quality: crucial in web search (more in Lecture 11)

47

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Aggregating different scores

 What if our ranking function needs to take into account several scores? For
example:
 Cosine similarity of TF-IDF vectors
 Proximity of query terms in documents
 Static quality of documents

 Relevant questions:
 What is the relative importance of different scores?
 Are different scores even on the same scale (order of magnitude)?

 Methods
 Expert designed aggregate function
 Learning to rank: aggregate function learned with machine-learning algorithms

 More in Lecture 9

48

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

Putting it all together

 Free text queries vs. Boolean queries (ranked retrieval vs. Boolean retrieval)
 Query: „Frodo and Sam saw orcs”

 Boolean: document relevant only if contains „Frodo” and „Sam” and „see” and „orc”

 Ranked: document may be relevant if it, e.g., contains only „Frodo” and „orc”

 But the indexing mechanisms we introduced with Boolean retrieval are employed
for ranked retrieval as well
 Computing ranking scores for all documents is expensive

 Using inverted index to obtain a smaller subset of documents, which are then ranked
 But not too small – recall the tiered index

 We may have several different ranking criteria
 We need to learn how to combine them into a single relevance score

49

9.3.2020.IR & WS, Lecture 4: Term Weighting and Vector Space Model

After this lecture, you are...

 Are familiar with your first ranked retrieval model (VSM)

 Understand the TF-IDF term weighting scheme

 Know how to rank documents according to cosine similarity

 Know about some methods for speeding up VSM’s ranking

 Are familiar with multi-criteria ranking

