
On Synopses for Distinct-Value Estimation
Under Multiset Operations

Kevin Beyer1 Peter J. Haas1 Berthold Reinwald1 Yannis Sismanis1 Rainer Gemulla2

1IBM Almaden Research Center 2Technische Universität Dresden
San Jose, CA, USA Dresden, Germany

{kbeyer,phaas,reinwald,syannis}@us.ibm.com gemulla@inf.tu-dresden.de

ABSTRACT
The task of estimating the number of distinct values (DVs) in a
large dataset arises in a wide variety of settings in computer science
and elsewhere. We provide DV estimation techniques that are de-
signed for use within a flexible and scalable “synopsis warehouse”
architecture. In this setting, incoming data is split into partitions
and a synopsis is created for each partition; each synopsis can then
be used to quickly estimate the number of DVs in its correspond-
ing partition. By combining and extending a number of results in
the literature, we obtain both appropriate synopses and novel DV
estimators to use in conjunction with these synopses. Our synopses
can be created in parallel, and can then be easily combined to yield
synopses and DV estimates for arbitrary unions, intersections or
differences of partitions. Our synopses can also handle deletions
of individual partition elements. We use the theory of order statis-
tics to show that our DV estimators are unbiased, and to establish
moment formulas and sharp error bounds. Based on a novel limit
theorem, we can exploit results due to Cohen in order to select syn-
opsis sizes when initially designing the warehouse. Experiments
and theory indicate that our synopses and estimators lead to lower
computational costs and more accurate DV estimates than previous
approaches.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous

General Terms
Algorithms, theory

Keywords
distinct-value estimation, synopsis warehouse

1. INTRODUCTION
The task of determining the number of distinct values (DVs) in

a large dataset arises in a wide variety of settings in computer sci-
ence, including data integration [4, 8], query optimization [22, 29],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 12–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

network monitoring [12], and OLAP [28, 31]. The number of dis-
tinct values can be computed exactly by sorting the dataset and then
executing a straightforward scan-and-count pass over the data; al-
ternatively, a hash table can be constructed and used to compute
the number of distinct values. Neither of these approaches scales
well to the massive datasets often encountered in practice, because
of heavy time and memory requirements. A great deal of research
over the past twenty five years has therefore focused on approx-
imate methods that scale to very large datasets. These methods
work either by drawing a random sample of the data items and us-
ing the observed frequencies of the values in the sample as a basis
for estimation [6, 19, 20] or by taking a single pass through the
data and using hashing techniques to compute an estimate using a
bounded amount of memory [1, 2, 3, 11, 12, 13, 14, 16, 18, 33].

Almost all of this work has focused on producing a given syn-
opsis of the dataset and then using the synopsis to obtain a DV es-
timate; issues related to combining and exploiting synopses in the
presence of set operations on multiple datasets have gone largely
unexplored. Such issues are the focus of this paper, which is about
DV estimation methods in the context of a “synopsis warehouse”
environment as described in [5].1 In a synopsis warehouse, incom-
ing data is split into partitions, i.e., multisets of values, and a syn-
opsis is created for each partition; the synopses are used to quickly
estimate various partition properties. As partitions are rolled in and
out of a full-scale warehouse, the corresponding synopses are rolled
in and out of the synopsis warehouse. The architecture requires
that synopses can be created in parallel, ensuring scalability, and
that synopses can be combined to create a synopsis corresponding
to the union, intersection, or difference of the corresponding par-
titions, providing flexibility. We use the term “partition” here in
a very general sense. Data may be partitioned — e.g., by times-
tamp, by data value, and so forth — for purposes of parallel pro-
cessing and dealing with fluctuating data-arrival rates. Data may
also, however, be partitioned by its source — e.g., SAP customer
addresses versus PeopleSoft customer addresses. In the latter sce-
nario, comparison of data characteristics in different partitions may
be of interest for purposes of metadata discovery and automated
data integration [4]. For example, DV estimates can be used to
detect keys and duplicates in a partition, can help discover subset-
inclusion and functional-dependency relationships, and can be used
to approximate the Jaccard distance or other similarity metrics be-
tween the domains of two partitions [4, 8].

Our goal is therefore to provide “warehouse-ready” synopses for
DV estimation, as well as corresponding DV estimators that exploit
these synopses. As indicated above, it is essential that, whenever

1Similar ideas appear in [8], where the synopses are called “signa-
tures.”

199

a compound data partition is created via multiset operations on a
collection of input partitions, the synopsis for the compound parti-
tion can be easily obtained by combining the synopses of the input
partitions. We also strive to maintain the best possible accuracy in
our DV estimates, especially when the size of the synopsis is small:
as discussed in the sequel, the size of the synopsis for a compound
partition is limited by the size of the smallest input synopsis.

We bring together a variety of ideas from the literature — see
Section 2 — to obtain a solution to our problem, resulting in best-
of-breed DV estimation methods. More specifically, we propose
the use of an “AKMV synopsis,” extending an idea in [3] in or-
der to handle multiset operations gracefully; our extension involves
adding counters to the basic synopsis, in the spirit of [15, 16, 31].
We then provide methods for combining AKMV synopses such that
the collection of these synopses is “closed” under multiset opera-
tions on the parent partitions. The AKMV synopsis can also handle
deletions of individual partition elements. Our new DV estimator
is a deceptively simple modification of an estimator proposed in
[3]. Using a probabilistic model of hashing, we apply results from
the theory of order statistics to show that our proposed estimator is
unbiased and has lower mean-squared error than the “basic” DV es-
timator that underlies most current methods. We also derive exact
moment formulas and probabilistic error bounds for the unbiased
estimator, along with asymptotic approximations to these quanti-
ties that can be employed when the number of DVs is known to
be large. Our asymptotic analysis rests on a new limit theorem
that allows us to exploit results in [7], which were originally devel-
oped for estimating the size of a transitive closure. The asymptotic
error bounds can be used to help determine appropriate synopsis
sizes when designing the synopsis warehouse. We also provide a
maximum-likelihood estimator that is asymptotically equivalent to
our unbiased estimator as the synopsis size and number of DVs be-
comes large; it follows that when there are many distinct values and
the synopsis size is large, the unbiased estimator has essentially the
minimal possible variance of any DV estimator. We then show how
our new estimator can be modified to obtain unbiased DV estimates
in the presence of multiset operations.

The remainder of the paper is organized as follows. We review
previous approaches to DV estimation in Section 2. In Section 3,
we describe the KMV synopsis, a simpler version of our ultimate
AKMV synopsis that was essentially proposed in [3], and discuss
its space requirements and construction cost. We then introduce
our unbiased estimator in Section 4, and give both an exact and
an asymptotic analysis of the estimator’s behavior. The issues in-
volved in combining synopses are covered in Section 5. We show
that the KMV synopsis can be used successfully in certain esti-
mation scenarios, but needs to be augmented in order to deal with
multiset difference operations; the resulting AKMV synopsis has
the desirable closure property mentioned above. We also show how
to extend our simple unbiased estimator to provide unbiased esti-
mates in the presence of set operations, obtaining a direct unbi-
ased estimate of the Jaccard distance in the process. We provide an
empirical evaluation of our methods in Section 6 and conclude in
Section 7.

2. RELATED WORK
We now discuss previously-proposed synopses, DV estimators,

and methods for handling compound partitions.

2.1 Synopses for DV Estimation
In general, the literature on DV estimation does not discuss syn-

opses explicitly, and hence does not discuss issues related to com-
bining synopses in the presence of set operations on the corre-

sponding partitions. We can, however, directly infer potential can-
didate synopses from the various algorithm descriptions.

2.1.1 Bit-Vector Synopses
The oldest class of synopses comprises various types of bit vec-

tors. The “linear counting” technique [2, 12, 33] uses a bit vector
V of length M = O(D), together with a hash function h : D(A) 7→
{1,2, . . . ,M }, where D(A) denotes the domain of the partition A
of interest. The function h is applied to each element v ∈ A, and the
h(v)th bit of V is set to 1. After A has been scanned, the estimate
of D, the number of distinct values in A, is the total number of 1-
bits in V , multiplied by a correction factor. The correction factor
compensates for undercounting due to “hash collisions” in which
h(v) = h(v′) for v 6= v′; see, for example, [2]. The O(D) storage
requirement for linear counting is often prohibitive in applications
where D can be very large and multiple DV estimators must be
maintained.

The “logarithmic counting” method of Flajolet and Martin [2,
14] uses a bit vector of length L = O(logD). The idea is to hash
each of the distinct values in A to the set {0,1}L of binary strings
of length L, and keep track of r, the position (counting from the
left, starting at 0) of the leftmost 0 bit over all of the hashed val-
ues. The estimate is roughly of the form 2r (multiplied by a certain
factor that corrects for “bias” and hash collisions). This tracking of
r is achieved by taking each hashed value, transforming the value
by zeroing out all but the leftmost 1, and computing the bitwise-
OR of the transformed values. The value of r is then given by the
leftmost 0 bit in the resulting bit vector. In the complete algorithm,
several independent values of r are, in effect, averaged together (us-
ing a technique called “stochastic averaging”) and then exponenti-
ated. Alon et al. [1] analyze a variant of the logarithmic counting
algorithm under an assumption of pairwise-independent hashing.
Recent work by Durand and Flajolet [11] improves on the storage
requirement of the logarithmic counting algorithm by tracking and
maintaining r, the position of the leftmost 0, directly. The number
of bits needed to encode r is O(log logD), and hence the technique
is called LogLog counting.

The main drawback of the above bit-vector data structures, when
used as synopses in our warehouse setting, is that union is the
only supported set operation. One must, e.g., resort to the inclu-
sion/exclusion formula to handle set intersections. As the number
of set operations increases, this approach becomes extremely cum-
bersome, expensive, and inaccurate.

Several authors [15, 31] have proposed replacing each bit in the
logarithmic-counting bit vector by an exact or approximate counter,
in order to permit DV estimation in the presence of both insertions
and deletions to the dataset. This modification does not ameliorate
the inclusion/exclusion problem, however.

2.1.2 Random Samples
Another synopsis possibility is to use a random sample of the

data items in the specified partition [6, 19, 20]. The key draw-
back is that DV estimates computed from such a synopsis can be
very inaccurate, especially when the data is skewed or when there
are many distinct values, each having a low frequency (but not all
unique); see [6] for a negative result on the performance of sample-
based estimators. Moreover, combining synopses to handle unions
of partitions can be expensive [5], and it appears that the inclu-
sion/exclusion formula is needed to handle intersections.

2.1.3 Sample-Counting Synopsis
Another type of synopsis arises from the “sample counting” DV-

estimation method — also called “adaptive sampling” — credited

200

to Wegman [2, 13]. Here the synopsis for partition A comprises
a subset of {h(v) : v ∈D(A)}, where h : D(A) 7→ {0,1, . . . ,M } is
a hash function. In more detail, the synopsis comprises a fixed-
size buffer that holds binary strings of length L = log(M), together
with a “reference” binary string s, also of length L. The idea is to
hash the distinct values in the partition, as in logarithmic counting,
and insert the hashed values into a buffer that can hold up to k > 0
hashed values; the buffer tracks only the distinct hash values in-
serted into it. When the buffer fills up, it is purged by removing all
hashed values whose leftmost bit is not equal to the leftmost bit of
s; this operation removes roughly half of the hashed values in the
buffer. From this point on, a hashed value is inserted into the buffer
if and only if the first bit matches the first bit of s. The next time the
buffer fills up, a purge step (with subsequent filtering) is performed
by requiring that the two leftmost bits of each hashed value in the
buffer match the two leftmost bits of the reference string. This pro-
cess continues until all the values in the partition have been hashed.
The final DV estimate is roughly equal to K2r, where r is the total
number of purges that have occurred and K is the final number of
values in the buffer.

The algorithms in [3, 16, 17] embody the same idea, essentially
with a “reference string” equal to 00 · · ·0. Indeed, the number of
purges in the sample-counting algorithm corresponds to the “die
level” used in [3, 16, 17]. One difference in these algorithms is that
the actual data values, and not the hashed values, are stored: the
level at which a data value is stored encodes the number of leading
0’s in its hashed representation. In [16], the stored values are aug-
mented with additional information. Specifically, for each distinct
value in the buffer, the algorithm maintains the number of instances
of the value in the dataset (here a relational table) and also main-
tains a reservoir sample [32] of the rows in the table that contain
the value. This additional information can be exploited to obtain
approximate answers, with probabilistic error guarantees, to a vari-
ety of SELECT DISTINCT queries over a partition. Such queries
include, as a special case, the SELECT COUNT(DISTINCT) query
that corresponds to our desired DV estimate. In [3], the basic
sample-counting algorithm is enhanced by compressing the stored
values.

For sample-counting algorithms with reference string equal to
00 · · ·0, the synopsis holds the K smallest hashed values encoun-
tered, where K lies roughly between k/2 and k.

2.1.4 The Bellman Synopsis
In the context of the Bellman system, the authors in [8] propose

a synopsis related to DV estimation. This synopsis comprises k en-
tries and uses independent hash functions h1,h2, . . . ,hk; the ith syn-
opsis entry is given by the ith minHash value mi = minv∈D(A) hi(v).
The synopsis for a partition is not actually used to directly compute
the number of DVs in the partition, but rather to compute the Jac-
card distance between partitions (see Section 2.3 below). When
constructing the synopsis, each scanned data item in the partition
incurs a cost of O(k), since the item must be hashed k times for
comparison to the k current minHash values.

2.2 DV Estimators
The motivation behind virtually all DV estimators can be viewed

as follows. If D � 1 points are placed randomly and uniformly
on the unit interval, then, by symmetry, the expected distance be-
tween any two neighboring points is 1/(D + 1) ≈ 1/D, so that
the expected value of U(k), the kth smallest point, is E[U(k)] ≈
∑

k
j=1(1/D) = k/D. Thus D ≈ k/E[U(k)]. The simplest estimator

of E[U(k)] is simply U(k) itself,2 and yields the basic estimator

D̂BE
k = k/U(k).

The simplest connection between the above idea and the DV-
estimation problem rests on the observation that a hash function
often “looks like” a uniform random number generator. In partic-
ular, let v1,v2, . . . ,vD be an enumeration of the distinct values in
dataset A and let h be a hash function as before. For many hash
functions, the sequence h(v1),h(v2), . . . ,h(vD) will look like the
realization of a sequence of independent and identically distributed
(i.i.d.) samples from the discrete uniform distribution on {0,1, . . . ,
M }. Provided that M is sufficiently greater than D, the sequence
U1 = h(v1)/M,U2 = h(v2)/M, . . . ,UD = h(vD)/M will approxi-
mate the realization of a sequence of i.i.d. samples from the contin-
uous uniform distribution on [0,1]. This assertion requires that M
be much larger than D to avoid collisions, i.e., to ensure that, with
high probability, h(vi) 6= h(v j) for all i 6= j. A “birthday problem”
argument [27, p. 45] shows that collisions will be avoided when
M = O(D2). We assume henceforth that, for all practical purposes,
any hash function that arises in our discussion avoids collisions. We
use the term “looks like” in an empirical sense, which suffices for
applications. Thus, in practice, the estimator D̂BE

k can be applied
with U(k) taken as the kth smallest hash value (normalized by a fac-
tor of 1/M). Note that the function f (x) = 1/x is strictly convex on
(0,∞), so that

E[D̂BE
k] = E

[
k/U(k)

]
> k/E

[
U(k)

]
≈ D

by Jensen’s inequality. That is, the estimator D̂BE
k is biased upwards

for each possible value of D. In Section 4, we provide an unbiased
estimator that also has lower mean-squared error than D̂BE

k .
Note that, in a certain sense, the foregoing view of hash func-

tions — as algorithms that effectively place points on the unit inter-
val according to a uniform distribution — represents a worst-case
scenario with respect to the basic estimator. To the extent that a
hash function spreads points evenly on [0,1], i.e., without the slight
clumping that is a byproduct of randomness, the estimator D̂BE

k will
yield more accurate estimates. We have observed this phenomenon
experimentally; see Section 6.

The estimator D̂BE
k was proposed in [3], along with conservative

error bounds based on Chebyshev’s inequality; the motivation be-
hind the estimator is essentially the one given above. Interestingly,
both the logarithmic and sample-counting estimators can be viewed
as approximations to the basic estimator. For logarithmic counting
— specifically the Flajolet-Martin algorithm — consider the bi-
nary decimal representation of the normalized hash values h(v)/M,
where M = 2L. E.g., a hash value h(v) = 00100110, after normal-
ization, will have the binary decimal representation 0.00100110.
It can be seen that the smallest normalized hash value is approx-
imately equal to 2−r, so that, modulo the correction factor, the
Flajolet-Martin estimator (without stochastic averaging) is 1/2−r,
which roughly corresponds to D̂BE

1 . The final F-M estimator uses
stochastic averaging to average independent values of r and hence
compute an estimator Ê of E[log2 D̂BE

1], leading to a final estimate
of D̂ = c2Ê , where the constant c approximately unbiases the es-
timator. (Our new estimators are exactly unbiased.) For sample
counting, suppose, without loss of generality, that the reference
string is 00 · · ·0 and, as before, consider the normalized binary
decimal representation of the hashed values. Thus the first purge
leaves behind normalized values of the form 0.0 · · · , the second

2In the statistical literature, this estimator is called the method-of-
moments estimator of E[U(k)].

201

purge leaves behind values of the form 0.00 · · · , and so forth, the
last (rth) purge leaving behind only normalized hashed values with
r leading 0’s. Thus the number 2−r (which has r− 1 leading 0’s)
is roughly equal to the largest of the K normalized hashed values
in the size-k buffer, so that the estimate K/2−r is roughly equal to
D̂BE

k .
Giroire [18] studies a variant of D̂BE

k in which the hashed values
are divided into m > 1 subsets, leading to m i.i.d. copies of the basic
estimator. These copies are obtained by dividing the unit interval
into m equal segments; the jth copy of the basic estimator is based
on all of the hashed values that lie in the jth segment, after shifting
and scaling the segment (and the points therein) into a copy of the
unit interval. (Note that for a fixed synopsis size k, each copy of the
basic estimator is based on approximately k/m observations.) Each
copy of the basic estimator is then subjected to a nonlinear transfor-
mation g, and multiplied by a correction factor c. The function g is
chosen to “stabilize” the estimator, and the constant c is chosen to
ensure that the estimator is asymptotically unbiased as k becomes
large. Finally, the i.i.d. copies of the transformed estimators are
averaged together. The motivation behind the transformation g is
to avoid the instability problem, discussed previously, that arises
when k = 1. In Section 4.1, we show that our proposed estimator is
unbiased for any values of D and k, while being less cumbersome
to compute. Moreover, when D� k� 0, our estimator has approx-
imately the minimal possible variance (see Section 4.2), and hence
is at least as statistically efficient as any estimator in [18].

2.3 Estimates for Compound Partitions
To our knowledge, the only prior discussion of how to construct

DV-related estimates for compound partitions is found in [8]. DV
estimation for the intersection of partitions A and B is not computed
directly. Instead, the Jaccard distance3 ρ = D(A∩ B)/D(A∪ B)
(called the ”resemblance” in [8]) is estimated first and then, using
the estimator ρ̂ , the number of values in the intersection is esti-
mated as

D̂(A∩B) =
ρ̂

ρ̂ +1
(
D(A)+D(B)

)
. (1)

The quantities D(A) and D(B) are computed exactly, by means of
GROUP BY queries; our proposed estimators avoid the need to
compute or estimate these quantities. There is no discussion in
[8] of how to handle any set operations other than the intersection
of two partitions. If one uses the principle of inclusion/exclusion
to handle other set operations, the resulting estimation procedure
will not scale well as the number of operations increases. Our new
techniques handle arbitrarily complex combinations of set opera-
tions (multiset unions, intersections, and differences) in an efficient
manner.

3. THE KMV SYNOPSIS
As indicated above, we will use estimators that are closely re-

lated to the basic estimator D̂BE
k (see Section 4). This relation-

ship immediately implies a choice of synopsis for a partition A: we
first hash each value in D(A) using a hash function h with domain
{0,1, . . . ,M }, and then we record the k smallest of the hashed val-
ues. We call this synopsis a KMV synopsis (for k minimum values).
The KMV synopsis can be viewed as originating in [3], but there is
no discussion in [3] about implementing, constructing, or combin-
ing such synopses.

As discussed previously, we need to have M = O(D2) to avoid
collisions. Thus each of the k hashed values requires O(logM) =

3Here D(S) denotes the number of distinct values in the set S.

Algorithm 1 (KMV Computation)
1: h: hash function from domain of dataset to {0,1, . . . ,M }
2: L: list of k smallest hashed values seen so far
3: maxVal(L): returns the largest value in L
4:
5: for each item x in the dataset do
6: v = h(x)
7: if v /∈ L then
8: if |L|< k then
9: insert v into L

10: else if v < maxVal(L) then
11: insert v into L
12: remove largest element of L
13: end if
14: end if
15: end for

O(logD) bits of storage, and the required size of the KMV synopsis
is O(k logD).

A KMV synopsis can be computed from a single scan of the data
partition, using Algorithm 1. The algorithm uses a sorted list of k
hashed values, which can be implemented using, e.g., a priority
queue. The membership check in line 7 avoids unnecessary pro-
cessing of duplicate values in the input data partition, and can be
implemented using a temporary hash table that is discarded after
the synopsis has been built.

Assuming that the scan order of the items in a partition is inde-
pendent of the hashed item values, and using reasoning similar to
[17], we obtain the following result.

THEOREM 1. The expected cost to construct a KMV synopsis of
size k from a partition A comprising N data items having D distinct
values is O(N + k logk logD)

PROOF. The hashing step and membership check in lines 6 and
7 incur a cost of O(1) for each of the N items in A, for a total cost
of O(N). To compute the expected cost of executing the remain-
ing steps of the algorithm, observe that the first k DVs encountered
are inserted into the priority queue (line 9), and each such inser-
tion has a cost of at most O(logk), for an overall cost of O(k logk).
Each subsequent new DV encountered will incur an O(logk) cost
if it is inserted (line 11), or an O(1) cost otherwise. (Note that
a given DV will be inserted at most once, at the time it is first
encountered, regardless of the number of times that it appears in
A.) The ith new DV encountered is inserted only if its normalized
hash value Ui is less than Mi, the largest normalized hash value
currently in the synopsis. Because points are placed uniformly, we
have P{Ui < Mi |Mi } = Mi, so that, by the law of total expecta-
tion,

P{Ui < Mi }= E
[
P{Ui < Mi |Mi }

]
= E[Mi]≈ k/i.

Thus, writing HD for the Dth harmonic number, the expected cost
for handling the remaining D− k distinct values is

E[Cost]≈
D

∑
i=k+1

[
(k/i)O(logk)+

(
1− (k/i)

)
O(1)

]
<

D

∑
i=1

[(k/i)O(logk)]+O(D) = O(D)+O(k logk)
D

∑
i=1

(1/i)

= O(D)+O(k logk)HD = O(D+ k logk logD),

and the overall expected cost is O(N +D+k logk+k logk logD) =
O(N + k logk logD).

The foregoing construction cost compares favorably to the O(kN)
cost for the Bellman synopsis. Moreover, when D is small, the

202

KMV synopsis contains more information in a statistical sense than
the Bellman synopsis, since the former synopsis essentially sam-
ples distinct values without replacement, whereas the latter syn-
opsis samples distinct values with replacement. The cost for the
KMV synopsis is comparable to that of the sample-counting syn-
opsis [17]. Indeed, the sample-counting synopsis is very similar
to KMV, except that the size is a random variable K whose value
ranges between roughly k/2 and k. Thus the KMV synopsis con-
tains more statistical information for a given space requirement,
and yields DV estimators that are statistically more stable.

We show in Section 5 that the KMV synopsis gracefully handles
a variety of set operations, but needs to be augmented with counters
to handle multiset differences. This augmentation has a negligible
effect on the construction cost, and results in a desirable “closure”
property that permits efficient estimation.

4. NEW DV ESTIMATORS
As discussed previously, the basic estimator D̂BE

k is biased up-
wards for the true number of distinct values D. Inspired by results
in [7], we consider the estimator

D̂UB
k = (k−1)/U(k) (2)

and show that D̂UB
k is unbiased. The D̂UB

k estimator forms the ba-
sis for the extended DV estimators, discussed in Section 5, used to
estimate the number of DVs in a compound partition. Another stan-
dard estimation approach is the method of maximum likelihood —
we therefore also develop a maximum-likelihood estimator (MLE)
for our problem. Finally, we analyze D̂UB

k as D becomes large,
and show that our results coincide asymptotically with those in [7],
yielding convenient error bounds. This “large D” analysis facili-
tates the choice of k when initially designing a synopsis warehouse.
Henceforth, we assume without further comment that D > k; if
D ≤ k, then we can easily detect this situation and compute the
exact value of D from the synopsis.

4.1 Analysis of the Unbiased Estimator
Let U1,U2, . . . ,UD be the normalized hash values of the distinct

items in the dataset; we model these values as a sequence of inde-
pendent and identically distributed (i.i.d.) random variables from
the uniform[0,1] distribution — see the discussion in Section 2.2.
Denote by U(k) the kth smallest of U1,U2, . . . ,UD, that is, U(k) is
the kth order statistic. Results from the theory of order statistics [9,
Sec. 2.1] imply that U(k) follows the beta distribution with parame-
ters k and D− k +1. That is, the probability density function (pdf)
of U(k) is given by

fk,D(t) = tk−1(1− t)D−k/B(k,D− k +1), (3)

where B(a,b) =
∫ 1

0 ta−1(1−t)b−1 dt denotes the beta function [23].
Moreover,

P{U(k) ≤ x}=
∫ x

0
fk,D(t)dt = Ix(k,D− k +1) (4)

=
D

∑
i=k

(
D
i

)
xi(1− x)D−i (5)

where Ix(a,b) is the regularized incomplete beta function and is de-
fined for all real a and b. An efficient algorithm for the computation
of the most significant digits of Ix(a,b) is given in [10]. Observe
that the sum in (5) is simply the probability that at least k of the Ui
values are smaller than x.

To facilitate the analysis of D̂UB
k , we first derive the moments of

1/U(k). For k > r ≥ 0, we have

E[U−r
(k)] =

∫ 1

0

fk,D(t)
tr dt =

B(k− r,D− k +1)
B(k,D− k +1)

.

If r is an integer, we can exploit the identity B(a,b)= a−1(a+b−1
a

)−1

to obtain

E[U−r
(k)] = Dr/(k−1)r, (6)

where ab denotes the falling power a(a−1) · · ·(a−b+1). Regard-
ing D̂UB

k , we find that

E[D̂UB
k] = E[(k−1)/U(k)] = (k−1)E[U−1

(k)] = D,

so that D̂UB
k is indeed unbiased for D, and

Var[D̂UB
k] = (k−1)2E[U−2

(k)]− (k−1)2E[U−1
(k)]2 =

D(D− k +1)
k−2

.

Because D̂UB
k is unbiased, its mean-squared error (MSE) is equal

to its variance.
For comparison, note that, by (6), E[D̂BE

k] = kD/(k−1) and

MSE[D̂BE
k] =

(k
k−1

)2
MSE[D̂UB

k]+
(D

k−1

)2
.

Thus, as discussed earlier, D̂BE
k is biased high for D, and has infinite

mean when k = 1, as observed in [16]. Moreover, it can be seen that
D̂UB

k has lower MSE than D̂BE
k .

We now provide probabilistic (relative) error bounds for the esti-
mator D̂UB

k . Specifically, given 0 < δ < 1, we give a value of ε such
that D̂UB

k lies in the interval [(1− ε)D,(1 + ε)D] with probability
δ .

THEOREM 2. For 0 < ε < 1 and k ≥ 1,

P
{ |D̂UB

k −D|
D

≤ ε

}
= Iu(D,k,ε)(k,D− k +1)− Il(D,k,ε)(k,D− k +1),

(7)

where

u(D,k,ε) =
k−1

(1− ε)D
and l(D,k,ε) =

k−1
(1+ ε)D

. (8)

PROOF. The desired result follows directly from (4) after using
(2) to obtain

P
{ |D̂UB

k −D|
D

≤ ε

}
= P

{
(1− ε)D≤ D̂UB

k ≤ (1+ ε)D
}

= P
{ k−1

(1+ ε)D
≤U(k) ≤

k−1
(1− ε)D

}
.

Error bounds for a given value of δ can be obtained by equating
the right side of (7) to δ and solving for ε using a root-finding
algorithm. Although useful for theoretical analysis, these bounds
cannot be used directly in practice, since they involve the unknown
parameter D. Using a standard approach from statistics, practical
approximate error bounds based on the observed value of U(k) can
be obtained by replacing D with D̂UB

k in the above formulas.
Figure 1 displays the error bound ε as a function of δ for D =

1,000,000 and several values of k. The dashed and solid curves
represent the confidence intervals for the basic estimator D̂BE

k and
the unbiased estimator D̂UB

k , respectively. As expected, D̂UB
k is

203

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Probability (δ)
0.01

0.1

1

E
rr

or
 B

ou
nd

(ε
)

Basic
Unbiased

k=16

k=128

k=1024

k=8192

Figure 1: Error bounds for D = 1,000,000

superior to D̂BE
k when k is small; for example, when k = 16 and

δ = 0.95, use of the unbiased estimator yields close to a 20% re-
duction in ε . As k increases, k−1≈ k and both estimators perform
similarly. Note that the error bound is very stable even for large val-
ues of D. E.g., it follows the results of Section 4.3 that, for δ = 0.95
and k = 1024, the upper bound on ε as D → ∞ is ε ≈ 0.06127,
whereas we observe a value of ε ≈ 0.06124 for D = 1,000,000.

To further examine the behavior of the unbiased estimator, we
derive the expected value of the absolute ratio error (ARE), where
the ARE is defined as |D̂UB

k −D|/D. The expected ARE is a com-
mon metric for comparing the performance of statistical estimators.

THEOREM 3. The expected ARE of D̂UB
k is given by

E

[
|D̂UB

k −D|
D

]
= 2

(
D

k−1

)(
k−1

D

)k−1 (
1− k−1

D

)D−k+2

PROOF. We have

E[ARE] =
1
D

∫ 1

0

∣∣∣∣ k−1
t

−D
∣∣∣∣ fk,D(t)dt

=
1
D

∫ (k−1)/D

0

(k−1
t

−D
)

fk,D(t)dt

+
1
D

∫ 1

(k−1)/D

(
D− k−1

t

)
fk,D(t)dt

= 2I(k−1)/D(k−1,D− k +1)−2I(k−1)/D(k,D− k +1),

where the last equality is obtained after expanding the integrals and
applying the identity (k−1)(tD)−1 fk,D(t) = fk−1,D−1(t). The de-
sired result now follows after applying (5).

4.2 Maximum Likelihood Estimator
The classical statistical approach to estimating unknown param-

eters is the method of maximum likelihood [30, Sec. 4.2]. We apply
this approach by casting our DV-estimation problem as a parame-
ter estimation problem. Specifically, recall that U(k) has the pdf
fk,D given in (3). The MLE estimate of D is defined as the value
D̂ that maximizes the likelihood L(D;U(k)) of the observation U(k),
defined as L(D;U(k)) = fk,D(U(k)). We find this maximizing value
by solving the equation L′(D;U(k)) = 0, where the prime denotes
differentiation with respect to D. We have

L′(D;U(k)) = ln(1−U(k))−Ψ(D− k +1)+Ψ(D+1),

where Ψ denotes the digamma function. If x is sufficiently large,
then Ψ(x) ≈ ln(x− 1)+ γ , where γ denotes Euler’s constant. Ap-
plying this approximation, we obtain

D̂MLE
k ≈ k

U(k)
,

so that the MLE estimator roughly resembles the basic estimator
D̂BE

k provided that D � k. In fact, our experiments indicated that
D̂MLE

k and D̂BE
k are indistinguishable from a practical point of view.

It follows that D̂MLE
k is asymptotically equivalent to D̂UB

k as k→∞.
A basic result for MLE estimators [30, Sec. 4.2.2] implies that, for
D � k � 0, the estimator D̂UB

k has, to a good approximation, the
minimal possible variance for any estimator of D.

4.3 Analysis with Many DVs
Our asymptotic analysis for large D rests on Theorem 4 below.

As before, for a sequence U1,U2, . . . ,Un of i.i.d. uniform[0,1] ran-
dom variables, denote by U(1) < U(2) < · · ·< U(n) the order statis-
tics of the sequence, and define the spacings W1 =U(1),W2 =U(2)−
U(1), . . . ,Wn = U(n)−U(n−1). Write Xn ⇒ X if and only if the se-
quence {Xn : n≥ 1} converges in distribution to X , that is,

lim
n→∞

P{Xn ≤ x}= P{X ≤ x}

for all x at which the function F(x) = P{X ≤ x} is continuous. We
say that a random variable Y has an exponential distribution with
rate parameter λ , denoted Exp(λ), if

P{Y ≤ y}=

{
1− e−λy if y≥ 0;
0 if y < 0.

THEOREM 4. Let U1,U2, . . . ,Un be a sequence of i.i.d. uni-
form[0,1] random variables, define W1,W2, . . . ,Wn as above, and
fix k ≥ 1. Then

lim
n→∞

(nW1,nW2, . . . ,nWk)⇒ (Y1,Y2, . . . ,Yk),

where Y1,Y2, . . . ,Yk are i.i.d. with each Yi having an Exp(1) distri-
bution.

PROOF. Let {Yn : n≥ 1} be an infinite sequence of i.i.d. Exp(1)
random variables, and write W = (W1,W2, . . . ,Wk) and Y = (Y1,Y2,
. . . ,Yk). It follows from a well known result for order statistics —
see [9, p. 134] or [24, p. 105–107] — that, for any fixed n ≥ k, we

have W D= Y/Sn, where Sn = Y1 +Y2 + · · ·+Yn+1 and D= denotes

equality in distribution. Since nW D= Y/(Sn/n) and limn→∞ Sn/n =
E[Y1] = 1 with probability 1 by the strong law of large numbers,
Slutsky’s theorem [30, p. 19] implies that Y/(Sn/n) ⇒ Y/1 = Y ,
and hence nW ⇒ Y , as n→ ∞.

Thus, for large D and fixed k≤D, the scaled spacings DW1,DW2,
. . . ,DWk are approximately i.i.d. Exp(1). Since

P{Wi ≤ x}= P{DWi ≤ Dx} ≈ 1− e−Dx

for 1 ≤ i ≤ n, it follows that the unscaled spacings W1,W2,
. . . ,Wk are approximately i.i.d. Exp(D), so that U(k) is distributed
approximately as the sum of k i.i.d. Exp(D) random variables. This
exponential scenario is precisely the one analyzed in [7], in the con-
text of estimating the size of a transitive closure. It follows from
[7] that

P
{ |D̂UB

k −D|
D

≤ ε

}
≈ e−

k−1
1+ε

(
1+

k−1

∑
i=1

(k−1)i

(1+ ε)ii!

)

− e−
k−1
1−ε

(
1+

k−1

∑
i=1

(k−1)i

(1− ε)ii!

)

204

and

E
[|D̂UB

k −D|
D

]
≈ 2(k−1)k−2

(k−2)!ek−1 ≈

√
2

π(k−2)
.

As might be expected, the above formulas can also be obtained
by letting D → ∞ in the corresponding formulas from Section 4.1.
Though slightly conservative, the asymptotic error bounds have the
advantageous property that, unlike the exact bounds, they do not
involve the unknown quantity D. Thus, given desired values of
ε and δ , they can be used to help determine target synopsis sizes
when initially designing a synopsis warehouse.

5. COMBINING SYNOPSES
The discussion up until now has focused on creating and using

a synopsis to estimate the number of DVs in a single base parti-
tion. We now focus on DV estimation for a compound partition,
i.e., a partition that is created from a set of base partitions using the
multiset operations of intersection, union, and difference. When a
compound partition G has been created from base partitions using
only union and intersection, or when each base partition contains
no duplicates, we can estimate the number of DVs in G directly
from the KMV synopses for the base partitions. To handle multi-
set difference, however, we need to augment our KMV synopses
with counters; we show that the resulting AKMV synopses are
“closed” under multiset operations on the parent partitions. The
closure property implies that if E and F are compound partitions
and G is obtained from E and F via a set operation, then we can
compute an AKMV synopsis for G from the corresponding AKMV
synopses for E and F , and unbiasedly estimate the number of DVs
in G from this resulting synopsis. This procedure avoids the need
to access the synopsis for each of the base partitions that were used
to create E and F . The AKMV synopsis can also handle deletions
of individual items from the warehouse. As discussed below, the
actual DV estimators that we use for compound partitions are, in
general, extensions of the simple D̂UB

k estimator developed in Sec-
tion 4.

We assume throughout that all synopses are created using the
same hash function h : D 7→ {0,1, . . . ,M }, where D denotes the
domain of the data values that appear in the partitions and M =
O(|D |2) as discussed previously. We denote ordinary set-union,
set-intersection, and set-difference operators by {∪,∩,\} and the
corresponding multiset operators by {∪m,∩m,\m }.4

5.1 Union Operations
Consider two partitions A and B, along with their KMV synopses

LA and LB of sizes kA and kB, respectively. (For purposes of this
discussion, we view the synopses as sets of hashed values.) We
wish to estimate D∪ = |D(A∪m B)|, where, as before, D(S) denotes
the set of DVs in multiset S. Observe that D(A∪m B) = D(A)∪
D(B), so that D∪ can also be interpreted as |D(A)∪D(B)|.

Define LA⊕LB to be the set comprising the k smallest values in
LA ∪ LB, where k = min(kA,kB). Observe that the ⊕ operator is
symmetric and associative.

THEOREM 5. The set L = LA⊕LB is the size-k KMV synopsis
of A∪m B, where k = min(kA,kB).

PROOF. For a multiset S with D(S) ⊆ D , write h(S) = {h(v) :
v ∈D(S)}, and denote by G the set of k smallest values in h(A∪m

4Recall that if nA(v) and nB(v) denote the multiplicities of value
v in multisets A and B, respectively, then the multiplicity of v in
A∪m B, A∩m B, and A\m B are given respectively by nA(v)+nB(v),
min

(
nA(v),nB(v)

)
, and max

(
nA(v)−nB(v),0

)
.

B). Observe that G contains the k′ smallest values in h(A) for some
k′ ≤ k, and these k′ values therefore are also contained in LA, i.e.,
G∩h(A)⊆ LA. Similarly, G∩h(B)⊆ LB, so that G⊆ LA∪LB. For
any h ∈ (LA∪Lb)\G, we have that h > maxh′∈G h′ by definition of
G, because h ∈ h(A∪B). Thus G in fact comprises the k smallest
values in LA ∪LB, so that L = G. Now observe that, by definition,
G is precisely the size-k KMV synopsis of A∪m B.

Thus we can immediately apply the results of the Section 4 to
estimate D∪ by D̂∪ = (k−1)/U(k) where D̂∪ is computed from the
size-k KMV synopsis L = LA⊕LB. This result extends immediately
to multiple partitions: the number of DVs in A1∪m A2∪m · · ·∪m An
can be estimated from L = LA1 ⊕LA2 ⊕·· ·⊕LAn .

5.2 Intersection Operations
As before, consider two partitions A and B, with corresponding

KMV synopses LA and LB of sizes kA and kB, respectively. Our
goal now is to estimate D∩ = |D(A∩m B)| = |D(A)∩D(B)|. Set
L = LA ⊕ LB and write L = {h(v1),h(v2), . . . ,h(vk)}, where k =
min(kA,kB) as before and each distinct value vi is an element of
D(A)∪D(B). Also write VL = {v1,v2, . . . ,vk }, and set

K∩ = |{v ∈VL : v ∈D(A)∩D(B)}|.

LEMMA 1. For each v ∈ VL, we have v ∈ D(A) (resp., v ∈
D(B)) if and only if h(v) ∈ LA (resp., h(v) ∈ LB).

PROOF. Let v ∈ VL, so that h(v) is among the k smallest values
of h(A∪m B). Then h(v) is among the k smallest values of h(A)
if v ∈ D(A), so that h(v) ∈ LA if v ∈ D(A). Conversely, if h(v) ∈
LA, then it follows immediately from our running assumption of no
hash collisions that v ∈ D(A). An analogous argument holds for
partition B.

Lemma 1 implies that v∈D(A)∩D(B) if and only if h(v)∈ LA∩
LB, and we can compute K∩ from LA and LB alone. Observe that,
under our random hashing model, VL can be viewed as a uniform
random sample of size k drawn from D(A∪m B). The quantity
K∩ is a random variable that represents the number of elements
in VL that also belong to the set D(A∩m B). It follows that K∩
has a hypergeometric distribution: setting D∩ = |D(A∩m B)| and
D∪ = |D(A∪m B)| as before, we have

P{K∩ = j}=
(

D∩
j

)(
D∪−D∩

k− j

)/(
D∪
k

)
. (9)

We now use K∩ to estimate D∩. From Section 5.1, we know that
D̂∪ = (k−1)/U(k) is an unbiased estimator of D∪; we would like to
“correct” this estimator via multiplication by the Jaccard distance
ρ = D∩/D∪. We do not know ρ , but a reasonable estimate is

ρ̂ = K∩/k, (10)

the fraction of sample elements in VL ⊆ D(A∪B) that belong to
D(A∩B). This leads to our proposed estimator

D̂∩ =
K∩
k

(k−1
U(k)

)
.

We now establish some basic properties of the estimator. For
n≥ k ≥ 1, set

∆(n,k,ε) = Iu(n,k,ε)(k,n− k +1)− Il(n,k,ε)(k,n− k +1),

where Ix(a,b) is the regularized incomplete beta function, and
u(n,k,ε) and l(n,k,ε) are defined as in (8). Take ∆(∞,k,ε) = 0.

205

Denote by

H(j;N,M,n) =
(

M
j

)(
N−M
n− j

)/(
N
n

)
the hypergeometric probability distribution function.

THEOREM 6. When based on a combined synopsis of size k, the
estimator D̂∩ satisfies E[D̂∩] = D∩ if k > 1,

Var[D̂∩] =
D∩(kD∪− k2−D∪+ k +D∩)

k(k−2)

if k > 2, and, if D∩ > 0, ε ∈ (0,1), and k ≥ 1,

P
{
|D̂∩−D∩|

D∩
≤ ε

∣∣∣ K∩ = j
}

= ∆(kD∩/ j,k,ε) (11)

for 0≤ j ≤min(k,D∩), and

P
{
|D̂∩−D∩|

D∩
≤ ε

}
=

min(k,D∩)

∑
j=0

∆(kD∩/ j,k,ε)H(j;D∪,D∩,k).
(12)

PROOF. A can be seen from (9), the distribution of K∩ does not
depend on the hash values {h(v) : v ∈D(A∪B)}. It follows that
the random variables K∩ and U(k) are statistically independent, as
are ρ̂ and U(k), where ρ̂ = K∩/k as above. By (9) and standard
properties of the hypergeometric distribution, we have

E [K∩] = k
D∩
D∪

(13)

and

Var[K∩] =
D∩(D∪−D∩)k(D∪− k)

D2
∪(D∪−1)

. (14)

It follows from (13) that E [ρ̂] = ρ . Using independence and the
unbiasedness of D̂∪, we find that

E[D̂∩] = E[ρ̂D̂∪] = E[ρ̂]E[D̂∪] = ρD∪ = D∩.

The formula for Var[D̂∩] follows from (6), (13), and (14), after
some straightforward algebra. To obtain the relation in (11), use
the fact that K and D̂∪ are independent, and write

P
{
|D̂∩−D∩|

D∩
≤ ε

∣∣∣ K∩ = j
}

= P
{
|(j/k)D̂∪−D∩|

D∩
≤ ε

}
= P

{
|D̂∪−D∗|

D∗ ≤ ε

}
,

where D∗ = (k/ j)D∩. The desired result then follows by mimick-
ing the proof of Theorem 2. The final relation in (12) follows from
(11) by unconditioning on K∩ and using (9).

Thus D̂∩ is unbiased for D∩. It also follows from the proof that
the estimator ρ̂ is unbiased for the Jaccard distance ρ . Using (12),
we can compute exact confidence bounds numerically, analogously
to the single-partition case. To obtain practical approximate bounds
based on observation of K∩ and U(k), use the representation in (11),
but replace D∩ by D̂∩.

Interestingly, D̂∩ can be viewed as being in the spirit of the Bell-
man estimator (1). Specifically, the quantity

(
D(A)+ D(B)

)
/(ρ̂ +

1) in (1), after some algebra, can be viewed as an estimator of D∪,
so the overall estimator can be viewed as an estimator of ρ times
an estimator of D∪. We emphasize, however, that D̂∩ is based on
very different estimators of ρ and D∪.

5.3 Compound Partitions with No Duplicates
We now consider the more general problem of estimating DE , the

number of DVs in E, where E is a compound partition created from
n ≥ 2 base partitions A1,A2, . . . ,An, all of which are ordinary sets,
using the ordinary union, intersection, and set-difference operators.
Some examples are E = A1 \A2 and E =

(
(A1∪A2)∩ (A3∪A4)

)
\

A5. Note that E is also an ordinary set, so that E = D(E), and
estimating the number of DVs in E is equivalent to estimating the
cardinality of E. Our key observation is that the foregoing analysis
for the intersection operator applies essentially unchanged in the
current setting. Specifically, we form the synopsis L = LA1 ⊕LA2 ⊕
·· ·⊕LAn of size k = min(kA1 ,kA2 , . . . ,kAn). Define VL as before and
set

KE = |{v ∈VL : v ∈D(E)}|. (15)

By a trivial extension of Lemma 1, we can compute KE from LA1 ,
LA2 , . . . ,LAn alone. The estimator

D̂E =
KE

k

(k−1
U(k)

)
(16)

is unbiased for DE , and the other properties of D̂E are derived ex-
actly as for D̂∩. For the special case E = A1∪A2, we have KE = k
with probability 1, and D̂E reduces to D̂∪.

Note that the approach of this section can also be applied when
the base partitions are multisets, provided that the only operations
used are ∪m and ∩m. To see this, observe that the computation in
(15) effectively replaces each Ai with D(Ai); as indicated previ-
ously, DE is unchanged by this transformation. Of course, we can
also estimate DE when E is any ordinary set expression involving
the D(Ai) sets, even if the Ai’s are themselves multisets.

5.4 Multiset Difference
Multiset difference is more complicated than union or intersec-

tion in that there are two possible, nonequivalent quantities to es-
timate: D∗

− = |D(A) \D(B)| or D− = |D(A \m B)|. The quantity
D∗
− can be estimated as in Section 5.3 by taking E = D(A)\D(B),

and so we concentrate on the estimation of D−.
This latter task requires that we augment our KMV synopsis. We

define an augmented synopsis of a base partition A, which we call
an AKMV synopsis, as L+

A = (LA,cA), where LA = {h(v1),h(v2),
. . . ,h(vk)} is a KMV synopsis of size k, and cA = {cA(v1),cA(v2),
. . . ,cA(vk)} is a set of k nonnegative counters. The quantity cA(v)
is the multiplicity in A of the value v; this use of counters is in the
spirit of [15, 16, 31]. The size of the AKMV synopsis is O(k logD+
k logM), where M is the maximum multiplicity of a value in the
multiset A. Note that, if A is a set, then it suffices to maintain a bit
vector rather than a vector of counts, so that the size of the synop-
sis is O(k logD), just as with an ordinary KMV synopsis. It is easy
to modify Algorithm 1 to create and maintain counters via O(1)
operations. The modified algorithm retains the original algorithm
complexity of O(N + k logk logD).

We now proceed almost exactly as in Section 5.3, taking E =
A \m B in (15). Observe that a value v ∈ VL is an element of KE if
and only if h(v) ∈ LA and either (i) h(v) 6∈ LB (which implies that
v 6∈ D(B) by Lemma 1) or (ii) h(v) ∈ LB with cA(v)− cB(v) > 0.
Thus we can determine KE from L+

A and L+
B alone. This approach

extends to any quantity of the form DE , where E is a compound
(multiset) partition created by applying the operations ∪m, ∩m, and
\m to n ≥ 2 base partitions A1,A2, . . . ,An, each of which may be a
multiset. As with multiset difference, we use the count vectors to
compute KE ; see the following section for another example of such
a computation.

206

5.5 The Closure Property
In the previous section, we defined the AKMV synopsis of a

base partition. We extend this definition to the AKMV synopsis
L+

E = (LE ,cE) of a compound partition E by taking LE = LA1 ⊕
LA2 ⊕·· ·⊕LAn , where A1,A2, . . . ,An are the base partitions used to
construct E, and cE(v) is the multiplicity of v in E.

With this definition, the collection of AKMV synopses over com-
pound partitions is closed under multiset operations. For example,
if we combine compound partitions E and F — having respective
AKMV synopses L+

E = (LE ,cE) and L+
F = (LF ,cF) — to create

G = E ∩m F , then the combined synopsis is L+
G = (LE ⊕LF ,cG).

Here cG(v) = min
(
cE(v),cF (v)

)
for each v ∈ VLG , where we take

cX (v) = 0 if h(v) 6∈ LX . The cases G = E∪m F and G = E \m F are
handled similarly. Then KE is computed as the number of non-zero
elements in cG, and the number of DVs in G is estimated as in (16).

5.6 Deletions
We now show how AKMV synopses can easily support deletions

of individual items. Consider a partition A that receives a stream of
transactions of the form +v or −v, corresponding to the insertion
or deletion, respectively, of value v.

A naive approach maintains two AKMV synopses: a synopsis
L+

i for the multiset Ai of inserted items and a synopsis L+
d for the

multiset Ad of deleted items. Computing the AKMV synopsis of
the multiset difference Ai \m Ad yields the AKVM synopsis L+

A of
the true multiset A. Because Ai and Ad are always growing with
time, they can become significantly larger than the actual partition
A, so that DV estimates based on (15) will be of low quality. There-
fore, whenever the number of deletions causes the error bounds to
become unacceptable, a fresh scan of the data can be used to pro-
duce a new pair of synopses Li and Ld corresponding to Ai = A and
Ad = /0.

This method does not actually require two synopses. We can
simply maintain the counters in a single AKMV synopsis L by in-
crementing the counter at each insertion and decrementing at each
deletion. If we retain synopsis entries having counter values equal
to 0, we produce precisely the synopsis L described above.

We conjecture that the above procedure can be further improved
as follows. Whenever an insertion transaction +v′ arrives and v′ <
maxVal(L), remove a 0-item (i.e., an item with a 0-valued counter)
from L and insert the new value v′, with corresponding counter
value cA(v′) = 1. The victim 0-item can be chosen arbitrarily from
among all 0-items in the synopsis, except that a 0-item with hash
value equal to maxVal(L) should be removed only if it is the sole
0-item in the synopsis. If the synopsis contains no 0-items when
the insertion transaction arrives, then remove the maximum item as
usual and insert the new item. Thus, if the synopsis contains at least
one 0-item with hash value less than maxVal(L), then maxVal(L)
stays the same after the insertion; otherwise, maxVal(L) decreases.
Using this process, L produces its best estimates when there are
very few 0-items. This situation occurs whenever the current size
of D(A) is roughly the maximum size that D(A) has ever attained.
For example, when insertions significantly outnumber deletions, L
will yield reasonably accurate estimates. If, however, A shrinks sig-
nificantly, a fresh synopsis may be required to achieve the desired
accuracy.

6. EXPERIMENTAL EVALUATION
We implemented the AKMV synopsis and the corresponding DV

estimators, and applied our prototype to various real-world and syn-
thetic datasets. First we examined the average ARE of the new
estimators over synthetic data in order to establish a baseline; the

synthetic datasets correspond to a scenario in which the hash func-
tion behaves exactly like a random number generator, in accordance
with the assumptions underlying the derivation of our methodology.
Then, using real data, we examined the impact on estimation accu-
racy of using different hash functions when creating the synopsis.
We next compared the accuracy of the new estimators to that of
the current best-of-breed estimators. Finally, we investigated the
accuracy of our DV estimators on compound partitions of the form
A∪m B and A∩m B, as well as the accuracy of our Jaccard-distance
estimator.

6.1 Experimental Setup
We evaluated our KMV prototype using three real-world data-

sets. The OPIC dataset contains product information for a large
computer company. The BASEBALL dataset contains data about
baseball players, teams, awards, hall-of-fame memberships, and
both game and player statistics for the baseball championship in
Australia. The RDW dataset was obtained from the data warehouse
of a large financial company. Table 1 displays some summary char-
acteristics of these datasets. All experiments were performed on
a UNIX machine with one 2.8 GHz processor and 1GB of RAM.
Unless stated otherwise, results are reported for experiments on the
RDW dataset; the results for other datasets are similar.

6.2 Accuracy Comparison
We first compared the expected accuracy of the KMV-based es-

timators using a synthetic baseline dataset. Then we compared
these estimators with the current best-of-breed DV estimators on
real data, using various hashing methods.

6.2.1 Baseline Comparison on Synthetic Data
In order to compare the DV estimators while controlling for hash-

ing effects, we used a high-quality pseudorandom number genera-
tor [26] to produce synthetic datasets, each with a specified num-
ber of distinct values. In effect, we generated the hashed values
directly, according to a “truly” uniform[0,1] probability distribu-
tion. Since we derived our estimators under precisely this uniform-
distribution assumption, the synthetic dataset provides a baseline
for performance, allowing us, in subsequent experiments, to clearly
see the effects on accuracy of using non-ideal hash functions.

We studied the behavior of the various estimators we have dis-
cussed: the basic estimator D̂BE

k , the unbiased estimator D̂UB
k and

the MLE estimator D̂MLE
k . To gauge the accuracy of a given es-

timator D̂ for a specified number D of distinct values, we gener-
ated 1000 datasets, each containing D distinct values, using a dif-
ferent pseudorandom number seed each time ensure independence
between the datasets. For each estimator, we computed the ARE
on each dataset and then averaged these 1000 ARE values.

Figure 2 shows the average ARE as a function of the synopsis
size k when the true numbers of distinct values are D = 1 million
and D = 100,000, respectively. Not surprisingly, the primary fac-
tor that affects the accuracy is the size of the KMV synopsis, with
relative estimation errors decreasing as k increases. As expected
from theory, the relative estimation error is relatively insensitive to
the true number of distinct values. Observe that the unbiased esti-

Dataset #Tables Total #Attributes # Tuples

OPIC 106 1802 27,757,807
BASEBALL 12 192 262,432

RDW 24 504 2,661,506

Table 1: Real Dataset Characteristics

207

10 100 1000 10000
Synopsis Size (k)

0

0.1

0.2

0.3

A
ve

ra
ge

 A
R

E

Unbiased
MLE
Basic

10 100 1000
Synopsis Size (k)

0

0.1

0.2

0.3

A
ve

ra
ge

 A
R

E

Unbiased
MLE
Basic

(a) 1 million distinct values (b) 100k distinct values

Figure 2: Baseline: Accuracy vs. KMV Synopsis size

mator consistently provides the best accuracy for all synopsis sizes,
and that the basic and MLE estimators are indistinguishable. For
small synopses, the benefit of the unbiased estimator increases as
the true number of distinct values increases. Since the unbiased es-
timator introduces no overhead with respect to the basic estimator,
we recommend using it for all synopsis sizes.

6.2.2 Hashing Effect
The development in Section 4 assumes that the hash function

can be viewed as a 1-to-1 mapping from the D distinct values in
the dataset to a set of D uniform random numbers. Such a mapping
can be constructed perfectly using O(D) memory, but this mem-
ory requirement is infeasible for very large datasets. For practical
purposes, we need to approximate such a mapping using a hash
function that requires a small amount of memory (logarithmic in
D).

In this section we study how the use of real-world hash functions
effects the accuracy of our estimators. More specifically, we com-
pute estimates from real data, using various hash functions, and
compare the accuracy of these results to the accuracy of the base-
line estimates from the previous section. Our accuracy measure is
again the ARE, averaged over all of the datasets in the database.
We used three different hashing methods:

AES The Advanced Encryption Standard (AES) hash function is a
well established cipher function that has been studied exten-
sively. For example, Hellekalek and Wegenkittl [21] showed
that AES behaves empirically like a high-quality random-
number generator when applied in an iterative fashion, mak-
ing it a promising candidate for DV estimation (although we
use AES in a slightly different fashion here than in [21]).
Since AES is a cipher function, its output size is equal to the
input size. In our implementation, we only used the most
significant 32 bits of the output as the hash value.

FLH This hash function, due to Wegman,5 typifies the sort of hash
function used in current computer systems. The function is
rather complicated, so we omit details here. Note that FLH is
designed merely to avoid collisions, and so does not provide
any guarantees on the distribution of its output.

GRM This Golden-Ratio Multiplicative (GRM) hash function is
based on classical results of Knuth [25]. The method is based
on the observation that multiplying each member of the se-
quence 1,2, . . . ,n by the golden ratio, and keeping the frac-

5Personal communication.

10 100 1000
Synopsis Size (k)

0

0.1

0.2

0.3

0.4

A
ve

ra
ge

 A
R

E

AES
FLH
GRM
Baseline

Figure 3: Hashing Effect on the RDW Dataset

tional part of the results, yields real numbers that are very
evenly spread over the unit interval.

Figures 3–5 display the average ARE of the unbiased KMV es-
timator as a function of synopsis size for the three hash functions
described above, as well as for the ideal hash function implicit in
the baseline scenario of Figure 2. The three figures correspond to
the three real-world datasets described previously.

The FLH hash function is dominated by the other hash func-
tions on all datasets. For the RDW and OPIC datasets, the GRM
hashing function is clearly superior, even outperforming the ideal
baseline in certain cases. The main reason behind GRM’s high ac-
curacy, however, is that the RDW and OPIC datasets contain many
machine-generated surrogate integer keys of the form 1,2, . . . ,n.
As discussed above, the hashed values are very evenly distributed
for such input. Thus, even when the synopsis size k is quite small,
the spacings are very stable and even, leading to very accurate DV
estimates. The BASEBALL dataset, on the other hand, contains
almost no surrogate keys, and the accuracy of GRM drops signifi-
cantly. For this dataset we see that the AES hash function is reason-
ably close to the baseline ARE, performs comparably to the other
hash functions for all values of k, and has superior performance for
small values of k. Overall, we recommend using AES as a hash
function, because it tracks the baseline output reasonably closely
for all datasets, which results in relatively reliable accuracy that is
independent of the presence of surrogate keys.

6.2.3 Comparison with Best-of-Breed Estimators
We next compared the unbiased KMV estimator to two current

best-of-breed estimators: the SDLogLog estimator, which is a highly

208

10 100 1000
Synopsis Size (k)

0

0.1

0.2

0.3

0.4

A
ve

ra
ge

 A
R

E

AES
FLH
GRM
Baseline

Figure 4: Hashing Effect on the BASEBALL Dataset

10 100 1000
Synopsis Size (k)

0.1

0.2

0.3

0.4

A
ve

ra
ge

 A
R

E

AES
FLH
GRM
Baseline

Figure 5: Hashing Effect on the OPIC Dataset

tuned implementation of the loglog estimator given in [11], and a
variant of the sample-counting algorithm described in [3]. In pre-
liminary experiments, we found that these latter two estimators
were the best of the probabilistic-counting and sample-counting
types, respectively. All of the algorithms used exactly the same
amount of available memory, which corresponded to a synopsis
size of k = 8192. We chose this value because it maximized the
performance of our own hand-tuned optimized SDLogLog estima-
tor.

The box plot in Figure 6 summarizes, for each estimator, the dis-
tribution of the ARE values over all of the datasets in the RDW
database.6 For comparison, we also plotted the ARE distribution
for the baseline scenario when using the unbiased KMV estimator
D̂UB

k together with a synopsis of size k = 8192. As can be seen, the
unbiased KMV estimator is significantly more accurate than both
SDLogLog and sample-counting on real datasets. The main reason
is that both SDLogLog and sample-counting merely approximate
the basic estimator — and hence the MLE estimator — even when
k is large, whereas the unbiased KMV estimator essentially coin-
cides with the MLE estimator for large k. If the synopsis size were
small, so that bias effects were important, then the unbiased KMV
estimator would have a further accuracy advantage. In these ex-
periments, we found that, for the large value of k that we used, the
AES hash function distributed points somewhat more evenly than
we would expect from a true random number generator, and this
phenomenon resulted in a slight accuracy improvement; see Sec-
tion 2.2. Thus these results provide further empirical evidence for
the suitability of the AES hash function for DV estimation.

6The top, midpoint, and bottom of a box represent the 75th, 50th,
and 25th percentiles of the ARE values, and the top of the thin line
corresponds to the maximum ARE value that was observed.

Unbiased-KMV SDLogLog Sample-Counting Baseline
0

0.02

0.04

0.06

0.08

0.1

A
ve

ra
ge

 A
R

E

Figure 6: Accuracy Comparison for the RDW Dataset

0 0.05 0.10 0.15
ARE

0

100

200

300

400

500

Fr
eq

ue
nc

y

Unbiased-KMV/Intersections
Unbiased-KMV/Unions
Unbiased-KMV/Jaccard
SDLogLog/Intersections
SDLogLog/Unions
SDLogLog/Jaccard

Figure 7: Accuracy Comparison for Union, Intersection, and
Jaccard Distance on the RDW Dataset

6.3 Compound Partitions
The main motivation behind our work on the AKMV synop-

sis was the desire for efficient and accurate DV estimates within
the synopsis-warehouse scenario, where different synopses need to
be combined in order to efficiently extract interesting information
about corresponding compound partitions. In practice, the most
common operations in this setting are multiset union and intersec-
tion. We therefore evaluated the accuracy of the KMV-synopsis
estimators in the presence of these operations, as well as the accu-
racy of our Jaccard-distance estimator.

For this experiment, we computed a KMV synopsis of size k =
8192 for each dataset in the RDW database. Then, for every pos-
sible pair of synopses, we used the unbiased estimator in (16) to
estimate the DV count for the union and intersection, and also es-
timated the Jaccard distance using our new estimator ρ̂ defined in
(10). We also estimated these quantities using the SDLogLog esti-
mator; specifically, we estimated the number of DVs in the union
directly, and then used the inclusion/exclusion rule to estimate the
DV count for the intersection and then for the Jaccard distance.

Figure 7 displays, for each estimator, a histogram for each of
these three multiset operations. (The histogram shows, for each
possible value of ARE, the number of dataset pairs for which the
DV estimate yielded that specific ARE value.) For the majority of
the datasets, the unbiased estimator based on the KMV synopsis
provides estimates that are almost ten times more accurate than the
SDLogLog estimates, even though both methods used exactly the
same amount of available memory.

7. SUMMARY AND CONCLUSIONS
We have revisited the classical problem of DV estimation, but

from a synopsis-oriented point of view. By combining and extend-

209

ing previous results on DV estimation, we have obtained a solution
that is well suited to the synopsis warehouse architecture. Our so-
lution comprises the AKMV synopsis, along with novel unbiased
DV estimators that exploit an AKMV synopsis.

Our theoretical contributions include (1) using the theory of or-
der statistics to derive a new class of unbiased DV estimators and
to provide error bounds, (2) providing a connection to the results
in [7] via an asymptotic analysis, and (3) providing a connection
to the theory of maximum likelihood estimators, thereby estab-
lishing asymptotic efficiency. From a practical point of view, we
have shown empirically that the AKMV synopsis, in combination
with our new unbiased estimators, provides superior accuracy, es-
pecially when estimating the number of distinct values in com-
pound partitions. Moreover, because our methods require only a
single hash function, constructing the synopsis is relatively inex-
pensive. We have shown how to combine synopses in order to han-
dle compound partitions. Based on our experiments, we have also
provided guidance in selecting a hash function, and have identified
the AES hash function as a reasonably good choice.

8. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity

of approximating the frequency moments. J. Comput. Sys.
Sci., 58:137–147, 1999.

[2] M. Astrahan, M. Schkolnick, and K. Whang. Approximating
the number of unique values of an attribute without sorting.
Inf. Sys., 12:11–15, 1987.

[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting distinct elements in a data stream. In
Proc. RANDOM, pages 1–10, 2002.

[4] P. Brown, P. J. Haas, J. Myllymaki, H. Pirahesh,
B. Reinwald, and Y. Sismanis. Toward automated large-scale
information integration and discovery. In Data Management
in a Connected World, pages 161–180. Springer, 2005.

[5] P. G. Brown and P. J. Haas. Techniques for warehousing of
sample data. In Proc. ICDE, 2006.

[6] M. Charikar, S. Chaudhuri, R. Motwani, and V. R.
Narasayya. Towards estimation error guarantees for distinct
values. In Proc. ACM PODS, pages 268–279, 2000.

[7] E. Cohen. Size-estimation framework with applications to
transitive closure and reachability. J. Comput. Sys. Sci.,
55:441–453, 1997.

[8] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk.
Mining database structure; or, how to build a data quality
browser. In Proc. ACM SIGMOD, pages 240–251, 2002.

[9] H. A. David and H. N. Nagaraja. Order Statistics. Wiley,
third edition, 2003.

[10] A. R. Didonato and A. H. Morris, Jr. Algorithm 708;
significant digit computation of the incomplete beta function
ratios. ACM Trans. Math. Software, 18(3):360–373, 1992.

[11] M. Durand and P. Flajolet. Loglog counting of large
cardinalities. In Proc. 11th Eur. Symp. Algorithms (ESA
2003), volume 2832 of Lecture Notes in Computer Science.
Springer, 2003.

[12] C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for
counting active flows on high speed links. In Proc.
SIGCOMM 02, pages 323–336, 2002.

[13] P. Flajolet. Adaptive sampling. In M. Hazewinkel, editor,
Encyclopaedia of Mathematics, Supplement I. Kluwer, 1997.

[14] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Computer Sys. Sci.,
31:182–209, 1985.

[15] S. Ganguly, M. Garofalakis, and R. Rastogi. Tracking
set-expression cardinalities over continuous update streams.
VLDB J., 13:354–369, 2004.

[16] P. B. Gibbons. Distinct sampling for highly-accurate answers
to distinct values queries and event reports. In Proc. VLDB,
pages 541–550, 2001.

[17] P. B. Gibbons and S. Tirthapura. Estimating simple functions
on the union of data streams. In Proc. ACM Symp. Parallel
Algorithms and Architecture, pages 281–291, 2001.

[18] F. Giroire. Order statistics and estimating cardinalities of
massive data sets. In Proc. Intl. Conf. Analysis Algorithms,
pages 157–166, 2005.

[19] P. J. Haas, Y. Liu, and L. Stokes. An estimator of the number
of species from quadrat sampling. Biometrics, 62:135–141,
2006.

[20] P. J. Haas and L. Stokes. Estimating the number of classes in
a finite population. J. Amer. Statist. Assoc., 93:1475–1487,
1998.

[21] P. Hellekalek and S. Wegenkittl. Empirical evidence
concerning AES. ACM Trans. Modelling Comput.
Simulation, 13:322–333, 2003.

[22] Y. E. Ioannidis. The history of histograms (abridged). In
Proc. VLDB, pages 19–30, 2003.

[23] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous
Univeriate Distributions – 2. Wiley, 2nd edition, 1995.

[24] S. Karlin and H. M. Taylor. A Second Course in Stochastic
Processes. Academic Press, 1981.

[25] D. E. Knuth. Sorting and Searching, volume 3 of The Art of
Computer Programming. Addison-Wesley, 1973.

[26] M. Matsumoto and T. Nishimura. Mersenne twister: A
623-dimensionally equidistributed uniform pseudorandom
number generator. ACM Trans. Modeling Computer
Simulation, 8(1):3–30, 1998.

[27] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[28] S. Padmanabhan, B. Bhattacharjee, T. Malkemus,
L. Cranston, and M. Huras. Multi-dimensional clustering: a
new data layout scheme in DB2. In Proc. ACM SIGMOD,
pages 637–641, 2003.

[29] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In Proc. ACM SIGMOD,
pages 23–34, 1979.

[30] R. J. Serfling. Approximation Theorems of Mathematical
Statistics. Wiley, New York, 1980.

[31] A. Shukla, P. Deshpande, J. F. Naughton, and K. Ramasamy.
Storage estimation for multidimensional aggregates in the
presence of hierarchies. In Proc. VLDB, pages 522–531,
1996.

[32] J. Vitter. Random Sampling with a Reservoir. ACM Trans.
Math. Software, 11(1):37–57, 1985.

[33] K. Whang, B. T. Vander-Zanden, and H. M. Taylor. A
linear-time probabilistic counting algorithm for database
applications. ACM Trans. Database Sys., 15:208–229, 1990.

210

