8. Latent and Semantic Retrieval

Prof. Dr. Goran Glavas

Data and Web Science Group
Fakultat fir Wirtschaftsinformatik und Wirtschaftsmathematik
Universitat Mannheim

@ 0]210)] CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International
EY Mz =R

After this lecture, you’ll...
S

= Know about retrieval models that go beyond term matching
= Understand different models for capturing semantics of texts
= Know what Latent Semantic Analysis/Indexing is

= Understand how to use Topic Modeling in IR

= Know what word embeddings are and how to exploit them in IR

IR & WS, Lecture 8: Latent and Semantic Retrieval

Outline
I e 00000

= Recap of Lecture #7
= Beyond term matching

= Latent Semantic Analysis/Indexing

= Probabilistic Topic Modeling for IR
= Word Embeddings for IR

Recap of the previous lecture
S

= Improving recall of IR systems
" Q: When does recall matter more then precision in IR?
= Q: Which are global and which are local methods for improving recall?

= Relevance feedback
" Q: What is relevance feedback?
= Q: How do we incorporate relevance feedback into probabilistic retrieval?
= Q: How does Rocchio algorithm work?

= Q: What is pseudo-relevance feedback? How does Relevance model for pseudo-
relevance feedback work? Compare Rocchio algorithm and Relevance model.

= Query expansion
= Q: Name and explain different query expansion methods?

= Q: How does thesaurus-based query expansion work?
" Q: How may we automatically build a thesaurus?

IR & WS, Lecture 8: Latent and Semantic Retrieval

Rocchio algorithm
T

= We are given only a handful of relevance feedback annotations

= Thus, we re-estimate the query by combining
1. Centroid of relevant documents
2. Centroid of non-relevant documents
3. Initial query vector g,

Gm = @ - qo +
eD, dEDm’

D. is the set of vectors of known relevant documents (different from C)

= D, . is the set of vectors of known non-relevant documents (different from C_)

o, B, and Y are weights, determining the contribution of each component (set
beforehand or empirically)

= New query moves towards the relevant and away from non-relevant documents

IR & WS, Lecture 8: Latent and Semantic Retrieval

Relevance model (Lavrenko, 2001)
T

= |nput
= |nitial query g,
* Top K documents in the ranking for initial query —d,, d,, ..., d,
= Relevance probabilities of top ranked documents for the initial query — P(d.|q,)

= Qutput
= A distribution of terms denoting how well they describe the initial query g,
= An importance/probability of term w for g, query is computed as follows:

P(w|qo) ZPw|d - P(di|qo)

= Rank the terms in decreasing order of P(w|q,), take top N terms and combine them
into a weighted expansion query gyx¢

IR & WS, Lecture 8: Latent and Semantic Retrieval

Relevance model vs. Rocchio algorithm
2

= Let’s compare Lavrenko’s relevance model with Rocchio algorithm

= Assume Rocchio considers top K initially ranked documents as relevant (D.) and does
not consider non-relevant documents (y = 0)

® | avrenko’s relevance model

¢ =Xq+(1—=X-qrr Plwlg) ZP wld;) - P(di]qo)

= Rocchio algorithm

1
szﬂ"f}ﬂ‘l‘/g'm Z d
rd:jEDfr

Rocchio computes simple average, RM
weighted average with document
relevances for query P(d.| q,) as weight

Rocchio uses TF-IDF
weights, RM uses P(w|d,)

Rocchio uses all terms, RM

uses only top N terms

IR & WS, Lecture 8: Latent and Semantic Retrieval

Thesaurus-based query expansion
T

= Manually producing a thesaurus is time-consuming and expensive
= Additionally, it needs to be constantly updated to reflect changes in the domain

= Automated thesaurus generation
= Generating thesaurus by detecting similarity/relatedness of terms in a large corpora
= Distributional hypothesis — words are similar if they occur in similar contexts
= E.g., ,apple” is similar to ,,pear” as you can both harvest, peel, prepare and eat both
= Related words — words that often co-appear are semantically related
= E.g., ,pilot” and ,airplane”

IR & WS, Lecture 8: Latent and Semantic Retrieval

Outline
T

= Recap of Lecture #7
= Beyond term matching

= Latent Semantic Analysis/Indexing

= Probabilistic Topic Modeling for IR
= Word Embeddings for IR

Beyond term matching in IR
T 1

= All IR models we considered so far were based on term overlap between the
query and documents

= \We were estimating the amount and importance of term overlap and ranked the
documents according to these estimates

= Often, there is a lexical gap between the query and relevant documents

= E.g., query: ,bad hombre”
= Relevant document:
= These are terrible dudes, drug smugglers and rapists”

Beyond term matching in IR
S

= We are interested in capturing semantics beyond discrete terms
= bad hombre” has similar meaning as ,terrible dude”

= \We must represent documents and queries semantically
= So that semantically similar words and phrases have similar representations

= Discrete bag-of-words representations do not meet this requirement
= With discrete terms — all words are equally similar/distant
= d(,dog”, ,cat”) =d(,dog”, ,,space”)
= Vectors of texts with no lexical overlap will be dissimilar
= cos(bow(,bad hombre”), bow(,terrible dude”)) =0

IR & WS, Lecture 8: Latent and Semantic Retrieval

Beyond term matching in IR
B

= Latent and semantic IR models all represent texts with semantic vectors
= Able to bridge the lexical gap between query and documents

= Models have different theoretical underpinnings but they all produce numeric
vectors to represent the meaning of portions of text

= Words, phrases, sentences, paragraphs, documents

= Semantic representations of text typically derived from large corpus, exploiting
the distributional hypothesis:

= You shall know the meaning of the word by the company it keeps” (Harris, 1954)

= E.g., ,dog” and ,cat” will tend to co-occur with the similar sets of words (e.g., ,, eat”,
,pet”, ,cuddle”, ,friend”).

IR & WS, Lecture 8: Latent and Semantic Retrieval

Beyond term matching in IR
- 1

» Latent and semantic models used in IR that we will cover

1. Latent Semantic Analysis (LSA)
= Often called Latent Semantic Indexing (LSI) when used for IR
» Decomposition of word-document co-occurrence matrix

2. Probabilistic Topic Modeling for IR

= Generative model assuming that documents and words are probabilistic distributions
over a set of latent topics

3. Text Embeddings
= Also based on distributional hypothesis, but do not count co-occurrences
= Start from random vectors and update them based on observations in large corpora

Beyond term matching in IR
S

= | atent vs. Term-based IR models

= Use latent/semantic models when
1. Query terms do not need to be exactly matched
2. Recall is as important as precision
3. There are many relevant documents with lexical gap wrt. to query

= Use term-based IR models
1. Query terms need to be exactly matched
2. Recall (i.e., retrieving all relevant documents) is not so important

3. There are many relevant documents, most of which are expected to have
significant lexical overlap with the query

IR & WS, Lecture 8: Latent and Semantic Retrieval

Outline
BT e

= Recap of Lecture #7
= Beyond term matching

= Latent Semantic Analysis/Indexing

= Topic Modeling for IR
= Word Embeddings for IR

Latent Semantic Indexing
-

= Assume we have a collection of N documents and a vocabulary of M words

= We start by building a word-document occurrence matrix A od dimensions M x N
= Rows correspond to words
= Columns correspond to documents

= Elements A[j, j] contain information about the occurrence of word / in document
= Can be binary indicators of occurrence, raw frequency, or TF-IDF weights

= Rows of the occurrence matrix A are distributional vectors of words
= These vectors are of a large dimension N (we assume large document collections)
= Distributional vectors of words are sparse — on average the word appears only in a
small subset of all documents in the collection

= Columns of A are also sparse vectors (of size M) representing documents

IR & WS, Lecture 8: Latent and Semantic Retrieval

Latent Semantic Indexing
2

= Toy example:
= Collection of 6 documents, d1—d3 about politics and d4 — d6 about sports
= Three groups of words corresponding to prominent topics: politics, sport, and
= Ocurrence matrix contains raw occurrence frequency

dl d2 d3 d4 d5 db

\

president (
manister
speech
law
ball

A = score
player
rUn
person
pLano
mouse \

COH OO OONKE=W
CHOQOCOO OO Ut+-=IN
_ O OO KK OONFHWO
_ O OO Wk OOOH
O O KFHEkENOOOOO
SO RO WNFOOO

IR & WS, Lecture 8: Latent and Semantic Retrieval

Latent Semantic Indexing
T

= Latent Semantic Indexing (LSI) — IR model based on matrix factorization, namely
Singular Value Decomposition (SVD) of the word-document occurrence matrix

= We decompose the sparse word-document occurrence into factor matrices which
we use to obtain dense vector representations of words and documents

= Obtained dense vectors better capture meaning of words and documents

= Comparing dense vectors of words better captures their semantic similarity than
comparing their sparse distributional vectors

= Comparing dense vectors of documents captures semantic similarity between
documents beyond term overlap

IR & WS, Lecture 8: Latent and Semantic Retrieval

LS| — Singular Value Decomposition

= Given a matrix A (with non-negative elements), the Singular Value Decomposition
finds orthogonal matrices U and V and a rectangular diagonal matrix Z such that:

A=Uxv?!

= Matrix U is of dimensions M x M

= Matrix V is of dimensions N x N

= Matrix Z is of dimensions M x N

= U and V are orthogonal: UTU =1, V'V = |

= \alues of the diagonal matrix Z are singular values of the original matrix A

= | et r be the rank of matrix A

IR & WS, Lecture 8: Latent and Semantic Retrieval

LS| — Singular Value Decomposition

-2 4

= We apply SVD to the word-document occurrence matrix A

A

ug |. ..

U

01

2

VT

= Fach document d, can be written as a linear combination (i.e., weighted sum) of

elements of column vectors u,, ..., u, (r is the rank of A)

= Typically, 6, > 6, > ... > 0, — thus the first components of columns vectors in V'

have more influence than the later ones

IR & WS, Lecture 8: Latent and Semantic Retrieval

LS| — SVD Example

terms

topics
p A
/7 T1-043| 013 022 —0.01 —0.55 —0.09
—053| 025 —028 0.62 —0.09 —0.07
—058| 033 018 —056 0.37 0.06
—012 —-0.05 —019 028 0.64 0.26
—0.22 [Z051] 053 017 0.10 —0.32
U= | —026 |—0.62 | 008 —0.05 —0.03 0.41
—0.22 |—0.40 | —0.69 —0.25 —0.12 —0.21
~0.03 —0.06 —0.18 —0.11 —0.12 —0.07
—0.11 —-0.03 002 013 -0.18 0.60
—0.10 —0.02 —0.12 —0.29 0.01 —0.06
| —0.09 —0.08 001 016 026 —0.47

president
manister
speech
law
ball
score
player
run
person
PLano
Mouse

= The first column (,,topic”) seems to have weights of large magnitude for politics
terms, and the second column for sports terms

IR & WS, Lecture 8: Latent and Semantic Retrieval

LS| — SVD Example

-2 4

= Useful to look at columns of the matrix £V' to see scaled topic weights for each
document documents

A

4 —4.66 —4.37 —2.71| —2.37 —1.51 —1.65
2.01 2.12 049 |—4.23 —-293 -3.35
—0.06 0.92 —1.70 1.90 —2.90 0.44
i = 145 —2.48 1.75 043 —-1.51 0.34
—1.44 0.68 1.53 —0.09 —0.64 0.46
0.19 0.02 —-0.32 —-0.82 —-0.16 1.25

K i . ..]

= As expected, the first three documents have large-magnitude weights for the
,politics” topic, and the second other three for the ,sports” topics

1 ™
| ./

topics
A

IR & WS, Lecture 8: Latent and Semantic Retrieval

Latent Semantic Indexing
I

= Goal: reduce the dimensionality of word and document vectors and obtain dense
semantic vectors of terms and documents

= We reduce the size of the matrix Z with singular values
= We keep only the top K largest singular values: o, ..., 0,
* We denote the reduced matrix with Z,
= Dense vectors for terms and documents will be then be of dimension K

= By reducing the rank of the matrix with singular values, we are effectively
retaining only the K most prominent ,topics”

= Retained topics carry the most of the ,,meaning”
* The topics/dimensions we discard are assumed to be noise

IR & WS, Lecture 8: Latent and Semantic Retrieval

LS| reduction — example
S

* This leaves us with the best possible approximation of rank A, (K =2 in our
example) of the original term-document occurrence matrix A

/_ UK Dense vectors of documents
presudent =043 0.13 7
minister —0.53 0.25 A
" speech —0.58 0.33
§ . law —g%g —gg? d; d, d; d, d. dg
5 E ball —0.22 =0, _4.66 —4.37 —2.71 —2.37 —1.51 —1.65 .
> 5 score —0.26 —0.62 | - 2.V
o + 201 212 049 —4.23 —2.93 —-3.35 KY K
BV player —0.22 —0.40
g ° run —0.03 —0.06
= person —0.11 —0.03
piano —0.10 —0.02
\ mouse L —0.09 —0.08 |

= A, has the same dimensions as original A (M x N)
= U, is of size M x K, and 2, V', of size Kx N

Latent Semantic Indexing

-2 f
" |n practice, we don’t compute A

= A, is not a sparse matrix — it’s explicit computation is computationally expensive!
= We don’t need to have A, to compare pairs of terms or pairs of documents

= Term comparison is performed by comparing rows of U
" sim(, president”, ,minister”) = cos([-0.43, 0.13], [-0.53, 0.25])
" sim(,president”, ,player”) = cos([-0.43, 0.13], [-0.22, -0.40])

= Document comparison is performed by comparing columns of £ V',
" sim(d,, d,) = cos([-4.66, 2.01], [-4.37, 2.12])
= sim(d,, d;) = cos([-2.37, -4.23], [-1.65, -3.35])

= Q: Do we need to compute complete SVD, i.e., find all singular values of A?

IR & WS, Lecture 8: Latent and Semantic Retrieval

Latent Semantic Indexing
- 1

= \We have shown how to obtain latent representations (i.e., dense vectors) for
terms and documents in the collection using SVD

= Q: How do we compute the dense vector for the query?
1. Compute the sparse vector q of the query (e.g., TF-IDF vector)
2. Project the sparse vector q into the dense topic space of documents q’ (i.e., Z,q,)

q’ =Ug'q

= LS| ranks the documents in decreasing order of similarity (cosine) of their dense
vectors and the dense vector of the query

" |e., cos([Z, V"], U/ q)

Outline
7 e

= Recap of Lecture #7
= Beyond term matching

= Latent Semantic Analysis/Indexing

= Probabilistic Topic Modeling for IR
= Word Embeddings for IR

Topic Models for IR
- 1

= LS| has one prominent shortcoming

= Latent topics are numerically justified — SVD ensures the best lower-dimensional
approximation (i.e., with minimum loss)

= But LS| latent topics are often not interpretable by humans — topics often contain
high weights for seemingly unrelated terms

= E.g., atopic with high weights for: hobbit, umbrella, cinnamon

= Alternative: induce latent topics in a probabilistic framework
= Probabilistic LSA (pLSA)
= Latent Dirichlet Allocation (LDA)
= Dynamic Topic Models

Multinomial Distribution
I

= A multinomial (categorical) distribution is a probability distribution over a
discrete (finite) set of possible events

= We dealt with multinomial distributions when we discussed language models

= P(w), probability of the word appearing in a language
= E.g., P(,frodo”) =0.1, P(,,hobbit”) = 0.2, P(,,house”) = 0.4, P(,,see”) =0.3

* The multinomial distribution over N terms, which we denote with Mult, (@) is
parametrized by the vector & of N — 1 probabilities

= Probabilities of the distribution must sum to 1, so we can compute the last
probability from the given N -1

IR & WS, Lecture 8: Latent and Semantic Retrieval

Dirichlet Distribution

= Dirichlet distribution is a probability distribution over all vectors of length K that
sumuptol

= A meta-distribution, a probability distribution over multinomial distributions
= Denoted with Dir (@) Dirichlet distribution is parametrized with a parameter vector @

= A sample & drawn from the Dirichlet distribution Dir, (@) can be used to parametrize
the multinomial distribution — Mult,(6)

[0 0 1]

//\ A [0 05 05] |
N
AT\

[1 0 0] [0 1 0]
[0.33 0.33 0.33]

IR & WS, Lecture 8: Latent and Semantic Retrieval

Latent Dirichlet Allocation
T

= Latent Dirichlet Allocation (LDA) is a latent topic model that assumes that the
collection of documents was generated by a particular Dirichlet distribution

= Collection of M documents, vocabulary of N terms, K latent topics

= Each of the K latent topics is a concrete multinomial distribution over terms

= For each position in each of the M document we obtain the observed word by:
1. Randomly selecting one of the topics (from the Dirichlet distribution)

2. Randomly select the term from the multinomial distribution of the topic that was
randomly selected in the step 1

= \Vocabulary of N terms
= Each topic is a concrete multinomial distribution with N — 1 parameters

IR & WS, Lecture 8: Latent and Semantic Retrieval

LDA — Generative View
Ty

1. For each topick (k=1, ..., K):

= Draw parameters of a multinomial distribution ¢, (over terms) for topic k
from a Dirichlet distribution Dir,([)

2. For each document d in the collection:

= Draw parameters of a multinomial distribution of topics for the document d,
8,, from a Dirichlet distribution Dir (@)

" For each term position w,, in the document d:

a) Draw a topic assignment (i.e., a concrete multinomial distribution over terms)
z,, from Mult,(6,)

b) Draw a concrete term w,, from the multinomial distribution over terms of the
topic zdn (drawn in a)), Mult,(¢pz,,)

IR & WS, Lecture 8: Latent and Semantic Retrieval

LDA — Generative View

Documents

Topics

Topic proportions and
assignments

Mare o«

COLD SPRING Hywzm. NEW YORK—
How many »u" *Joes an -
o uul ar the

-.nnn;-

Ty vicws uf rlu hasic genes :-qu.I ford
e research teatn, using Caampeter simih
e koo genomes. concludod more
w; an b anstained with A
Wi thar the earliest life forms ny o

Arc

Ses b o
thint
sy 2
required o mere 125 gones. The ===
urther seserrcher mopped senes
mn ple parasite aoud estt
o st thue for this organism
%, 800 genes are plenty vo do the
"

sqob—bur thar amything short
\

o
-
o
-
-

-

.

-

{ 1in

: 100 mouldn’t be enouch.
: 'r)rllln-n»_'h the onmbers don't
H e !{rul-rl\. thame prodicrions
H \8’3"—
: * Genome Maﬁm ana Sequenc- —
ing, Cold Spring Harbo-.N_ew York,

SN 3h&_1

May 810 12

SUCIENCE o VOL 270 o 234 MAY 19w

Seeking Life’s Bare (Gen

AF ™S lecular biol
N for Biotechnology Infonmuts

g down. Compute- qwm y-olds an esti-
TR ITRT

etic) Necessities

we all (h " ospecially

artson 1o the 73

. L the hu
Arvderswgd

. Otes Sy

need AWy o g
wwly seguencal ©explains
ady Mushezian, a computetion

s ot the Nars

I nay By
T

Bethosda, Maryland, Comparing

and ancient genomes

N

LDA — Parameters and estimation

T [
= Parameters of the LDA are variables/probabilities that we cannot directly observe
= Probabilities of all multinomial distributions that are sampled in the generative

algorithm
1. Term probabilities (vector of N probabilities) for each of the K latent topics

@, fork=1,..,K (so,total of K* N parameters)
2. Topic probabilities (vectors of K probabilities) for each of the M documents

B,ford=1, .., M (so, total of M * K parameters)

= Optimization (learning model’s parameters):
1. Start from random multinomial distributions
2. Update parameters to maximize probability of observed terms in documents
" Direct maximization is intractable

= Approximate inference (maximization) via
= (1) variational methods or (2) sampling methods

IR & WS, Lecture 8: Latent and Semantic Retrieval

Latent Dirichlet Allocation
T

" Once the model is trained (parameters optimized based on observed
text), we represent documents and terms as follows:
1. Document d —simply the multinomial distribution vector over topics for

that documents, 6,

2. Termt (i=1, ..., N)—for each of the K topics we take the probability of t,
from the multinomial distribution (over terms) of that topic [¢,]',. term’s
probability in multinomial distributions of all topics

= Q: Are term vectors obtained this way probability distributions?

= Computing the representation for the query:
= Query vector also needs to be represented as a multinomial distribution over topics

= Easier inference:
1. We know the probabilities of terms over topics
2. We only need to estimate the multinomial distribution of topics given the query

IR & WS, Lecture 8: Latent and Semantic Retrieval

Latent Dirichlet Allocation
I

= The topics are generally interpretable — the terms with largest probabilities within
the multinomial distribution of the topic tend to be semantically related

= Example — topics obtained on 1.8M New York times articles:

music book art ame show
band life museum nicks film,
songs novel show nets television
roc story exhibition points movie
album books artist team series
jazz man artists season satys
pop stories paintings play life
song love painting games man
singer children century night character
night family works coach know
theater clinton stock restaurant budget
play . bush market sauce
production campaign percent menu governor
show gore ~ fund food county
stage political investors dishes mayor
street republican funds street billion
broadway dole companies dining taxes
director presidential stocks dinner
musical senator investment chicken le |slature
directed house trading served iscal

IR & WS, Lecture 8: Latent and Semantic Retrieval

Outline
N e 000

= Recap of Lecture #7
= Beyond term matching

= Latent Semantic Analysis/Indexing

= Probabilistic Topic Modeling for IR
= Word Embeddings for IR

Word Embeddings

-3 J
= Word embeddings are dense semantic vector representations of words

= Unlike LSI, not based on counting (co)-ocurrences, but on predicting representation
vectors of words based on context (surrounding words)

= Assume a vocabulary of N words
= Sparse representation of each term is the so-called one-hot encoding vector that has
only one non-zero element (denoting the term) and all other zeros
= One-hot encoding vectors are highly-dimensional (size of vocabulary)
= |f we compare sparse vectors of terms, all terms are equally dissimilar (no overlap)

= Dense representation of the term is the real-valued vector of dimension orders of
magnitude lower than the size of vocabulary

= \We want real values in dense vectors of words to somehow capture meaning of words

= LS| and LDA provide word vectors that can, to some extent, capture semantic properties
of words

= Prediction-based vectors, called word embeddings, have been shown to better capture
the meaning of words than LSI and LDA vectors

IR & WS, Lecture 8: Latent and Semantic Retrieval m

Word Embeddings
1

" Predictive models for deriving dense word vectors try to predict
1. The word in focus from its context or
2. The context from the word in focus

" Popular models
1. Skip-Gram (predicts context from the word) (Mikolov et al., “13)
2. CBOW (predicts the word from the context) (Mikolov et al., “13)
3. GloVe (count-based, makes global optimization) (Pennington et al., ‘14)

[Mikolov et al., “13] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and
phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).

[Pennington et al., “14] Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global Vectors for Word
Representation. In EMINLP (Vol. 14, pp. 1532-1543).

Continuous Bag-of-Words (CBOW)
7

= Each word from the vocabulary of the large corpus is represented
with two dense vectors of size N << V (size of vocabulary):

1. Center vector — represents the word when it is in the focus
E.g., ,carries” in ,,hobbit Frodo carries blue sword”

2. Context vector — represents the word when it is in the context of the
center word

E.g., ,carries” in ,Frodo carries blue sword home”

" Each context represented by aggregating one-hot vectors of words

= |[dea: Given the context, predict the center word
= E.g., given ,hobbit Frodo blue sword” predict , carries”

IR & WS, Lecture 8: Latent and Semantic Retrieval

Continuous Bag-of-Words (CBOW)

Output layer

= Context consists of C words, with
corresponding one-hot vectors

" X Xolr -or Xk

= One-hot vectors transformed to dense
vectors using input matrix W (V x N)

= Dense context vector h is obtained as:

C
1
h= GW() x)
=1

= Dense context vector h is then multiplied
with the output matrix W’ (N x V)

y, = softmax(h"W’)

Continuous Bag-of-Words (CBOW)
7

\{nput layer

Output layer

s O s 000

/ Cx V-dim

IR & WS, Lecture 8: Latent and Semantic Retrieval

= Qutput vector y needs to be as similar as
possible to one-hot vector of center word

= Parameters of the model are elements of
W and W’

= Each row of W is the dense context
vector of one vocabulary word

= Each column of W’ is the dense center
vector of one vocabulary word

= Dense representation (embedding) of the
i-th vocabulary term is concatenation of

1. i-th row of W and
2. i-th column of W’

Continuous Bag-of-Words (CBOW)
7

\ Input layer

Output layer

s O ss OO0

Lo

i
;

/ CxV-dim

IR & WS, Lecture 8: Latent and Semantic Retrieval

= Q: How do we optimize the model, i.e.,
learn ,,good” matrices W and W’?

= \We prepare many examples of contexts

1. Positive contexts — actual sequences of
C words from a large corpus

2. Negative contexts — fake artificial
sequences not observed in the context

= Obtained by replacing the center word
with a random word from the vocabulary

= Expected output vectors for negative
contexts are zero vectors

= \We start from random values in W and W’

Continuous Bag-of-Words (CBOW)

Output layer

IR & WS, Lecture 8: Latent and Semantic Retrieval

" For each context (i.e., ,training example”),
positive and negative, we compare

1. The predicted output vector vy,
2. One-hot vector of the center word t,

* The difference between y, and t, is the
prediction error of the model
= Errors are propagated backwards to

update W and W’ using an algorithm
called backpropagation

= The bigger the error, the bigger the
update of values in W and W’

Word embeddings
4 4
= Word embedding models like CBOW, Skip-Gram, and GloVe yield dense vectors
with some very nice semantic properties

= They capture semantic similarity between words much better than word vectors
obtained via LS| or LDA

IR & WS, Lecture 8: Latent and Semantic Retrieval

Airplane Cat Dog
word cosine word | cosine word | cosine
plane 0.835 cats | 0.810 dogs | 0.868
airplanes | 0.777 dog | 0.761 puppy | 0.811
aircraft | 0.764 kitten | 0.746 pit_bull | 0.780
planes | 0.734 feline | 0.732 pooch | 0.763
jet 0.716 puppy | 0.707 cat 0.761
airliner | 0.707 pup | 0.693 pup 0.741
jetliner | 0.706 pet | 0.689 canines | 0.722

Word embeddings
- 1

= Word embeddings also capture semantic analogies between pairs of words

Poland< -

2 Germxanyw—--- _____ Z
B R e S R e -~ —Warsaw
s Berlin

- taly<- - __ Paris =
Greece« - =sc->Athens

. Spain¢ Rome)

M e e ————————— -
=Poitugal: @@ 00 T T e e e e e c ek n e d e e e }*isb:;':ad"d =

= e(Germany) — e(Berlin) = e(,Italy”) — e(,,Rome”)

= This allows for knowledge inferences like: king — man + woman = queen

Information retrieval based on word embeddings
5

= Word embeddings are learned on a huge external corpus of text (e.g., Wikipedia)
= |.e., Word embeddings do not depend on our retrieval collection

" Thus, deriving word embeddings is an ,,offline” step we perform before retrieval

= To use word embeddings in retrieval, we need to derive dense document/query vectors
from word embedding vectors

= Embeddings of a larger unit of text (phrases, sentences, paragraphs, documents):

" Typically computed by aggregating word embeddings

= There are also models that learn to directly predict embedding vectors of larger text units (Le
at al., '14; Kiros et al., ‘15)

[Le et al., ‘14] Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In Proceedings of the 31st
International Conference on Machine Learning (ICML-14) (pp. 1188-1196).

[Kiros et al., “15] Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., & Fidler, S. (2015). Skip-thought vectors. In Advances
in neural information processing systems (pp. 3294-3302).

Information retrieval based on word embeddings
-

" let document d contain terms t,, ..., t, and let e(t) be the word embedding of the
termt

= The aggregate embedding vector of the document d, to be used for retrieval, is
computed as weighted average of word embeddings:

IiV=1 w; * e(ti)

N
i=1 Wi

e(d) =

= Weight w; determines how much the word embedding of term t. contributes to
the aggregate embeddings

= As usual, we would want more frequent/common words to contribute less
* Thus, TF-IDF scores are often used as weights, i.e., w, = tf(t, d) * idf(t)

IR & WS, Lecture 8: Latent and Semantic Retrieval

Now you...
I I

= Know about retrieval models that go beyond term matching
= Understand different models for capturing semantics of texts
= Know what Latent Semantic Analysis/Indexing is

= Understand how to use Topic Modeling in IR

= Know what word embeddings are and how to exploit them in IR

IR & WS, Lecture 8: Latent and Semantic Retrieval

