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Abstract

Evaluation of cross-lingual encoders is usually
performed either via zero-shot cross-lingual
transfer in supervised downstream tasks or
via unsupervised cross-lingual textual simi-
larity. In this paper, we concern ourselves
with reference-free machine translation (MT)
evaluation where we directly compare source
texts to (sometimes low-quality) system trans-
lations, which represents a natural adversarial
setup for multilingual encoders. Reference-
free evaluation holds the promise of web-scale
comparison of MT systems. We systemati-
cally investigate a range of metrics based on
state-of-the-art cross-lingual semantic repre-
sentations obtained with pretrained M-BERT
and LASER models. We find that they perform
poorly as semantic encoders for reference-free
MT evaluation and identify their two key lim-
itations, namely, (a) a semantic mismatch be-
tween representations of mutual translations
and, more prominently, (b) the inability to
punish “translationese”, i.e., low-quality literal
translations. We propose two partial reme-
dies: (1) post-hoc re-alignment of the vector
spaces and (2) coupling of semantic-similarity
based metrics with target-side language mod-
eling. In segment-level MT evaluation, our
best combined metric surpasses the reference-
based BLEU by 5.7 correlation points. We
make our MT evaluation code available.1

1 Introduction

A standard evaluation setup for supervised machine
learning (ML) tasks assumes an evaluation metric
which compares a gold label to a classifier predic-
tion. This setup assumes that the task has clearly
defined and unambiguous labels and, in most cases,
that an instance can be assigned few labels. These
assumptions, however, do not hold for natural lan-
guage generation (NLG) tasks like machine trans-

1https://github.com/AIPHES/ACL20-Reference-Free-
MT-Evaluation

lation (MT) (Bahdanau et al., 2015; Johnson et al.,
2017) and text summarization (Rush et al., 2015;
Tan et al., 2017), where we do not predict a single
discrete label but generate natural language text.
Thus, the set of labels for NLG is neither clearly
defined nor finite. Yet, the standard evaluation
protocols for NLG still predominantly follow the
described default paradigm: (1) evaluation datasets
come with human-created reference texts and (2)
evaluation metrics, e.g., BLEU (Papineni et al.,
2002) or METEOR (Lavie and Agarwal, 2007) for
MT and ROUGE (Lin and Hovy, 2003) for sum-
marization, count the exact “label” (i.e., n-gram)
matches between reference and system-generated
text. In other words, established NLG evaluation
compares semantically ambiguous labels from an
unbounded set (i.e., natural language texts) via hard
symbolic matching (i.e., string overlap).

The first remedy is to replace the hard symbolic
comparison of natural language “labels” with a
soft comparison of texts’ meaning, using seman-
tic vector space representations. Recently, a num-
ber of MT evaluation methods appeared focusing
on semantic comparison of reference and system
translations (Shimanaka et al., 2018; Clark et al.,
2019; Zhao et al., 2019). While these correlate
better than n-gram overlap metrics with human as-
sessments, they do not address inherent limitations
stemming from the need for reference translations,
namely: (1) references are expensive to obtain; (2)
they assume a single correct solution and bias the
evaluation, both automatic and human (Dreyer and
Marcu, 2012; Fomicheva and Specia, 2016), and
(3) limitation of MT evaluation to language pairs
with available parallel data.

Reliable reference-free evaluation metrics, di-
rectly measuring the (semantic) correspondence
between the source language text and system trans-
lation, would remove the need for human refer-
ences and allow for unlimited MT evaluations: any



monolingual corpus could be used for evaluating
MT systems. However, the proposals of reference-
free MT evaluation metrics have been few and far
apart and have required either non-negligible super-
vision (i.e., human translation quality labels) (Spe-
cia et al., 2010) or language-specific preprocessing
like semantic parsing (Lo et al., 2014; Lo, 2019),
both hindering the wide applicability of the pro-
posed metrics. Moreover, they have also typically
exhibited performance levels well below those of
standard reference-based metrics (Ma et al., 2019).

In this work, we comparatively evaluate a num-
ber of reference-free MT evaluation metrics that
build on the most recent developments in multilin-
gual representation learning, namely cross-lingual
contextualized embeddings (Devlin et al., 2019)
and cross-lingual sentence encoders (Artetxe and
Schwenk, 2019). We investigate two types of cross-
lingual reference-free metrics: (1) Soft token-level
alignment metrics find the optimal soft alignment
between source sentence and system translation us-
ing Word Mover’s Distance (WMD) (Kusner et al.,
2015). Zhao et al. (2019) recently demonstrated
that WMD operating on BERT representations (De-
vlin et al., 2019) substantially outperforms baseline
MT evaluation metrics in the reference-based set-
ting. In this work, we investigate whether WMD
can yield comparable success in the reference-free
(i.e., cross-lingual) setup; (2) Sentence-level simi-
larity metrics measure the similarity between sen-
tence representations of the source sentence and
system translation using cosine similarity.

Our analysis yields several interesting find-
ings. (i) We show that, unlike in the monolingual
reference-based setup, metrics that operate on con-
textualized representations generally do not outper-
form symbolic matching metrics like BLEU, which
operate in the reference-based environment. (ii)
We identify two reasons for this failure: (a) firstly,
cross-lingual semantic mismatch, especially for
multi-lingual BERT (M-BERT), which construes a
shared multilingual space in an unsupervised fash-
ion, without any direct bilingual signal; (b) sec-
ondly, the inability of the state-of-the-art cross-
lingual metrics based on multilingual encoders
to adequately capture and punish “translationese”,
i.e., literal word-by-word translations of the source
sentence—as translationese is an especially per-
sistent property of MT systems, this problem is
particularly troubling in our context of reference-
free MT evaluation. (iii) We show that by execut-
ing an additional weakly-supervised cross-lingual

re-mapping step, we can to some extent alleviate
both previous issues. (iv) Finally, we show that the
combination of cross-lingual reference-free metrics
and language modeling on the target side (which
is able to detect “translationese”), surpasses the
performance of reference-based baselines.

Beyond designating a viable prospect of web-
scale domain-agnostic MT evaluation, our findings
indicate that the challenging task of reference-free
MT evaluation is able to expose an important limi-
tations of current state-of-the-art multilingual en-
coders, i.e., the failure to properly represent corrupt
input, that may go unnoticed in simpler evaluation
setups such as zero-shot cross-lingual text classi-
fication or measuring cross-lingual text similarity
not involving such “adversarial” conditions. We be-
lieve this is a prospect direction to facilitate cross-
lingual representations, together with the recent
benchmark which focuses on zero-shot transfer sce-
narios (Hu et al., 2020).

2 Related Work

Manual human evaluations of MT systems undoubt-
edly yield the most reliable results, but are expen-
sive, tedious, and generally do not scale to a mul-
titude of domains. A significant body of research
is thus dedicated to the study of automatic evalu-
ation metrics for machine translation. Here, we
provide an overview of both reference-based MT
evaluation metrics and recent research efforts to-
wards reference-free MT evaluation, which lever-
age cross-lingual semantic representations and un-
supervised MT techniques.

Reference-based MT evaluation. Most of the
commonly used evaluation metrics in MT com-
pare system and reference translations. They are
often based on surface forms such as n-gram over-
laps like BLEU (Papineni et al., 2002), SentBLEU,
NIST (Doddington, 2002), chrF++ (Popović, 2017)
or METEOR++(Guo and Hu, 2019). They have
been extensively tested and compared in recent
WMT metrics shared tasks (Bojar et al., 2017a; Ma
et al., 2018a, 2019).

These metrics, however, operate at the surface
level, and by design fail to recognize semantic
equivalence lacking lexical overlap. To overcome
these limitations, some research efforts exploited
static word embeddings (Mikolov et al., 2013b)
and trained embedding-based supervised metrics
on sufficiently large datasets with available hu-
man judgments of translation quality (Shimanaka



et al., 2018). With the development of contextual
word embeddings (Peters et al., 2018; Devlin et al.,
2019), we have witnessed proposals of semantic
metrics that account for word order. For exam-
ple, Clark et al. (2019) introduce a semantic met-
ric relying on sentence mover’s similarity and the
contextualized ELMo embeddings (Peters et al.,
2018). Similarly, Zhang et al. (2019) describe a
reference-based semantic similarity metric based
on contextualized BERT representations (Devlin
et al., 2019). Zhao et al. (2019) generalize this line
of work with their MoverScore metric, which com-
putes the mover’s distance, i.e., the optimal soft
alignment between tokens of the two sentences,
based on the similarities between their contextual-
ized embeddings. Mathur et al. (2019) train a su-
pervised BERT-based regressor for reference-based
MT evaluation.

Reference-free MT evaluation. Recently, there
has been a growing interest in reference-free MT
evaluation (Ma et al., 2019), also referred to as
“quality estimation” (QE) in the MT community.
In this setup, evaluation metrics semantically com-
pare system translations directly to the source sen-
tences. The attractiveness of automatic reference-
free MT evaluation is obvious: it does not require
any human effort or parallel data. To approach
this task, Popović et al. (2011) exploit a bag-of-
word translation model to estimate translation qual-
ity, which sums over the likelihoods of aligned
word-pairs between source and translation texts.
Specia et al. (2013) estimate translation quality us-
ing language-agnostic linguistic features extracted
from source lanuage texts and system translations.
Lo et al. (2014) introduce XMEANT as a cross-
lingual reference-free variant of MEANT, a metric
based on semantic frames. Lo (2019) extended
this idea by leveraging M-BERT embeddings. The
resulting metric, YiSi-2, evaluates system trans-
lations by summing similarity scores over words
pairs that are best-aligned mutual translations. YiSi-
2-SRL optionally combines an additional similar-
ity score based on the alignment over the semantic
structures (e.g., semantic roles and frames). Both
metrics are reference-free, but YiSi-2-SRL is not
resource-lean as it requires a semantic parser for
both languages.

Recent progress in cross-lingual semantic sim-
ilarity (Agirre et al., 2016; Cer et al., 2017) and
unsupervised MT (Artetxe and Schwenk, 2019)
has also led to novel reference-free metrics. For in-

stance, Yankovskaya et al. (2019) propose to train
a metric combining multilingual embeddings ex-
tracted from M-BERT and LASER (Artetxe and
Schwenk, 2019) together with the log-probability
scores from neural machine translation. Our work
differs from that of Yankovskaya et al. (2019) in
one crucial aspect: the cross-lingual reference-free
metrics that we investigate and benchmark do not
require any human supervision.

Cross-lingual Representations. Cross-lingual
text representations offer a prospect of model-
ing meaning across languages and support cross-
lingual transfer for downstream tasks (Klementiev
et al., 2012; Rücklé et al., 2018; Glavaš et al., 2019;
Josifoski et al., 2019; Conneau et al., 2020). Most
recently, the (massively) multilingual encoders,
such as multilingual M-BERT (Devlin et al., 2019),
XLM-on-RoBERTa (Conneau et al., 2020), and
(sentence-based) LASER, have profiles themselves
as state-of-the-art solutions for (massively) multi-
lingual semantic encoding of text. While LASER
has been jointly trained on parallel data of 93 lan-
guages, M-BERT has been trained on the concate-
nation of monolingual data in more than 100 lan-
guages, without any cross-lingual mapping signal.
There has been a recent vivid discussion on the
cross-lingual abilities of M-BERT (Pires et al.,
2019; K et al., 2020; Cao et al., 2020). In par-
ticular, Cao et al. (2020) show that M-BERT often
yields disparate vector space representations for
mutual translations and propose a multilingual re-
mapping based on parallel corpora, to remedy for
this issue. In this work, we introduce re-mapping
solutions that are resource-leaner and require easy-
to-obtain limited-size word translation dictionaries
rather than large parallel corpora.

3 Reference-Free MT Evaluation Metrics

In the following, we use x to denote a source sen-
tence (i.e., a sequence of tokens in the source lan-
guage), y to denote a system translation of x in
the target language, and y? to denote the human
reference translation for x.

3.1 Soft Token-Level Alignment

We start from the MoverScore (Zhao et al., 2019),
a recently proposed reference-based MT evaluation
metric designed to measure the semantic similarity
between system outputs (y) and human references
(y?). It finds an optimal soft semantic alignments
between tokens from y and y? by minimizing the



Word Mover’s Distance (Kusner et al., 2015). In
this work, we extend the MoverScore metric to op-
erate in the cross-lingual setup, i.e., to measure the
semantic similarity between n-grams (unigram or
bigrams) of the source text x and the system trans-
lation y, represented with embeddings originating
from a cross-lingual semantic space.

First, we decompose the source text x into a se-
quence of n-grams, denoted by xn = (xn1 , . . . , xnm)
and then do the same operation for the system
translation y, denoting the resulting sequence of
n-grams with yn. Given xn and yn, we can
then define a distance matrix C such that Cij =
‖E(xni )−E(ynj )‖2 is the distance between the i-th
n-gram of x and the j-th n-gram of y, where E is
a cross-lingual embedding function that maps text
in different languages to a shared embedding space.
With respect to the function E, we experimented
with cross-lingual representations induced (a) from
static word embeddings with RCSLS (Joulin et al.,
2018)) (b) with M-BERT (Devlin et al., 2019) as
the multilingual encoder; with a focus on the latter.

WMD between the two sequences of n-grams
xn and yn with associated n-gram weights 2 to
fxn ∈ R|xn| and fyn ∈ R|yn| is defined as:

m(x,y) := WMD(xn,yn) = min
F

∑
ij

Cij · Fij ,

s.t. F1 = fxn , F ᵀ1 = fyn ,

where F ∈ R|xn|×|yn| is a transportation matrix
with Fij denoting the amount of flow traveling
from xni to ynj .

3.2 Sentence-Level Semantic Similarity
In addition to measuring semantic distance between
x and y at word-level, one can also encode them
into sentence representations with multilingual sen-
tence encoders like LASER (Artetxe and Schwenk,
2019), and then measure their cosine distance

m(x,y) = 1− E(x)ᵀE(y)

‖E(x)‖ · ‖E(y)‖
.

3.3 Improving Cross-Lingual Alignments
Initial analysis indicated that, despite the multilin-
gual pretraining of M-BERT (Devlin et al., 2019)
and LASER (Artetxe and Schwenk, 2019), the
monolingual subspaces of the multilingual spaces
they induce are far from being semantically well-
aligned, i.e., we obtain fairly distant vectors for

2We follow Zhao et al. (2019) in obtaining n-gram embed-
dings and their associated weights based on IDF.

mutual word or sentence translations.3 To this end,
we apply two simple, weakly-supervised linear pro-
jection methods for post-hoc improvement of the
cross-lingual alignments in these multilingual rep-
resentation spaces.

Notation. Let D = {(w1
` , w

1
k), . . . , (wn

` , w
n
k )}

be a set of matched word or sentence pairs from
two different languages ` and k. We define a re-
mapping function f such that any f(E(w`)) and
E(wk) are better aligned in the resulting shared
vector space. We investigate two resource-lean
choices for the re-mapping function f .

Linear Cross-lingual Projection (CLP). Fol-
lowing related work (Schuster et al., 2019), we
re-map contextualized embedding spaces using lin-
ear projection. Given ` and k, we stack all vectors
of the source language words and target language
words for pairs D, respectively, to form matrices
X` and Xk ∈ Rn×d, with d as the embedding
dimension and n as the number of word or sen-
tence alignments. The word pairs we use to cali-
brate M-BERT are extracted from EuroParl (Koehn,
2005) using FastAlign (Dyer et al., 2013), and the
sentence pairs to calibrate LASER are sampled
directly from EuroParl.4 For M-BERT, we take
the representations of the last transformer layer as
the cross-lingual token representations. Mikolov
et al. (2013a) propose to learn a projection matrix
W ∈ Rd×d by minimizing the Euclidean distance
beetween the projected source language vectors
and their corresponding target language vectors:

min
W
‖WX` −Xk‖2.

Xing et al. (2015) achieve further improvement on
the task of bilingual lexicon induction (BLI) by
constraining W to an orthogonal matrix, i.e., such
that W TW = I . This turns the optimization into
the well-known Procrustes problem (Schönemann,
1966) with the following closed-form solution:

Ŵ = UV ᵀ,UΣV ᵀ = SVD(X`X
ᵀ
k )

We note that the above CLP re-mapping is known to
have deficits, i.e., it requires the embedding spaces
of the involved languages to be approximately iso-
morphic (Søgaard et al., 2018; Vulić et al., 2019).

3LASER is jointly trained on parallel corpora of different
languages, but in resource-lean language pairs, the induced
embeddings from mutual translations may be far apart.

4While in pretraining LASER requires large parallel cor-
pora, we believe that fine-tuning/calibrating the embeddings
post-hoc requires fewer data points.



Recently, some re-mapping methods that report-
edly remedy for this issue have been suggested
(Cao et al., 2020; Glavaš and Vulić, 2020; Mohiud-
din and Joty, 2020). We leave the investigation of
these novel techniques for our future work.

Universal Language Mismatch-Direction
(UMD) Our second post-hoc linear alignment
method is inspired by the recent work on removing
biases in distributional word vectors (Dev and
Phillips, 2019; Lauscher et al., 2019). We adopt
the same approaches in order to quantify and
remedy for the “language bias”, i.e., representation
mismatches between mutual translations in the
initial multilingual space. Formally, given ` and
k, we create individual misalignment vectors
E(wi

`) − E(wi
k) for each bilingual pair in D.

Then we stack these individual vectors to form
a matrix Q ∈ Rn×d. We then obtain the global
misalignment vector vB as the top left singular
vector of Q. The global misalignment vector
presumably captures the direction of the represen-
tational misalignment between the languages better
than the individual (noisy) misalignment vectors
E(wi

`) − E(wi
k). Finally, we modify all vectors

E(w`) and E(wk), by subtracting their projections
onto the global misalignment direction vector vB:

f(E(w`)) = E(w`)− cos(E(w`), vB)vB.

Language Model BLEU scores often fail to re-
flect the fluency level of translated texts (Edunov
et al., 2019). Hence, we use the language model
(LM) of the target language to regularize the cross-
lingual semantic similarity metrics, by coupling
our cross-lingual similarity scores with a GPT lan-
guage model of the target language (Radford et al.,
2018). We expect the language model to penalize
translationese, i.e., unnatural word-by-word trans-
lations and boost the performance of our metrics.5

4 Experiments

In this section, we evaluate the quality of our MT
reference-free metrics by comparing them with hu-
man judgments of translation quality.

Word-level metrics. We denote our word-level
alignment metrics based on WMD as MoverScore-
ngram + Align(Embedding), where Align is one of
our two post-hoc cross-lingual alignment methods

5We linearly combine the cross-lingual metrics with the
LM scores using a coefficient of 0.1 for all setups. We choose
this value based on initial experiments on one language pair.

(CLP or UMD). For example, Mover-2 + UMD(M-
BERT) denotes the metric combining MoverScore
based on bigram alignments, with M-BERT embed-
dings and UMD as the post-hoc alignment method.

Sentence-level metric. We denote our sentence-
level metrics as: Cosine + Align(Embedding). For
example, Cosine + CLP(LASER) measures the co-
sine distance between the sentence embeddings
obtained with LASER, post-hoc aligned with CLP.

4.1 Datasets

We collect the source language sentences, their sys-
tem and reference translations from the WMT17-19
news translation shared task (Bojar et al., 2017b;
Ma et al., 2018b, 2019), which contains predictions
of 166 translation systems across 16 language pairs
in WMT17, 149 translation systems across 14 lan-
guage pairs in WMT18 and 233 translation systems
across 18 language pairs in WMT19. We evaluate
for X-en language pairs, selecting X from a set
of 12 diverse languages: German (de), Chinese
(zh), Czech (cs), Latvian (lv), Finnish (fi), Russian
(ru), and Turkish (tr), Gujarati (gu), Kazakh (kk),
Lithuanian (lt) and Estonian (et). Each language
pair in WMT17-19 has approximately 3,000 source
sentences, each associated to one reference transla-
tion and to the automatic translations generated by
participating systems.

4.2 Baselines

We compare with a range of reference-free metrics:
ibm1-morpheme and ibm1-pos4gram (Popović,
2012), LASIM (Yankovskaya et al., 2019), LP
(Yankovskaya et al., 2019), YiSi-2 and YiSi-2-srl
(Lo, 2019), and reference-based baselines BLEU
(Papineni et al., 2002), SentBLEU (Koehn et al.,
2007) and ChrF++ (Popović, 2017) for MT eval-
uation (See §2).6 The main results are reported
on WMT17. We report the results obtained on
WMT18 and WMT19 in the Appendix.

4.3 Results

Figure 1 shows that our metric, namely MOVER-2
+ CLP(M-BERT) ⊕ LM, operating on modified
M-BERT with the post-hoc re-mapping and com-
bining a target-side LM, outperforms BLEU by
5.7 points in segment-level evaluation and achieves
comparable performance in the system-level evalu-
ation. Figure 2 shows that the same metric obtains

6The code of these unsupervised metrics is not released,
thus we compare to their official results on WMT19 only.



Setting Metrics cs-en de-en fi-en lv-en ru-en tr-en zh-en Average

m(y∗,y)
BLEU 43.5 43.2 57.1 39.3 48.4 53.8 51.2 48.1
CHRF++ 52.3 53.4 67.8 52.0 58.8 61.4 59.3 57.9

m(x,y)

Baseline with Original Embeddings

MOVER-1 + M-BERT 22.7 37.1 34.8 26.0 26.7 42.5 48.2 34.0
COSINE + LASER 32.6 40.2 41.4 48.3 36.3 42.3 46.7 41.1

Cross-lingual Alignment for Sentence Embedding

COSINE + CLP(LASER) 33.4 40.5 42.0 48.6 36.0 44.7 42.2 41.1
COSINE + UMD(LASER) 36.6 28.1 45.5 48.5 31.3 46.2 49.4 40.8

Cross-lingual Alignment for Word Embedding

MOVER-1 + RCSLS 18.9 26.4 31.9 33.1 25.7 31.1 34.3 28.8
MOVER-1 + CLP(M-BERT) 33.4 38.6 50.8 48.0 33.9 51.6 53.2 44.2
MOVER-2 + CLP(M-BERT) 33.7 38.8 52.2 50.3 35.4 51.0 53.3 45.0
MOVER-1 + UMD(M-BERT) 22.3 38.1 34.5 30.5 31.2 43.5 48.6 35.5
MOVER-2 + UMD(M-BERT) 23.1 38.9 37.1 34.7 33.0 44.8 48.9 37.2

Combining Language Model

COSINE + CLP(LASER) ⊕ LM 48.8 46.7 63.2 66.2 51.0 54.6 48.6 54.2
COSINE + UMD(LASER) ⊕ LM 49.4 46.2 64.7 66.4 51.1 56.0 52.8 55.2
MOVER-2 + CLP(M-BERT) ⊕ LM 46.5 46.4 63.3 63.8 47.6 55.5 53.5 53.8
MOVER-2 + UMD(M-BERT) ⊕ LM 41.8 46.8 60.4 59.8 46.1 53.8 52.4 51.6

Table 1: Pearson correlations with segment-level human judgments on WMT17 dataset.
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Figure 1: The averaged results of our best-performing
metric, together with reference-based BLEU on
WMT17.
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Figure 2: The averaged results of our metric best-
performing metric, together with the official results of
reference-free metrics, and reference-based BLEU on
system-level WMT19.

15 points gains (73.1 vs. 58.1), averaged over 7
languages, on WMT19 (system-level) compared to
the the state-of-the-art reference-free metric YiSi-2.
Except for one language pair, gu-en, our metric
performs on a par with the reference-based BLEU
(see Table 8 in the Appendix).

In Table 1, we exhaustively compare results for
several of our metric variants, based either on M-
BERT or LASER. We note that re-mapping has
considerable effect for M-BERT (up to 10 points
improvements), but much less so for LASER. We
believe that this is because the underlying embed-
ding space of LASER is less ‘misaligned’ since it
has been (pre-)trained on parallel data.7 While the
re-mapping is thus effective for metrics based on
M-BERT, we still require the target-side LM to out-
perform BLEU. We assume the LM can address
challenges that the re-mapping apparently is not
able to handle properly; see our discussion in §5.1.

Overall, we remark that none of our metric com-
binations performs consistently best. The reason
may be that LASER and M-BERT are pretrained
over hundreds of languages with substantial differ-
ences in corpora sizes in addition to the different
effects of the re-mapping. However, we observe
that MOVER-2 + CLP(M-BERT) performs best

7However, in the appendix, we find that re-mapping
LASER using 2k parallel sentences achieves considerable
improvements on low-resourcing languages, e.g., kk-en (from
-61.1 to 49.8) and lt-en (from 68.3 to 75.9); see Table 8.



on average over all language pairs when the LM
is not added. When the LM is added, MOVER-2
+ CLP(M-BERT) ⊕ LM and COSINE + UMD
(LASER) ⊕ LM perform comparably. This indi-
cates that there may be a saturation effect when it
comes to the LM or that the LM coefficients should
be tuned individually for each semantic similarity
metric based on cross-lingual representations.

5 Analysis

We first analyze preferences of our metrics based
on M-BERT and LASER (§5.1) and then examine
how much parallel data we need for re-mapping our
vector spaces (§5.2). Finally, we discuss whether it
is legitimate to correlate our metric scores, which
evaluate the similarity of system predictions and
source texts, to human judgments based on system
predictions and references (§5.3).

5.1 Metric preferences
To analyze why our metrics based on M-BERT and
LASER perform so badly for the task of reference-
free MT evaluation, we query them for their pref-
erences. In particular, for a fixed source sentence
x, we consider two target sentences ỹ and ŷ and
evaluate the following score difference:

d(ỹ, ŷ;x) := m(x, ỹ)−m(x, ŷ) (1)

When d > 0, then metric m prefers ỹ over ŷ, given
x, and when d < 0, this relationship is reversed.
In the following, we compare preferences of our
metrics for specifically modified target sentences
ỹ over the human references y?. We choose ỹ to
be (1) a random reordering of y?, to ensure that
our metrics do not have the BOW (bag-of-words)
property, (2) a word-order preserving translation of
x (i.e., human-written or automatic word-by-word
translation coupled with human reordering of the
English y?). The latter tests for preferences for
literal translations, a common MT-system property.

Expert word-by-word translations and reorder-
ing. We had an expert (one of the co-authors)
translate 50 German sentences word-by-word into
English. Table 2 illustrates this scenario. We note
how bad the word-by-word translations sometimes
are even for the closely related language pair such
as German-English. For example, the word-by-
word translations in English retain the original Ger-
man verb final positions, leading to quite ungram-
matical English translations.

Figure 3 shows histograms for the d statistic for
the 50 selected sentences. This illustrates that both
MOVER + M-BERT and COSINE+LASER prefer
the original human references over random reorder-
ings, indicating that they are not BOW models, a
reassuring finding. They are largely indifferent be-
tween correct English word order and the situation
where the word order of the human reference is the
same as the German. Finally, they strongly pre-
fer the expert word-by-word translations over the
human references.

Taken together, this yields the following con-
clusions: (i) it appears that M-BERT and LASER
are mostly indifferent between correct target lan-
guage word order and the situation where source
and target language have identical word order; (ii)
this appears to make them prefer expert word-by-
word translations the most: for a given source text,
these have higher lexical overlap than human refer-
ences and in addition they have a favorable target
language syntax, viz., where the source and target
language word order are equal (confirmed by (i)).
This explains why our metrics do not perform well,
by themselves and without a language model, as
reference-free MT evaluation metrics. More worry-
ingly, it indicates that cross-lingual M-BERT and
LASER are not robust to the ‘adversarial inputs’
given by MT systems.

Automatic word-by-word translations. For a
large-scale analysis across different language pairs,
we resort to automatic word-by-word translations
obtained from Google Translate (GT). To do so,
we look up each word independently of context in
GT to compile dictionaries. When a word has sev-
eral translations, we keep the first one offered by
GT. Due to context-independence, the GT word-by-
word translations are of much lower quality than
the expert word-by-word translations since they of-
ten pick the wrong word senses—e.g., the German
word sein may either be a personal pronoun (his)
or the infinitive to be, which would be selected
correctly only by chance; cf. Table 2.

Instead of reporting histograms of d, we define a
“W2W” statistic that counts the relative number of
times that d(x′,y?) is positive, where x′ denotes
the literal translation of x into the target language:

W2W :=
1

N

∑
(x′,y?)

I( d(x′,y?) > 0 ) (2)

Here N normalizes W2W to lie in [0, 1] and a high
W2W score indicates the metric prefers transla-



x Dieser von Langsamkeit geprägte Lebensstil scheint aber ein Patentrezept für ein hohes Alter zu sein.
y? However, this slow pace of life seems to be the key to a long life.
y?-random To pace slow seems be the this life. life to a key however, of long
y?-reordered This slow pace of life seems however the key to a long life to be.
x′-GT This from slowness embossed lifestyle seems but on nostrum for on high older to his.
x′-expert This of slow pace characterized life style seems however a patent recipe for a high age to be.

x Putin teilte aus und beschuldigte Ankara, Russland in den Rücken gefallen zu sein.
y? Mr Putin lashed out accusing Ankara of stabbing Moscow in the back.
y?-random Moscow accusing lashed Putin the in Ankara out, Mr of back. stabbing
y?-reordered Mr Putin lashed out, accusing Ankara of Moscow in the back stabbing.
x′-GT Putin divided out and accused Ankara Russia in the move like to his.
x′-expert Putin lashed out and accused Ankara, Russia in the back fallen to be.

Table 2: Original German input sentence x, together with the human reference y?, in English, and a randomly
(y?-random) and expertly reordered (y?-reordered) English sentence as well as expert word-by-word translation
(x′) of the German source sentence. The latter is either obtained by the human expert or by Google Translate (GT).
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Figure 3: Histograms of d scores defined in Eq. (1). Left: Metrics based on LASER and M-BERT favor gold over
randomly-shuffled human references. Middle: Metrics are roughly indifferent between gold and reordered human
references. Right: Metrics favor expert word-by-word translations over gold human references.

tionese over human-written references. Table 3
shows that reference-free metrics with original em-
beddings (LASER and M-BERT) either still prefer
literal over human translations (e.g., 70.2 in cs-en)
or struggle in distinguishing them. Re-mapping
helps to a small degree. Only when combined with
the LM scores do we get adequate scores for the
W2W statistic. Indeed, the LM is expected to cap-
ture unnatural word order in the target language and
penalize word-by-word translations by recognizing
them as much less likely to appear in a language.

Note that for expert word-by-word translations,
we would expect the metrics to perform even worse.

Metrics cs-en de-en fi-en

COSINE + LASER 70.2 65.7 53.9
COSINE + CLP(LASER) 70.7 64.8 53.7
COSINE + UMD(LASER) 67.5 59.5 52.9
COSINE + UMD(LASER) ⊕ LM 7.0 7.1 6.4

MOVER-2 + M-BERT 61.8 50.2 45.9
MOVER-2 + CLP(M-BERT) 44.6 44.5 32.0
MOVER-2 + UMD(M-BERT) 54.5 44.3 39.6
MOVER-2 + CLP(M-BERT) ⊕ LM 7.3 10.2 6.4

Table 3: W2W statistics for selected language pairs.

2000 4000 6000 8000 10000

20

25

30

35

40

45

Pe
ar

so
n 

Co
rre

la
tio

n

Seven-languages-to-English

Mover-2 + CLP(M-BERT)
Mover-2 + UMD(M-BERT)
Mover-2 + M-BERT
Cosine + CLP(LASER)
Cosine + UMD(LASER)
Cosine + LASER

Figure 4: Comparison in sentence- and word- align-
ment on different size of the parallel corpus (x-axis).
The results are averaged on seven languages pairs in
WMT17.

5.2 Size of Parallel Corpora

Figure 4 compares sentence- and word-level re-
mapping trained with a varying number of paral-
lel sentences. Metrics based on M-BERT result
in the highest correlations after re-mapping, even
with a small amount of training data (1k). We ob-
serve that Cosine + CLP(LASER) and Mover-2 +
CLP(M-BERT) show very similar trends with a



sharp increase with increasing amounts of paral-
lel data and then level off quickly. However, the
M-BERT based Mover-2 reaches its peak and out-
performs the original baseline with only 1k data,
while LASER needs 2k before beating the corre-
sponding original baseline.

5.3 Human Judgments
The WMT datasets contain segment- and system-
level human judgments that we use for evaluat-
ing the quality of our reference-free metrics. The
segment-level judgments assign one direct assess-
ment (DA) score to each pair of system and human
translation, while system-level judgments associate
each system with a single DA score averaged across
all pairs in the dataset. We initially suspected the
DA scores to be biased for our setup—which com-
pares x with y—as they are based on comparing
y? and y. Indeed, it is known that (especially) hu-
man professional translators “improve” y?, e.g., by
making it more readable, relative to the original x
(Rabinovich et al., 2017). We investigated the valid-
ity of DA scores by collecting human assessments
in the cross-lingual settings (CLDA), where anno-
tators directly compare source and translation pairs
(x,y) from the WMT17 dataset. This small-scale
manual analysis hints that DA scores are a valid
proxy for CLDA. Therefore, we decided to treat
them as reliable scores for our setup and evaluate
our proposed metrics by comparing their correla-
tion with DA scores.

6 Conclusion

Existing semantically-motivated metrics for
reference-free evaluation of MT systems have so
far displayed rather poor correlation with human
estimates of translation quality. In this work, we
investigate a range of reference-free metrics based
on cutting-edge models for inducing cross-lingual
semantic representations: cross-lingual (contex-
tualized) word embeddings and cross-lingual
sentence embeddings. We have identified some
scenarios in which these metrics fail, prominently
their inability to punish literal word-by-word
translations (the so-called “translationese”). We
have investigated two different mechanisms for
mitigating this undesired phenomenon: (1) an
additional (weakly-supervised) cross-lingual
alignment step, reducing the mismatch between
representations of mutual translations, and (2)
language modeling (LM) on the target side, which
is inherently equipped to punish “unnatural”

sentences in the target language. We show that
the reference-free coupling of cross-lingual
similarity scores with the target-side language
model surpasses the reference-based BLEU in
segment-level MT evaluation.

We believe our results have two relevant implica-
tions. First, they portray the viability of reference-
free MT evaluation and warrant wider research
efforts in this direction. Second, they indicate that
reference-free MT evaluation may be the challeng-
ing (“adversarial”) evaluation task for multilingual
text encoders as it uncovers some of their shortcom-
ings (prominently, the inability to capture seman-
tically non-sensical word-by-word translations or
paraphrases) which remain hidden in their common
evaluation settings.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments and suggestions, which greatly
improved the final version of the paper. This work
has been supported by the German Research Foun-
dation as part of the Research Training Group
Adaptive Preparation of Information from Hetero-
geneous Sources (AIPHES) at the Technische Uni-
versität Darmstadt under grant No. GRK 1994/1.
The contribution of Goran Glavaš is supported
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7 Appendix

7.1 Zero-shot Transfer to Resource-lean
Language

Our metric allows for estimating translation qual-
ity on new domains. However, the evaluation is
limited to those languages covered by multilin-
gual embeddings. This is a major drawback for
low-resourcing languages—e.g., Gujarati is not in-
cluded in LASER. To this end, we take multilingual
USE (Yang et al., 2019) as an illustrating exam-
ple which covers only 16 languages (in our sample
Czech, Latvian and Finish are not included in USE).
We re-align the corresponding embedding spaces
with our re-mapping functions to induce evaluation
metrics even for these languages, using only 2k
translation pairs. Table 4 shows that our metric
with a composition of re-mapping functions can
raise correlation from zero to 0.10 for cs-en and
to 0.18 for lv-en. However, for one language pair,
fi-en, we see correlation goes from negative to zero,
indicating that this approach does not always work.
This observation warrants further investigation.

Metrics cs-en fi-en lv-en

BLEU 0.849 0.834 0.946

COSINE + LAS -0.001 -0.149 0.019
COSINE + CLP(USE) 0.072 -0.068 0.109
COSINE + UMD(USE) 0.056 -0.061 0.113
COSINE + CLP ◦ UMD(USE) 0.089 -0.030 0.162
COSINE + UMD ◦ CLP(USE) 0.102 -0.007 0.180

Table 4: The Pearson correlation of merics on segment-
level WMT17 dataset. ’◦’ marks the composition of
two re-mapping functions.



Setting Metrics cs-en de-en fi-en lv-en ru-en tr-en zh-en Average

m(y∗,y)
BLEU 0.971 0.923 0.903 0.979 0.912 0.976 0.864 0.933
CHRF++ 0.940 0.965 0.927 0.973 0.945 0.960 0.880 0.941

m(x,y)

Baseline with Original Embeddings

MOVER-1 + M-BERT 0.408 0.905 0.570 0.571 0.855 0.576 0.816 0.672
COSINE + LASER 0.821 0.821 0.744 0.754 0.895 0.890 0.676 0.800

Cross-lingual Alignment for Sentence Embedding

COSINE + CLP(LASER) 0.824 0.830 0.760 0.766 0.900 0.942 0.757 0.826
COSINE + UMD(LASER) 0.833 0.858 0.735 0.754 0.909 0.870 0.630 0.798

Cross-lingual Alignment for Word Embedding

MOVER-1 + RCSLS -0.693 -0.053 0.738 0.251 0.538 0.380 0.439 0.229
MOVER-1 + CLP(M-BERT) 0.796 0.960 0.879 0.874 0.894 0.864 0.898 0.881
MOVER-2 + CLP(M-BERT) 0.818 0.971 0.885 0.887 0.878 0.893 0.896 0.890
MOVER-1 + UMD(M-BERT) 0.610 0.956 0.526 0.599 0.906 0.538 0.898 0.719
MOVER-2 + UMD(M-BERT) 0.650 0.973 0.574 0.649 0.888 0.634 0.901 0.753

Combining Language Model

COSINE + CLP(LASER) ⊕ LM 0.986 0.909 0.868 0.968 0.858 0.910 0.800 0.900
COSINE + UMD(LASER) ⊕ LM 0.984 0.904 0.861 0.968 0.850 0.922 0.817 0.901
MOVER-2 + CLP(M-BERT) ⊕ LM 0.977 0.923 0.873 0.944 0.863 0.880 0.803 0.895
MOVER-2 + UMD(M-BERT) ⊕ LM 0.968 0.934 0.832 0.951 0.871 0.862 0.821 0.891

Table 5: Pearson correlations with system-level human judgments on WMT17 dataset.

Setting Metrics cs-en de-en et-en fi-en ru-en tr-en zh-en Average

m(y∗,y)
BLEU 0.233 0.415 0.285 0.154 0.228 0.145 0.178 0.234
YISI-1 0.319 0.488 0.351 0.231 0.300 0.234 0.211 0.305

m(x,y)

Baseline with Original Embeddings

MOVER-1 + M-BERT 0.005 0.229 0.179 0.115 0.100 0.039 0.082 0.107
COSINE + LASER 0.072 0.317 0.254 0.155 0.102 0.086 0.064 0.150

Cross-lingual Alignment for Word Embedding

COSINE + CLP(LASER) 0.093 0.323 0.254 0.151 0.112 0.086 0.074 0.156
COSINE + UMD(LASER) 0.077 0.317 0.252 0.145 0.136 0.083 0.053 0.152
COSINE + UMD ◦ CLP(LASER) 0.090 0.337 0.255 0.139 0.145 0.090 0.088 0.163
COSINE + CLP ◦ UMD(LASER) 0.096 0.331 0.254 0.153 0.122 0.084 0.076 0.159

Cross-lingual Alignment for Sentence Embedding

MOVER-1 + CLP(M-BERT) 0.084 0.279 0.207 0.147 0.145 0.089 0.122 0.153
MOVER-2 + CLP(M-BERT) 0.063 0.283 0.193 0.149 0.136 0.069 0.115 0.144
MOVER-1 + UMD(M-BERT) 0.043 0.264 0.193 0.136 0.138 0.051 0.113 0.134
MOVER-2 + UMD(M-BERT) 0.040 0.268 0.188 0.143 0.141 0.055 0.111 0.135
MOVER-1 + UMD ◦ CLP(M-BERT) 0.024 0.282 0.192 0.144 0.133 0.085 0.089 0.136
MOVER-1 + CLP ◦ UMD(M-BERT) 0.073 0.277 0.208 0.148 0.142 0.086 0.121 0.151
MOVER-2 + CLP ◦ UMD(M-BERT) 0.057 0.283 0.194 0.149 0.137 0.069 0.114 0.143

Combining Language Model

COSINE + UMD ◦ CLP(LASER) ⊕ LM 0.288 0.455 0.226 0.321 0.263 0.159 0.192 0.272
COSINE + CLP ◦ UMD(LASER) ⊕ LM 0.283 0.457 0.228 0.321 0.265 0.150 0.198 0.272
MOVER-1 + CLP ◦ UMD(M-BERT) ⊕ LM 0.268 0.428 0.292 0.213 0.261 0.152 0.192 0.258
MOVER-2 + CLP ◦ UMD(M-BERT) ⊕ LM 0.254 0.426 0.285 0.203 0.251 0.146 0.193 0.251

Table 6: Pearson correlations with segment-level human judgments on WMT18 dataset.



Setting Metrics cs-en de-en et-en fi-en ru-en tr-en zh-en Average

m(y∗,y)
BLEU 0.970 0.971 0.986 0.973 0.979 0.657 0.978 0.931
METEOR++ 0.945 0.991 0.978 0.971 0.995 0.864 0.962 0.958

m(x,y)

Baseline with Original Embeddings

MOVER-1 + M-BERT -0.629 0.915 0.880 0.804 0.847 0.731 0.677 0.604
COSINE + LASER -0.348 0.932 0.930 0.906 0.902 0.832 0.471 0.661

Cross-lingual Alignment for Sentence Embedding

COSINE + CLP(LASER) -0.305 0.934 0.937 0.908 0.904 0.801 0.634 0.688
COSINE + UMD(LASER) -0.241 0.944 0.933 0.906 0.902 0.842 0.359 0.664
COSINE + UMD ◦ CLP(LASER) 0.195 0.955 0.958 0.913 0.896 0.899 0.784 0.800
COSINE + CLP ◦ UMD(LASER) -0.252 0.942 0.941 0.908 0.919 0.811 0.642 0.702

Cross-lingual Alignment for Word Embedding

MOVER-1 + CLP(M-BERT) -0.163 0.943 0.918 0.941 0.915 0.628 0.875 0.722
MOVER-2 + CLP(M-BERT) -0.517 0.944 0.909 0.938 0.913 0.526 0.868 0.654
MOVER-1 + UMD(M-BERT) -0.380 0.927 0.897 0.886 0.919 0.679 0.855 0.683
MOVER-2 + UMD(M-BERT) -0.679 0.929 0.891 0.896 0.920 0.616 0.858 0.633
MOVER-1 + UMD ◦ CLP(M-BERT) -0.348 0.949 0.905 0.890 0.905 0.636 0.776 0.673
MOVER-1 + CLP ◦ UMD(M-BERT) -0.205 0.943 0.916 0.938 0.913 0.641 0.871 0.717
MOVER-2 + CLP ◦ UMD(M-BERT) -0.555 0.944 0.908 0.935 0.911 0.551 0.863 0.651

Combining Language Model

COSINE + UMD ◦ CLP(LASER) ⊕ LM 0.979 0.967 0.979 0.947 0.942 0.673 0.954 0.919
COSINE + CLP ◦ UMD(LASER) ⊕ LM 0.974 0.966 0.983 0.951 0.951 0.255 0.961 0.863
MOVER-1 + CLP ◦ UMD(M-BERT) ⊕ LM 0.956 0.960 0.949 0.973 0.951 0.097 0.954 0.834
MOVER-2 + CLP ◦ UMD(M-BERT) ⊕ LM 0.959 0.961 0.947 0.979 0.951 -0.036 0.952 0.815

Table 7: Pearson correlations with system-level human judgments on WMT18 dataset.

Direct Assessment
Setting Metrics de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

m(y∗,y) BLEU 0.849 0.982 0.834 0.946 0.961 0.879 0.899 0.907

m(x,y)

Existing Reference-free Metrics

IBM1-MORPHEME(Popović, 2012) 0.345 0.740 - - 0.487 - - -
IBM1-POS4GRAM(Popović, 2012) 0.339 - - - - - - -
LASIM(Yankovskaya et al., 2019) 0.247 - - - - 0.310 - -
LP(Yankovskaya et al., 2019) 0.474 - - - - 0.488 - -
YISI-2(Lo, 2019) 0.796 0.642 0.566 0.324 0.442 0.339 0.940 0.578
YISI-2-SRL(Lo, 2019) 0.804 - - - - - 0.947 -

Baseline with Original Embeddings

MOVER-1 + M-BERT 0.358 0.611 -0.396 0.335 0.559 0.261 0.880 0.373
COSINE + LASER 0.217 0.891 -0.745 -0.611 0.683 -0.303 0.842 0.139

Our Cross-lingual based Metrics

MOVER-2 + CLP(M-BERT) 0.625 0.890 -0.060 0.993 0.851 0.928 0.968 0.742
COSINE + CLP(LASER) 0.225 0.894 0.041 0.150 0.696 -0.184 0.845 0.381
COSINE + UMD ◦ CLP(LASER) 0.074 0.835 -0.633 0.498 0.759 -0.201 0.610 0.277

Our Cross-lingual based Metrics ⊕ LM

COSINE + CLP(LASER) ⊕ LM 0.813 0.910 -0.070 -0.735 0.931 0.630 0.711 0.456
COSINE + UMD(LASER) ⊕ LM 0.817 0.908 -0.383 -0.902 0.929 0.573 0.781 0.389
MOVER-2 + CLP(M-BERT) ⊕ LM 0.848 0.907 -0.068 0.775 0.963 0.866 0.827 0.731
MOVER-2 + UMD(M-BERT) ⊕ LM 0.859 0.914 -0.181 -0.391 0.970 0.702 0.874 0.535

Table 8: Pearson correlations with system-level human judgments on WMT19 dataset. ’-’ marks the numbers not
officially reported in (Ma et al., 2019).


