
RDF2vec Embeddings for Updateable Knowledge
Graphs – Reuse, don’t Retrain!⋆

Sang Hyu Hahn and Heiko Paulheim[0000−0003−4386−8195]

University of Mannheim, Data and Web Science Group, Germany
heiko.paulheim@uni-mannheim.de

Abstract. Most Knowledge Graph Embeddings, like RDF2vec, are de-
signed to be trained on a fixed knowledge graph (KG). When that KG
is updated, they usually need to be retrained from scratch, which takes
quite a bit of time. In this paper, we introduce a method of incrementally
updating an RDF2vec embedding instead of retraining it. We conduct
an experiment using different snapshots of DBpedia, demonstrating that
this is a competitive, yet faster method to obtain embedding vectors of
an updated knowledge graph, which sometimes even yields better results
than retraining from scratch.

Keywords: Updateable Knowledge Graphs · Embeddings · RDF2vec

1 Introduction

Knowledge Graph Embeddings (KGEs) are widely used, e.g., for link prediction
in knowledge graphs, or to provide dense representations for other downstream
tasks, such as node classification or recommender systems [7]. The vast majority
of KGE approaches assume a static knowledge graph, i.e., upon an update of
that graph, the embeddings have to be re-trained from scratch [1]. At the same
time, training KGEs is usually a time and resource consuming process.

In this paper, we consider a widely used KGE technique, i.e., RDF2vec [5],
and show how it can be adapted so that existing KGEs can be updated rather
than re-trained. We look at four different snapshots of DBpedia [4], and compare
embedding models which are trained on an earlier version and updated to a newer
one to those freshly trained on the new version. We show that the results with
updated KGEs on downstream tasks are en par or even superior, at much lower
training efforts. Other than approaches like OUKE [2] and DKGE [9], it can also
update embeddings of entities without changes in their direct context, and also
supports the addition of new relations, not only new entities.

2 Approach

Our approach builds upon the capability of word2vec to resume training based
on new sentences, updating both vectors for existing words, as well as learning
⋆ Acknowledgement: Supported by the state of Baden-Württemberg through bwHPC.



2 S. H. Hahn and H. Paulheim

Data: Winit an initial set of walks, d: walk depth
Result: Wfinal: Set of walks
for walk w ∈ Winit do

while w.length() < d do
if (random()<0.5) then

edge = pickRandomFrom(getIngoingEdges(w.first()))
add edge at beginning of w

end
else

edge = pickRandomFrom(getOutgoingEdges(w.last()))
add edge at end of w

end
end

end
add w to Wfinal

Algorithm 1: Overall walk generation algorithm for generating new walks

vectors for new words.1 To that end, new walks reflecting the updates in a KG
have to be extracted. We pursue three strategies to extract new walks for an
updated KG.

All of them are inspired by the algorithm of RDF2vec Light, which extracts
walks for specific entities [8]. With G = (V,E) being the KG for which an
embedding has already been trained, and G′ = (V ′, E′) being the new version
of the KG, the three strategies all call algorithm 1 with different sets of walks
Winit:

Entity-based computes a set of n walks for each new entity. Calls algorithm 1
with Winit being the set of (0-hop) walks constituted by V ′ \ V .

Edge-based computes a set of n walks for each new edge. Calls algorithm 1
with Winit being the set of 1-hop walks constituted by E′ \ E.

Combined computes a set of n walks for each new entity, and for each new
edge connecting two existing entities. Calls Winit for the union of 0-hop
walks constituted by V ′ \ V , and 1-hop walks constituted by
{(e1, r, e2) ∈ E′ \ E | e1 /∈ V ′ \ V ∧ e2 /∈ V ′ \ V }.

The last approach is faster than the edge-based approach for new entities, since
it generates n walks per new entity in G’, while the edge-based approach would
generate n · d walks, where d is the degree of the new entity.

3 Experiments

In our experiments, we use four snapshots of DBpedia2. All three update scenar-
ios start from the 2019-09 version (4.3M entities, 11.8M triples) and update the
1 https://radimrehurek.com/gensim/auto_examples/tutorials/run_word2vec.
html#online-training-resuming-training

2 https://databus.dbpedia.org/dbpedia/mappings/mappingbased-objects



RDF2vec Embeddings for Updateable Knowledge Graphs 3

Table 1. DBpedia versions used in the experiments

Version #Entities #Triples #relations
2019-09 4,256,911 11,799,129 621
2020-12 7,266,101 21,384,769 635
2021-12 7,347,010 22,072,275 634
2022-12 7,958,883 22,791,171 633

Fig. 1. Depiction of runtimes, split by walk generation (white) and model train-
ing/update (black).

embeddings to the 2020-12 (7.3M entities, 21.3M triples, 2021-12 (7.3M entities,
22.0M triples), and 2022-12 (8.0M entities, 22.8M triples) version, respectively.
We run experiments with 10, 20, and 50 walks per new entity and/or edge.
Statistics about the datasets are depicted in table 1.

We use the gEval benchmark suite [6], which defines different tasks for eval-
uating and comparing KGEs, and the RDF2vec parameters reported to work
best in past works3.4 The results are shown in tables 2 and 3. The runtimes5 for
creating the KGEs are depicted in Fig. 1.

4 Summary and Limitations

The results show that the update mechanism can update RDF2vec representa-
tions for new versions of a KG, in most of the cases performing at least as good
or even better than fully retrained ones, but with less consumption of computa-
tional resources. While the fact that updated embeddings may even outperform
those retrained from scratch might come as a surprise, it can be explained by
the fact that an updated KGE can reflect knowledge encoded in both versions of
the KG, not just one, and, hence, may even encode more information.

Currently, the approach only supports addition of entities and edges. The case
where entites and edges are removed is not directly addressed by our approach.

3 Skip-gram, 5 epochs, 200 dimensions, window size=5, depth=8
4 Code to reproduce experiments: https://github.com/sanghyu/RDF2vec-Update
5 Intel Xeon Gold 6230 (2.1 Ghz), using 8 cores with 300GB RAM



4 S. H. Hahn and H. Paulheim

Table 2. Classification (C, accuracy) and regression (R, RMSE) results. The best
performing results per DBpedia version are marked in bold; all results outperforming
retraining from scratch are marked in grey.

AAUP Cities Forbes Albums Movies
Strategy C R C R C R C L C R
Baseline 2019 .670 71.965 .771 18.112 .568 40.738 .632 15.167 .733 22.525
Retrain 2020 .708 64.510 .776 14.340 .597 36.414 .659 15.698 .747 19.752
Entity 2020 (n=10) .687 66.347 .789 14.668 .602 36.483 .682 15.163 .705 21.882
Entity 2020 (n=20) .713 64.154 .772 14.112 .610 37.372 .726 14.154 .726 21.056
Entity 2020 (n=50) .704 63.464 .757 13.869 .610 37.803 .742 14.369 .731 20.355
Edge 2020 (n=10) .708 62.061 .770 12.595 .625 37.345 .760 13.338 .756 19.587
Edge 2020 (n=20) .709 63.925 .791 12.238 .611 36.680 .776 13.526 .750 19.403
Edge 2020 (n=50) .701 64.484 .778 12.035 .609 35.941 .757 13.368 .750 19.148
Comb. 2020 (n=10) .704 62.572 .783 13.863 .621 37.083 .748 13.799 .733 21.143
Comb. 2020 (n=20) .699 62.586 .778 12.832 .616 36.245 .764 13.158 .738 20.514
Comb. 2020 (n=50) .693 63.594 .763 12.732 .617 36.414 .773 12.691 .756 19.748
Retrain 2021 .715 65.680 .776 14.255 .617 37.513 .649 14.927 .738 20.219
Entity 2021 (n=10) .689 67.052 .794 14.137 .602 37.034 .680 15.413 .703 21.993
Entity 2021 (n=20) .691 65.430 .782 13.931 .604 37.244 .717 14.359 .717 21.220
Entity 2021 (n=50) .707 63.956 .780 14.140 .609 37.323 .727 14.536 .723 20.553
Edge 2021 (n=10) .708 63.069 .785 13.937 .618 37.220 .752 13.664 .753 19.606
Edge 2021 (n=20) .710 63.659 .786 13.719 .606 37.292 .772 13.198 .746 19.539
Edge 2021 (n=50) .693 64.388 .787 13.594 .615 36.057 .783 12.734 .747 19.481
Comb. 2021 (n=10) .699 65.351 .807 13.943 .625 37.597 .752 13.899 .732 21.237
Comb. 2021 (n=20) .709 64.583 .785 13.469 .619 36.580 .770 13.198 .730 20.737
Comb. 2021 (n=50) .715 64.684 .790 13.957 .621 36.263 .771 12.825 .743 19.964
Retrain 2022 .674 66.313 .773 16.639 .617 37.165 .691 14.830 .731 19.808
Entity 2022 (n=10) .687 66.347 .789 14.668 .602 36.483 .682 15.163 .705 21.882
Entity 2022 (n=20) .704 64.619 .786 14.221 .606 37.160 .727 14.402 .725 21.186
Entity 2022 (n=50) .703 64.652 .781 13.611 .605 37.347 .722 14.202 .729 20.655
Edge 2022 (n=10) .707 62.957 .785 13.043 .619 37.235 .742 13.664 .755 19.596
Edge 2022 (n=20) .698 63.931 .783 13.113 .618 37.820 .748 13.284 .754 19.349
Edge 2022 (n=50) .696 65.469 .806 12.517 .610 36.866 .768 13.256 .749 19.289
Comb. 2022 (n=10) .696 64.327 .777 13.426 .618 37.215 .741 13.850 .729 21.033
Comb. 2022 (n=20) .701 64.249 .779 13.437 .618 37.272 .765 13.151 .734 20.248
Comb. 2022 (n=50) .702 64.351 .783 13.133 .616 36.888 .760 12.954 .744 20.248

For those cases, a combination with techniques that forget and reconstruct em-
beddings, as suggested in [3], might be useful.

The fact that, in many cases, using updated KGEs even outperforms using
KGEs fully retrained from scratch yields the interesting question whether this
should be considered a general training paradigm for RDF2vec on versioned
knowledge graphs, as it indicates that incrementally training those embeddings
might yield better embeddings than only training on the version for which the
embedding is needed.

References

1. Biswas, R., Kaffee, L.A., Cochez, M., Dumbrava, S., Jendal, T.E., Lissandrini, M.,
Lopez, V., Mencía, E.L., Paulheim, H., Sack, H., et al.: Knowledge graph embed-
dings: open challenges and opportunities. Transactions on Graph Data and Knowl-
edge 1(1), 4–1 (2023)

2. Fei, L., Wu, T., Khan, A.: Online updates of knowledge graph embedding. In: Com-
plex Networks & Their Applications. pp. 523–535. Springer (2022)

3. Krause, F.: Dynamic knowledge graph embeddings via local embedding reconstruc-
tions. In: European Semantic Web Conference. pp. 215–223. Springer (2022)



RDF2vec Embeddings for Updateable Knowledge Graphs 5

Table 3. Clustering (accuracy), Semantic Analogies (accuracy), Document Similarity
(Kendall’s Tau), and Entity Similarity (Harmonic Mean) results. The best performing
results per DBpedia version are marked in bold; all results outperforming retraining
from scratch are marked in grey.

Clustering Semantic Analogies Ent. Doc.
Strategy cit/cou (2k) cit/cou 5 cls. teams cap-cou cap-cou (all) curr cit-stat Rel. Sim.
Baseline 2019 .628 .593 .522 .862 .352 .263 .387 .356 .457 .293
Retrain 2020 .809 .590 .787 .502 .755 .677 .418 .336 .513 .346
Entity 2020 (n=10) .730 .821 .781 .864 .879 .816 .299 .485 .430 .424
Entity 2020 (n=20) .729 .843 .784 .781 .761 .822 .399 .446 .451 .405
Entity 2020 (n=50) .733 .671 .756 .779 .715 .803 .491 .383 .486 .396
Edge 2020 (n=10) .732 .741 .779 .783 .662 .783 .478 .334 .489 .414
Edge 2020 (n=20) .756 .708 .782 .782 .642 .749 .510 .267 .508 .423
Edge 2020 (n=50) .828 .636 .790 .778 .626 .725 .528 .198 .512 .414
Comb. 2020 (n=10) .757 .739 .681 .862 .773 .789 .382 .469 .474 .427
Comb. 2020 (n=20) .776 .708 .751 .783 .820 .788 .469 .319 .696 .419
Comb. 2020 (n=50) .819 .663 .765 .780 .810 .793 .519 .350 .509 .420
Retrain 2021 .825 .633 .772 .490 .739 .683 .461 .347 .547 .425
Entity 2021 (n=10) .748 .823 .719 .858 .836 .799 .363 .466 .426 .438
Entity 2021 (n=20) .747 .726 .754 .782 .781 .805 .423 .409 .457 .430
Entity 2021 (n=50) .785 .675 .746 .780 .670 .756 .464 .317 .473 .410
Edge 2021 (n=10) .774 .736 .756 .787 .674 .740 .462 .218 .504 .444
Edge 2021 (n=20) .803 .702 .763 .783 .652 .722 .479 .178 .506 .454
Edge 2021 (n=50) .864 .655 .759 .777 .634 .668 .488 .140 .506 .464
Comb. 2021 (n=10) .788 .735 .660 .860 .767 .764 .452 .363 .489 .451
Comb. 2021 (n=20) .834 .706 .756 .820 .773 .761 .483 .309 .495 .463
Comb. 2021 (n=50) .848 .655 .762 .780 .804 .683 .461 .347 .510 .464
Retrain 2022 .828 .653 .774 .476 .725 .635 .384 .343 .532 .392
Entity 2022 (n=10) .730 .821 .781 .864 .879 .816 .299 .485 .430 .424
Entity 2022 (n=20) .769 .833 .775 .804 .800 .811 .359 .438 .460 .422
Entity 2022 (n=50) .741 .672 .776 .785 .739 .749 .428 .352 .494 .419
Edge 2022 (n=10) .778 .736 .780 .794 .709 .743 .428 .295 .515 .433
Edge 2022 (n=20) .797 .695 .768 .793 .682 .701 .431 .219 .510 .444
Edge 2022 (n=50) .849 .641 .783 .780 .702 .692 .448 .165 .507 .461
Comb. 2022 (n=10) .731 .738 .756 .860 .848 .801 .383 .435 .502 .429
Comb. 2022 (n=20) .790 .712 .763 .792 .828 .769 .425 .377 .503 .422
Comb. 2022 (n=50) .837 .645 .782 .775 .812 .746 .443 .316 .572 .442

4. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., et al.: Dbpedia–a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic web 6(2), 167–195
(2015)

5. Paulheim, H., Ristoski, P., Portisch, J.: Embedding Knowledge Graphs with
RDF2vec. Springer Nature (2023)

6. Pellegrino, M.A., Altabba, A., Garofalo, M., Ristoski, P., Cochez, M.: Geval: a
modular and extensible evaluation framework for graph embedding techniques. In:
ESWC. pp. 565–582. Springer (2020)

7. Portisch, J., Heist, N., Paulheim, H.: Knowledge graph embedding for data mining
vs. knowledge graph embedding for link prediction–two sides of the same coin?
Semantic Web (2022)

8. Portisch, J., Hladik, M., Paulheim, H.: Rdf2vec light–a lightweight approach for
knowledge graph embeddings. arXiv preprint arXiv:2009.07659 (2020)

9. Wu, T., Khan, A., Yong, M., Qi, G., Wang, M.: Efficiently embedding dynamic
knowledge graphs. Knowledge-Based Systems 250, 109124 (2022)


