8. Latent and Semantic Retrieval

Prof. Dr. Goran Glavaš

Data and Web Science Group
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
Universität Mannheim

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International
After this lecture, you’ll...

- Know about retrieval models that go beyond term matching
- Understand different models for capturing semantics of texts
- Know what Latent Semantic Analysis/Indexing is
- Understand how to use Topic Modeling in IR
- Know what word embeddings are and how to exploit them in IR
Outline

- Recap of Lecture #7
- Beyond term matching
- Latent Semantic Analysis/Indexing
- Probabilistic Topic Modeling for IR
- Word Embeddings for IR
Recap of the previous lecture

- Improving recall of IR systems
 - Q: When does recall matter more than precision in IR?
 - Q: Which are global and which are local methods for improving recall?

- Relevance feedback
 - Q: What is relevance feedback?
 - Q: How do we incorporate relevance feedback into probabilistic retrieval?
 - Q: How does Rocchio algorithm work?

- Query expansion
 - Q: Name and explain different query expansion methods?
 - Q: How does thesaurus-based query expansion work?
 - Q: How may we automatically build a thesaurus?
Rocchio algorithm

- We are given only a handful of relevance feedback annotations
- Thus, we re-estimate the query by combining
 1. Centroid of relevant documents
 2. Centroid of non-relevant documents
 3. Initial query vector q_0

$$q_m = \alpha \cdot q_0 + \left(\beta \cdot \frac{1}{|D_r|} \sum_{d_j \in D_r} d_j \right) - \left(\gamma \cdot \frac{1}{|D_{nr}|} \sum_{d_j \in D_{nr}} d_j \right)$$

- D_r is the set of vectors of known relevant documents (different from C_r)
- D_{nr} is the set of vectors of known non-relevant documents (different from C_{nr})
- α, β, and γ are weights, determining the contribution of each component (set beforehand or empirically)
- New query moves towards the relevant and away from non-relevant documents
Relevance model (Lavrenko, 2001)

- **Input**
 - Initial query q_0
 - Top K documents in the ranking for initial query – $d_1, d_2, ..., d_k$
 - Relevance probabilities of top ranked documents for the initial query – $P(d_i|q_0)$

- **Output**
 - A distribution of terms denoting how well they describe the initial query q_0
 - An importance/probability of term w for q_0 query is computed as follows:

\[
P(w|q_0) = \sum_{i=1}^{K} P(w|d_i) \cdot P(d_i|q_0)
\]

- Rank the terms in decreasing order of $P(w|q_0)$, take top N terms and combine them into a weighted expansion query q_{PRF}
Let’s compare Lavrenko’s relevance model with Rocchio algorithm

- Assume Rocchio considers top K initially ranked documents as relevant (D_r) and does not consider non-relevant documents ($\gamma = 0$)

Lavrenko’s relevance model

$$q' = \lambda \cdot q_0 + (1 - \lambda) \cdot q_{RF}$$

Rocchio algorithm

$$q_m = \alpha \cdot q_0 + \beta \cdot \frac{1}{|D_r|} \sum_{d_j \in D_r} d_j$$

Rocchio uses all terms, RM uses only top N terms

Rocchio computes simple average, RM weighted average with document relevances for query $P(d_i | q_0)$ as weight

Rocchio uses TF-IDF weights, RM uses $P(w | d_i)$

Relevance model vs. Rocchio algorithm
Thesaurus-based query expansion

- Manually producing a thesaurus is **time-consuming** and **expensive**
 - Additionally, it needs to be **constantly updated** to reflect changes in the domain

Automated thesaurus generation

- Generating thesaurus by detecting similarity/relatedness of terms in a large corpora
- **Distributional hypothesis** – words are similar if they occur in similar contexts
 - E.g., „apple“ is similar to „pear“ as you can both harvest, peel, prepare and eat both
- **Related words** – words that often co-appear are semantically related
 - E.g., „pilot“ and „airplane“
Outline

- Recap of Lecture #7
- Beyond term matching
- Latent Semantic Analysis/Indexing
- Probabilistic Topic Modeling for IR
- Word Embeddings for IR
Beyond term matching in IR

- All IR models we considered so far were based on *term overlap* between the query and documents.

- We were estimating the amount and importance of term overlap and ranked the documents according to these estimates.

- Often, there is a *lexical gap* between the query and relevant documents.

- E.g., query: „*bad hombre*”
 - Relevant document:
 - „These are *terrible dudes*, drug smugglers and rapists”
Beyond term matching in IR

- We are interested in capturing semantics **beyond discrete terms**
 - „bad hombre” has similar meaning as „terrible dude”

- We must represent documents and queries **semantically**
 - So that **semantically similar words** and phrases have **similar representations**

- Discrete bag-of-words representations **do not meet** this requirement
 - With discrete terms – all words are equally similar/distant
 - \(d(\text{“dog”}, \text{“cat”}) = d(\text{“dog”}, \text{“space”}) \)
 - Vectors of texts with no lexical overlap will be dissimilar
 - \(\cos(bow(\text{“bad hombre”}), bow(\text{“terrible dude”})) = 0 \)
Beyond term matching in IR

- Latent and semantic IR models all represent texts with **semantic vectors**
 - Able to **bridge** the **lexical gap** between query and documents
 - Models have different theoretical underpinnings but they all produce **numeric vectors** to represent the **meaning** of portions of text
 - Words, phrases, sentences, paragraphs, documents

- Semantic representations of text typically derived from large corpus, exploiting the **distributional hypothesis**:
 - „You shall know the meaning of the word by the company it keeps” (Harris, 1954)
 - E.g., „dog” and „cat” will tend to co-occur with the similar sets of words (e.g., „eat”, „pet”, „cuddle”, „friend”).
Beyond term matching in IR

- Latent and semantic models used in IR that we will cover

1. Latent Semantic Analysis (LSA)
 - Often called Latent Semantic Indexing (LSI) when used for IR
 - Decomposition of word-document co-occurrence matrix

2. Probabilistic Topic Modeling for IR
 - Generative model assuming that documents and words are probabilistic distributions over a set of latent topics

3. Text Embeddings
 - Also based on distributional hypothesis, but do not count co-occurrences
 - Start from random vectors and update them based on observations in large corpora
Beyond term matching in IR

- Latent vs. Term-based IR models
 - Use latent/semantic models when
 1. Query terms do not need to be exactly matched
 2. Recall is as important as precision
 3. There are many relevant documents with lexical gap wrt. to query
 - Use term-based IR models
 1. Query terms need to be exactly matched
 2. Recall (i.e., retrieving all relevant documents) is not so important
 3. There are many relevant documents, most of which are expected to have significant lexical overlap with the query
Outline

- Recap of Lecture #7
- Beyond term matching
- **Latent Semantic Analysis/Indexing**
- Topic Modeling for IR
- Word Embeddings for IR
Latent Semantic Indexing

- Assume we have a collection of N documents and a vocabulary of M words

- We start by building a **word-document occurrence matrix** A of dimensions $M \times N$
 - Rows correspond to words
 - Columns correspond to documents
 - Elements $A[i,j]$ contain information about the occurrence of word i in document j
 - Can be binary indicators of occurrence, raw frequency, or TF-IDF weights

- Rows of the occurrence matrix A are **distributional vectors** of words
 - These vectors are of a large dimension N (we assume large document collections)
 - Distributional vectors of words are *sparse* — on average the word appears only in a small subset of all documents in the collection

- Columns of A are also sparse vectors (of size M) representing documents
Latent Semantic Indexing

- Toy example:
 - Collection of 6 documents, d1–d3 about *politics* and d4 – d6 about *sports*
 - Three groups of words corresponding to prominent topics: *politics*, *sport*, and *other*
 - Occurrence matrix contains raw occurrence frequency

\[
A = \begin{pmatrix}
3 & 2 & 0 & 1 & 0 & 0 \\
4 & 1 & 3 & 0 & 0 & 0 \\
2 & 5 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 4 & 0 & 2 \\
0 & 0 & 0 & 3 & 2 & 3 \\
0 & 0 & 1 & 1 & 4 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
\end{pmatrix}
\]
Latent Semantic Indexing

- **Latent Semantic Indexing (LSI)** – IR model based on matrix factorization, namely **Singular Value Decomposition (SVD)** of the word-document occurrence matrix.

- We decompose the sparse word-document occurrence into factor matrices which we use to obtain **dense vector representations** of words and documents.

- Obtained dense vectors better capture meaning of words and documents:
 - Comparing dense vectors of words **better captures** their **semantic similarity** than comparing their sparse distributional vectors.
 - Comparing dense vectors of documents captures **semantic similarity** between documents **beyond term overlap**.
Given a matrix A (with non-negative elements), the Singular Value Decomposition finds orthogonal matrices U and V and a rectangular diagonal matrix Σ such that:

$$A = U \Sigma V^T$$

- Matrix U is of dimensions $M \times M$
- Matrix V is of dimensions $N \times N$
- Matrix Σ is of dimensions $M \times N$
- U and V are orthogonal: $U^TU = I$, $V^TV = I$
- Values of the diagonal matrix Σ are singular values of the original matrix A
- Let r be the rank of matrix A
We apply SVD to the word-document occurrence matrix A

$$A = U \Sigma V^T$$

- Each document d_i can be written as a linear combination (i.e., weighted sum) of elements of column vectors $u_1, ..., u_r$ (r is the rank of A)
- Typically, $\sigma_1 > \sigma_2 > ... > \sigma_r$ – thus the first components of columns vectors in V^T have more influence than the later ones
LSI – SVD Example

The first column ("topic") seems to have weights of large magnitude for *politics* terms, and the second column for *sports* terms.

The matrix U is given as follows:

$$
U = \begin{bmatrix}
-0.43 & 0.13 & 0.22 & -0.01 & -0.55 & -0.09 \\
-0.53 & 0.25 & -0.28 & 0.62 & -0.09 & -0.07 \\
-0.58 & 0.33 & 0.18 & -0.56 & 0.37 & 0.06 \\
-0.12 & -0.05 & -0.19 & 0.28 & 0.64 & 0.26 \\
-0.22 & -0.51 & 0.53 & 0.17 & 0.10 & -0.32 \\
-0.26 & -0.62 & 0.08 & -0.05 & -0.03 & 0.41 & \cdots \\
-0.22 & -0.40 & -0.69 & -0.25 & -0.12 & -0.21 \\
-0.03 & -0.06 & -0.18 & -0.11 & -0.12 & -0.07 \\
-0.11 & -0.03 & 0.02 & 0.13 & -0.18 & 0.60 \\
-0.10 & -0.02 & -0.12 & -0.29 & 0.01 & -0.06 \\
-0.09 & -0.08 & 0.01 & 0.16 & 0.26 & -0.47 \\
\end{bmatrix}
$$

The columns represent topics such as `president`, `minister`, `speech`, `law`, `ball`, `score`, `player`, `run`, `person`, `piano`, and `mouse`. The rows correspond to terms such as `politics`, `sports`, and other related terms.
LSI – SVD Example

- Useful to look at columns of the matrix ΣV^T to see scaled topic weights for each document

$$
\Sigma V^T =
\begin{bmatrix}
-4.66 & -4.37 & -2.71 & -2.37 & -1.51 & -1.65 \\
2.01 & 2.12 & 0.49 & -4.23 & -2.93 & -3.35 \\
-0.06 & 0.92 & -1.70 & 1.90 & -2.90 & 0.44 \\
1.45 & -2.48 & 1.75 & 0.43 & -1.51 & 0.34 \\
-1.44 & 0.68 & 1.53 & -0.09 & -0.64 & 0.46 \\
0.19 & 0.02 & -0.32 & -0.82 & -0.16 & 1.25 \\
\ldots
\end{bmatrix}
$$

- As expected, the first three documents have large-magnitude weights for the "politics" topic, and the second other three for the "sports" topics
Latent Semantic Indexing

- **Goal**: reduce the dimensionality of word and document vectors and obtain dense semantic vectors of terms and documents

- We *reduce* the size of the matrix Σ with singular values
 - We keep only the top K largest singular values: $\sigma_1, \ldots, \sigma_k$
 - We denote the reduced matrix with Σ_k
 - Dense vectors for terms and documents will be then be of dimension K

- By reducing the rank of the matrix with singular values, we are effectively retaining only the K most prominent „topics”
 - Retained topics carry the most of the „meaning”
 - The topics/dimensions we discard are assumed to be noise
LSI reduction – example

- This leaves us with the **best possible** approximation of rank A_K ($K = 2$ in our example) of the original term-document occurrence matrix A

 $$A_K \approx U_K \Sigma_K V_T^T_K$$

 - A_K has the same dimensions as original A ($M \times N$)
 - U_K is of size $M \times K$, and $\Sigma_K V_T^T_K$ of size $K \times N$
Latent Semantic Indexing

- In practice, we don’t compute A_K
 - A_K is not a sparse matrix – it’s explicit computation is **computationally expensive**!
 - We don’t need to have A_K to compare pairs of terms or pairs of documents

- Term comparison is performed by comparing rows of U_K
 - $\text{sim(“president”, “minister”) = } \cos([-0.43, 0.13], [-0.53, 0.25])$
 - $\text{sim(“president”, “player”) = } \cos([-0.43, 0.13], [-0.22, -0.40])$

- Document comparison is performed by comparing columns of $\Sigma_K V_K^T$
 - $\text{sim}(d_1, d_2) = \cos([-4.66, 2.01], [-4.37, 2.12])$
 - $\text{sim}(d_4, d_6) = \cos([-2.37, -4.23], [-1.65, -3.35])$

- Q: Do we need to compute complete SVD, i.e., find all singular values of A?
Latent Semantic Indexing

- We have shown how to obtain latent representations (i.e., dense vectors) for terms and documents in the collection using SVD.

- **Q:** How do we compute the dense vector for the query?
 1. Compute the sparse vector q of the query (e.g., TF-IDF vector).
 2. Project the sparse vector q into the dense topic space of documents q' (i.e., $\Sigma_k q_K$)

$$q' = U_k^T q$$

- LSI ranks the documents in decreasing order of similarity (cosine) of their dense vectors and the dense vector of the query.
 - I.e., $\cos([\Sigma_k V_k^T]_i, U_k^T q)$

- Latent Semantic Indexing
Outline

- Recap of Lecture #7
- Beyond term matching
- Latent Semantic Analysis/Indexing
- Probabilistic Topic Modeling for IR
- Word Embeddings for IR
Topic Models for IR

- LSI has one **prominent shortcoming**
 - Latent topics are **numerically justified** – SVD ensures the best lower-dimensional approximation (i.e., with minimum loss)
 - But LSI latent topics are often **not interpretable** by humans – topics often contain high weights for seemingly unrelated terms
 - E.g., a topic with high weights for: *hobbit, umbrella, cinnamon*

- **Alternative**: induce latent topics in a **probabilistic framework**
 - Probabilistic LSA (pLSA)
 - Latent Dirichlet Allocation (LDA)
 - Dynamic Topic Models
A **multinomial (categorical) distribution** is a probability distribution over a discrete (finite) set of possible events.

We dealt with multinomial distributions when we discussed language models:
- $P(w)$, probability of the word appearing in a language
- E.g., $P(\text{"frodo"}) = 0.1$, $P(\text{"hobbit"}) = 0.2$, $P(\text{"house"}) = 0.4$, $P(\text{"see"}) = 0.3$

The multinomial distribution over N terms, which we denote with $\text{Mult}_K(\theta)$ is parametrized by the vector θ of $N-1$ probabilities:
- Probabilities of the distribution must sum to 1, so we can compute the last probability from the given $N-1$.
Dirichlet Distribution

- **Dirichlet distribution** is a probability distribution over all vectors of length K that sum up to 1
 - A *meta-distribution*, a probability distribution over multinomial distributions
 - Denoted with $\text{Dir}_K(\alpha)$ Dirichlet distribution is parametrized with a parameter vector α
 - A sample θ drawn from the Dirichlet distribution $\text{Dir}_K(\alpha)$ can be used to parametrize the multinomial distribution – $\text{Mult}_K(\theta)$
Latent Dirichlet Allocation

- **Latent Dirichlet Allocation (LDA)** is a latent topic model that assumes that the collection of documents was generated by a particular Dirichlet distribution
 - Collection of M documents, vocabulary of N terms, K latent topics

- Each of the K latent topics is a concrete multinomial distribution over terms
- For each position in each of the M document we obtain the observed word by:
 1. Randomly selecting one of the topics (from the Dirichlet distribution)
 2. Randomly select the term from the multinomial distribution of the topic that was randomly selected in the step 1

- Vocabulary of N terms
 - Each **topic** is a concrete multinomial distribution with $N - 1$ parameters
LDA – Generative View

1. For each topic \(k \) (\(k = 1, \ldots, K \)):
 - Draw parameters of a multinomial distribution \(\varphi_k \) (over terms) for topic \(k \) from a Dirichlet distribution \(\text{Dir}_N(\beta) \)

2. For each document \(d \) in the collection:
 - Draw parameters of a multinomial distribution of topics for the document \(d \), \(\theta_d \), from a Dirichlet distribution \(\text{Dir}_K(\alpha) \)
 - For each term position \(w_{dn} \) in the document \(d \):
 a) Draw a topic assignment (i.e., a concrete multinomial distribution over terms) \(z_{dn} \) from \(\text{Mult}_K(\theta_d) \)
 b) Draw a concrete term \(w_{dn} \) from the multinomial distribution over terms of the topic \(z_{dn} \) (drawn in a)), \(\text{Mult}_N(\varphi_{z_{dn}}) \)
LDA – Parameters and estimation

- Parameters of the LDA are variables/probabilities that we cannot directly observe
- Probabilities of all multinomial distributions that are sampled in the generative algorithm
 1. Term probabilities (vector of N probabilities) for each of the K latent topics
 φ_k for $k = 1, ..., K$ (so, total of $K \times N$ parameters)
 2. Topic probabilities (vectors of K probabilities) for each of the M documents
 θ_d for $d = 1, ..., M$ (so, total of $M \times K$ parameters)

- Optimization (learning model’s parameters):
 1. Start from random multinomial distributions
 2. Update parameters to maximize probability of observed terms in documents
 - Direct maximization is intractable
 - Approximate inference (maximization) via
 - (1) variational methods or (2) sampling methods
Latent Dirichlet Allocation

Once the model is trained (parameters optimized based on observed text), we represent documents and terms as follows:

1. Document \(d \) – simply the multinomial distribution vector over topics for that documents, \(\theta_d \)
2. Term \(t_i \) (\(i = 1, ..., N \)) – for each of the K topics we take the probability of \(t_i \) from the multinomial distribution (over terms) of that topic \([\phi_k]^i \), term’s probability in multinomial distributions of all topics

- **Q:** Are term vectors obtained this way probability distributions?

Computing the representation for the **query**:

- Query vector also needs to be represented as a multinomial distribution over topics
- **Easier inference:**
 1. We know the probabilities of terms over topics
 2. We only need to estimate the multinomial distribution of topics given the query
Latent Dirichlet Allocation

- The topics are **generally interpretable** – the terms with largest probabilities within the multinomial distribution of the topic tend to be semantically related.
- Example – topics obtained on 1.8M New York times articles:

```
music  book  art  game  show  film
band  life  museum  knicks  television
songs  novel  show  nets  movie
rock  story  exhibition  points  series
album  books  artist  team  says
jazz  man  artists  season  life
pop  stories  paintings  says  man
song  love  paintings  play  character
singer  children  century  games  know
night  family  works  night  coach

theater  clinton  stock  restaurant  budget
play  bush  market  sauce  tax
donation  campaign  percent  menu  governor
design  nixon  fund  food  county
street  political  investors  dishes  mayor
direct  republican  funds  street  billion
director  dole  companies  dining  taxes
musical  president  stocks  diner  plan
social  senaro  investment  chicken  legislature
director  house  trading  served  fiscal
```
Outline

- Recap of Lecture #7
- Beyond term matching
- Latent Semantic Analysis/Indexing
- Probabilistic Topic Modeling for IR
- Word Embeddings for IR
Word Embeddings

- **Word embeddings** are dense semantic vector representations of words
 - Unlike LSI, not based on counting (co-)ocurrences, but on predicting representation vectors of words based on context (surrounding words)

- Assume a vocabulary of **N** words
 - **Sparse representation** of each term is the so-called **one-hot encoding** vector that has only one non-zero element (denoting the term) and all other zeros
 - One-hot encoding vectors are highly-dimensional (size of vocabulary)
 - If we compare sparse vectors of terms, all terms are equally dissimilar (no overlap)
 - **Dense representation** of the term is the real-valued vector of dimension orders of magnitude lower than the size of vocabulary
 - We want real values in dense vectors of words to somehow capture meaning of words
 - LSI and LDA provide word vectors that can, to some extent, capture semantic properties of words
 - Prediction-based vectors, called **word embeddings**, have been shown to better capture the meaning of words than LSI and LDA vectors
Word Embeddings

- **Predictive models** for deriving dense word vectors try to predict
 1. The word in focus from its context or
 2. The context from the word in focus

- Popular models
 1. Skip-Gram (predicts context from the word) (Mikolov et al., ‘13)
 2. CBOW (predicts the word from the context) (Mikolov et al., ‘13)
 3. GloVe (count-based, makes global optimization) (Pennington et al., ‘14)

Continuous Bag-of-Words (CBOW)

- Each word from the vocabulary of the large corpus is represented with **two dense vectors** of size $N << V$ (size of vocabulary):
 1. **Center vector** – represents the word when it is in the focus
 E.g., "carries" in "hobbit Frodo carries blue sword"
 2. **Context vector** – represents the word when it is in the context of the center word
 E.g., "carries" in "Frodo carries blue sword home"

- Each context represented by aggregating one-hot vectors of words

- **Idea:** Given the context, predict the center word
 - E.g., given "hobbit Frodo blue sword" predict "carries"
Continuous Bag-of-Words (CBOW)

- Context consists of C words, with corresponding one-hot vectors
 - \(x_{1k}, x_{2k}, \ldots, x_{Ck} \)
- One-hot vectors transformed to dense vectors using input matrix \(\mathbf{W} \) (\(V \times N \))
- Dense context vector \(\mathbf{h} \) is obtained as:
 \[
 h = \frac{1}{C} \mathbf{W} \left(\sum_{i=1}^{C} x_{ik} \right)
 \]
- Dense context vector \(\mathbf{h} \) is then multiplied with the output matrix \(\mathbf{W}' \) (\(N \times V \))
 \[
 y_k = \text{softmax}(h^T \mathbf{W}')
 \]
Continuous Bag-of-Words (CBOW)

- Output vector y needs to be as similar as possible to one-hot vector of center word.
- Parameters of the model are elements of W and W'.
 - Each row of W is the dense context vector of one vocabulary word.
 - Each column of W' is the dense center vector of one vocabulary word.
- Dense representation (embedding) of the i-th vocabulary term is concatenation of
 1. i-th row of W and
 2. i-th column of W'.
Q: How do we optimize the model, i.e., learn “good” matrices W and W'?

- We prepare many examples of contexts
 1. **Positive contexts** – actual sequences of C words from a large corpus
 2. **Negative contexts** – fake artificial sequences not observed in the context
 - Obtained by replacing the center word with a random word from the vocabulary
 - Expected output vectors for negative contexts are zero vectors

- We start from random values in W and W'
Continuous Bag-of-Words (CBOW)

- For each context (i.e., „training example”), positive and negative, we compare
 1. The predicted output vector y_k
 2. One-hot vector of the center word t_k

- The difference between y_k and t_k is the prediction error of the model
 - Errors are propagated backwards to update W and W' using an algorithm called backpropagation
 - The bigger the error, the bigger the update of values in W and W'
Word embeddings

- Word embedding models like CBOW, Skip-Gram, and GloVe yield dense vectors with some **very nice semantic properties**
- They capture **semantic similarity** between words **much better** than word vectors obtained via LSI or LDA

<table>
<thead>
<tr>
<th>Airplane</th>
<th>word</th>
<th>cosine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>plane</td>
<td>0.835</td>
</tr>
<tr>
<td></td>
<td>airplanes</td>
<td>0.777</td>
</tr>
<tr>
<td></td>
<td>aircraft</td>
<td>0.764</td>
</tr>
<tr>
<td></td>
<td>planes</td>
<td>0.734</td>
</tr>
<tr>
<td></td>
<td>jet</td>
<td>0.716</td>
</tr>
<tr>
<td></td>
<td>airliner</td>
<td>0.707</td>
</tr>
<tr>
<td></td>
<td>jetliner</td>
<td>0.706</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cat</th>
<th>word</th>
<th>cosine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cats</td>
<td>0.810</td>
</tr>
<tr>
<td></td>
<td>dog</td>
<td>0.761</td>
</tr>
<tr>
<td></td>
<td>kitten</td>
<td>0.746</td>
</tr>
<tr>
<td></td>
<td>feline</td>
<td>0.732</td>
</tr>
<tr>
<td></td>
<td>puppy</td>
<td>0.707</td>
</tr>
<tr>
<td></td>
<td>pup</td>
<td>0.693</td>
</tr>
<tr>
<td></td>
<td>pet</td>
<td>0.689</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dog</th>
<th>word</th>
<th>cosine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dogs</td>
<td>0.868</td>
</tr>
<tr>
<td></td>
<td>puppy</td>
<td>0.811</td>
</tr>
<tr>
<td></td>
<td>pit_bull</td>
<td>0.780</td>
</tr>
<tr>
<td></td>
<td>pooch</td>
<td>0.763</td>
</tr>
<tr>
<td></td>
<td>cat</td>
<td>0.761</td>
</tr>
<tr>
<td></td>
<td>pup</td>
<td>0.741</td>
</tr>
<tr>
<td></td>
<td>canines</td>
<td>0.722</td>
</tr>
</tbody>
</table>
Word embeddings

- Word embeddings also capture **semantic analogies** between pairs of words

\[e(\text{Germany}) - e(\text{Berlin}) \approx e(\text{Italy}) - e(\text{Rome}) \]

- This allows for knowledge inferences like: *king – man + woman = queen*
Information retrieval based on word embeddings

- Word embeddings are learned on a huge external corpus of text (e.g., Wikipedia)
 - i.e., Word embeddings do not depend on our retrieval collection
- Thus, deriving word embeddings is an "offline" step we perform before retrieval

To use word embeddings in retrieval, we need to derive dense document/query vectors from word embedding vectors

- Embeddings of a larger unit of text (phrases, sentences, paragraphs, documents):
 - Typically computed by aggregating word embeddings
 - There are also models that learn to directly predict embedding vectors of larger text units (Le et al., '14; Kiros et al., '15)

Information retrieval based on word embeddings

- Let document \(d \) contain terms \(t_1, ..., t_N \) and let \(e(t) \) be the word embedding of the term \(t \)

- The aggregate embedding vector of the document \(d \), to be used for retrieval, is computed as weighted average of word embeddings:

\[
e(d) = \frac{\sum_{i=1}^{N} w_i \cdot e(t_i)}{\sum_{i=1}^{N} w_i}
\]

- Weight \(w_i \) determines how much the word embedding of term \(t_i \) contributes to the aggregate embeddings
 - As usual, we would want more frequent/common words to contribute less
 - Thus, TF-IDF scores are often used as weights, i.e., \(w_i = tf(t_i, d) \cdot idf(t_i) \)
Now you...

- Know about retrieval models that go beyond term matching
- Understand different models for capturing semantics of texts
- Know what Latent Semantic Analysis/Indexing is
- Understand how to use Topic Modeling in IR
- Know what word embeddings are and how to exploit them in IR