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Goran Glavaš1 and Ivan Vulić2
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Abstract

We present INSTAMAP, an instance-based
method for learning projection-based cross-
lingual word embeddings. Unlike prior work,
it deviates from learning a single global lin-
ear projection. INSTAMAP is a non-parametric
model that learns a non-linear projection by
iteratively: (1) finding a globally optimal ro-
tation of the source embedding space relying
on the Kabsch algorithm, and then (2) moving
each point along an instance-specific transla-
tion vector estimated from the translation vec-
tors of the point’s nearest neighbours in the
training dictionary. We report performance
gains with INSTAMAP over four representa-
tive state-of-the-art projection-based models
on bilingual lexicon induction across a set of
28 diverse language pairs. We note promi-
nent improvements, especially for more dis-
tant language pairs (i.e., languages with non-
isomorphic monolingual spaces).

1 Introduction and Motivation

Induction of cross-lingual word embeddings
(CLWEs) (Vulić et al., 2011; Mikolov et al., 2013;
Xing et al., 2015; Smith et al., 2017; Artetxe et al.,
2018) has been one of the key mechanisms for
enabling multilingual modeling of meaning and
facilitating cross-lingual transfer for downstream
NLP tasks. Even though CLWEs are recently be-
ing contested in cross-lingual downstream transfer
by pretrained multilingual language models (Pires
et al., 2019; Conneau et al., 2020; Artetxe et al.,
2019; Wu and Dredze, 2019; Wu et al., 2020), they
are still paramount in word-level translation, that
is, bilingual lexicon induction (BLI).

While earlier work focused on joint induction
of multilingual embeddings from multilingual cor-
pora, relying on word- (Klementiev et al., 2012;
Kočiskỳ et al., 2014; Gouws and Søgaard, 2015),
sentence- (Zou et al., 2013; Hermann and Blunsom,

2014; Luong et al., 2015; Coulmance et al., 2015;
Levy et al., 2017), or document-level (Søgaard
et al., 2015; Mogadala and Rettinger, 2016; Vulić
and Moens, 2016) alignments, most recent ef-
forts focus on post-hoc alignment of independently
trained monolingual embeddings (the so-called pro-
jection or mapping approaches) (Smith et al., 2017;
Artetxe et al., 2018; Conneau et al., 2018; Joulin
et al., 2018; Patra et al., 2019, inter alia).

Despite some recent evidence that joint CLWE
induction may lead to better bilingual spaces (Or-
mazabal et al., 2019), projection-based methods
still dominate the field (Hoshen and Wolf, 2018;
Ruder et al., 2018; Nakashole, 2018; Grave et al.,
2019; Zhang et al., 2019, inter alia) due to their
conceptual attractiveness: they operate on top of
vectors produced with any embedding model and
need at most a few thousand word pairs of supervi-
sion (Glavaš et al., 2019; Vulić et al., 2019).

Most projection-based CLWE models induce
bilingual spaces by orthogonally projecting one
monolingual space to another. Since orthogonal
projections do not affect the topology of the source
space, the performance of these methods is bound
by the degree of isomorphism of the two mono-
lingual spaces. Yet, evidence suggests that mono-
lingual spaces, especially those of etymologically
and typologically distant languages, are far from
isomorphic (Søgaard et al., 2018; Vulić et al., 2019;
Patra et al., 2019). What is more, unsupervised
CLWE models (Conneau et al., 2018; Artetxe et al.,
2018; Alvarez-Melis and Jaakkola, 2018; Hoshen
and Wolf, 2018, inter alia), which additionally ex-
ploit the isomorphism assumption when inducing
initial translation dictionaries, have been shown
to yield near-zero BLI results for pairs of dis-
tant languages (Søgaard et al., 2018; Vulić et al.,
2019). Following these theoretical limitations of
effectiveness of orthogonal mapping between non-
isomorphic spaces, Joulin et al. (2018) and Patra



et al. (2019) relax the orthogonality constraint and
report BLI improvements. These models, how-
ever, still learn only a linear transformation, i.e., an
oblique projection matrix. While oblique projec-
tions may scale or skew the source space, there still
exists a strong topological similarity between the
original space and its oblique projection.

In this work, we deviate from learning a linear
projection matrix (i.e., a parametric model) and
propose a non-parametric model which translates
vectors by estimating instance-specific geometric
translations. Our method, INSTAMAP, iteratively
(1) applies the Kabsch algorithm (Horn, 1987) on
the full training dictionary to learn a globally op-
timal rotation of the source space w.r.t. the tar-
get space; and then (2) translates each point along
the instance-specific translation vector, which we
compute from the translation vectors of the point’s
nearest neighbours from the training dictionary.

We extensively evaluate INSTAMAP on the
benchmark BLI dataset (Glavaš et al., 2019) en-
compassing 28 diverse language pairs. Our results
show the non-linear mappings with INSTAMAP

to be substantially more robust than linear projec-
tions, both orthogonal (Smith et al., 2017; Artetxe
et al., 2018) and oblique (Joulin et al., 2018; Patra
et al., 2019). We also show that, unlike INSTAMAP,
oblique projection models – RCSLS (Joulin et al.,
2018) and BLISS (Patra et al., 2019) – cannot sur-
pass the performance of the best-performing or-
thogonal projection model VecMap (Artetxe et al.,
2018) for distant languages (i.e., for low isomor-
phicity). Finally, we report additional significant
gains by applying INSTAMAP on top of VecMap.

2 Instance-Based Mapping

The core idea of INSTAMAP is illustrated in Figure
1. We iteratively: (1) use the entire training dic-
tionary to learn a single global rotation matrix and
then (2) perform an instance-based computation of
translation vectors.

2.1 Globally Optimal Rotation

Let X and Y be monolingual embedding spaces
of the source and target language, respectively,
and let D = {(wi

L1, w
i
L2)}, i = 1 . . . N , be the

training dictionary. We first transform each of
the two spaces by (independently) performing a
full PCA transformation (i.e., no dimensionality
reduction): this way we represent vectors in each
of the spaces as combinations of linearly uncorre-

lated principal components of that space, which
facilitates the learning of the optimal rotation be-
tween the spaces. Let XD = {xi

L1}Ni=1 ⊂ X
and YD = {yi

L2}Ni=1 ⊂ Y be the dictionary-
aligned subsets of the two monolingual spaces.
We aim to learn the optimal rotation matrix be-
tween X and Y, i.e., the matrix WR that min-
imizes the sum of square distances between the
source vector projections and corresponding target
vectors, WR = argminW ‖XDW −YD‖. If we
constrain WR to be orthogonal, the optimal solu-
tion is obtained by solving the Procrustes problem
(Schönemann, 1966) – adopted by most projection-
based CLWE models (Smith et al., 2017; Conneau
et al., 2018; Artetxe et al., 2018). However, our aim
is to avoid introducing the orthogonal constraint
and learn only the optimal rotation between the
spaces. To this end, we use the Kabsch algorithm
(Horn, 1987), which computes the optimal rotation
matrix WR as follows:

WR = V IR UT ,with (1)

UΣVT = SVD(XT
DYD), (2)

where IR is a modification of the identity matrix, in
which the last element (i.e., last row, last column) is
not 1, but rather the determinant of VUT . Upon ob-
taining WR, we rotate X w.r.t. Y, XR = XWR.

2.2 Instance-Specific Translations
We then perform localized, instance-specific trans-
lations in a rotationally-aligned bilingual space.
For each point from both XR and Y, we com-
pute a “personalized” translation vector, as the
weighted average of the translation vectors of its
closest dictionary entries. That is, for some vec-
tor x ∈ XR let x1, . . . ,xK be the set of K vec-
tors from XDWR (corresponding to words w1

L1,
w2
L1, . . . , w

K
L1 in D) which are closest to x in terms

of cosine similarity and let y1,y2, . . . ,yK be the
vectors of the corresponding dictionary translations
w1
L2, w2

L2, . . . , w
K
L2 from D from the target lan-

guage space. We then compute the instance-based
translation of x, x′, as follows:

x′ = x+

∑K
k=1 cos(x,xk) · (yk − xk)∑K

k=1 cos(x,xk)
(3)

We perform an instance-specific translation of the
vectors from Y analogously. Let y1, . . . ,yK be
the set of vectors from YD that are closest to some
vector y ∈ Y. The translation y′ is then as follows:

y′ = y −
∑K

k=1 cos(y,yk) · (yk − xk)∑K
k=1 cos(y,yk)

(4)
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Figure 1: Illustration of INSTAMAP: (a) unaligned monolingual embedding spaces (EN – blue; DE – yellow) with
dictionary alignments D (EN – green; DE – red); (b) rotation-aligned spaces: rotation matrix is learned on the
whole dictionary D; (c) INSTAMAP bilingual space: each point’s translation vector (depicted in (b)) is computed
from translation vectors of nearest entries in D; Nota bene: for simplicity, each point in illustration (figure (b))
inherits the translation vector of the nearest dictionary entry; in the actual algorithm, however, the translation vector
is computed as weighted average of translation vectors of K nearest neighbours in D (see the description in §2.2).

Because we compute a different translation vector
for each point in both vector spaces, the final map-
ping function between the two spaces is globally
non-linear. Also, being based on K nearest neigh-
bours in the training dictionary D, INSTAMAP is,
unlike all other projection-based CLWE models, a
non-parametric model (i.e., the number of model
parameters is not fixed, it depends on the number
of entries in the training dictionary D).

2.3 Training Dictionary Expansion

We repeat the two steps – global rotation and
instance-based translation – aiming to obtain an
iterative refinement of the non-linear mapping be-
tween the two spaces. Following the established
practice found in other iterative models (Conneau
et al., 2018; Artetxe et al., 2018), we augment the
training dictionary for the next iteration with the
mutual nearest neighbours in the bilingual space in-
duced in the previous iteration. Intuitively, with IN-
STAMAP being a non-parametric model, we expect
it to benefit more from the dictionary augmentation
than the parametric projection models, which have
been shown to saturate in performance when train-
ing dictionaries exceed 5K-10K translation pairs
(Vulić and Korhonen, 2016; Glavaš et al., 2019).

3 Evaluation

We evaluate INSTAMAP on bilingual lexicon induc-
tion, the standard task for evaluating CLWEs.

3.1 Experimental Setup

Data. We evaluate on the BLI benchmark dataset
introduced by Glavaš et al. (2019), containing 28

pairs between eight diverse languages: English
(EN), German (DE), Italian (IT), French (FR),
Russian (RU), Croatian (HR), Turkish (TR), and
Finnish (FI).1 Comprising both close and distant
language pairs, this dataset allows us to compare
model performance in settings with varying degree
of isomorphism between monolingual spaces. We
start from monolingual FastText vectors trained on
Wikipedias of respective languages,2 with vocabu-
laries trimmed to the 200K most frequent words.

Baselines. We compare INSTAMAP to the base-
line orthogonal projection – solution to the Pro-
crustes problem (PROC), and three state-of-the-
art projection-based models: (1) VecMap (Artetxe
et al., 2018) emerged in recent comparative evalua-
tions (Glavaš et al., 2019; Vulić et al., 2019) as the
best-performing orthogonal-projection model; (2)
RCSLS (Joulin et al., 2018) learns an oblique (i.e.,
non-orthogonal) projection and yields best perfor-
mance overall in a recent comparative evaluation
(Glavaš et al., 2019); (3) BLISS (Patra et al., 2019)
combines an orthogonal projection objective with
an objective based on adversarial learning, induc-
ing a weakly-orthogonal projection matrix.

Model Variants and Hyperparameter Tuning.
We evaluate two variants of INSTAMAP: (1) the
base model is applied directly on unaligned mono-
lingual vector spaces; (2) IM ◦ VM is the variant in
which we apply INSTAMAP on top of the bilingual
space induced with VecMap (Artetxe et al., 2018):
because VecMap induces an orthogonal projection,
the topologies of the monolingual subspaces of the

1We use the training dictionaries with 5K instances.
2https://fasttext.cc/

https://fasttext.cc/


Model Projection ALL EN-* No-EN EASY HARD Best LPs

PROC Orthogonal 32.26 38.07 29.97 50.96 20.93 DE-RU, DE-IT, DE-FR, IT-FR, EN-DE
VECMAP Orthogonal 36.08 42.09 33.77 53.69 24.24 HR-IT, DE-IT, FI-HR, FI-FR, HR-FR

RCSLS Oblique 35.31 41.94 32.75 53.31 23.78 DE-RU, DE-FI, DE-HR, DE-TR, DE-FR
BLISS Oblique 33.78 44.62 30.04 49.92 21.07 EN-RU, EN-TR, HR-RU, EN-HR, EN-FR

INSTAMAP Non-linear 36.94 42.42 34.87 53.99 25.71 DE-HR, DE-TR, DE-RU, FI-IT, DE-FR
IM ◦ VM Non-linear 38.69 44.82 36.43 55.01 27.72 DE-HR, TR-HR, TR-FI, DE-FI, DE-TR

Table 1: BLI results aggregated over diverse language pairs. Setups: (a) ALL – all 28 language pairs from (Glavaš
et al., 2019) (b) EN-* – 7 language pairs with English as the source language; (c) EASY – 6 (20%) least difficult
language pairs (EN-DE, EN-IT, EN-FR, IT-FR, DE-IT, DE-FR), according to average ranking of all models in
evaluation; (d) HARD – 6 (20%) most difficult language pairs (TR-HR, DE-TR, TR-FI, TR-RU, FI-HR, DE-HR).
(e) BEST LPs – 5 language pairs for which each model yields best relative performance compared to other models.

VecMap bilingual space are preserved compared to
respective original monolingual spaces – this holds
promise of no undesirable side-effects originating
from the composition. INSTAMAP has only two hy-
perparameters:3 the number of nearest neighbours
K from D, and the number of algorithm iterations
T . We identified, via fixed-split cross-validation on
the training dictionaries, that configuration K = 70
and T = 4 works best for most language pairs.4

3.2 Results

We show BLI performance (P@1), aggregated
over several different sets of language pairs, in
Table 1.5 Overall, INSTAMAP significantly outper-
forms all competing models6 Somewhat surpris-
ingly, VecMap, which induces an orthogonal pro-
jection (i.e., more strongly relies on the assumption
of isomorphism), significantly outperforms RCSLS
and BLISS, models that relax the orthogonality con-
straint and induce oblique linear projections. Only
INSTAMAP, by removing the constraint of having
a global linear projection altogether and by induc-
ing a non-linear mapping, is able to consistently
yield improvements over the orthogonal projection
(VecMap). What is more, the IM ◦ VM composi-
tion yields even larger performance gains.

Analysis of results across different groups of lan-
guage pairs identifies INSTAMAP as particularly
beneficial for pairs of distant languages (setups
No-EN and HARD) and languages with least reli-

3Competing models – VecMap, RCSLS, and BLISS – all
come with much larger sets of hyperparameters.

4For some pairs other configurations yield slightly better
results: for simplicity, we report the results with base configu-
ration K = 70;T = 4 for all pairs.

5We provide detailed results for each of 28 language lan-
guage pairs in the supplemental material.

6Non-parametric shuffling test (Yeh, 2000) with the Bon-
ferroni correction: α < 0.05 in comparison with VecMap and
α < 0.01 in comparison with other models.

able monolingual vectors (TR, HR). For example,
while INSTAMAP alone and IM ◦ VM yield gains
of 0.9 and 2.6 points, respectively, w.r.t. VecMap
across ALL language pairs, these gaps widen to
1.5 and 3.5 points on most challenging language
pairs (HARD). In contrast, BLISS, a model specif-
ically tailored to improve the mappings between
non-isomorphic spaces, appears to be robust only
on pairs of close languages (e.g., HR-RU) and pairs
involving EN (setup EN-*). It exhibits barely any
improvement over the baseline orthogonal projec-
tion (PROC) on distant language pairs (HARD) and
a significant degradation w.r.t. VecMap, a state-
of-the-art model based on orthogonal projection.
RCSLS is more robust than BLISS on difficult lan-
guage pairs, but still performs worse than VecMap.

Further Analysis. We further analyze the perfor-
mance of INSTAMAP (applied on top of VecMap)
with respect to: (1) size of the training dictionary
|D| and (2) number of nearest dictionary neigh-
bours K. We analyze the performance of IM◦VM
for three language pairs with lowest BLI scores:
DE-TR, TR-FI, and TR-HR. We prepare dictio-
naries with 2.5K to 12.5K entries (with a 2.5K
step), following steps described in (Glavaš et al.,
2019).7 Figure 2 shows the performance for dif-
ferent training dictionary sizes. We can see that
adding INSTAMAP on top of VecMap yields stable
improvements for all dictionary sizes. On the one
hand, this shows that INSTAMAP is equally helpful
for any number of available word translations. On
the other hand, since InstaMap is not constrained
to learning a single global projection, we hoped
to see bigger gains for larger dictionaries, but this

7We translate 20K most frequent EN words to DE, TR, FI,
and HR and keep for each language pair only word pairs (1)
found in respective monolingual FastText vocabularies, (2) not
present in the 2K test dictionaries from (Glavaš et al., 2019).
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(c) Turkish-Croatian

Figure 2: Comparison of performance between VECMAP and INSTAMAP applied on top it (IM ◦VM) for different
sizes of the training dictionary (from 2.5K word pairs to 12.5K word pairs in steps of 2.5K pairs).
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Figure 3: InstaMap (IM ◦ VM) performance w.r.t the
number of nearest dictionary neighbours K. Results
shown for three language pairs – DE-TR, TR-FI, and
TR-HR – and T = 3 INSTAMAP iterations.

is not the case. With larger dictionaries, we are
more likely to find more semantically similar dic-
tionary neighbours for each word – and this should
lead to better performance. We speculate, however,
that larger dictionaries also increase the likelihood
of selecting spurious neighbours due to hubness
(Dinu et al., 2015; Conneau et al., 2018) and that
this cancels out the positive effect promised by hav-
ing more candidates to choose the neighbours from.
This could perhaps be remedied by using hubness-
aware similarity scores like CSLS (Conneau et al.,
2018) instead of simple cosine similarity.

Figure 3 illustrates how INSTAMAP performance
(on top of VecMap, i.e., IM ◦ VM) varies with dif-
ferent values for the number of dictionary neigh-
bours K. The best performance is typically reached
for values of K between 50 and 90 and there are
no further improvements for larger values of K
(TR-FI, where K = 130 gives the best score, is an
exception). For very small K performance drops
are substantial and here INSTAMAP even degrades
the quality of the input space produced by VecMap.
We believe this happens because INSTAMAP in

this case has too few dictionary neighbours to ac-
curately model the meaning of any given word and,
in turn, compute a reliable mapping vector.

4 Conclusion

We have proposed INSTAMAP, a simple and
effective approach for improving the post-hoc
cross-lingual alignment between non-isomorphic
monolingual embedding spaces. Unlike existing
projection-based CLWE induction models, which
learn a global linear projection matrix, INSTAMAP

couples global rotation with instance-specific trans-
lations. This way, we learn a globally non-linear
projection. Our experiments show that (1) IN-
STAMAP significantly outperforms four state-of-
the-art projection-based CLWE models on a bench-
mark BLI dataset with 28 language pairs and (2)
that it yields largest improvements for pairs of dis-
tant languages with a lower degree of isomorphism
between their respective monolingual spaces. We
plan to extend this work in two directions. First, we
will explore mechanisms for instance-specific trans-
lation that are more sophisticated than the aggre-
gation of translation vectors of nearest dictionary
neighbours. Second, we plan to couple instance-
based mapping with other informative features
(e.g., character-level features) in classification-
based BLI frameworks (Heyman et al., 2017; Karan
et al., 2020). The INSTAMAP code is available at:
https://github.com/codogogo/instamap.
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Model Proj. EN-DE EN-TR EN-FI EN-HR EN-RU EN-IT EN-FR DE-TR DE-FI DE-HR DE-RU DE-IT DE-FR TR-FI

PROC Orth. 45.6 24.1 30.8 24.3 36.2 54.8 58.2 20.8 27.1 24.2 32.9 43.2 42.5 19.7
VECMAP Orth. 48.5 30.4 35.4 29.8 38.5 57.3 61.2 23.2 28.8 27.1 31.6 46.3 45.3 23.1

RCSLS Obliq. 49.0 28.8 34.8 28.1 41.9 57.6 60.6 24.1 30.2 27.3 36.8 45.0 45.2 22.8
BLISS Obliq. 47.0 32.7 35.8 30.6 45.9 58.9 63.9 17.5 20.3 17.4 20.5 30.9 33.3 21.6

INSTAMAP Non-lin. 47.6 30.6 33.6 29.6 40.6 59.1 61.2 25.7 31.0 29.1 36.4 46.8 47.4 24.9
IM ◦ VM Non-lin. 49.3 33.0 37.7 32.5 42.9 59.8 63.1 26.8 33.5 31.1 37.6 47.4 46.9 27.4

Table 2: BLI results detailed over the first batch of 14 language pairs.

Model Proj. TR-HR TR-RU TR-IT TR-FR FI-HR FI-RU FI-IT FI-FR HR-RU HR-IT HR-FR RU-IT RU-FR IT-FR

PROC Orth. 18.4 20.9 25.2 25.9 21.4 25.4 27.3 28.1 28.8 27.9 29.2 40.1 38.6 61.5
VECMAP Orth. 21.9 23.5 30.6 31.6 26.7 30.3 32.6 34.0 33.1 35.4 34.9 42.8 42.9 63.5

RCSLS Obliq. 20.2 24.3 28.2 29.5 23.8 29.1 29.9 30.8 31.9 30.7 32.5 41.8 41.0 62.6
BLISS Obliq. 21.6 23.1 28.2 29.0 25.3 29.5 30.4 31.1 34.8 32.3 32.5 42.9 43.3 65.6

INSTAMAP Non-lin. 23.9 24.4 31.4 31.7 26.2 30.6 35.0 34.4 33.4 35.1 34.2 44.4 44.5 61.9
IM ◦ VM Non-lin. 26.1 26.6 32.0 34.5 28.4 31.8 35.4 35.8 36.3 36.4 36.6 44.9 46.0 63.5

Table 3: BLI results detailed over the second batch of 14 language pairs.


