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Syntactic Explorer (Verb to Verb Noun)
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Sequence Mining
• Goal: Discover subsequences as patterns in sequence data
• Input: Collection of sequences of items, e.g.,

I Text collection (sequence of words)
I Customer transactions (sequence of products)
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Sequence Mining
• Goal: Discover subsequences as patterns in sequence data
• Input: Collection of sequences of items, e.g.,

I Text collection (sequence of words)
I Customer transactions (sequence of products)

• Output: subsequences that
I occur in σ input sequences (frequency threshold)
I have length at most λ (length threshold)
I have gap γ (contiguous subsequences or non-contiguoussubsequences)

• Example:
S1: Anna lives in Melbourne
S2: Bob lives in the city of Berlin
S3: Charlie likes London

I Subsequence: lives in
σ = 2, λ = 2, γ = 0
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HierarchiesItems can be naturally arranged in a hierarchy, e.g.,
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a an the

DET

Syntactic hierarchy
Albert Einstein . . . . . . Barack Obama

Scientist Politician
PERSON

Melbourne . . .

CITY

Semantic hierarchy

Cannon5D Nikon5100
DSLR Camera Tripod

Photography

. . .Product hierarchy
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Sequence Mining with Hierarchies
• Item hierarchies are specifically taken into account
• Discover non-trivial patterns

• Example
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Sequence Mining with Hierarchies
• Item hierarchies are specifically taken into account
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• Example

S1: Anna lives in Melbourne
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Sequence Mining with Hierarchies
• Item hierarchies are specifically taken into account
• Discover non-trivial patterns
• Example

S1: Anna lives in Melbourne
S2: Bob lives in the city of Berlin
S3: Charlie likes London

I Generalized subsequence:PERSON lives in CITY
σ = 2, λ = 4, γ = 3

PERSON
BobAnna Charlie

CITY
BerlinMelbourne LondonSemantic hierarchy
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Sequence Mining with HierarchiesApplications
• Linguistic patterns, e.g.,

I read DET book
I NNP lives in NNP

• Information extraction, e.g.,
I PERSON lives in CITY

• Market-basket analysis, e.g,
I buy DSLR camera → photography book → flash

• Web-usage mining
• . . .
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LASH
• Distributed framework for sequencemining with hierarchies
• Built over MapReduce for large-scaledata processing
• Map (Partitioning)

I Divide data into potentiallyoverlapping partitions
• Reduce (mining)

I Partitions are mined independently
• No global post-processing

D H

Hierarchy-awareitem-based partitioning

D2 H2D1 H1 . . . Dn Hn

F1 F2 Fn. . .

Local mining Local mining Local mining

F
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Outline
1 Introduction
2 Partitioning
3 Local Mining
4 Evaluation
5 Conclusion
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Item-based Partitioning

• Items are ordered by decreasingfrequency, e.g., a < b < c < · · · < k
• Create a partition for each frequentitem called pivot item
• Key idea: partition the output space

I a︸︷︷︸
Fa

< b︸ ︷︷ ︸
Fb

< c

︸ ︷︷ ︸
Fc

< · · · < k

︸ ︷︷ ︸
Fk

• Rewrite D for each pivot item
I Reduces communication
I Reduces computation
I Reduces skew

D H

Hierarchy-awareitem-based partitioning

D2 H2D1 H1 . . . Dn Hn

a b k

F1 F2 Fn. . .

Local mining Local mining Local mining

F

Fa : Filter a butnot b,...,k
Fb : Filter bbut not c,...,k Fk : Filter k
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Item-based PartitioningExample (σ = 2, γ = 3, λ = 4)
S1: Anna lives in Melbourne
S2: Bob lives in the city of Berlin
S3: Charlie likes London

PERSON _2 CITY : 1PERSON _ CITY : 1CITY

PERSON : 3
PERSON

PERSON _ in CITY : 1PERSON _ in _3 CITY : 1in
PERSON lives in CITY : 1PERSON lives in _3 CITY : 1lives

PERSON
BobAnna Charlie

CITY
BerlinMelbourne LondonSemantic hierarchy
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Outline
1 Introduction
2 Partitioning
3 Local Mining
4 Evaluation
5 Conclusion
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Local Mining
• Goal: Compute pivot sequences
• a︸︷︷︸

Fa

< b︸ ︷︷ ︸
Fb

< c

︸ ︷︷ ︸
Fc

< · · · < k

︸ ︷︷ ︸
Fk

D H

Hierarchy-awareitem-based partitioning

D2 H2D1 H1 . . . Dn Hn

a b k

F1 F2 Fn. . .

Local mining Local mining Local mining

F

Fa : Filter a but
not b,...,k

Fb : Filter b
but not c,...,k Fk : Filter k
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Local Mining
• Traditional approach

I Use any mining algorithm(based on depth-first or breadth-first search)
I Filter out non-pivot sequences

• Example: depth-first search
I Pivot item: e

∅

a b c d e

aa ab ac ae bd ba be cd ce da db dc ea eb ec ed ee

abd abe acd ace aee aea aeb aec aed dab dac dae ebd

aecd daec
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Local Mining
• Pivot sequence miner (PSM)

I Mines only pivot sequences
I Start with the pivot item
I Right expansions
I Left expansions

I Optimized search space exploration
• Example: PSM search space

I Pivot item: e

e

be ce ae ee ea ec eb ed

bae dae aeb ebd
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Overall RuntimeThe New York Times Corpus
• ∼50M sequences, ∼1B items of which ∼2.7M distinct
• Syntactic hierarchy (word → lowercase → lemma → POS tag)
• 10 node hadoop cluster
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LASH is multiple orders of magnitude faster
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Local Mining

LP(1000,0,5) LP(100,0,5) CLP(100,0,5) CLP(100,0,7)
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Scalability
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(b) Weak Scalability
Good strong and weak scalability
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Summary and Contributions
• Sequence mining with hierarchies is an important problem

I Enables mining non-trivial patterns

• LASH: LArge-scale Sequence mining with Hierarchies
I Novel hierarchy-aware form of item-based partitioning
I Efficient special-purpose algorithm for mining each partition

• First distributed, scalable algorithm to mine such sequences

Thank you!Questions? / Comments
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