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ABSTRACT
We propose LASH, a scalable, distributed algorithm for mining
sequential patterns in the presence of hierarchies. LASH takes
as input a collection of sequences, each composed of items from
some application-specific vocabulary. In contrast to traditional ap-
proaches to sequence mining, the items in the vocabulary are ar-
ranged in a hierarchy: both input sequences and sequential pat-
terns may consist of items from different levels of the hierarchy.
Such hierarchies naturally occur in a number of applications in-
cluding mining natural-language text, customer transactions, error
logs, or event sequences. LASH is the first parallel algorithm for
mining frequent sequences with hierarchies; it is designed to scale
to very large datasets. At its heart, LASH partitions the data using a
novel, hierarchy-aware variant of item-based partitioning and sub-
sequently mines each partition independently and in parallel using
a customized mining algorithm called pivot sequence miner. LASH
is amenable to a MapReduce implementation; we propose effective
and efficient algorithms for both the construction and the actual
mining of partitions. Our experimental study on large real-world
datasets suggest good scalability and run-time efficiency.

1. INTRODUCTION
Sequential pattern mining is a fundamental tool in data mining

and has been studied extensively in the literature [8, 20, 23, 26, 31].
Applications include market-basket analysis [26, 27], web usage
mining [28], machine translation [19], language modeling [9], or
information extraction [21]. In general, the goal of sequence min-
ing is to mine interesting (e.g., frequent) sequential patterns from a
potentially large collection of input sequences.

In most of the applications mentioned above, the individual items
of the input sequences are naturally arranged in a hierarchy. For ex-
ample, the individual words in a text document can be arranged in a
syntactic hierarchy: words (e.g., “lives”) generalize to their lemma
(“live”), which in turn generalize to their respective part-of-speech
tag (“verb”). Products in sequences of customer transactions also
form a natural product hierarchy, e.g. “Canon EOS 70D” may gen-
eralize to “digital camera”, which generalizes to “photography”,
which in turn generalizes to “electronics”. As a final example, en-
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tities such as persons can be arranged in semantic hierarchies; e.g.,
“Angela Merkel” may generalize to “politician,” “person,” “entity.”
Depending on the application, the hierarchy may exhibit different
properties; e.g., it may be flat or deep, or it may have low or high
fan-out. Hierarchies are sometimes inherent to the application (e.g.,
hierarchies of directories or web pages) or they are constructed in
a manual or automatic way (e.g., product hierarchies).

In this paper, we consider a generalized form of frequent se-
quence mining—which we refer to as generalized sequence min-
ing (GSM)—in which the item hierarchies are specifically taken
into account. In particular, the items in both input sequences and
sequential patterns may belong to different levels of the item hierar-
chy. This generalization allows us to find sequences that would oth-
erwise be hidden. For example, in the context of text mining, such
patterns include generalized n-grams (the ADJ house) or typed re-
lational patterns (PERSON lives in CITY). In both cases, the pat-
terns do not actually occur in the input data, but are useful for lan-
guage modeling [1, 15, 18, 30] or information extraction tasks [7,
21, 22]. Hierarchies can also be exploited when mining market-
basket data [26, 27]—e.g., users may first buy some camera, then
some photography book, and finally some flash—or in the context
of web-usage mining [13, 17].

The problem of mining frequent sequences with hierarchies has
been studied in the literature. A well-known approach [26] to deal
with hierarchies is to make use of a mining algorithm that takes
as input sequences of itemsets (as opposed to sequences of items).
The hierarchy is then encoded into itemsets by replacing each item
(“lives”) by an itemset consisting of the item and its parents ({“lives”,
“live”, “VERB”}); pruning or post-processing techniques are used
to output consistent generalized patterns. In practice, the sequence
databases can be very large; e.g., consider a document collection
with millions of documents or a web site with millions of users.
Miliaraki et al. [20] recently proposed a scalable, distributed se-
quence mining algorithm called MG-FSM, which can handle datab-
ases with billions of sequences. However, MG-FSM cannot handle
hierarchies. In fact, the problem of how to scale frequent sequence
mining with hierarchies to large databases has not been studied in
the literature.

In this paper, we propose LASH1, the first scalable, general-
purpose algorithm for mining frequent sequences with hierarchies.
LASH is inspired by MG-FSM: it first partitions the data and sub-
sequently mines each partition independently and in parallel. Key
ingredients to the scalability of LASH are (i) a novel, hierarchy-
aware variant of item-based partitioning, (ii) optimized partition
construction techniques, and (iii) an efficient special-purpose algo-
rithm called pivot sequence miner (PSM) for mining each partition.

To judge the effectiveness of our methods, we implemented LASH
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T1 : a b1 a b1
T2 : a b3 c c b2
T3 : a c
T4 : b11 a e a
T5 : a b12 d1 c
T6 : b13 f d2
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Figure 1: A sequence database and its vocabulary

using MapReduce and performed an experimental study on large
real-world datasets including natural-language text and product se-
quences. Our results suggest that LASH has good scalability and
run-time efficiency. LASH also supports sequence mining without
hierarchies and was the best-performing method for this task in our
experiments.

The remainder of this paper is organized as follows. In Sec. 2,
we formally define the problem of generalized sequence mining.
In Sec. 3, we give an overview of LASH and alternative baseline
algorithms. In Sec. 4, we describe the partition construction step
of LASH in more detail. Algorithms for mining each partition are
discussed in Sec. 5. Sec. 6 describes our experimental study and
results. We discuss related work in Sec. 7 and conclude in Sec. 8.

2. PRELIMINARIES
We start with a formal definition of the GSM problem and related

concepts. Our notation and terminology closely follows standards
in the sequence mining literature and deviates only when necessary.

Denote by sequence database D =
{
T1, T2, · · · , T|D|

}
a mul-

tiset of sequences, where each sequence T = t1t2 · · · tn is com-
posed of items from a vocabulary W =

{
w1, w2, · · · , w|W|

}
.

We denote by |T | the length of sequence T and byW+ the set of
all non-empty sequences that can be formed from items inW . An
example sequence database consisting of six sequences is shown in
Figure 1(a).

Hierarchies. In GSM, the vocabulary is arranged in a hierar-
chy, i.e., each item has zero or more children and at most one par-
ent.2 Fig. 1(b) shows a simple example hierarchy that we will use
throughout this paper. If an item v is an ancestor of some item u,
we say that v is “more general” than u; e.g., in our example hier-
archy, B is more general than b1. We distinguish leaf items (most
specific, no descendants), root items (most general, no ancestors),
and intermediate items. In a hierarchy about music, for example,
the song “Blue Monday” may be a leaf item, its parent “pop song”
an intermediate item, which in turn may have as parent the root
item “music”. For two items u, v ∈ W , we say that u directly gen-
eralizes to v if u is more specialized than v; i.e., if u is a child of
v in the hierarchy, which we denote by u → v. Denote by →∗
the symmetric transitive closure of →. In our example, we have
b11 → b1, b1 → B and consequently b11 →∗ B.

Generalized sequences. We extend relation→ to sequences in
a natural way. In particular, we say that sequence T = t1 · · · tn
directly generalizes to sequence S = s1 · · · sn′ , denoted T → S,
if n = n′ and there exists an index j ∈ [n] such that tj → sj
and ti = si for i 6= j. In our example, sequence T1 = ab1ab1
satisfies T1 → aBab1, T1 → ab1aB, and T1 →∗ aBaB (the
most general form of T1). Note that we do not place any limitation
2In this paper, we assume that the item hierarchy forms a forest. In
some applications, this assumption may be violated and the hierar-
chy may instead form a directed acyclic graph; our methods can be
extended to deal with such hierarchies as well.

on the set of items that occur in database D; each input sequence
may be composed of items from arbitrary levels of the hierarchy.

Subsequences. GSM ultimately aims to mine frequent gener-
alizations of subsequences of the sequences in D. In practice, it
is often useful to focus on subsequences that are contiguous or
“close”. For example, n-gram mining aims to find consecutive sub-
sequences in text. Similarly, when mining web usage data or any
form of log files, sequences of items that are close may be more
insightful than sequences of far-away items. We model the notion
of closeness with a gap constraint γ ≥ 0 and consider two items
as close if at most γ items occur in between. Formally, a sequence
S = s1s2 · · · sn is said to be a subsequence of T = t1t2 · · · tm,
denoted S ⊆γ T , if there exists integers 1 ≤ i1 < · · · < in ≤ m
such that sj = tij and 0 ≤ ij+1 − ij − 1 ≤ γ. We write S ⊆ T
if S is an unconstrained subsequence of T , i.e., S ⊆∞ T . For se-
quence T5 = ab12d1c of our example database, we have a ⊂0 T5,
ab12 ⊂0 T5 and ad1c ⊂1 T5, but b12a 6⊂ T5 and ad1c 6⊂0 T5.

Generalized subsequences. Combining generalizations and sub-
sequences, we say that S = s1s2 · · · sn is a generalized subse-
quence of T = t1t2 · · · tm, denoted S vγ T , if there exists inte-
gers 1 ≤ i1 ≤ · · · ≤ in ≤ m such that tij →∗ sj (recall that
tij →∗ sj includes the case tij = sj) and 0 ≤ ij+1 − ij − 1 ≤ γ.
For example, we have ad1 v1 T5 and aD v1 T5 (even though D
does not occur in T5). Note that if S is a subsequence of T , then
S is also a generalized subsequence of T ; the opposite may or may
not hold.

Support. Denote by

Supγ(S,D) = {T ∈ D : S vγ T } ,

the support set of sequence S in the database D, i.e., the multi-
set of input sequences in which S occurs directly or in special-
ized form. In our example database, we have Sup0(aBc,D) =
{T2 } and Sup1(aBc,D) = {T2, T5 }. Denote by fγ(S,D) =
|Supγ(S,D)| the frequency (or support) of S; e.g., f0(aBc,D) =
1 and f1(aBc,D) = 2. We say that sequence S is frequent in D if
its frequency passes a support threshold σ > 0, i.e., fγ(S,D) ≥ σ.

Problem statement. We are now ready to formally define the
GSM problem:

Denote by σ > 0 a minimum support threshold, by
γ ≥ 0 a maximum-gap constraint, and by λ ≥ 2 a
maximum-length constraint. The GSM problem is to
find all frequent generalized sequences S, 2 ≤ |S| ≤
λ, along with their frequencies fγ(S,D) (≥ σ).

Note that we exclude frequent items in our problem statement;
these items can easily be determined (and are, in fact, also deter-
mined by our LASH algorithm). In our ongoing example and for
σ = 2, γ = 1 and λ = 3, we obtain (sequence, frequency)-pairs:
(aa, 2), (ab1, 2), (b1a, 2), (aB, 3), (Ba, 2), (aBc, 2), (Bc, 2),
(ac, 2), (b1D, 2), and (BD, 2). Observe that b1D is frequent even
though it does not occur in the database and none of its specializa-
tions are frequent. Thus GSM can detect non-obvious patterns in
the data.

Discussion. The GSM problem as stated above asks for all se-
quences that frequently occur (directly or in specialized form) in
the database. Depending on the dataset, the set of frequent se-
quences can be very large and partly redundant. In the example
above, for instance, the fact that b1D is frequent implies that BD
must also be frequent. In this case, the frequencies match; in gen-
eral, they can be different (e.g., aB has higher frequency ab1).
The potentially large number of output sequences is acceptable
for applications that focus on exploration (like the Google n-gram
viewer [1] or Netspeak [2]) or use frequent sequences as input to



further automated tasks (e.g., as features in a learning system). In
some applications, the set of output sequences needs to be further
restricted (e.g., using maximality or closedness constraints); we do
not consider such restrictions in this paper.

3. DISTRIBUTED MINING
In what follows, we first discuss a set of baseline algorithms for

solving the GSM problem in a distributed fashion and describe their
advantages and drawbacks. We then propose LASH, a scalable dis-
tributed algorithm that alleviates the drawbacks of the baseline ap-
proaches.

3.1 MapReduce
All algorithms are described in terms of a MapReduce frame-

work [11], but can also be implemented using other parallel sys-
tems. MapReduce is a popular framework for distributed data pro-
cessing on clusters of commodity hardware. It operates on key-
value pairs and allows programmers to express their problem in
terms of a map and a reduce function. Key-value pairs emitted by
the map function are partitioned by key, sorted, and fed into the re-
duce function. An additional combine function can be used to pre-
aggregate the output of the map function and increase efficiency.
The MapReduce runtime takes care of execution and transparently
handles failures in the cluster. While originally proprietary, open-
source implementations of MapReduce, most notably Apache Ha-
doop, are available and have gained wide-spread adoption.

3.2 Naïve Approach
A naïve approach to GSM is to first generate each generalized

subsequence of each input sequence and to subsequently count the
global frequency of each such subsequence. This approach can be
implemented in MapReduce in a way similar to “word counting”.
In more detail, denote by

Gλ(T ) = {S | S vγ T, 1 < |S| ≤ λ }

the set of generalized subsequences of T that match the length and
gap constraints (we write G(T ) when λ is clear from the context).
For example, for transaction T4 = b11aea and γ = 1 and λ = 3,
we obtain

G3(T4) = { b11a, b11e, ae, aa, ea, b11ae, b11aa, b11ea, aea,
b1a, b1e, b1ae, b1aa, b1ea,Ba,Be,Bae,Baa,Bea },

where the first line lists subsequences and the second line their gen-
eralizations. To implement the naïve approach in MapReduce, we
map over input sequences and, for each input sequence T , we out-
put each element S ∈ G(T ) (as key). In the reduce function, we
count for each generalized subsequence S how often it occurred in
the data and output S if fγ(S) ≥ σ.

The key advantage of the naïve algorithm is its simplicity. The
key disadvantage, however, is that it creates excessive amounts
of intermediate data and is thus generally inefficient (cf. G3(T4)
above). Denote by δ the maximum depth of the item hierarchy
and set l = |T |. For γ = 0, naïve outputs O(lδλ) generalized
subsequences per input sequence, i.e., it is exponential in λ and
polynomial in δ; this number is infeasibly large in all but the most
simple cases. When γ, λ ≥ l, the situation becomes even more se-
vere and naïve outputs O((δ + 1)l) generalized subsequences per
input sequence.

3.3 Semi-Naïve Approach
To reduce the number of subsequences generated by the naïve

approach, we can make use of item frequencies to prune the set

G(T ) of generated subsequences. We refer to this improvement as
the semi-naïve approach.

The semi-naïve approach makes use of a generalized f -list, which
contains each frequent item w along with its frequency f0(w,D).
Note that the generalized f -list is hierarchy-aware, i.e., the fre-
quency of each item w ∈ W is given by the number of input se-
quences that contain w or any of its descendants. In other words,
item w is frequent if f0(w,D) ≥ σ; otherwise w is infrequent. For
our example database and σ = 2, the generalized f -list is shown in
the top-left corner of Fig. 2; it is also used by our LASH algorithm.

The generalized f -list can be computed efficiently in a single
MapReduce job. Denote by G1(T ) = {w′ | w ∈ T,w →∗ w′ }
the set of items that appear in T along with their generalizations.
For example,

G1(T4) = { b11, a, e, a, b1, B } .

Note that G1(T ) has size O(lδ), where as before l = |T |, and
is thus linear in l and δ. To obtain the generalized f-list, we map
over each T ∈ D and output each item in G1(T ) along with an
associated frequency of 1. The reducer sums up the frequencies for
each item w to obtain f0(w,D).

The semi-naïve algorithm computes the set of frequent general-
ized sequences in a second MapReduce job. It uses the generalized
f -list to reduce the number of generalized subsequences emitted
by the map function of the naïve algorithm; the reduce function
remains unmodified and counts frequencies. The semi-naïve algo-
rithm outputs only the subsequences S ∈ G(T ) of input sequence
T that do not contain any infrequent item (see below). For exam-
ple, the semi-naïve algorithms emits for transaction T4 = b11aea,
γ = 1, and λ = 3 the generalized subsequences

aa, b1a, b1aa,Ba,Baa.

Compared to the set G3(T4) output by the naïve algorithm, the
output size is reduced by a factor of more than 3.

The correctness of the semi-naïve algorithm stems from the fol-
lowing lemma, which implies that frequent sequences cannot con-
tain infrequent items:

LEMMA 1. (SUPPORT MONOTONICITY). For any pair of gen-
eralized sequences S1 and S2 such that S1 vγ S2, we have
Supγ(S1,D) ⊇ Supγ(S2) and consequently fγ(S1,D) ≥ fγ(S2,D).

This lemma is a straightforward generalization of the Apriori prin-
ciple [6]; we omit the proof here.

The map phase (of the second job) can be implemented effi-
ciently by first generalizing each item of T to its closest frequent
ancestor (if existent). If an item has no frequent ancestor, we re-
place it by a special blank symbol, denoted by “ ”. For example,
for T4 = b11aea and σ = 2 (see Fig. 2), we obtain T ′4 = b1a a;
here a is frequent, b11 is infrequent but has frequent parent b1, and
e is infrequent and has no frequent ancestor. We then enumerate
and emit all sequences in Gλ(T ′4) that do not contain a blank sym-
bol. As will become evident later, the generalization of infrequent
items is a concept that we also make use of in LASH (although in
a slightly different way).

The semi-naïve algorithm is more efficient than the naïve algo-
rithm if many items are infrequent; i.e., when σ is set to a high
value. In the worst case, however, all items are frequent and the
semi-naïve algorithm reduces to the naïve algorithm (with the ad-
ditional overhead of computing of the generalized f -list).

3.4 Overview of LASH
The key idea of our LASH algorithm is to partition the set of

sequential patterns using a hierarchy-aware variant of item-based



Algorithm 1 Partitioning and mining phase of LASH
Require: D,W ,→, σ, γ, λ
1: MAP(T )
2: for all w ∈ G1(T ) with Sup(w,D) ≥ σ do
3: Construct Pw(T ) // Sec. 4
4: Emit (w,Pw(T ))
5: end for
6:
7: REDUCE(w,Pw)
8: Compute the set Gσ,γ,λ(w,Pw) of the locally-frequent pivot

sequences // Sec. 5
9: for all S ∈ Gw,σ,γ,λ(Pw) do

10: Emit (S, fγ(S,Pw))
11: end for

partitioning. Item-based partitioning is a well-known concept in
pattern mining; it is used, for example, in the FP-growth algo-
rithm [12] for frequent itemset mining. LASH is inspired by the
MG-FSM algorithm [20], which uses item-based partitioning to ob-
tain a scalable sequence mining algorithm. In contrast to MG-FSM,
LASH supports hierarchies and exploits them whenever possible.

LASH creates a partition Pw for every frequent item w ∈ W
and then mines frequent sequences in each partition independently.
We subsequently refer to item w as the pivot item of partition Pw.
LASH is divided into a preprocessing phase, a partitioning phase,
and a mining phase.

Preprocessing. In the preprocessing phase, LASH computes the
item frequencies to obtain a generalized f -list (as in Sec. 3.3) and
a total order < onW . The total order determines the partitioning
used in the later phases; frequent items will be “small”. In par-
ticular, for any pair of items w1, w2 ∈ W , we set w1 < w2 if
f0(w1,D) > f0(w2,D). Ties are handled in a hierarchy-aware
form: if f0(w1,D) = f0(w2,D) and w1 occurs at a higher level
of the item hierarchy, we set w1 < w2; the remaining ties are
broken arbitrarily. This particular order ensures that w2 → w1 im-
plies w1 < w2. Fig. 2 shows the generalized f -list of our example
database for σ = 2. Here items are ordered from small to large;
i.e., we have a < B < b1 < c < D. Note that item frequen-
cies and total order can be reused when LASH is run with different
parameters (only the generalized f -list needs to be adapted).

Partitioning and mining phase. The partitioning and mining
phases of LASH are performed in a single MapReduce job as out-
lined in Alg. 1. LASH generates a partition Pw for each frequent
item w; in our running example, the five partitions Pa, PB , Pb1 ,
Pc, and PD are created. From partition Pw, we mine all general-
ized sequences that contain w but no larger item (according to <).
For example, from partition Pa, we mine sequences that consists
of a only (aa, aaa, . . . ) and from partition PB sequences that con-
tain B and optionally a (BB, aB, . . . ). More formally, denote by
p(S) = maxw∈S(S) the pivot item of sequence S; e.g., we have
p(aBcB) = c with our example order. If S is frequent, it will be
mined from partition Pp(S) (and no other partition).

The partitioning phase is carried out in the map function, which
as before maps over each input sequence T . For each frequent
item w ∈ G1(T ), we construct a “rewritten” sequence Pw(T ) and
output it with reduce key w. Note that if w is frequent and one of
its descendants occurs in T , we create Pw(T ) even if w /∈ T . A
simple and correct approach to compute Pw(T ) is to set Pw(T ) =
T . A key ingredient of LASH is to use rewrites that compress T as
much as possible while maintaining correctness; we discuss such
rewrites in Sec. 4.

The mining phase is carried out in the reduce function. The

MapReduce framework automatically constructs partitions

Pw =
⊎
T∈D

{Pw(T ) } .

Each reduce function then runs a customized GSM algorithm on
its partition Pw; partitions are processed independently and in par-
allel. The GSM algorithm is provided with the parameters w, σ,
γ, and λ and produces the set Gσ,γ,λ(w,Pw) of locally-frequent
pivot sequences such that, for each S ∈ Gσ,γ,λ(w,Pw), S is fre-
quent, p(S) = w and 2 ≤ |S| ≤ λ. This local mining step can
be performed using an arbitrary GSM algorithm (which produces
a superset of Gσ,γ,λ(w,Pw)) followed by a filtering step. As we
will see in Sec. 5, LASH proceeds more efficiently by using PSM,
a special-purpose miner that directly produces Gσ,γ,λ(w,Pw).

Discussion. The key difference between LASH and the naïve
and semi-naïve algorithm is the use of item-based partitioning (LA-
SH) versus the use of sequence partitioning (naïve and semi-naïve).
The advantage of item-based partitioning is that the amount of data
communicated from map to the reduce phase can be significantly
lowered by the use of good rewrite techniques. Moreover, the
reduce functions can directly leverage state-of-the-art sequential
GSM algorithms; we discuss such algorithms in Sec. 5.

4. PARTITION CONSTRUCTION
We now discuss partition construction and, in particular, our

rewrite techniques in more detail. As stated above, a simple way to
construct Pw(T ) is to set Pw(T ) = T . For our example database
(σ = 2), we obtain for pivot B the partition

PB = { a b1 a b1, a b3 c c b2, b11 a e a, a b12 d1 c, b13 fd2 } (1)

Using such a partitioning strategy is inefficient due to the following
reasons: (1) skew: partitions of highly frequent items will contain
many more sequences than partitions of less frequent items, (2)
redundant computation: a large number of duplicate sequences are
mined at multiple partitions (e.g., sequence aBc will be mined in
partitions Pa, PB , Pb1 and Pc but output only in partition Pc), and
(3) high communication cost: each input sequence T is replicated
|G1(T )| times, which results in substantial communication cost.

In what follows, we propose rewrite techniques for constructing
Pw(T ) with the aim to overcome the above mentioned shortcom-
ings. We refer to these rewrites as reductions (since they ultimately
reduce the length of T ).

4.1 Generalized w-Equivalency
We first establish the notion of generalizedw-equivalency, which

is an important criterion for the correctness of LASH. In particular,
LASH is guaranteed to produce correct results if for all frequent
items w, partition Pw and database D are w-equivalent.

Extending our running notation, denote by

Gw,λ(T ) = {S | S vγ T, 2 ≤ |S| ≤ λ, p(S) = w } (2)

the set of generalized subsequences S of T that (1) satisfy the
length and gap constraints and (2) have pivot item w. Note that
we suppress the dependence ofGw,λ(T ) on γ for brevity. We refer
to each sequence in Gw,λ(T ) as pivot sequence. For our example
and for σ = 2 and γ = 1 (which we use from now on), we obtain

Gb1,2(T1) = { ab1, b1a, b1b1, b1B,Bb1 } . (3)

Note thatBB /∈ Gb1,2(T1) since each pivot sequence must contain
at least one pivot (and p(BB) = B 6= b1).

We say that two sequences T and T ′ are w-equivalent, if

Gw,λ(T ) = Gw,λ(T
′),



i.e., they both generate the same set of pivot sequences. For exam-
ple,

GB,2(T2) = GB,2(a b3 c c b1) = { aB } = GB,2(aB).

LASH produces correct results if Pw(T ) is w-equivalent to T . To
see this, denote by

Gw,λ(D) =
⊎
T∈D

Gw,λ(T )

the multiset of pivot sequences generated from D. Now observe
that if Pw(T ) is w-equivalent to T , then Gw,λ(D) = Gw,λ(Pw);
we then say that databases D and Pw are w-equivalent. Both data-
bases then agree on the multiset of pivot sequences and, conse-
quently, on their frequencies. Thus for every S with p(S) = w
and 2 ≤ |S| ≤ λ, we have fγ(S,D) = fγ(S,Pw). Since these
are precisely the sequences that LASH mines and retains from Pw
in the mining phase, correctness follows. Note that two databases
can be w-equivalent but disagree on a frequency of any non-pivot
sequence; e.g.,D and PB may be B-equivalent but disagree on the
frequency of B itself (5 versus 4 in our example). In particular,
the frequency of any non-pivot sequence can be equal, lower, or
higher in D than in PB without affecting correctness. The above
discussion leads to the following lemma:

LEMMA 2. If D and Pw are w-equivalent w.r.t. λ and γ, then
fγ(S,D) = fγ(S,Pw) for all S satisfying p(S) = w and 2 ≤
|S| ≤ λ.

Our notion of w-equivalency is a generalization of the corre-
sponding notion of [20], which also gives a more formal treatment
and proof of correctness. The key difference in LASH is the correct
treatment of hierarchies.

4.2 w-Generalization
From the discussion above, we conclude that we can rewrite each

input sequence T into any w-equivalent sequence T ′ = Pw(T ) in
Line 3 of Alg. 1. Our main goal is to make T ′ as small as possible;
this decreases both communication cost, computational cost, and
(as will become evident later) skew.

Fix some pivot w and let T = t1t2 . . . tl. The first and perhaps
most important of our rewrites is called w-generalization, which
tries to rewrite T such that only “relevant” items remain. In par-
ticular, we say that an item is w-relevant if w′ ≤ w; otherwise it
is w-irrelevant. Similarly, index i is w-relevant if and only if ti is
w-relevant. For example, in sequence T2 = ab3ccb2 only index 1
is B-relevant.

The key insight of w-generalization is that any generalized sub-
sequence of T that contains an irrelevant item cannot be a pivot
sequence (since the pivot is smaller than any irrelevant item by def-
inition). Ideally, we would like to simply drop all irrelevant items
from T ; unfortunately, such an approach may lead to incorrect re-
sults since (1) if we drop irrelevant items, we cannot guarantee that
the gap constraint remains satisfied and (2) generalizations of irrel-
evant items may be relevant and thus be part of a pivot sequence.
To illustrate the violation of the gap constraint, suppose that we
dropped cc from T2 = ab3ccb2 to obtain T ′2 = ab3b2. Then
BB ∈ GB,2(T ′2) but BB /∈ GB,2(T ′2) for γ = 1. To illustrate the
second point, suppose that we drop all irrelevant items from T2 to
obtain a. We then miss pivot sequence aB v1 T2 since aB 6v1 a.

Instead of dropping irrelevant items, w-generalization replaces
irrelevant items by other items. There are two cases: (1) If index
i is irrelevant and item ti does not have an ancestor w′ < w, we
replace ti by the special blank symbol , where w < for all

w ∈ W . The blank symbol acts as a placeholder and is needed to
handle gap constraints. (2) Index i is irrelevant but has an ancestor
that is smaller than the pivot. Let w′ be the largest such ancestor.
We then replace ti by w′. This step is similar to the generaliza-
tion performed by the semi-naïve algorithm. It is more effective,
however, since it generalizes all items that are less frequent than
the pivot, whereas the semi-naïve algorithm only generalizes infre-
quent items before applying the naïve algorithm. Continuing our
example with T2 = ab3ccb2 with pivot B, indexes 3 and 4 are ir-
relevant and replaced by blanks (since c does not have an ancestor
that is more frequent than B), whereas indexes 2 and 5 are irrele-
vant and replaced by B (the largest sufficiently frequent ancestor
of both b3 and b2). We thus obtain T ′2 = aB B.

At first glance, it seems as if w-generalization does not help: T2

and T ′2 have exactly the same length. However, we argue that the
use of T ′2 leads to substantially lower cost. First, we can represent
blanks more compactly than irrelevant items; e.g., by using run-
length encoding (T ′2 = aB 2B) and/or variable-length encoding
(few bits for blanks). Second, for similar reasons, we can repre-
sent smaller, generalized items more compactly than large items.
Third, w-generalization enables the use of other effective rewrite
techniques; see Sec. 4.3. Finally,w-generalization (as well as some
of the other rewrites) makes sequences more uniform. If two se-
quences agree on their w-generalization, they can be “aggregated”;
see the discussion in Sec. 4.4.

The correctness of w-generalization is captured in the following
lemma.

LEMMA 3. Let T = t1t2 · · · tn and denote by T ′ = t′1t
′
2 · · · t′n

the w-generalization of T . Then T and T ′ are w-equivalent.

PROOF. We have to show that Gw,λ(T ) = Gw,λ(T
′). Let S =

s1 . . . sk ∈ Gw,λ(T ). By definition, sequence S is a generalized
subsequence of T , p(S) = w, and sj ≤ w for 1 ≤ j ≤ k. Thus
there exists a set of indexes 1 ≤ i1 < . . . < ik ≤ n such that
tij →∗ sj and ij+1− ij − 1 ≤ γ. We claim that t′ij →

∗ sj so that
S ∈ Gw,λ(T ′). There are two cases. If tij ≤ w, w-generalization
does not modify index tj so that t′ij = tj →∗ tj . Otherwise, if
tij > w, w-generalization replaces tij by the largest ancestor t′ij
that is smaller then the pivot. Since tij →∗ sj and sj ≤ w, we
conclude that tij →∗ t′ij →

∗ sj holds as well. Putting everything
together, we obtain Gw,λ(T ′) ⊆ Gw,λ(T ′).

It remains to show that Gw,λ(T ′) ⊇ Gw,λ(T ). This can be
shown using the property that whenever S ∈ Gw,λ(T ′), then /∈
S. The proof is similar to the one above and omitted here.

4.3 Other Rewrites
LASH performs a number of additional rewrites, all of which

aim to reduce the length of the sequence. In contrast tow-generaliz-
ation, these rewrites closely resemble the rewrites of MG-FSM [20];
we summarize them here and point out minor differences.

The first rewrite removes items that are unreachable in that they
are “far away” from a pivot index. Let T = t1t2 · · · tl. In what
follows, we assume that T has already been w-generalized; then ti
is a pivot index if and only if ti = w. In practice, w-generalization
and unreachability reduction are performed jointly and are thus
slightly more complex. Consider for example the sequence T =
ab1acd1ad2cfb2c, pivot D, the hierarchy of Fig. 1(b), and the
item order of Fig. 2. We obtain T ′ = ab1acDaDc Bc by D-
generalization; thus indexes 5 and 7 are pivot indexes. We then
compute the left and right distances to a pivot, as well as the mini-
mum distance. The left/right distance of an index is the size of the
minimum set of increasing/decreasing indexes from a pivot index
to the target index; only indexes that do not correspond to a blank
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Figure 2: Preprocessing, partitioning and mining phases of
LASH for σ = 2, γ = 1 and λ = 3.

as well as the target index are allowed and subsequent indexes must
satisfy the gap constraint (at most γ items in between). For γ = 1,
we obtain:

i 1 2 3 4 5 6 7 8 9 10 11
t′i a b1 a c D a D c B c

left - - - - 1 2 1 2 2 3 4
right 3 3 2 2 1 2 1 - - - -

minimum 3 3 2 2 1 2 1 2 2 3 4

Here “-” corresponds to infinite distance. The left pivot distance of
index 11, for example, is determined by the index sequence 7, 8,
10, 11 (length 4); the sequence 7, 9, 11 is not allowed since index
9 corresponds to a blank. As argued in [20], indexes that have
distance larger than λ are unreachable and the corresponding items
can be removed safely. For λ = 2, we obtain the reduced sequence
acDaDc ; for λ = 3, we obtain ab1acDaDc B.

We also make use of a few other reductions of MG-FSM, which
also apply to our generalized setting. First, we remove isolated
pivot items, i.e., pivot items that do not have a non-blank item close
by (within distance γ). We also remove leading and trailing blanks
and replace any sequence of more than γ + 1 blanks by exactly
γ + 1 blanks.

4.4 Putting Everything Together
We perform the above mentioned rewrites efficiently as follows.

We first scan the sequence from right to left and, for each index,
perform w-generalization and compute its left distance. We then
scan the sequence from left to right, compute the right and pivot
distance of each index, remove unreachable indexes, and remove
blanks as described above. The computational complexity for rewrit-
ing an input sequence of length l given a pivot is O(l). Since an
input sequence has at most δl pivot items, the overall computa-
tional complexity is O(δl2). Moreover, we output O(δl) rewritten
sequences of length at most l for all choices of γ and λ. Thus the
communication complexity of LASH is polynomial, whereas the
communication complexity of the naïve and semi-naïve approaches
can be exponential (O((δ + 1)l)). Moreover, our experiments sug-
gest that LASH often performs much better than what could be
expected from the above worst-case analysis.

The partitions generated by LASH for our example database are
given in Fig. 2. Recall the partition PB from Eq. (1). Using our

rewrites, we obtain

PB = { aB aB, aB, B a a, aB }

which is significantly smaller. Observe that sequence aB occurs
twice. We use combine functionality of Hadoop to aggregate such
duplicated sequences. We also perform aggregation in the reduce
function before starting the actual mining phase. Continuing the
example, the final partition PB is given by

PB = { aB aB : 1, aB : 2, B a a : 1 } .

Aggregation of duplicated sequences saves communication cost and
reduces the computational cost of the GSM algorithm run in the
mining phase.

5. SEQUENTIAL MINING
We now discuss methods to mine each partition locally. We

first describe how existing sequential algorithms can be adapted to
handle hierarchies efficiently. These approaches mine all locally-
frequent sequences and must be combined with a filtering step to
restrict output to pivot sequences. To avoid this overhead, we pro-
pose a more efficient, special-purpose sequence miner that mines
pivot sequences directly; we refer to this algorithm as pivot se-
quence miner (PSM).

5.1 Sequential GSM Algorithms
Most existing sequence miners make use of either breadth-first

search (BFS) or depth-first search (DFS). We briefly describe how
to extend both search techniques with hierarchies.

BFS with hierarchies. Methods based on BFS use a level-
wise approach, i.e., they first compute sequences of length 1, then
length 2, and so on. Here we describe how to extend SPADE [31]
to mine generalized sequences. SPADE employs the candidate-
generation-and-test framework of [26]: It makes use of the fre-
quent sequences of length l to generate candidate sequences of
length l+1 that are potentially frequent, and then determines which
of these candidates are actually frequent. The latter step is per-
formed efficiently by making of vertical representation of the se-
quence database, i.e., an inverted index which maps each length-l
sequence S to a posting list consisting of the set of input sequences
in which S occurs as well as the corresponding positions. To ob-
tain the frequency of a sequence of length l + 1, SPADE inter-
sects the posting lists of its length-l prefix and suffix. We adapt
SPADE as follows: We first scan each sequence T ∈ Pw to cre-
ate a posting list for each frequent length-2 sequence. In partic-
ular, we add sequence T to the posting list of each element of
S ∈ G2(T ). Note that G2(T ) consists of the 2-sequences that
occur in S as well as all of their generalizations; this makes our
approach hierarchy-aware. Consider for example input sequence
T = cab1D, the hierarchy of Fig. 1(b), and γ = 1. ThenG2(T ) =
{ ca, cb1, cB, ab1, aB, aD, b1D,BD } so that we add T to 8 post-
ing lists. The construction of the 2-sequence index is the only dif-
ference to SPADE, i.e., we now proceed with SPADE’s level-wise
approach unmodified. For example, when sequence ca and aD are
frequent, we generate candidate sequence caD and obtain its fre-
quency by intersecting the posting lists of ca and aD.

DFS with hierarchies. An alternative to BFS is to use a DFS
approach such as the pattern-growth framework of the PrefixS-
pan [23]. Pattern-growth approaches start with the empty sequence
and recursively expand a frequent sequence S (of length l) to gen-
erate all frequent sequences with prefix S (of length l + 1). To
make this expansion step efficient, PrefixSpan maintains a pro-
jected database, which consists of the set of input sequences in



which S occurs. In each expansion step, PrefixSpan scans the pro-
jected database to determine the frequent items occurring to the
right of S; we refer to this step as a right-expansion (RE). To
adapt PrefixSpan to mine generalized sequences, we replace the
projected database by the support set Ds, which consists all input
sequences in which S or a specialization of S occurs. When we
right-expand S, the set of right items for transaction T ∈ Ds is
given byW right

S (T ) = {w′ | Sw′ vγ T }, i.e., we look for occur-
rences of S or a specialization of S, and then consider the items
to the right along with their generalizations. For our example se-
quence T = cab1D with γ = 1, we haveW right

ca (T ) = { b1, B,D }
andW right

cB = {D }. Right-expansion is performed by scanningDS
and computing the setW right

S =
⋃
T∈DS

{W right
S (T )} of right items

along with their frequencies. For each frequent item w′ ∈ W right
S ,

we output Sw′ and recursively grow Sw′.
Overhead. In the context of LASH, the approaches described

above have substantial computational overhead: They compute and
output all frequent sequences, whether or not these sequences are
pivot sequences (i.e., p(S) = w). To see this, consider pivotD, the
hierarchy of Fig. 1(b), and example partition

PD = { aDDa, c a b1D, c a DB,B aaDb1c } , (4)

for σ = 2, γ = 1 and λ = 4. Both BFS and DFS methods will pro-
duce sequences such as ca, ab1, and aB, neither of which contain
pivot D and thus need to be filtered out by LASH. Unfortunately,
neither BFS nor DFS can be readily extended to avoid enumerat-
ing non-pivot sequences. This is because short non-pivot sequence
might contribute to longer pivot sequences. In BFS, we obtain fre-
quent pivot sequence caD from ca (a non-pivot sequence) and aD
(a pivot sequence). Similarly, DFS obtains caD by expanding the
non-pivot sequence ca. This costly computation of non-pivot se-
quences cannot be avoided without sacrificing correctness. Note
that both approaches also compute frequent sequences that do not
contribute to a pivot sequence later on (e.g., sequence aB).

5.2 Pivot Sequence Miner
In what follows, we propose PSM, an effective and efficient al-

gorithm that significantly reduces the computational cost of mining
each partition. In contrast to the methods discussed above, PSM
restricts its search space to only pivot sequences and is thus cus-
tomized to LASH. We also describe optimizations that further im-
prove the performance of PSM. Note that our PSM algorithm is
aware of hierarchies, but it is nevertheless also beneficial for “flat”
sequence mining without hierarchies; see Sec. 6.3.

Algorithm. The key goal of PSM is to only enumerate pivot
sequences. PSM is based on the hierarchy-aware version of Pre-
fixSpan described above, but, in contrast, starts with the pivot w
(instead of the empty sequence) and extends to the left and to the
right (instead of just to the right). Since PSM starts with the pivot,
every intermediate sequence will be a pivot sequence. The PSM
algorithm is shown as Alg. 2. We assume that for all T ∈ Pw,
p(T ) = w; this property is ensured by w-generalization (Sec. 4.2).

PSM starts with S = w (pivot item) and determines the support
set Dw (line 1); under our assumptions, Dw = Pw so that nothing
needs to be done. We then perform a series of right-expansions
almost as described above (lines 2 and 13); the only difference is
that we do not right-expand with the pivot item (cf. line 11). After
the right-expansions are completed, we have produced all frequent
pivot sequences that start with the pivot item (and do not contain
another occurrence of the pivot item).

Fig. 3 illustrates PSM on the partition of Eq. (4) with pivot D.
Solid nodes represent frequent sequences; dotted nodes represent
infrequent sequences that are explored by PSM. Each edge corre-

Algorithm 2 Mining pivot sequences
Require: Pw,W ,→, σ, γ, λ
1: S ← w, DS ← Supγ(S,Pw)
2: EXPAND(S,DS , right)
3: EXPAND(S,DS , left)
4:
5: EXPAND(S,DS , dir)
6: if |S| = λ then
7: return
8: else
9: Scan DS to computeWdir

S

10: if dir = right then
11: for all w′ ∈ Wdir

S \ {w } with fγ(Sw′,Pw) ≥ σ do
12: Output (Sw′, fγ(Sw′,Pw))
13: EXPAND(Sw′,DSw′ , right)
14: end for
15: end if
16: if dir = left then
17: for all w′ ∈ Wdir

S with fγ(w′S,Pw) ≥ σ do
18: Output (w′S, fγ(w′S,Pw))
19: EXPAND(w′S,Dw′S , right)
20: EXPAND(w′S,Dw′S , left)
21: end for
22: end if
23: end if

sponds to an expansion and is labeled with its type (RE=right ex-
pansion, LE=left expansion) and order of expansion. We start with
sequence D and perform the first right-expansion (RE 1) to obtain
sequences Da, Db1, DB, and Dc from which only DB turns out
to be frequent. We then right-expand DB to obtain DBc (RE 2),
which is infrequent. At this point, no more right-expansions are
performed and we return to the pivot.

After the pivot has been right-expanded, PSM performs a left-
expansion of the pivot w (line 3), producing sequences of form
w′w. Left-expansions are symmetrical to right-expansions, but
we expand S to the left by computing the set of items W left

S =⋃
T∈DS

{W left
S (T )}, whereW left

S (T ) = {w′ | w′S vγ T }. In our
example, we obtain frequent sequence aD and some infrequent se-
quences (LE 3). We now perform a sequence of right-expansions
on aD (RE 4 and RE 5, line 19 of Alg.2). Note that PSM never
left-expands a sequence that is a result of a right-expansion. Once
all right-expansions of aD have been computed, we left-expand it
(LE 6, line 20) and proceed recursively as above.

Correctness. PSM enumerates each frequent pivot sequence ex-
actly once; there are no duplicates and no missed sequences. To
see this, consider an arbitrary pivot sequence S of length at least 2
(with pivot w). Then there is a unique decomposition

S = SlwSr

such that w /∈ Sr . We refer to Sl as the prefix of S (i.e., the part
of S occurring to the left of the (last) pivot) and Sr as the suffix
(to the right). For example, sequence caD with pivot D has pre-
fix Sl = ca and suffix Sr = ε. Note that the decomposition is
unique because w /∈ Sr; e.g., S = aDDa uniquely decomposes
into Sl = aD and Sr = a. This is the reason why we do not
right-expand with the pivot (line 11). PSM generates S from D by
first performing left-expansions until Slw is obtained, and then a
series of right-expansions to obtain SlwSr . Fig. 3 shows a num-
ber of examples; e.g., sequence caDB is obtained by expansions
LE 3, LE 6, and RE 7. If PSM were to perform left-expansions
after a right expansion, then caDB would also be obtained from
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Figure 3: Pivot sequence enumeration for partition PD for σ =
2, γ = 1 and λ = 4.

a left-expansion of aDB (obtained from RE 4). PSM avoids such
duplicates.

Indexing right-expansions. We now describe an optimization
technique which further reduces the search space. The key idea
is to store information of right-expansions to make future right-
expansions more efficient. To see why this may help, consider RE 1
and RE 4 in Fig. 3. From RE 1, we know that Da is infrequent.
Thus, when performing RE 4, we do not need to consider sequence
aDa since it must also be infrequent (Lemma. 1). In general, if
Sw′ is an infrequent right-expansion of S, then w′′Sw′ will be an
infrequent right-expansion of w′′S.

We make use of this observation as follows. Whenever we per-
form a right-expansion of some sequence S, we store in an index
the setRS of the resulting frequent expansion items. In our exam-
ple, we haveRD = {B } from RE 1 sinceDB is the only frequent
right-expansion of D. We subsequently use the information about
RS as follows. Whenever we perform a right-expansion of some
sequence SlS, we restrict the set of expansion items toRS . In our
example, when expanding aD in RE 4, we only consider expansion
item B (since RD = {B }). For all other items, neither counting
nor support set computation is performed; these items are shown
in nodes connected with dashed lines in Fig. 3. If RS is empty,
no right-expansions need to be performed and we do not scan the
database. This happens for the sequence aDB in our example;
since we obtainRDB = ∅ from RE 2, we do not perform RE 5.

Our choice of indexing only right-expansions is tailored to the
order in which PSM explores pivot sequences. For example, con-
sider LE 3 in Fig. 3. Information about frequent left-expansions for
S = D (i.e., aD) will not be of any use, since during the traversal,
we will never left-expand any sequence of the form SSr (such as
DB; recall that PSM never left-expands a sequence that is a result
of a right-expansion). Therefore, we only index right-expansions
to prune search space. To save memory, our actual implementation
unions the indexes of each level of each series of right expansions
(i.e., we maintain one index for the frequent items that occur di-
rectly after S, one index for the items that occur two items after S,
and so on).

Analysis. In what follows, we study the worst-case size of the
search space of the PSM algorithm and compare it to the one of the
BFS and DFS approaches. Let us assume that a database (or par-
tition) has k distinct items and that each sequence in the database
has length λ. Further assume that all possible sequences of length

up to λ are frequent in the database; there are
∑λ
l=1 k

l such se-
quences. Both BFS and DFS will first produce all of these se-
quences, but in the context of LASH, subsequently only output the
ones that contain the pivot item. There are

∑λ
l=1(k−1)

l sequences
that do not contain the pivot; these are produced unnecessarily. In
contrast, PSM only explores pivot sequences, of which there are∑λ
l=1 k

l −
∑λ
l=1(k − 1)l. Thus PSM explores a fraction of

1−
∑λ
l=1(k − 1)l∑λ

l=1 k
l
� 1

of the sequences explored by BFS or DFS methods. For example,
if k = 100,000 and λ = 5, PSM explores 0.005% of the search
space of BFS or DFS.

In practice, the worst-case rarely occurs, of course. To shed
more light on the relationship between PSM and DFS, consider
our running example and suppose that we used DFS. In a first step,
DFS computes all (item, frequency)-pairs, of which there are five:
(a, 2), (b1, 2), (B, 3), (c, 3) and (D, 4). For each so-found fre-
quent sequence, DFS recursively makes a right-expansions to com-
pute longer frequent sequences. In our running example, DFS ul-
timately computes 17 length-2 sequences (but outputs only the fre-
quent ones): (aD, 4), (ab1, 2), (aB, 2), (aa, 1), (b1D, 1), (b1c, 1),
(BD, 1), (Ba, 1), (Bc, 1), (ca, 2), (cb1, 1), (cB, 1), (DD, 1),
(Da, 1), (DB, 2), (Db1, 1), (Dc, 1). Similarly, DFS computes
13 length-3 sequences and two length-4 sequences. The total size
of the search space of DFS is thus 37. On the other hand, PSM only
explores 13 sequential patterns; these are shown by the nodes con-
nected with solid lines in Fig. 3. Thus PSM explores only roughly
one third of the search space of DFS in our example.

6. EXPERIMENTS
We now present results of our experimental study using two large

real-world datasets in the contexts of generalized n-gram mining
from textual data and customer behavior mining from product se-
quences. In particular, we compared LASH to the naïve and the
semi-naïve algorithms, evaluated the efficiency of the PSM algo-
rithm for mining each partition, and studied the scalability of LASH.
We also studied the effect of different parameters—i.e., support (σ),
gap (γ) and length (λ)—and how different types of hierarchies af-
fect the performance of LASH.

We found that LASH outperformed the naïve and semi-naïve al-
gorithms by multiple orders of magnitude. For mining partitions
locally, the PSM algorithm was more efficient and faster than the
BFS and DFS algorithms. Our scalability experiments suggest that
LASH scales linearly as we add more compute nodes and/or in-
crease input dataset size.

6.1 Experimental Setup
Implementation and cluster. We implemented LASH, the semi-

naïve and naïve methods in Java (JDK 1.7). We represent items
by assigning integers item ids according to the order < obtained
from the generalized f -list. Thus, highly frequent items are as-
signed smaller integer ids. We represent sequences as arrays of
item ids and compress the data transmitted between the map and
reduce phase using variable-length integer encoding. All experi-
ments were run on a local Hadoop cluster consisting of eleven Dell
PowerEdge R720 computers, each with 64GB of main memory,
eight 2TB SAS 7200 RPM hard disks and two Intel Xeon E5-2640
6-core CPUs. Debian Linux (kernel version 3.2.48.1.amd64-smp)
was used as an operating system. The machines in the cluster are
connected via 10 GBit Ethernet. We use the Cloudera cdh3u6 dis-
tribution of Hadoop 0.20.2 running on Oracle Java 1.7.0_25. One



Dataset Sequences Avg length Max length Total items Unique items

NYT 49,605,960 21.1 15,199 1,047,419,137 2,763,301
AMZN 6,643,666 4.5 25,630 29,667,966 2,374,096

Table 1: Dataset characteristics

Dataset Hierarchy Total items Leaf items Root items Intermediate items Levels Avg.fan-out Max.fan-out

NYT

L 2,910,327 407,806 2,502,521 0 2 2.7 36
P 2,617,581 2,617,559 22 0 2 124,645.6 1,828,130
LP 2,910,347 2,763,300 22 147,025 3 19.8 1,822,454
CLP 2,970,092 2,763,300 22 206,770 4 14.4 1,822,454

AMZN

h2 2,374,147 2,371,524 2,623 0 2 48,398.4 904,162
h3 2,374,509 2,371,536 2,630 343 3 6,050.7 332,723
h4 2,376,539 2,371,670 2,633 2,236 4 1,038.9 332,723
h8 2,387,422 2,373,158 2,634 11,630 8 204.2 332,723

Table 2: Hierarchy characteristics

machine acted as a Hadoop master node; the other ten machines
acted as worker nodes. The maximum number of concurrent map
or reduce tasks was set to 8 per worker node. All tasks are launched
with 4 GB heap space.

Datasets. Statistics of the datasets and hierarchies used in our
experiments are summarized in Tab. 1 and Tab. 2 respectively. We
used two real-world datasets: New York Times corpus (NYT) [3]
for mining generalized n-grams and Amazon product reviews dataset
(AMZN) [5] for mining product sequences.

The NYT dataset consists of roughly 50M sentences from 1.8
million articles published during 1987 and 2007. We treat each
sentence as an input sequence with each word (token) as an item.
We generated a syntactic hierarchy by annotating the each word
with its lemma and part-of-speech tag using the Stanford CoreNLP
parser [4] and also annotated each word with its lower-case form (if
different that its surface form). In our syntactic hierarchy, a word
appearing in a sentence can generalize to its lowercase form, which
generalizes to its lemma, which in turn generalizes to its part-of-
speech tag. For example, the word “Changing”→ “changing”→
“change” → “VERB”. We generated four variants of this hierar-
chy: NYT-L (word → lemma), NYT-P (word → pos), NYT-LP
(word→ lemma→ pos) and NYT-CLP (word→ case→ lemma
→ pos). Note that the surface form of many words appearing the
input sequences is same as their lowercase or lemma; this naturally
creates a hierarchy in which items appearing in the input sequences
come from different levels.

The AMZN dataset consists over 35 million reviews from over
6 million users spanning from 1995 to 2013. To generate product
sequences, we identified a user sessions by grouping the reviews by
user and sorting each so-obtained sequence by timestamp. We used
the Amazon product hierarchy, in which, for example, the book
“For Whom the Bell Tolls”→ “Classics”→ “Literature & Fiction”
→ “Books”. We also considered different hierarchy types of vary-
ing depths (2-8) by varying the number of intermediate categories
a product is assigned to.

Measures. In the following experiments, we report the perfor-
mance measure as total time elapsed between launching a task and
receiving the final result. We break down this time into time taken
by the map phase, shuffle phase and the reduce phase. Since these
phases overlap in a MapReduce job, we report the time elapsed un-
til finishing of each phase. We also report the bytes transferred as
the total data transferred between map and reduce task as obtained

from Hadoop’s MAP_OUTPUT_BYTES counter. All measurements
reported are based on average of three independent runs and were
performed with exclusive access to the machines.

6.2 Overall Runtime
We initially evaluated the performance of LASH generalized n-

gram mining (i.e., γ = 0) and compared it with the naïve and
semi-naïve methods (discussed in Sec. 3) using the NYT-P dataset
having two levels of hierarchy. For this dataset, we mined general-
ized n-grams with three different parameter settings of increasing
difficulty w.r.t. to output size. The results are plotted using a log-
scale in Fig. 4(a). With σ = 1000, λ = 3 and σ = 100, λ = 3,
LASH obtained a speedup of around 10×. Further, LASH achieves
a speed up of more than 50× for the setting with σ = 100, λ = 5.

For the entire NYT-CLP dataset having four levels of hierar-
chy, the naïve and semi-naïve algorithms were unable to handle
the combinatorial blowup of the search space and were aborted af-
ter 12 hours. On the other hand, LASH required a little over 600
seconds only. Also, as shown in Fig. 4(b) the total bytes transferred
between the map and reduce phase is significantly less for LASH.

6.3 Local Mining
In our next set of experiments, we studied the efficiency of the

PSM algorithm by running LASH with sequential GSM algorithms
of Sec. 5.1. We used the NYT dataset and performed runs with dif-
ferent settings of increasing difficulty w.r.t. output size. The results
are shown in Fig. 4(c) using log-scale. Since our choice of sequen-
tial mining approaches only affect the reduce phase, we report the
mining time as time elapsed between the end of last reduce task and
end of first sort task.

Compared to BFS, with the LP hierarchy (three levels) and the
parameters σ = 1000, λ = 5, PSM was 9× faster. As we de-
creased the value of σ to 100, PSM was 15× faster and up to 22×
faster with the full CLP hierarchy. For the setting CLP (σ = 100,
λ = 7), BFS reported insufficient memory and terminated. On
comparison to DFS, PSM was 2.5× to 3.5× faster for these set-
tings. The efficiency of PSM stems from an optimized search space
exploration of pivot sequences w.r.t. the partitions being mined.
Since PSM uses a customized depth-first search, we also compared
the number of candidate sequences generated per output sequence
by DFS and PSM. As observed from Fig. 4(d), PSM explores a
much smaller fraction of the search space.
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Figure 4: Performance of distributed (a,b,e) and sequential algorithms (c,d).

We also evaluated our optimization technique by studying PSM’s
performance with indexing (PSM+Index). We observed a trade-off
between the construction cost and the benefit of indexing. The run-
times improved by 100s with increase in the values of λ and levels
of hierarchy. We also observed that in all the cases, our indexing
significantly pruned a lot of search space up to 2× (see Fig. 4(d)).

Lastly, we compared LASH with MG-FSM [20], a state-of-the-
art frequent sequence miner. As MG-FSM does not support hier-
archies, we ran LASH on the data without using any hierarchies.3

We used the the NYT dataset with 3 different parameter settings of
increasing difficulty. We report the total runtime in Fig. 4(e). We
observed an overall speedup of 2× to 5× which essentially stems
from using the PSM algorithm for mining partitions where as MG-
FSM uses standard BFS approach for mining each partition. Our
results indicate that LASH is the best-performing method for min-
ing sequences without hierarchies as well.

6.4 Effect of Parameters
In this group of experiments, we studied how the performance is

affected by different parameters σ, γ and λ. We used the AMZN-h8
dataset with full 8 levels of the hierarchy and fixed the parameters
to σ = 100, γ = 1 and λ = 5.

We first studied how the minimum support σ affects the perfor-
mance by varying its value from 10 to 10,000. The results are
shown in Fig. 5(a). The time taken by the map phase which consist
of rewriting input sequences for each partition decreases as we in-
crease the support. Recall that, our rewrites are independent of σ
(see discussion in Sec. 4.4); however, σ has an indirect effect. At
higher supports, fewer items from the lower levels of the hierarchy
are frequent so that the effective depth of the hierarchy is reduced.
Since our rewrites depends on this depth, the time per rewrite de-

3In this setting, LASH is equivalent to MG-FSM with its local
miner replaced by PSM.

creases as the support threshold is increased. The reduce time de-
creases as well since mining becomes cheaper at higher supports.

Second, we varied the value of maximum gap γ from 0 to 3. As
we can see in Fig. 5(b), the impact on map times was not significant
as the cost of rewriting is largely independent of γ. However, it
had a significant impact on the reduce times as as the search space
during mining significantly increases with γ.

Lastly, we evaluated how maximum length λ effects the perfor-
mance of LASH by varying its value from 3 to 7. The results are
shown in Fig. 5(c). We observed that λ had very little impact on the
map time. The reduce time increases significantly as we increase
λ since mining becomes more expensive. In fact, the output size
increases as we increase λ. Fig. 5(d) shows that output size and
reduce times are proportional.

6.5 Effect of Hierarchies
In this group of experiments, we studied how different types of

hierarchies affect the performance of LASH. We used the AMZN
and NYT datasets. Our results are shown in Fig. 5(e) and Fig. 5(f)
respectively.

For the AMZN dataset (Fig. 5(e)), we fixed the parameters σ =
100, γ = 2, λ = 5 and varied the hierarchy levels from 2 to 8.
The map times slightly increases with an increase in levels, even
though the support is fixed. This is because rewriting each se-
quence depends on the hierarchy depth. The reduce times increase
significantly since an increase in hierarchy levels in turn increases
the number of intermediate items (see Tab. 2). This makes mining
more expensive: a partition needs to be created and mined for each
intermediate item and the mining time of a partition also depends
on the depth of the hierarchy. The effect in reduce times is less
pronounced when the using the full hierarchy (8 levels) compared
to 4 levels because most products in the Amazon product hierarchy
have no more than 4 parent categories.
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Figure 5: Effect of parameters (a-d) and hierarchies (e-f).

For the NYT dataset (Fig. 5(f)), we set σ = 100, λ = 5, and
considered four variants of the syntactic hierarchy (see Sec. 6.1).
NYT-L and NYT-P both have two levels but show a significant dif-
ference in reduce times. This is because the NYT-L hierarchy has
many roots with low fan-out, whereas the NYT-P hierarchy has few
roots with high fan-out. Mining the latter hierarchy is more expen-
sive, partly due to the high frequency of the root items, partly due
to larger output size. We also observed that adding more levels to
the hierarchy (NYT-LP and NYT-CLP) significantly increases both
the map and the reduce times.

6.6 Scalability
In our final group of experiments, we studied the scalability of

LASH as we add more compute nodes and/or increase the input
data size. We used the NYT dataset with full CLP hierarchy and
set the parameters σ = 100 and λ = 5.

We first investigated the performance of LASH as we vary the
input data size. To this end, from the NYT dataset, we extracted
datasets that contain a random 25%-, 50%- and 75%-sample of the
input sequences. The results are shown in Fig. 6(a). We observed
that LASH is robust in handling increasing amounts of data with
both map and reduce times increasing linearly as we add more data.

We evaluated strong scalability by running LASH on a fixed
dataset (100% NYT-CLP) and varying the amount of parallel work
by using 2, 4 and 8 compute nodes. We observed from Fig. 6(b)
that LASH exhibits good linear scalability with both map and re-
duce times decreasing equally as we increase the number of com-
pute nodes.

We also evaluated weak scalability for LASH, in which we in-
crease the input data size as we add more compute nodes. In partic-
ular, we simultaneously increased the size of the input data (25%,
50% and 100% of NYT-CLP) and number of compute nodes (2,
4 and 8). As observed from Fig. 6(c), LASH exhibits good weak

Dataset Non-trivial Closed Maximal
(%) (%) (%)

Hierarchy

NYT
(σ = 100, λ = 5)

P 75.47 89.08 31.92
LP 73.47 50.38 10.11

CLP 70.26 35.42 6.06

Min sup (σ)

AMZN-h8
(γ = 1, λ = 5)

10,000 100 100 21.56
1,000 99.78 85.79 14.50

100 97.38 64.86 10.06

Table 3: Output Statistics

scalability. Note that the total time ideally remains constant as we
double both computational resources and input dataset. In practice,
however, the number of output sequences increases by a factor of
more than 2 when doubling the input data. We thus observe a slight
increase in the runtimes. In this particular case, the number of out-
put sequences increased from 43M (25% of input) to 99M (50% of
input) to 220M (100% of input), which is a factor of 2.2×.

Hence, LASH provides an efficient partitioning and mining tech-
nique for highly parallelized generalized frequent sequence mining.

6.7 Output Statistics
We computed a number of statistics of the set of generalized sub-

sequences that we mined from our datasets; the results are shown
in Tab. 3.

First, we computed the percentage of non-trivial output sequences
to judge whether generalized sequence mining is beneficial. We say
that an output sequence is trivial, if it can be generated from the
output of a standard sequence miner (which ignores hierarchies)
by generalizing items. For example, non-trivial sequences on the
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Figure 6: Scalability results

NYT-CLP dataset (σ = 100) include: “NOUN lives in NOUN”,
“NOUN works at NOUN” and “the ADJ Book”; no specializations
of these patterns were frequent in the input data. For the NYT and
AMZN datasets, we observed that more than 70% and 95%, resp.,
of the sequences were non-trivial.

Recall the discussion at the end of Sec. 2, in which we argue that
GSM may produce “redundant” (but nevertheless potentially use-
ful) sequences. To see how many redundant sequence are mined,
we computed the number of closed and maximal subsequences. In
the context of GSM, a frequent sequence S is maximal if every
supersequence S′ w0 S is infrequent, and closed if every superse-
quence has a different frequency. In Tab. 3, we observe that adding
more levels to the hierarchy or lowering the support increases the
fraction of redundant patterns, but that nevertheless a large number
of patterns is non-redundant. To the best of our knowledge, direct
mining of maximal or closed sequences in the context of hierar-
chies has not been studied in the literature. Our results indicate that
such methods are a promising direction for future work.

7. RELATED WORK
We now discuss, how our work relates to existing literature, which

can be broadly categorized into:
Sequential pattern mining. The problem of mining sequen-

tial patterns was introduced in the seminal work by Agarwal et
al. [6]. The proposed APRIORI algorithm is based on a candidate-
generation-and-test approach that repeatedly scans the input data
to generate and count candidate sequential patterns and prunes the
infrequent ones. Apriori’s successor, the GSP algorithm [26], iter-
atively generates candidate l-sequences by joining frequent (l−1)-
sequences and prunes the infrequent ones by scanning the input
database. SPADE [31] uses a vertical representation of the se-
quence database which can be seen as an inverted index that maps
sequences to their corresponding offsets in input transactions. It
uses either breadth-first or depth-first traversal of the sequence lat-
tice to determine frequent patterns. The BFS approach (Sec. 5.1)
adapts these algorithms to efficiently handle hierarchies.

In contrast to the candidate-generation-and-test approach, Han
et al. proposed the FP-Growth algorithm [12] based on the pattern-
growth principle. It uses an item-based partitioning of the out-
put search space. Based on similar ideas, the PrefixSpan algo-
rithm [23] uses a suffix-based partitioning of the output space and
uses database projections to mine frequent patterns. SPAM [8],
which is similar to SPADE, uses an internal bitmap structure for
database representation and employs a pattern-growth approach to
mine frequent sequential patterns. The BIDE [29] and the Gap-
BIDE [16] algorithms mine frequent closed subsequences; they

use a depth-first strategy to enumerate closed sequences. The DFS
(Sec. 5.1) and PSM (Sec. 5.2) algorithms are pattern-growth ap-
proaches.

Hierarchies in sequential pattern mining. Agarwal et al. [26]
proposed the use of extended sequences to incorporate hierarchies
into the mining process. In this approach, each item in a sequence
is replaced by an itemset containing the item and all its ancestors.
Generalized sequence mining using extended sequences is ineffi-
cient as it increases the size of the sequence database by a factor
of roughly the depth of the hierarchy. Hierarchies have also been
explored in context of multi-dimensional sequential pattern min-
ing. To this end, Plantevit et al. proposed the HYPE algorithm [25]
and the M3SP algorithm [24] as its successor. In their approach,
they prune hierarchies by only considering maf-sequences, which
are pairs of items (each belonging to a dimension) that are maxi-
mal (i.e., each specialization is infrequent). Subsequently, they use
SPADE to generate frequent sequences. A known limitation of their
approach is that they do not mine all frequent sequences. Chen et
al. [10] sketched the idea of fuzzy multi-level sequential patterns.
They consider hierarchies in which an item can have more than one
parent with different degrees of confidence and use a GSP-like ap-
proach to mine such patterns. Huang [14] later presented a divide-
and-conquer strategy based on the pattern-growth approaches to
mine such fuzzy multi-level patterns. Both approaches encode hi-
erarchy information in each item, which is reminiscent of extended
sequences and are outperformed by GSP [14].

Parallel and distributed mining. Our work is most closely re-
lated to the MG-FSM algorithm [20] by Miliaraki et al. and shares
the same design philosophy. However, their approach is not appli-
cable in our setting since MG-FSM’s partitioning and mining tech-
niques cannot handle hierarchies. LASH extends the partition con-
struction framework of MG-FSM to efficiently handle hierarchies
and employs PSM, a more efficient local mining algorithm. On
datasets without hierarchies, on which both MG-FSM and LASH
can be applied, LASH is more efficient due to PSM.

8. CONCLUSION
We proposed LASH, an algorithm for mining frequent sequences

in presence of hierarchies. To the best of our knowledge, LASH is
the first distributed, scalable algorithm for mining such general-
ized sequences. LASH uses a novel, hierarchy-aware form of item-
based partitioning, optimized partition construction techniques, and
an efficient, special-purpose algorithm for mining each partition in-
dependently and in parallel. Our experimental study indicates that
LASH is efficient, scales to large real-world datasets, and is multi-
ple orders of magnitude faster than existing baseline methods.
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