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Abstract: Markov logic is a powerful tool for handling the uncertainty that
arises in real-world structured data; it has been applied successfully to a num-
ber of data management problems. In practice, the resulting ground Markov
logic networks can get very large, which poses challenges to scalable inference.
In this paper, we present the first fully parallelized approach to inference in
Markov logic networks. Inference decomposes into a grounding step and a
probabilistic inference step, both of which can be cost-intensive. We propose
a parallel grounding algorithm that partitions the Markov logic network based
on its corresponding join graph; each partition is ground independently and
in parallel. Our partitioning scheme is based on importance sampling, which
we use for parallel probabilistic inference, and is also well-suited to other,
more efficient parallel inference techniques. Preliminary experiments suggest
that significant speedup can be gained by parallelizing both grounding and
probabilistic inference.

1 Introduction

Real-world data is often inconsistent, noisy, or incomplete. Markov
logic [RD06] is a recent, promising approach to handle such uncertainty in struc-
tured data. It has been employed successfully in a number of applications, includ-
ing link prediction [RD06], entity resolution [SD06], information extraction [PD07],
and ontology learning [PD10]. At its heart, Markov logic bridges the gap between
first-order logic and probability theory: The former allows to encode and reason
about deterministic information, the latter is well-suited to manage uncertainty.

A Markov logic network (MLN) is a set of first-order logic formulas called rules;
each rule is associated with a numerical weight. For example, suppose that we are
given a university database in which the advisedBy relation between students and
professors is incomplete. MLNs allow us to use rules such as “if a student and a
professor have a joint publication, then the student is advised by the professor” to
approach this link prediction problem. This rule appears helpful but is inherently
uncertain, i.e., it is true in many but not all cases. MLNs thus attach a weight
(say, 2.5) to this rule; the weight is related to the confidence that instances of the
rule are true. Formally, we obtain

2.5: ∀s.∀p.∀t. student(s) ∧ professor(p) ∧ authorOf(p, t) ∧ authorOf(s, t)
=⇒ advisedby(s, p).
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Inference in Markov logic is performed by grounding the network using an evi-
dence database of known facts and a set of constants. The output of this grounding
step is a Markov network, on which probabilistic inference is performed subse-
quently. The evidence database and, even more so, the ground network can be
very large. A (somewhat naive) grounding of the above rule with 1000 students, 10
professors, and 100 publications results in one million instances, connecting tens of
thousands of variables (such as advisedBy(Anna, Bob)). In real-world applications,
in which the involved datasets can be much larger, both grounding and probabilistic
inference pose severe challenges to the scalability of Markov logic.

In this paper, we propose a fully parallel approach to scalable inference
in Markov logic. Most prior work has focused on efficient grounding meth-
ods [SN09, MR10, NRDS11] or parallel probabilistic inference [GLGG11]. In con-
trast, our approach is holistic in that we parallelize both grounding and probabilis-
tic inference. In more detail, we develop a simple yet effective technique to partition
an MLN in such a way that each partition can be ground independently and in
parallel (using a grounding method of choice). In addition to reducing grounding
time, the resulting ground network is readily partitioned and well-suited for parallel
probabilistic inference (again, using a method of choice). Our approach thus com-
pletely avoids expensive network partitioning and data redistribution steps after
grounding.

The contributions of this paper are as follows: (1) We propose a framework
for fully parallel inference in Markov logic networks. (2) We derive and analyze a
parallel inference algorithm based on importance sampling. This algorithm may
not be the best-performing choice in practice, but it provides valuable insight into
how to obtain a good partitioning of a ground Markov logic network over a set
of compute nodes. (3) We develop and analyze a practical algorithm for parti-
tioning a ground Markov network based on minimum graph cuts. (4) Based on
the insights obtained by our analysis, we propose a novel partitioning scheme for
Markov logic networks. In contrast to prior work, we partition the network before
we ground it. This approach avoids the need for partitioning and redistributing
the ground network. (5) We present results of a preliminary experimental study
on real-world data. Our results suggest that significant speedup can be gained by
both parallelizing grounding and parallelizing probabilistic inference.

2 A Primer On Markov Logic Networks

Recall that a Markov logic network is a set of weighted rules (first-order logic
formulas). Fig. 1 displays an excerpt of practical MLN used for predicting the
advisedBy relation [RD06]; the example is very simple for expository reasons. The
first rule states that advisees must be students and the second rule states that
advisors must be professors or senior researchers. The higher weight of the second
rule indicates that its instances are more likely to be satisfied than instances of the
first rule.

To understand the semantics of a Markov logic network, we need to ground
the network using a specific set of constants, i.e., students and professors. The
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Rule Weight Formula

1 1.7 ∀s.∀p. ¬student(s) =⇒ ¬advisedBy(s, p)
2 2.5 ∀s.∀p. advisedBy(s, p) =⇒ hasPosition(p, Professor)

∨ hasPosition(p, Senior Researcher)

Figure 1: Excerpt of a Markov logic network for predicting the advisedBy relation
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Figure 2: Factor graph representation of a ground MLN

output of the grounding process can be represented by a factor graph. A factor
graph is a bipartite graph in which nodes correspond to either Boolean random
variables (ovals) or factors (boxes). Each Boolean variable represents a grounding
of an atom that occurs in an MLN rule. For example, suppose that Anna and Bob
are students (domain of s) and that Charles and Debbie are professors (domain of
p). We obtain the 10 Boolean variables shown in Fig. 2, e.g., s(A) and aB(A, C).
Informally, factors represent groundings of MLN rules; see [RD06] for a formal
definition. In our example, there are 8 factors; the two variables mentioned above
are connected by factor f11. Each factor can be seen as a function over the variables
that it is connected to. Given a valuation of these variables, the factor outputs the
(exponential of the) weight of its corresponding rule if satisfied under the valuation;
otherwise the factor outputs 1. We obtain

f11(s(A), aB(A, C)) =

{
e1.7 if ¬s(A) =⇒ ¬aB(A, C),

1 otherwise.

Note that the exponentiation here implies that the value of a factor is always
positive. Negative weights correspond to factor values less than one (rules that are
“usually” wrong), zero weights correspond to factor value one (no influence), and
positive weights correspond to factor values larger than one (usually true).

If the truth value of a ground atom is known from the evidence database,
we clamp the value of the corresponding Boolean variable appropriately. These
evidence variables form the “data” for inferring statistics of the unknown variables.
If a predicate is ground under closed-world semantics, we additionally clamp the
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values of ground atoms that do not occur in the evidence database to false; such
a grounding semantic is useful for predicates that are completely known. Note
that the factor graph can be simplified by eliminating evidence variables; this
simplification is usually performed directly during grounding for efficiency reasons.
Under the alternate open-world semantics, the value of the ground atoms that do
not occur in the database are not clamped. In our ongoing example, we use the
open-world semantics and an empty evidence database for simplicity.

After grounding, we perform probabilistic inference to make statements about
the probability distribution of the unknown Boolean variables. We refer to pred-
icates that we are ultimately interested in as query predicates (here advisedBy);
the corresponding Boolean variables are referred to as query variables. The factor
graph defines a probability distribution that assigns a probability P (x) to each
world x, i.e., to each distinct assignment of values to the unknown variables X:

P (X = x) =
1

ZP

∏
f∈F

f(xf ). (1)

Here ZP is a normalization constant that ensures summation to one, F denotes
the set of all factors, and xf denotes the values in x of the variables connected to
factor f . Observe that the probability of a given world depends on both the number
and the weights of the ground rules that are satisfied. If we increase the weight of
a specific rule, then worlds that satisfy that rule become more likely while other
worlds become less likely. In this paper, we focus on marginal inference, i.e., we
want to infer the marginal distribution of each query variable (e.g., the probability
that aB(A, B) is true).

The meaningfulness of the result of probabilistic inference depends on the
information captured in the MLN. In general, rules are created by domain experts
or learned from training data. Weight assignment is very difficult for humans
because different formulas correlate with each other; weights are thus almost always
learned from training data. In this paper, we assume that we are given an already
learned MLN. Nevertheless, our methods and techniques are also helpful for scaling
up the learning process, which makes repeated use of an inference component.

A thorough and accessible treatment of Markov logic can be found in [RD06];
factor graphs and techniques for probabilistic inference are discussed in [KF09].

3 Related Work

A well-known implementation of Markov logic is Alchemy [KSRD05], which in-
cludes both learning and inference components. Inference is performed as described
above: the MLN is grounded using the evidence database and a probabilistic in-
ference algorithm is run on the resulting factor graph. This traditional approach
is illustrated in Figure 3(a). A number of techniques have been proposed to speed
up inference, including clustering of query literals [MR10], reducing the size of
the ground network [SN09], incremental grounding [Rie08], in-database ground-
ing [NRDS11], and task-specific probabilistic MAP inference [NZRS11]. In this
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(a) Sequential (b) Partly parallel (c) Fully parallel

Figure 3: Comparison of approaches to parallel inference in Markov logic

paper, we propose a fully parallel framework for speeding up inference in Markov
logic. Since our framework is oblivious to the actual grounding algorithm and (to a
lesser extent) to the probabilistic inference algorithms being run at worker nodes,
most of the techniques mentioned above still apply.

Parallel probabilistic inference has received a lot of attention in the liter-
ature [DVKMG09, ASW08, NASW07, NRDS11, GLGG11]. In the context of
Markov logic, Tuffy [NRDS11] implements a partly parallel approach to inference.
In contrast to the sequential approach taken by Alchemy, Tuffy runs a graph par-
titioning algorithm on the factor graph obtained by the grounding algorithms, and
subsequently runs a simple parallel algorithm for probabilistic inference on the
partitions; see Figure 3(b). Since Tuffy also uses efficient in-database grounding,
it is highly efficient and scalable. A potential bottleneck of Tuffy is the graph
partitioning step; finding a minimum-cost balanced partition is NP-hard even for
quite simple MLNs [NRDS11]. In fact, Tuffy resorts to a simple heuristic algorithm
because even state-of-the-art graph partitioners are too expensive in practice.

Our work is inspired by Tuffy but also parallelizes the grounding and graph
partitioning steps. As shown in Fig. 3(c), we partition the Markov logic network
before grounding. A key advantage of this approach is that the expensive graph
partitioning step is performed on the small MLN (data independent) instead of on
the large factor graph (data dependent). Each partition of the resulting partitioned
MLN is ground independently and in parallel; the output of the grounding step is
thus a readily partitioned factor graph. Our MLN partitioning is designed such
that the partitioned factor graph is suitable for parallel probabilistic inference;
our experiments suggest that this approach can outperform state-of-the-art graph



210

partitioners in both speed and quality.

4 Parallel Probabilistic Inference

In general, exact probabilistic inference in ground Markov logic networks is
intractable so that all existing implementations use some form of approximate
inference; e.g., local search, belief propagation, or Markov Chain Monte Carlo
(MCMC) sampling. In large applications, where factor graphs consist of millions
of variables and factors, even approximate inference can be prohibitively expensive.

In this section, we show how to parallelize an arbitrary MCMC sampling tech-
nique via importance sampling. Our main objective is to gain understanding in
how to partition a factor graph in a way that allows for efficient parallel inference.
Our results are the basis for the MLN partitioning methods described in Sec. 5.
Note that, in general, the MLN partitioning method needs to be designed for the
specific probabilistic inference algorithm being used. As discussed later on, our
framework is flexible enough to allow for a number of existing, potentially more
efficient parallel inference methods [GLGG11].

4.1 Importance Sampling

In general, MCMC sampling techniques [KF09] explore the probability distri-

bution of X by analyzing a subset X(1), X(2), . . . , X(n) of the possible worlds; these
subsets are referred to as samples. MCMC methods differ in how these samples
are generated; in general, these methods construct a Markov chain that consists of
one state for each possible world and has a stationary distribution of (exactly or
approximately) P (X). Samples from the Markov chain are generally dependent,
but the dependencies decrease the further apart the samples are taken. We thus
assume that X(1), X(2), . . . , X(n) are independent samples from X.

Given samples X(1), X(2), . . . , X(n), we can estimate the expected value of
any function h(X) over the possible worlds as follows:

µ = E [ h(X) ] ≈
1

n

n∑
i=1

h(X(i)) = µ̂.

In our setting of marginal estimation, we use functions of form h(X) = IX for some
query variable X ∈ X. Here, indicator IX takes value 1 if X is true; otherwise it
takes value 0. For example, if h(X) = IaB(A,C), then µ is equal to the probability
that Anna is advised by Charlie. Our estimate µ̂ of µ is simply the fraction of
samples in which Charlie advised Anna. Under our assumptions, µ̂ has variance

Var [ µ̂ ] = Var
[ 1

n

n∑
i=1

h(X(i))
]

=
Var [ h(X)] ]

n
, (2)

which decreases linearly in the number n of samples.
Two aspects play a key role in selecting a sampling method: the time to obtain

a sample X(i) and the number of required samples to reach the desired accuracy.
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Importance sampling (IS) is a method to increase efficiency by replacing the target
distribution P (X) by a new proposal distribution Q(X). The increase in efficiency
is obtained by either reducing the variance of the estimator (numerator of (2)) or
by increasing the number of samples that can be obtained in a given amount of
time (denominator). Since samples are taken from the “wrong” distribution Q(X),

we assign an importance weight w(X(i)) = P (X(i))/Q(X(i)) to each sample from
the proposal distribution. We have

EP [ h(X) ] =

∫
h(x)P (x) dx =

∫
h(x)w(x)Q(x) dx = EQ [ h(X)w(X) ].

Here we use subscripts P and Q to indicate the distribution w.r.t. which the ex-
pectation is taken. Note that EQ [ w(X) ] = 1 and that, for example, w(X(i)) > 1

if possible world X(i) is more likely under P than under Q. Thus the importance
of sample X(i) (when sampled from Q) is higher than average because we see the
sample with lower probability than required.

The previous discussion assumes that the target distribution P (X) is known.
In the case of factor graphs, however, computing P (x) for some possible world x
is intractable in general because we do not know the normalization constant ZP of
Eq. (1). Instead, we make use of an unnormalized distribution P̃ (X) = ZP P (X) =∏

f∈F f(Xf ) (similarly Q̃). We obtain the normalized IS estimator

µ̂IS =

∑n

i=1 w̃(X(i))h(X(i))∑n

i=1 w̃(X(i))
≈ EQ[h(X)], (3)

where w̃(X(i)) = P̃ (X(i))/Q̃(X(i)) are unnormalized importance weights. Es-
timator µ̂IS is consistent,1 asymptotically unbiased, and has approximate vari-
ance [KF09]

VarQ(µ̂IS) ≈
(1 + VarQ[w(X)]) VarP [h(X)]

n
. (4)

Thus the performance of estimator µ̂IS is governed by (i) properties of the proposal
and target distributions and (ii) the number of samples that can be taken in a
given amount of time. Note that if P = Q, we obtain the standard Monte Carlo
estimator and variance given in Eq. (2).

See [KF09] for a more thorough treatment of importance sampling.

4.2 Parallel Probabilistic Inference with Importance Sampling

Given a target factor graph GP = (V, FP ) obtained from grounding the MLN,
we parallelize probabilistic inference by constructing a proposal factor graph GQ =
(V, FQ) from GP in such a way that sampling from GQ can be easily parallelized.
Here GP represents the target distribution P while GQ represents the proposal
distribution Q. Since GP and GQ can represent different distributions, we use

1Here we assume that Q(x) != 0 whenever P (x)h(x) != 0, which holds for our choice of Q.
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(a) Proposal distribution (black nodes and edges only)
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Figure 4: Partitioning of the factor graph for the university network

importance sampling to ensure that our estimates of marginal probabilities are
(asymptotically) correct.

Denote by k the number of available processors. We obtain GQ by partition-
ing the set of variables V into k partitions V1, . . . , Vk such that

⋃
i Vi = V and

Vi ∩ Vj = ∅ for i 1= j, 1 ≤ i, j ≤ k; we discuss how to actually obtain these
partitions in subsequent sections. During the sampling process, processor i will
be responsible for sampling the variables in partition Vi. For example, consider
the ground university network reproduced in Fig. 4(a). Setting k = 2, a potential
partitioning is given by setting

V1 = { s(A), aB(A, C), aB(B, C), hP(C, P), hP(C, SR) }

and
V2 = { s(B), aB(A, D), aB(B, D), hP(D, P), hP(D, SR) } .

We can now construct a factor graph Gi = (Vi, Fi) for each partition by considering
only a “local” subset of the factors from GP , i.e., by setting

Fi = { f ∈ FP : all neighbors of f are contained in Vi } .

In our example, we have F1 = { f11, f21, f23 } and F2 = { f22, f24, f14 }. The pro-
posal factor graph GQ is given by the union of the factor graphs for each partition,
i.e., FQ =

⋃
i Fi. In our ongoing example, the proposal factor graph consists of the

black nodes and edges in Fig. 4(a).
The partitioning approach described above ensures that in GQ, there are no

connections in between the set of variables in Vi and the set of variables in Vj ,
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i 1= j. One can show that this implies that the variables in Vi are probabilistically
independent from the variables in Vj . This allows us to parallelize sampling from
GQ: Each processor i runs an arbitrary MCMC sampling scheme on factor graph
Gi. To obtain a sample from the entire proposal distribution GQ, we take the union
of the samples produced by each processor (conceptually, see below).

We can view GQ as a factor graph obtained from GP by “dropping” some of
the factors. Since these factors have no influence on the samples obtained from
GQ, we need to account for their effect via the importance weights. Denote by
Gcut = (Vcut, Fcut) a cut factor graph that consists of the factors dropped from GP

and the variables directly connected to these factors; i.e.,

Fcut = FP \ FQ

and
Vcut = { v ∈ V : v is connected to at least one factor in Fcut } .

In our example, we have Fcut = { f12, f13 } and Vcut = { s(A), s(B), aB(B, C),
aB(A, D) }. The corresponding factor graph is shown in Fig. 4(b). To obtain the
unnormalized importance weights, observe that

w̃(X) =
P̃ (X)

Q̃(X)
=

∏
f∈FP

f(Xf )∏
f∈FQ

f(Xf )
=

(∏
f∈FQ

f(Xf )
) (∏

f∈Fcut
f(Xf )

)
∏

f∈FQ
f(Xf )

=
∏

f∈Fcut

f(Xf ).

Thus Gcut can be used to compute the importance weights using the values of only
the variables in Vcut.

To summarize, we parallelize probabilistic inference as follows: We first parti-
tion the factor graph and distribute the partitions across the set of compute nodes.
Each node computes a sample of its local factor graph using an arbitrary MCMC
sampling method. After the samples have been obtained, we communicate the
values of the cut variables (i.e., Vcut) to a coordinator node, which subsequently
computes and broadcasts the unnormalized importance weight. Finally, each node
updates the marginals of its local variables using Eq. (3).

4.3 The Optimal Partitioning

Recall Eq. (4), which defines the variance of the normalized IS estimator. For
a fixed number n of samples, the variance depends on (1) the target distribution
and (2) the variance of the importance weights w(X). Since (1) is not affected by
the partitioning, we subsequently focus on how to minimize (2). In our setting, we
have

w(X) =
ZQ

ZP

w̃(X),
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where ZP and ZQ are the normalization constants of GP and GQ, respectively. We
obtain

VarQ[w(X)] =
Z2

Q

Z2
P

VarQ[w̃(X)] =
VarQ[w̃(X)]

E2
Q[w̃(X)]

= CV2
Q(w̃(X)),

where CVQ(w̃(X)) =
√

VarQ[w̃(X)]/EQ[w̃(X)] denotes the coefficient of varia-
tion (CV) of w̃(X). In the derivation, we used the fact that E[w(X)] = 1 and
thus E[w̃(X)] = ZP /ZQ. To minimize the variance of the IS estimator µ̂IS, we
thus need to minimize the CV of w̃(X) under proposal Q. To do this, we need to
infer the ratio ZQ/ZP and the joint distribution of the variables in Vcut (both of
which depend on our choice of proposal), i.e., we need to run inference. Since our
ultimate goal is to actually parallelize inference, such an approach is impractical.

The situation is further complicated by the fact that the partitioning that
minimizes the CV is not necessarily the best performing one in practice. Recall
that in order to compute the unnormalized importance weight, we need to obtain a
sample from each of the partitions. If the partitions are balanced (e.g., equal num-
ber of variables and/or factors), parallelization is effective because every processor
has roughly the same amount of work. If partitions are imbalanced, parallalization
may not be effective since one of the processors may require significantly more time
to obtain its sample than the other processors. Thus with k processors, we obtain
a speedup somewhere in between 1 (no balancing) and k (perfect balancing).

We conclude that the optimal partitioning trades off statistical efficiency and
parallelization benefits. In principle, we can determine this optimal partitioning
given an appropriate model of sampling cost. However, such an approach is im-
practical: the benefits of parallelization are outweighed by the cost of determining
the partitioning. For this reason, we settle for a “good” partitioning instead of the
optimal one.

4.4 A Good Partitioning

To obtain a practicable procedure that finds a good but not necessarily the
best partitioning, we (1) do not minimize but bound the CV of the unnormalized
importance weights and (2) always create balanced partitions (i.e., we do not trade
off variance and computational cost). With these relaxations, we are able to ap-
ply existing hypergraph partitioning algorithms to our problem. Moreover, these
relaxations form the basis for the parallel grounding method described in Sec. 5.

Recall that the unnormalized importance weight is given by w̃(X) =∏
f∈Fcut

f(Xf ). From our definition of factor functions, we know that f can only
take two possible values: ewf (corresponding formula satisfied) or 1 (otherwise).
Denote by fmin (fmax) the smaller (larger) of the two values. Given a cut Fcut, we
obtain

w̃min =
∏

f∈Fcut

fmin ≤ w̃(X) ≤
∏

f∈Fcut

fmax = w̃max.

To bound the CV of w̃(X), we compute the largest CV realizable by any distri-
bution on the interval [w̃min, w̃max]. We thus replace the actual distribution of
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w̃(X) by its worst-case distribution; this trick allows us to avoid running inference
while still obtaining guarantees on the quality of estimation. One can show that
the largest CV is realized by a distribution on { w̃min, w̃max }. Such a distribution
is parameterized by a parameter pmax for the probability of observing w̃max; set
pmin = 1 − pmax and w̄ = pminw̃min + pmaxw̃max. We obtain

CVQ[w̃] ≤ max
0≤pmax≤1

√
pmin(w̃min − w̄)2 + pmax(w̃max − w̄)2

w̄
. (5)

One way to compute the above bound is to (conceptually) “normalize” the factor
graph before running inference. The normalized factor graph can be obtained by
replacing every factor function f ∈ F by f ′(X) = f(X)/fmin; the distribution rep-
resented by the factor graph is not affected by such a scaling. After normalization,
we have w̃′

min = 1 so that the bound of (5) depends only on w̃′
max. In fact, the nor-

malized bound is monotonically increasing in w̃′
max so that we pick the partitioning

that minimizes w̃′
max =

∏
f ′∈F ′

cut
f ′

max. If the so-obtained bound on the CV is close

to 0, importance sampling is guaranteed to be statistically efficient. In contrast, if
the bound is large, the performance of IS depends on the distribution of the cut
variables; IS may or may not be effective.

We can use existing weighted hypergraph partitioning algorithms to find the
partitioning that minimizes w̃′

max. A hypergraph partitioning algorithm [KL70]
finds a partitioning of the variables such that the sum of the weights of the hyper-
edges that cross partitions is minimized. Note that minimizing w̃′

max is equivalent
to minimizing log(w̃′

max) =
∑

f ′∈F ′
cut

log(f ′
max), which is in summation form. To

construct the weighted hypergraph for G = (V, F ), replace each factor f ∈ F by
a hyperedge that connects the variables in Xf ; the hyperedge is assigned weight
log(f ′

max). The minimum cost hypergraph partitioning is exactly the partitioning
with the smallest possible bound on the CV. Note that the use of hypergraph par-
titioning for probabilistic inference is not novel (e.g., see [NRDS11]). To the best
of our knowledge, however, the connection between hypergraph partitioning and
the effectiveness of parallel probabilistic inference has not been established before.

In order to facilitate parallel processing, we modify the above approach and
search for a balanced partitioning instead of an arbitrary partitioning. The perhaps
simplest possible approach—which we also used in our experiments—is to require
that each partition contains roughly the same number of variables. The hope is
that the cost of obtaining a sample is then roughly the same for each partition. A
key advantage of this particular balancing condition is that it is directly supported
by most hypergraph partitioners. In fact, our experiments suggest that the so-
obtained partitions work well in practice.

5 Parallel Grounding

Since both grounding and graph partitioning can be expensive, we develop
an MLN partitioning technique that significantly reduces partitioning cost and
also parallelizes the grounding step. The key idea of our approach is to partition
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Figure 5: MLN partitioning and parallel grounding (k = 3).

the MLN directly—i.e., before grounding—and to ground the resulting partitioned
MLNs in parallel. The MLN partitioning step draws from ideas from the parallel
databases; it exploits the connection between grounding an MLN and computing
a set of database joins [NRDS11]. Fig. 5 illustrates our approach.

5.1 Grounding via Database Queries

To establish the connection between grounding and database joins, recall the
university MLN of Fig. 1 as well as its grounding shown in Fig. 2. The first rule of
the MLN states that advisees must be students and involves predicates student(s)
and advisedBy(s, p). Suppose that we create a hypothetical database relation for
each predicate that occurs in the MLN; a predicate’s relation contains a tuple for
each ground instance of the predicate as well as a globally unique identifier. For
students Anna and Bob, and professors Charles and Debbie, we obtain

Student(sid, s1) = { (1, Anna), (2, Bob) } ,

AdvisedBy(aBid, s2, p1) = { (3, Anna, Charles), (4, Anna, Debbie), (5, Bob, Charles),

(6, Bob, Debbie) }.

Observe that these relations precisely capture the set of variables in the ground
MLN corresponding to the student and advisedBy predicates, and that each vari-
able is assigned a unique identifier. To additionally capture the factors that connect
these variables, we perform a database join for each clause in the MLN and project
to the variable identifiers. The join condition consists of the set of equality pred-
icates induced by the MLN rule. For example, the first rule of Fig. 1 is given by
s(s) ∨ ¬aB(s) (here in CNF). The corresponding database query and result is

R1 = πsid,aBid(Student %&s1=s2 AdvisedBy) = { (1, 3), (1, 4), (2, 5), (2, 6) }

= { f11, f12, f13, f14 } .

Here R1 contains a single tuple for each factor obtained from grounding the first
rule; a factor’s tuple consists of the variable identifiers of its arguments.
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J2
%&

p1=p2∧p1=p3

hasPosition(p3, SR)

hasPosition(p2, P)

advisedBy(s2, p1)
J1
%&

s1=s2
student(s1)

Figure 6: Join graph for the MLN of Fig. 1.

To summarize, we (conceptually) ground an MLN by instantiating a set of
relations (corresponding to the ground variables) and computing a database join
for each clause of the MLN (corresponding to the factors). This grounding process
can be described with a join graph G = (R, J ), where R = { R1, . . . , Rn } denotes
a set of relations and J = { J1, . . . , Jm } denotes a set of joins (factors). Each
J ∈ J is a hyperedge annotated with a join condition; the hyperedge connects
to the relations occurring in the join condition. Fig. 6 shows the join graph for
our running example; here we use predicates instead of relations for brevity. Note
that in the foregoing discussion, we have ignored the evidence database and as-
sumed open-world semantics. When an evidence database is given and grounding
is performed under closed-world semantics, we directly use the relations from the
evidence database (which have an additional Boolean Value attribute) instead of
the hypothetical relations. To simplify exposition, however, we continue to focus
on open-world grounding without an evidence database unless stated otherwise.

5.2 Partitioning a Markov Logic Network

Parallel database systems make use of vertical and horizontal partitioning
techniques to parallelize query processing. In the following, we discuss how these
techniques can be applied to the (hypothetical) relations of an MLN to allow for
parallel grounding. We focus on horizontal partitioning throughout; similar tech-
niques can be used to handle vertical partitioning.

A horizontal partitioning of a relation R w.r.t. a set A of its attributes is a set
R1, . . . , Rk of relations such that

⋃
i Ri = R and πA(Ri) ∩ πA(Rj) = ∅ whenever

i 1= j, where 1 ≤ i, j ≤ k. For example, when k = 2, a horizontal partitioning of the
AdvisedBy relation w.r.t. attribute p is given by AdvisedBy1 = { (3, A, C), (5, B, C) }
and AdvisedBy2 = { (4, A, D), (6, B, D) }. Such a partitioning can be performed at
the MLN level, i.e., before grounding. Continuing the example, we obtain two new
predicates advisedBy1(s, p11) and advisedBy2(s, p12) with domains dom(p11) =
{ C } and dom(p12) = { D }. Horizontal partitioning allows us to spread the ground
variables of a single relation across multiple compute nodes (partition i is stored on
node i). In fact, if the partitioning is performed at the MLN level, we can ground
each partition in parallel directly at its respective compute node.

Our aim is to partition the relations in a way amenable to parallel probabilis-
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aB(A,C) aB(A,D)

f21

hP(C,P) hP(C,SR)

f23

aB(B,C) aB(B,D)

f22

hP(D,P) hP(D,SR)

f24

Figure 7: Partial factor graph obtained from grounding rule 2 of Fig. 1

tic inference, i.e., to minimize the number of factors spanning multiple partitions
in addition to balancing the number of variables per partition. For example, con-
sider the factor graph obtained when grounding only the second rule of our ex-
ample MLN of Fig. 1. As can be seen in Fig. 7, this factor graph consists of two
connected components, i.e., two subgraphs that do not share any factors. Using
horizontal partitioning, we can identify and exploit the existence of multiple con-
nected components directly at the rule level. The key idea is to make use of the
co-partitioning techniques used in parallel databases: Two relations R1 and R2 are
co-partitioned with respect to a set of attributes A1 and A2 (of equal domains),
respectively, if Rl is horizontally partitioned w.r.t. Al into Rl1, . . . , Rlk, l ∈ { 1, 2 },
and πA1(R1i) ∩ πA2(R2j) = ∅ for 1 ≤ i, j ≤ k and i 1= j. For example, suppose that
we partition relation

HasPosition(hPid, p2, v) = { (7, C, P), (8, C, SR), (9, D, P), (10, D, SR) }

on attribute p to obtain relations HasPosition1 = { (7, C, P), (8, C, SR) } and
HasPosition2 = { (9, D, P), (10, D, SR) }. Then relations AdvisedBy (see above) and
HasPosition are co-partitioned w.r.t. attributes p1 and p2, respectively.

If R1 and R2 are co-partitioned on A1 and A2, we can perform join J =
R1 %&A1=A2 R2 locally at each compute node: Each node i computes R1i %&A1=A2

R2i. This fact is heavily exploited for efficient join processing in parallel database
systems. In our setting, horizontal partitions consist of sets of ground variables
and join results of sets of factors and their arguments. Suppose that join J above
corresponds to some MLN rule. Since R1 and R2 are co-partitioned w.r.t. to the
join attributes, we can not only compute join J locally at each compute node, but
also guarantee that the local join results contain only local variables. In other
words, all factors produced by a co-partitioned join will be local.

Our MLN partitioning technique aims to co-partition the relations in an MLN
such that the number (or sum of weights) of the factors that span partitions is
minimized. Since there are generally several formulas in which each relation occurs,
and since we cannot partition a relation on multiple sets of attributes, we may not
be able to find a co-partitioning that localizes all joins. We thus aim to find a good
partitioning, i.e., one in which “important” joins are localized. Our partitioning



219

technique is based on the following insight: The number of ground variables or
factors of a predicate or rule, respectively, is given by the size of its corresponding
relation or join. In our example, there are |Student| = 2 ground variables for
student predicate, |AdvisedBy| = 4 ground variables for the advisedBy predicate,
and |R1| = 4 factors for the first rule. Cardinality estimation techniques from the
database literature allow us to estimate these quantities accurately; we can thus
estimate the size of a factor graph for a given MLN and, more importantly, for a
given horizontal partitioning on an MLN.

Revisiting the example of Fig. 6, the total number of factors in the factor
graph is given by |J1| + |J2|. If we co-partition aB and hP on attribute p, then J2

becomes local. In doing so, however, we cannot co-partition aB and s so that join
J1 is not local. Vice versa, if we choose a co-partitioning that localizes J1, join J2

will be non-local. The optimum choice of partitioning depends on the join sizes |J1|
and |J2|, as well as on the weights associated with the corresponding MLN rules.
Intuitively, we want to localize joins with high cardinality and high weight; joins
with low cardinality and low weight do not incur a high cost when not localized.

As indicated above, our partitioning method (described in detail in the next
section) relies on accurate join size estimates. There exists a vast amount of lit-
erature on join size estimation [SS94], which can be readily exploited. When we
use open-world grounding, however, join size estimation is particularly simple. Re-
call that under open-world grounding, all relations are complete, i.e., they con-
sist of every possible tuple. The size of a complete relation R with attributes
A1, . . . , An is given by |dom(A1)||dom(A2)| · · · |dom(An)|. When we compute the
join J = R1 %&R1.A=R2.A R2 of two complete relations R1 and R2, the resulting join
size is given by |J | = |R1||R2|/|dom(A)|. When R1 and R2 are both partitioned
into k equally-sized partitions, and at least one of the two relations is not parti-
tioned on A, then the number of local factors is given by |J |/k and consequently
the number of non-local factors by |J |(1 − 1/k). Of course, join size estimation is
much more involved when grounding is performed under closed-world semantics.
The simplest way to handle closed-world grounding is to use open-world join size
estimation as described above, but to use closed-world semantics when actually
grounding each partition. We use this simple approach in our experiments; more
elaborate join size estimation techniques are likely to further improve our results.

5.3 Finding a Good Partitioning

To find a good MLN partitioning, we encode the partitioning problem as a
0/1 integer linear program (ILP), which we solve using a standard ILP solver.

In what follows, we use index i for the join edges, index j for attributes, and
index l for relations of the join graph. Denote by A(Rl) the set of attributes in
relation Rl and by R(Ji) the multiset of relations occuring in join Ji. We assume
that A(Rl1) ∩ A(Rl2) = ∅ whenever l1 1= l2. We encode each join edge Ji via a set
Ci as follows: For each pair of Rl1 and Rl2 in R(Ji), Ci contains the set El1,l2 of
pairs of attributes that are equalized by the join condition. Each pair contains one
attribute from Rl1 and one from Rl2 . In our running example, we have R(J2) =
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{ hP(p2, SR), hP(p3, P), aB(s2, p1) } and C2 = { { (p2, p3) } , { (p1, p3) } , { (p2, p3) } }.
Note that we treat hP(p2, SR) and hP(p2, P) as different relations since they are
disjoint. Denote by xAj

a 0/1 variable that takes a value 1 if the relation Rl

that contains attribute Aj (i.e., Aj ∈ A(Rl)) is going to be partitioned on Aj .
Furthermore, denote by yJi

a 0/1 variable that takes a value 1 if Ji is localized by
the partitioning

{
xAj

}
. In our example, we have

yJ2 = [(xp2 ∧ xp3) ∧ (xp1 ∧ xp3) ∧ (xp2 ∧ xp3)].

Generally, denote by Pi a set of sets of attribute pairs, where each set of attribute
pairs is obtained by selecting a single element of each El1,l2 ∈ Ci (in our example,
P2 = C2). Only sets of pairs that mutually share at least one attribute are included
in Pi. Then the optimal partitioning can be obtained by solving the ILP

max
∑
Ji

|Ji| · wJi
· yJi

(1)

s.t.
∑

Aj∈A(Rl)

xAj
≤ 1 for all Rl, (2)

yJi
=

∨
P ∈Pi

[ ∧
(Aj1 ,Aj2 )∈P

(xAj1
∧ xAj2

)
]

for all Ji, (3)

xAj
∈ { 0, 1 } for all Aj .

The objective function (1) maximizes the weighted sum of the sizes of local
joins; weight wJi

is taken from the MLN rule corresponding to join Ji. One can
show that this objective function is equivalent to minimizing the number of non-
local factors. Depending on the particular probabilistic inference algorithm being
used, other objective functions may be more suitable (e.g., sum of joins sizes or
number of variables with at least one non-local factor). Condition (2) ensures that
every relation is partitioned on only one attribute (the ILP can be extended to
support partitioning on multiple attributes). Finally, condition (3) computes the
yJi

variables using Boolean formulas. The formulas can be converted to a pure ILP
by introducing appropriate helper variables.

Once the ILP has been solved, we horizontally partition the relations based on
the solution. In more detail, we split the domain of each partitioning attribute into
k equally sized parts; e.g., using range-based or hash partitioning. Relations that
are not partitioned are randomly distributed across the compute cluster; this en-
sures that the number of query variables is the same across nodes so that partitions
are balanced.2 Note that the cost of our MLN partitioning strategy is virtually
independent of both k and the domain size, which ensures good scalability.

6 Experimental Evaluation

We conducted a number of preliminary experiments to gauge the viability
of our fully parallel approach to MLN inference. In particular, we (1) compared

2An alternative approach is to extend the ILP with support for vertical partitioning.
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existing graph partitioning algorithms with our MLN partitioning method in terms
of both computational cost and result quality, (2) investigated whether bounding
the CV of the unnormalized importance weights indeed leads to good partitionings,
and (3) whether parallel probabilistic inference reduces overall cost. Our results
provide initial justification for our approach.

6.1 Experimental Setup

We implemented a prototype system that consists of components for MLN
partitioning, grounding, and parallel probabilistic inference. All algorithms were
implemented in C++ using pthreads for parallel processing; during probabilistic
inference, the partitioned factor graph resided in main memory and each partition
was processed by a single core. We used the GNU Linear Programming Kit (GLPK)
to solve the ILP. All experiments were run on a machine with an 2.4GHz Intel Xeon
CPU E5530 (8 cores) and 48GB of main memory.

Most of our experiments were conducted on the UW-CSE dataset.3 This real-
word dataset contains information about the Department of Computer Science
and Engineering of the University of Washington, including relationships between
professors, students, courses, and publications. The dataset is associated with
an MLN that aims to predict the advisedBy and tempAdvisedBy relationship; the
MLN consists of 22 predicates and 94 clauses. From the MLN, we removed 6 clauses
because they contain an existential quantifier; these clauses are not yet supported
by our prototype. We learned the weights of the rules in the modified MLN using
Alchemy as described in [RD06]. After grounding (AI dataset), the factor graph
consists of roughly 9000 query variables and 1M factors. Although the UW-CSE
dataset is relatively small, the benefits of parallel processing did materialize in our
experiments.

6.2 MLN Partitioning

In our first experiment, we evaluated the computational cost and quality of
partitioning of both traditional ground-first methods and our proposed partition-
first approach. For the former, we used two different hypergraph partitioners: (1)
PaToH,4 a state-of-the-art hypergraph partitioner and (2) the graph partitioning
heuristic used by Tuffy [NRDS11].5 The experiments were conducted on the UW-
CSE dataset with k = 2 and k = 4 partitions.

Quality. We used a number of metrics to evaluate the quality of the parti-
tioned factor graph: (i) the number |Fcut| of factors in the cut (measure of the
computational cost for weight computation), (ii) the sum log(w̃max) of the loga-

3http://alchemy.cs.washington.edu/data/uw-cse
4http://bmi.osu.edu/˜umit/software.html#patoh
5The Tuffy heuristic sorts all factors by descending weight. It then scans the factors sequen-

tially and tries to assign the variables of the current factor to the current partition (if not yet
assigned). If the partition size would exceed some threshold by doing so, Tuffy finalizes the current
partition and starts a new, empty partition.
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k Approach Factors in cut Weight of cut Balancing Runtime

k = 2 PaToH 4678 1109.04 0.000 948.288s
Tuffy 4686 1108.66 0.000 1.092s
MLN part. 4690 1108.47 0.000 0.003s

k = 4 PaToH 63001 64500.40 0.012 952.254s
Tuffy 7040 1662.46 0.000 1.288s
MLN part. 7023 1662.84 0.000 0.003s

Table 1: Comparison of various graph partitioning approaches on the UW-CSE dataset

rithmic weights of these factors (measure of effectiveness of importance sampling),
and (iii) the CV of the partition sizes in terms of number of variables (measure of
balancing, 0 indicates perfect balancing). Our results are shown in Table 1. For
k = 2 partition, PaToH, Tuffy, and our MLN partitioning approach give similar
results. For k = 4, however, PaToH does not find a good partitioning, whereas
Tuffy and our proposed MLN approach perform much better. Again, Tuffy and
MLN partitioning perform comparably. Perhaps surprisingly, the simple Tuffy
heuristic worked extremely well on the UW-CSE dataset. We conclude that MLN
partitioning can indeed find good graph partitionings and may even outperform
state-of-the-art partitioners.

Computational cost. We focus on the computational cost of computing
the factor graph partitioning in terms of wall-clock time, i.e., we exclude the time
for actually grounding the network. Table 1 shows our results. We found that
PaToH is two orders of magnitude slower than Tuffy, which in turn is orders of
magnitude slower than MLN partitioning. The excessive runtime of PaToH is due
to the fact that PaToH is a generic hypergraph partitioner; it is unaware of and
thus cannot exploit the structure of the ground factor graph. Tuffy is significantly
faster because it uses an inexpensive heuristic partitioning algorithm. It is a viable
option on datasets for which this heuristic works well. In both approaches, we need
to distribute the partitions across the compute cluster after grounding to perform
parallel probabilistic inference. This data distribution step is avoided by our MLN
partitioning approach because partitions are grounded directly at their respective
compute nodes. Moreover, since MLN partitioning is performed on the MLN level,
it is independent of the size of the evidence database and thus much faster than
the ground-first methods.

6.3 Parallel Probabilistic Inference

Quality. We conducted a simple experiment to investigate whether our
bounding strategy for the CV of the unnormalized importance weights is effec-
tive. We generated a set of 1100 random graphs with 1000 variables and 1000
factors each. Each factor was connected to between 1 and 3 variables picked at
random; the weights were sampled from a Normal(0.67, 25) distribution. We ran a
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Figure 8: Sequential and parallel probabilistic inference (4 threads)

large number of sampling steps (10000) of a Gibbs sampler [KF09]; the resulting
marginal probabilities were taken as ground truth. We then randomly partitioned
the variables into two equally-sized sets and computed (1) the corresponding bound
on the CV and (2) the mean square error (MSE) of the estimated marginal prob-
abilities obtained by running a fixed number of 10000 importance sampling steps.
Fig. 8(a) plots the bound vs. the MSE; each data point corresponds to one ran-
dom partitioning. As can be seen, the MSE is small when the CV bound is small,
which indicates that our bounding strategy is effective. Moreover, the MSE varies
significantly when the CV bound is large. The reason for this behavior is that the
bound is based on a worst-case distribution; when the actual distribution is far
from worst-case, we may obtain better results than suggested by the bound.

Computational cost. We evaluated parallel probabilistic inference using
importance sampling on k = 4 partitions; the partitions have been created using
MLN partitioning as described in the previous section. As before, we obtained the
ground truth by running a large number of Gibbs sampling steps (250k steps on
each variable) on the unpartitioned factor graph. Fig. 8 plots the average MSE as
well as the highest square error (SE) on an individual variable for both a sequential
sampler and a parallel sampler with 4 threads. In both cases, the parallel inference
method converged much faster than the sequential method so that importance
sampling was effective.6

7 Conclusion and Future Work

We proposed a fully parallel approach to inference in Markov logic networks. In
contrast to prior work, we parallelized not just the final probabilistic inference step,
but also the intermediate grounding and graph partitioning steps. In more detail,
we described and analyzed a simple parallel probabilistic inference algorithm based
on importance sampling. Our analysis clarifies the connection between importance

6Note that this particular dataset is characterized by fast mixing times, which makes even the
sequential sampler unusually fast.
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sampling on factor graphs and graph partitioning. Since graph partitioning can
be expensive, we leveraged ideas from parallel database systems to partition the
Markov logic network itself, i.e., before grounding the network. Our MLN parti-
tioning technique reduces partitioning time by multiple orders of magnitude, while
producing partitionings competitive to state-of-the-art graph partitioners. Our
experiments give initial evidence that both MLN partitioning and parallel prob-
abilistic inference can speed up inference in Markov logic networks significantly.
Future work includes better handling of closed-world semantics, better sampling
methods, and a fully distributed implementation of our approach.
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