
october 2009  |   vol.  52  |   no.  10  |   communications of the acm     87

Distinct-Value Synopses  
for Multiset Operations
By Kevin Beyer, Rainer Gemulla, Peter J. Haas, Berthold Reinwald, and Yannis Sismanis

doi:10.1145/1562764.1562787

Abstract
The task of estimating the number of distinct values (DVs) 
in a large dataset arises in a wide variety of settings in com-
puter science and elsewhere. We provide DV estimation 
techniques for the case in which the dataset of interest is 
split into partitions. We create for each partition a synop-
sis that can be used to estimate the number of DVs in the 
partition. By combining and extending a number of results 
in the literature, we obtain both suitable synopses and DV 
estimators. The synopses can be created in parallel, and 
can be easily combined to yield synopses and DV estimates 
for “compound” partitions that are created from the base 
partitions via arbitrary multiset union, intersection, or dif-
ference operations. Our synopses can also handle deletions 
of individual partition elements. We prove that our DV 
estimators are unbiased, provide error bounds, and show 
how to select synopsis sizes in order to achieve a desired 
estimation accuracy. Experiments and theory indicate 
that our synopses and estimators lead to lower computa-
tional costs and more accurate DV estimates than previous 
approaches.

1. INTRODUCTION
The task of determining the number of distinct values (DVs) 
in a large dataset arises in a wide variety of settings. One 
classical application is population biology, where the goal 
is to determine the number of distinct species, based on 
observations of many individual animals. In computer sci-
ence, applications include network monitoring, document 
search, predicate-selectivity estimation for database query 
optimization, storage-size estimation for physical database 
design, and discovery of metadata features such as keys and 
duplicates.

The number of DVs can be computed exactly by sorting 
the dataset and then executing a straightforward scan-and-
count pass over the data; alternatively, a hash table can 
be constructed and used to compute the number of DVs. 
Neither of these approaches scales well to the massive data-
sets often encountered in practice, because of heavy time 
and memory requirements. A great deal of research over the 
past 25 years has therefore focused on scalable approximate 
methods. These methods work either by drawing a random 
sample of the data items and statistically extrapolating the 
number of DVs, or by taking a single pass through the data 
and using hashing techniques to compute an estimate using 
a small, bounded amount of memory.

Almost all of this work has focused on producing a given 
synopsis of the dataset, such as a random sample or bit vec-
tor, and then using the synopsis to obtain a DV estimate. 

Issues related to combining and exploiting synopses in the 
presence of union, intersection, and difference operations 
on multiple datasets have been largely unexplored, as has 
the problem of handling deletions of items from the data-
set. Such issues are the focus of this paper, which is about 
DV estimation methods when the dataset of interest is split 
into disjoint partitions, i.e., disjoint multisets.a The idea is 
to create a synopsis for each partition so that (i) the synopsis 
can be used to estimate the number of DVs in the partition 
and (ii) the synopses can be combined to create synopses 
for “compound” partitions that are created from the base 
partitions using multiset union, intersection, or difference 
operations.

This approach permits parallel processing, and hence 
scalability of the DV-estimation task to massive datasets, 
as well as flexible processing of DV-estimation queries and 
graceful handling of fluctuating data-arrival rates. The par-
titioning approach can also be used to support automated 
data integration by discovering relationships between parti-
tions. For example, suppose that the data is partitioned by 
its source: Amazon customers versus YouTube download-
ers. Then DV estimates can be used to help discover subset-
inclusion and functional-dependency relationships, as well 
as to approximate the Jaccard distance or other similarity 
metrics between the domains of two partitions; see Brown 
and Haas and Dasu et al.4, 6

Our goal is therefore to provide “partition-aware” syn-
opses for DV estimation, as well as corresponding DV 
estimators that exploit these synopses. We also strive to 
maintain the best possible accuracy in our DV estimates, 
especially when the size of the synopsis is small: as dis-
cussed in the sequel, the size of the synopsis for a com-
pound partition is limited by the size of the smallest input 
synopsis.

We bring together a variety of ideas from the literature 
to obtain a solution to our problem, resulting in best-
of-breed DV estimation methods that can also handle 
multiset operations and deletions. We first consider, 

A previous version of this research paper was published 
in Proceedings of the 2007 ACM SIGMOD Conference. 

a  Recall that a multiset, also called a bag, is an unordered collection 
of values, where a given value may appear multiple times, for example, 
{3,3,2,3,7,3,2}. Multiset union, intersection, and difference are defined 
in a natural way: if nA(v) and nB(v) denote the multiplicities of value v 
in multisets A and B, respectively, then the multiplicities of v in A È+  B,  
A Ç+  B, and A \+ B are given respectively by nA(v) + nB(v), min(nA(v),nB(v) ), and 
max(nA(v) - nB(v), 0).
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Specifically, if D >> 1 points are placed randomly and uni-
formly on the unit interval, then, by symmetry, the expected 
distance between any two neighboring points is 1/(D + 1) 
≈ 1/D, so that the expected value of U(k), the kth smallest 
point, is E[U(k)] ≈ Σj

k
=1 (1/D) = k/D. Thus D ≈ k/E[U(k)]. The sim-

plest estimator of E[U(k)] is simply U(k) itself—the so-called 
“method-of-moments” estimator—and yields the basic 
estimator

	 D̂k
BE = k/U(k)	 (1)

The above 1-to-1 mapping from the D DVs to a set of 
D  uniform random numbers can be constructed perfectly 
using O(D log D) memory, but this memory requirement 
is clearly infeasible for very large datasets. Fortunately, a 
hash function—which typically only requires an amount of 
memory logarithmic in D—often “looks like” a uniform ran-
dom number generator. In particular, let D (A) = {v1, v2, …, 
vD} be the domain of multiset A, i.e., the set of DVs in A, and 
let h be a hash function from D (A) to {0, 1, …, M}, where 
M is a large positive integer. For many hash functions, the 
sequence h(v1), h(v2), …, h(vD) looks like the realization of 
a sequence of independent and identically distributed 
(i.i.d.) samples from the discrete uniform distribution on 
{0, 1, …, M}. Provided that M is sufficiently greater than D, 
the sequence U1 = h(v1)/M, U2 = h(v2)/M, …, UD = h(vD)/M will 
approximate the realization of a sequence of i.i.d. samples 
from the continuous uniform distribution on [0, 1]. This 
assertion requires that M be much larger than D to avoid col-
lisions, i.e., to ensure that, with high probability, h(vi) ≠ h(vj) 
for all i  j. A “birthday problem” argument 16, p. 45 shows that 
collisions will be avoided when M = W(D2). We assume hence-
forth that, for all practical purposes, any hash function that 
arises in our discussion avoids collisions. We use the term 
“looks like” in an empirical sense, which suffices for appli-
cations. Thus, in practice, the estimator D̂k

BE can be applied 
with U(k) taken as the kth smallest hash value (normalized by 
a factor of 1/M). In general, E[1/X] > 1/E[X] for a non-negative 
random variable X,17, p. 351 and hence

E[D̂k
BE] = E[k/U(k)

] > k/E[U(k)
] ≈ D

in Section 2, a simple “KMV” (K Minimum hash Values) 
synopsis2 for a single partition—obtained by hashing the 
DVs in the partition and recording the K smallest hash 
values—along with a “basic” DV estimator based on the 
synopsis; see Equation 1. In Section 3, we briefly review 
prior work and show that virtually all prior DV estimators 
can be viewed as versions of, or approximations to, the 
basic estimator. In Section 4, we propose a new DV esti-
mator—see Equation 2—that improves upon the basic 
estimator. The new estimator also uses the KMV synopsis 
and is a deceptively simple modification of the basic esti-
mator. Under a probabilistic model of hashing, we show 
that the new estimator is unbiased and has lower mean-
squared error than the basic estimator. Moreover, when 
there are many DVs and the synopsis size is large, we show 
that the new unbiased estimator has essentially the mini-
mal possible variance of any DV estimator. To help users 
assess the precision of specific DV estimates produced 
by the unbiased estimator, we provide probabilistic error 
bounds. We also show how to determine appropriate syn-
opsis sizes for achieving a desired error level.

In Section 5, we augment the KMV synopsis with coun-
ters—in the spirit of Ganguly et al. and Shukla et al.10, 18—to 
obtain an “AKMV synopsis.” We then provide methods for 
combining AKMV synopses such that the collection of these 
synopses is “closed” under multiset operations on the parent 
partitions. The AKMV synopsis can also handle deletions of 
individual partition elements. We also show how to extend 
our simple unbiased estimator to exploit the AKMV synopsis 
and provide unbiased estimates in the presence of multiset 
operations, obtaining an unbiased estimate of Jaccard dis-
tance in the process; see Equations 7 and 8. Section 6 con-
cerns some recent complements to, and extensions of, our 
original results in Beyer et al.3

2. A BASIC ESTIMATOR AND SYNOPSIS
The idea behind virtually all DV estimators can be viewed as 
follows. Each of the D DVs in a dataset is mapped to a ran-
dom location on the unit interval, and we look at the posi-
tion U(k) of the kth point from the left, for some fixed value 
of k; see Figure 1. The larger the value of D, i.e., the greater 
the number of points on the unit interval, the smaller the 
value of U(k). Thus D can plausibly be estimated by a decreas-
ing function of U(k).

Figure 1. 50 random points on the unit interval (D = 50, k = 20).
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Algorithm 1 (KMV Computation).

  1:  h: hash function from domain of dataset to {0, 1, …, M}
  2:  L: list of k smallest hash values seen so far
  3:  maxVal(L): returns the largest value in L
  4:
  5:  for each item x in the dataset do
  6:    n = h(x)
  7:    if n e/ L then
  8:      if |L| < k then
  9:        insert n into L
10:      else if n < maxVal(L) then
11:        insert n into L
12:        remove largest element of L
13:      end if
14:    end if
15:  end for
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E[Cost] =  
D

Σ
i=k+1

 [(k / i)O(log k) + (1 - (k / i))O(1)]

	 <  
D

Σ
i = 1

 (k / i)O(log k)] + O(D) = O(D) + O(k log k)  
D

Σ
i = 1

 (l/i)

	 = O(D + k log k log D)

since Σi
D
 = 1(l/i) = O(log D). The overall expected cost is thus O(N 

+ D + k log k + k log k log D) = O(N + k log k log D).  

We show in Section 5 that adding counters to the KMV 
synopsis has a negligible effect on the construction cost, 
and results in a desirable “closure” property that permits 
efficient DV estimation under multiset operations.

3. PRIOR WORK
We now give a unified view of prior synopses and DV esti-
mators, and discuss prior methods for handling compound 
partitions.

3.1. Synopses for DV estimation
In general, the literature on DV estimation does not discuss 
synopses explicitly, and hence does not discuss issues related 
to combining synopses in the presence of set operations on 
the corresponding partitions. We can, however, infer poten-
tial candidate synopses from the various algorithm descrip-
tions. The literature on DV estimation is enormous, so we 
content ourselves with giving highlights and pointers to 
further references; for some helpful literature reviews, see 
Beyer et al.,3 Gemulla,11 Gibbons13 and Haas and Stokes.14

Random Samples: Historically, the problem of DV estimation 
was originally considered for the case in which the synopsis 
comprises a random sample of the data items. Applications 
included estimation of species diversity (as discussed in the 
introduction), determining the number of distinct Roman 
coins based on the sample of coins that have survived, esti-
mating the size of Shakespeare’s vocabulary based on his 
extant writings, estimating the number of distinct individu-
als in a set of merged census lists, and so forth; see Haas and 
Stokes14 and references therein. The key drawback is that DV 
estimates computed from such a synopsis can be very inac-
curate, especially when the dataset is dominated by a few 
highly frequent values, or when there are many DVs, each 
having a low frequency (but not all unique). With high prob-
ability, a sample of size k will have only one or two DVs in 
the former case—leading to severe underestimates—and k 
DVs in the latter case—leading to severe overestimates. For 
this reason, especially in the computer science literature, 
the emphasis has been on algorithms that take a complete 
pass through the dataset, but use limited memory. When 
the dataset is massive, our results are of particular interest, 
since we can parallelize the DV-estimate computation.

Note that if we modify the KMV synopsis to record not the 
hash of a value, but the value itself, then we are in effect main-
taining a uniform sample of the DVs in the dataset, thereby 
avoiding the problems mentioned above. See Gemulla11 for 
a thorough discussion of “distinct-value sampling” and its 
relationship to the DV-estimation problem.
Bit-Vector Synopses: The oldest class of synopses based on 
single-pass, limited-memory processing comprises vari-
ous types of bit vectors. The “linear counting” technique 1, 21 

i.e., the estimator D̂k
BE is biased upwards for each possible 

value of D, so that it overestimates D on average. Indeed, it 
follows from the results in Section 4.1 that E[D̂k

BE] = ∞ for k = 1. 
In Section 4, we provide an unbiased estimator that also has 
lower mean-squared error than D̂k

BE.
Note that, in a certain sense, the foregoing view of hash 

functions—as algorithms that effectively place points on 
the unit interval according to a uniform distribution—
represents a worst-case scenario with respect to the basic 
estimator. To the extent that a hash function spreads 
points evenly on [0,  1], i.e., without the clumping that is a 
byproduct of randomness, the estimator D̂k

BE will yield more 
accurate estimates. We have observed this phenomenon 
experimentally.3

The foregoing discussion of the basic estimator imme-
diately implies a choice of synopsis for a partition A. Using 
a hash function as above, hash all of the DVs in A and then 
record the k smallest hash values. We call this synopsis a 
KMV synopsis (for k minimum values). The KMV synopsis 
can be viewed as originating in Bar-Yossef et al.,2 but there 
is no discussion in Bar-Yossef et al.2 about implementing, 
constructing, or combining such synopses.

As discussed previously, we need to have M = W(D2) to 
avoid collisions. Thus each of the k hash values requires 
O(log M) = O(log D) bits of storage, and the required size of 
the KMV synopsis is O(k log D).

A KMV synopsis can be computed from a single scan of 
the data partition, using Algorithm 1. The algorithm uses a 
sorted list of k hash values, which can be implemented using, 
e.g., a priority queue. The membership check in line 7 avoids 
unnecessary processing of duplicate values in the input data 
partition, and can be implemented using a temporary hash 
table that is discarded after the synopsis has been built.

Assuming that the scan order of the items in a partition 
is independent of the items’ hash values, we obtain the fol-
lowing result.

Theorem 1. The expected cost to construct a KMV synopsis of 
size k from a partition A comprising N data items having D dis-
tinct values is O(N + k log k log D).

Proof. The hashing step and membership check in lines 6 
and 7 incur a cost of O(1) for each of the N items in A, for a 
total cost of O(N). To compute the expected cost of executing 
the remaining steps of the algorithm, observe that the first k 
DVs encountered are inserted into the priority queue (line 9), 
and each such insertion has a cost of at most O(log k), for an 
overall cost of O(k log k). Each subsequent new DV encoun-
tered will incur an O(log k) cost if it is inserted (line 11), or 
an O(1) cost otherwise. (Note that a given DV will be inserted 
at most once, at the time it is first encountered, regardless 
of the number of times that it appears in A.) The ith new DV 
encountered is inserted only if its normalized hash value Ui 
is less than Mi, the largest normalized hash value currently 
in the synopsis. Because points are placed uniformly, the 
conditional probability of this event, given the value of Mi, is 
P{Ui < Mi|Mi} = Mi. By the law of total expectation, P{Ui < Mi} 
= E[P{Ui < Mi | Mi}] = E[Mi] = k/i. Thus the expected cost for 
handling the remaining D − k DVs is
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counter, in order to permit DV estimation in the presence of 
both insertions and deletions to the dataset. This modifica-
tion does not ameliorate the inclusion/exclusion problem, 
however.
Sample-Counting Synopsis: Another type of synopsis arises 
from the “sample counting” DV-estimation method—also 
called “adaptive sampling”—credited to Wegman.1 Here 
the synopsis for partition A comprises a subset of {h(v):  
v ∈ D (A)}, where h: D (A)  {0, 1, …, M} is a hash function 
as before. In more detail, the synopsis comprises a fixed-
size buffer that holds binary strings of length L = log(M), 
together with a “reference” binary string s, also of length 
L. The idea is to hash the DVs in the partition, as in loga-
rithmic counting, and insert the hash values into a buffer 
that can hold up to k > 0 hash values; the buffer tracks only 
the distinct hash values inserted into it. When the buffer 
fills up, it is purged by removing all hash values whose left-
most bit is not equal to the leftmost bit of s; this operation 
removes roughly half of the hash values in the buffer. From 
this point on, a hash value is inserted into the buffer if and 
only if the first bit matches the first bit of s. The next time 
the buffer fills up, a purge step (with subsequent filtering) 
is performed by requiring that the two leftmost bits of each 
hash value in the buffer match the two leftmost bits of the 
reference string. This process continues until all the values 
in the partition have been hashed. The final DV estimate is 
roughly equal to K2r, where r is the total number of purges 
that have occurred and K is the final number of values in 
the buffer. For sample-counting algorithms with reference 
string equal to 00 . . . 0, the synopsis holds the K smallest 
hash values encountered, where K lies roughly between k/2 
and k.
The Bellman Synopsis: In the context of the Bellman sys-
tem, the authors in Dasu et al.6 propose a synopsis related 
to DV estimation. This synopsis comprises k entries 
and uses independent hash functions h1, h2,…,hk; the 
ith synopsis entry is given by the ith minHash value mi =  
minv ∈ D (A) hi(v). The synopsis for a partition is not actually 
used to directly compute the number of DVs in the partition, 
but rather to compute the Jaccard distance between parti-
tion domains; see Section 3.3. (The Jaccard distance between 
ordinary sets A and B is defined as J(A, B) = |A ∩ B|/|A ∪ B|. 
If J(A, B) = 1, then A = B; if J(A, B) = 0, then A and B are dis-
joint.) Indeed, this synopsis cannot be used directly for DV 
estimation because the associated DV estimator is basically 
D̂ 1

BE, which has infinite expectation; see Section 2. When 
constructing the synopsis, each scanned data item must be 
hashed k times for comparison to the k current minHash 
values; for the KMV synopsis, each scanned item need only 
be hashed once.

3.2. DV estimators
The basic estimator D̂k

BE was proposed in Bar-Yosssef et al.,2 
along with conservative error bounds based on Chebyshev’s 
inequality. Interestingly, both the logarithmic and sample-
counting estimators can be viewed as approximations to the 
basic estimator. For logarithmic counting—specifically the 
Flajolet–Martin algorithm—consider the binary decimal 
representation of the normalized hash values h(v)/M, where 

hashes each DV to a position in a bit vector V of length M = 
O(D), and uses the number of 1-bits to estimate the DV count. 
Its O(D) storage requirement is typically unacceptable for 
modern datasets.

The “logarithmic counting” method of Flajolet and 
Martin 1, 9 uses a bit vector of length L = O(log D). The idea is to 
hash each of the DVs in A to the set {0, 1}L of binary strings of 
length L, and look for patterns of the form 0 j1 in the leftmost 
bits of the hash values. For a given value of j, the probability 
of such a pattern is 1/2 j+1, so the expected observed num-
ber of such patterns after D DVs have been hashed is D/2 j+1. 
Assuming that the longest observed pattern, say with j* lead-
ing 0’s, is expected to occur once, we set D/2 j*+1 = 1, so that  
D = 2 j*+1; see Figure 2, which has been adapted from Astrahan 
et al.1 The value of j* is determined approximately, by taking 
each hash value, transforming the value by zeroing out all 
but the leftmost 1, and computing the logarithmic-counting 
synopsis as the bitwise-OR of the transformed values. Let r 
denote the position (counting from the left, starting at 0) of 
the leftmost 0 bit in the synopsis. Then r is an upper bound 
for j*, and typically a lower bound for j* + 1, leading to a 
crude (under)estimate of 2r. For example, if r = 2, so that the 
leftmost bits of the synopsis are 110 (as in Figure 2), we know 
that the pattern 001 did not occur in any of the hash values, 
so that j* < 2.

The actual DV estimate is obtained by multiplying 2r by 
a factor that corrects for the downward bias, as well as for 
hash collisions. In the complete algorithm, several inde-
pendent values of r are, in effect, averaged together (using a 
technique called “stochastic averaging”) and then exponen-
tiated. Subsequent work by Durand and Flajolet8 improves 
on the storage requirement of the logarithmic counting 
algorithm by tracking and maintaining j* directly. The num-
ber of bits needed to encode j* is O(log log D), and hence the 
technique is called LogLog counting.

The main drawback of the above bit-vector data struc-
tures, when used as synopses in our partitioned-data setting, 
is that union is the only supported set operation. One must, 
e.g., resort to the inclusion/exclusion formula to handle set 
intersections. As the number of set operations increases, 
this approach becomes extremely cumbersome, expensive, 
and inaccurate.

Several authors 10, 18 have proposed replacing each bit in the 
logarithmic-counting bit vector by an exact or approximate 

Figure 2. Logarithmic counting.
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4.1. Moments and error bounds
Let U1, U2, …, UD be the normalized hash values of the D dis-
tinct items in the dataset; for our analysis, we model these val-
ues as a sequence of i.i.d. random variables from the uniform 
[0, 1] distribution—see the discussion in Section 2. As before, 
denote by U(k) the kth smallest of U1, U2, …, UD, that is, U(k) is the 
kth uniform order statistic. We can now apply results from the 
classical theory of order statistics to establish properties of the 
estimator D̂k

UB = (k - 1)/U(k). We focus on moments and error 
bounds; additional analysis of D̂k

UB can be found in Beyer et al.3

Our analysis rests on the fact that the probability density 
function (pdf) of U(k) is given by

	 fk,D(t) = t k-1(1 - t)D-k/B(k, D - k + 1)	 (3)

where B(a, b) = ò
1

0  t
a-1 (1 - t)b -1 dt denotes the standard beta func-

tion; see Figure 1. To verify (3), fix x ∈ [0, 1] and observe that, for 
each 1 ≤ i £ D, we have P{Ui ≤ x} = x by definition of the uniform 
distribution. The probability that exactly k of the D uniform 
random variables are less than or equal to x is a binomial prob-
ability: (D

k)xk(1 - x)D-k. Thus the probability that U(k) ≤ x is equal 
to the probability that at least k random variables are less than 
or equal to x, which is a sum of binomial probabilities:

P{X(k) £ x} =   
D

Σ
j = k 

(D
j )x j(1 - x)D - j = Ú x

0  fk,D (t) dt

The second equality can be established by integrating the 
rightmost term by parts repeatedly and using the identity

B(a, b) =  G(a)G(b) =  (a - 1)!(b - 1)!
	 G(a + b)	 (a + b - 1)!	

(4)

where G(x) = ò
∞

0 t
x-1 e-t dt is the standard gamma function and 

the rightmost equality is valid for integer a and b. The result 
in (3) now follows by differentiation.

With (3) in hand, we can now determine the moments of 
D̂k

UB, in particular, the mean and variance. Denote by ab the 
falling power a(a − 1) . . . (a − b + 1).

Theorem 2. Suppose that r ≥ 0 is an integer with r < k. Then

	 E[(D̂k
UB)r] = (k - 1)r Dr/(k - 1)r	 (5)

In particular, E[D̂k
UB] = D provided that k > 1, and Var[D̂k

UB] = 
D(D - k + 1)/(k - 2) provided that k > 2.

Proof. For k > r ≥ 0, if follows from (3) that

and the first assertion of the theorem follows directly from 
(4). Setting r = 1 in (5) yields the next assertion, and the 
final assertion follows from (5) and the relation Var[D̂k

UB] =  
E[(D̂k

UB)2] − E2[D̂k
UB].  

Recall that the mean squared error (MSE) of a statistical 
estimator X of an unknown quantity m is defined as MSE[X] 
= E[(X − m)2] = Var[X] + Bias2[X]. To compare the MSE of the 

M = 2L, e.g., a hash value h(v) = 00100110, after normalization, 
will have the binary decimal representation 0.00100110. 
It can be seen that the smallest normalized hash value is 
approximately equal to 2−r, so that, modulo the correction 
factor, the Flajolet–Martin estimator (without stochastic 
averaging) is 1/2−r, which roughly corresponds to D̂ 1

BE. The 
final F-M estimator uses stochastic averaging to average 
independent values of r and hence compute an estimator Ê 
of E[log2D̂ 1

BE], leading to a final estimate of D̂  = c2Ê, where the 
constant c approximately unbiases the estimator. (Our new 
estimators are exactly unbiased.) For sample counting, sup-
pose, without loss of generality, that the reference string is 
00 . . . 0 and, as before, consider the normalized binary deci-
mal representation of the hash values. Thus the first purge 
leaves behind normalized values of the form 0.0 . . . , the sec-
ond purge leaves behind values of the form 0.00 . . . , and so 
forth, the last (rth) purge leaving behind only normalized 
hash values with r leading 0’s. Thus the number 2−r (which 
has r − 1 leading 0’s) is roughly equal to the largest of the K 
normalized hash values in the size-k buffer, so that the esti-
mate K/2−r is roughly equal to D̂k

BE.

3.3. Estimates for compound partitions
To our knowledge, the only prior discussion of how to con-
struct DV-related estimates for compound partitions is 
found in Dasu et al.6 DV estimation for the intersection of 
partitions A and B is not computed directly. Instead, the 
Jaccard distance r = J(D (A), D (B) ) is estimated first by an 
estimator r̂, and then the number of values in the intersec-
tion of D  (A) and D  (B) is estimated as

D̂  =
    r̂     

(|D (A)| + |D (B)|)
	 r̂ + 1

The quantities |D (A)| and |D (B)| are computed exactly, by 
means of GROUP BY relational queries; our proposed esti-
mators avoid the need to compute or estimate these quanti-
ties. There is no discussion in Dasu et al.6 of how to handle 
any set operations other than the intersection of two parti-
tions. If one uses the principle of inclusion/exclusion to han-
dle other set operations, the resulting estimation procedure 
will not scale well as the number of operations increases.

4. AN IMPROVED DV ESTIMATOR
As discussed previously, the basic estimator D̂k

BE is biased 
upwards for the true number of DVs D, and so somehow 
needs to be adjusted downward. We therefore consider the 
estimator

	 D̂k
UB = (k - 1)/U(k) 	 (2)

and show that, both compared to the basic estimator and in 
a certain absolute sense, D̂k

UB has superior statistical proper-
ties, including unbiasedness. The D̂k

UB estimator forms the 
basis for the extended DV estimators, discussed in Section 
5, used to estimate the number of DVs in a compound parti-
tion. Henceforth, we assume without further comment that 
D > k; if D £ k, then we can easily detect this situation and 
compute the exact value of D from the synopsis.
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24 relational tables, with a total of 504 attributes and roughly 
2.6 million tuples. For several different hash functions, we 
computed the average value of the relative error RE(D̂k

UB) = 
|D̂k

UB - D|/D over multiple datasets in the database. The hash 
functions are described in detail in Beyer et al.3; for example, 
the Advanced Encryption Standard (AES) hash function is a 
well established cipher function that has been studied exten-
sively. The “baseline” curve corresponds to an idealized hash 
function as used in our analysis. As can be seen, the real-world 
accuracies are consistent with the idealized results, and rea-
sonable accuracy can be obtained even for synopsis sizes of  
k < 100. In Beyer et al.,3 we found that the relative performance 
of different hash functions was sensitive to the degree of regu-
larity in the data; the AES hash function is relatively robust to 
such data properties, and is our recommended hash function.

4.2. Analysis with many DVs
When the number of DVs is known to be large, we can estab-
lish a minimum-variance property of the D̂k

UB estimator, and 
also develop useful approximate error bounds that can be 
used to select a synopsis size prior to data processing.
Minimum Variance Property: The classical statistical approach 
to estimating unknown parameters based on a data sample is 
the method of maximum likelihood.7, Sec. 4.2 A basic result for 
maximum-likelihood estimators17, Sec. 4.2.2 asserts that an MLE 
of an unknown parameter has the minimum variance over all 
possible parameter estimates as the sample size becomes large. 
We show that D̂k

UB is asymptotically equivalent to the maximum-
likelihood estimator (MLE) as D and k become large. Thus, for 
D >> k >> 1, the estimator D̂k

UB has, to a good approximation, the 
minimal possible variance for any estimator of D.
To find the MLE, we cast our DV-estimation problem as a 
parameter estimation problem. Specifically, recall that U(k) 
has the pdf fk,D given in (3). The MLE estimate of D is defined 
as the value D̂ that maximizes the likelihood L(D;U(k)) of the 
observation U(k), defined as L(D;U(k)) = fk,D(U(k)). That is, roughly 
speaking, D̂ maximizes the probability of seeing the value 
of U(k) that was actually observed. We find this maximizing 
value by solving the equation L'(D;U(k)) = 0, where the prime 
denotes differentiation with respect to D. We have L'(D;U(k)) 
= ln(1 − U(k)) − Y(D − k + 1) + Y(D + 1), where Y denotes the 
digamma function. If x is sufficiently large, then Y(x) ≈ ln 
(x − 1) + g, where g ≈ 0.5772 denotes Euler’s constant. Applying 
this approximation, we obtain D̂k

mle ≈ k/U
(k), so that the MLE 

estimator roughly resembles the basic estimator D̂k
BE pro-

vided that D >> k >> 1. In fact, our experiments indicated that 
D̂k

mle and D̂k
be are indistinguishable from a practical point 

of view. It follows that D̂k
mle ≈ (k/k - 1)D̂k

ub is asymptotically 
equivalent to D̂k

ub as k → ∞.
Approximate Error Bounds: To obtain approximate proba-
bilistic error bounds when the number of DVs is large, we 
simply let D → ∞ in (6), yielding

basic and unbiased estimators, note that, by (5), E[D̂k
BE] = kD/

(k - 1) and

Thus D̂k
BE is biased high for D, as discussed earlier, and 

has higher MSE than D̂k
UB.

We can also use the result in (3) to obtain probabilistic 
(relative) error bounds for the estimator D̂k

UB. Specifically, set 
Ix(a, b) = ò

x

0 t
a-1 (1 - t)b-1 dt/B(a, b), so that P{U(k) ≤ x} = Ix(k, D − k 

+ 1). Then, for 0 < e < 1 and k ≥ 1, we have

	

	 (6)

For example, if D = 106 and the KMV synopsis size is k = 
1024, then, with probability d = 0.95, the estimator D̂k

UB will be 
within ±4% of the true value; this result is obtained by equat-
ing the right side of (6) to d and solving for e numerically. In 
practice, of course, D will be unknown, but we can assess the 
precision of D̂k

UB approximately by replacing D with D̂k
UB in the 

right side of (6) prior to solving for e.
Error bounds can also be derived for D̂k

BE. As discussed in 
Beyer et al.,3 D̂k

UB is noticeably superior to D̂k
BE when k is small; 

for example, when k = 16 and d = 0.95, use of the unbiased 
estimator yields close to a 20% reduction in e. As k increases,  
k − 1 ≈ k and both estimators perform similarly.

The foregoing development assumes that the hash func-
tion behaves as a 1-to-1 mapping from the D DVs in the dataset 
to a set of D uniform random numbers. In practice, we must 
use real-world hash functions that only approximate this ideal; 
see Section 2. Figure 3 shows the effect of using real hash func-
tions on real data. The RDW database was obtained from the 
data warehouse of a large financial company, and consists of 

Figure 3. Hashing Effect on the RDW Dataset.
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is a set of k non-negative counters. The quantity c(v) is the 
multiplicity in A of the value v. The first two lines in Figure 
4 show the normalized hash values and corresponding 
counter values in the AKMV synopses L+

A and L+
B of two base 

partitions A and B, respectively. (Circles and squares repre-
sent normalized hash values; inscribed numbers represent 
counter values.)

The size of the AKMV synopsis is O(k log D + k log N), 
where N is the number of data items in A. It is easy to modify 
Algorithm 1 to create and maintain counters via O(1) opera-
tions. The modified synopsis retains the original construc-
tion complexity of O(N + k log k log D).

To define an AKMV synopsis for compound partitions, 
we first define an operator ⊕ for combining KMV synopses. 
Consider two partitions A and B, along with their KMV syn-
opses LA and LB of sizes kA and kB, respectively. Define LA ⊕ LB 
to be the ordered list comprising the k smallest values in  
LA  LB, where k = min(kA, kB) and we temporarily treat LA and 
LB as sets rather than ordered lists. (See line 3 of Figure 4; 
the yellow points correspond to values that occur in both 
LA and LB.) Observe that the ⊕ operator is symmetric and 
associative.

Theorem 3. The ordered list L = LA ⊕ LB is the size-k KMV syn-
opsis of A + B, where k = min(kA, kB).

Proof. We again temporarily treat LA and LB as sets. For a 
multiset S with D (S) ⊆D, write h(S) = {h(v): v ∈ D (S)}, and 
denote by G the set of k smallest values in h(A +  B). Observe 
that G contains the k' smallest values in h(A) for some  
k' ≤ k, and these k' values therefore are also contained in LA, 
i.e., G  h(A) ⊆ LA. Similarly, G  h(B) ⊆ LB, so that G ⊆ LA  LB. 
For any h i∈ (LA  Lb)\G, we have that h > maxh′∈G h′ by defini-
tion of G, because h Œ h(A +  B). Thus G in fact comprises 
the k smallest values in LA  LB, so that L = G. Now observe 
that, by definition, G is precisely the size-k KMV synopsis 
of A +  B.  

We next define the AKMV synopsis for a compound parti-
tion E created from n ≥ 2 base partitions A1, A2, …, An using 
the multiset union, intersection, and set-difference opera-
tors. Some examples are E = A1\+ A2 and E = ( (A1+  A2) +  (A3 + 
A4) ) \+ A5. The AKMV synopsis for E is defined as L+

E = (LE, cE), 
where LE =  LA1 ⊕ LA2 ⊕ . . . ⊕ LAn 

is of size k = min(kA1
, kA2

, . . ., kAn
), 

and, for v Œ n
i = 1D (Ai), the counter cE(v) is the multiplicity 

An alternative derivation is given in Beyer et al.3 using a 
powerful proof technique that exploits well known proper-
ties of the exponential distribution. The approximate error 
bounds have the advantageous property that, unlike the 
exact bounds, they do not involve the unknown quantity D. 
Thus, given desired values of e and d, they can be used to help 
determine target synopsis sizes prior to processing the data. 
When D is not large, the resulting recommended synopsis 
sizes are slightly larger than necessary, but not too wasteful. 
It is also shown in Beyer et al.3 that E[RE(D̂k

UB)] ≈ (π(k - 2)/2)-1/2 
for large D, further clarifying the relationship between syn-
opsis size and accuracy.

5. FLEXIBLE AND SCALABLE ESTIMATION
The discussion up until now has focused on improving 
the process of creating and using a synopsis to estimate the 
number of DVs in a single base partition, i.e., in a single 
dataset. As discussed in the introduction, however, the true 
power of our techniques lies in the ability to split up a mas-
sive dataset into partitions, create synopses for the parti-
tions in parallel, and then compose the synopses to obtain 
DV estimates for arbitrary combinations of partitions, e.g., if 
the combination of interest is in fact the union of all the par-
titions, then, as in the classical setting, we can estimate the 
number of DVs in the entire dataset, while parallelizing the 
traditional sequential scan of the data. On the other hand, 
estimates of the number of DVs in the intersection of par-
titions can be used to estimate similarity measures such as 
Jaccard distance.

We therefore shift our focus to DV estimation for a com-
pound partition that is created from a set of base partitions 
using the multiset operations of intersection, union, and 
difference. To handle compound partitions, we augment 
our KMV synopses with counters; we show that the resulting 
AKMV synopses are “closed” under multiset operations on 
the parent partitions. The closure property implies that if A 
and B are compound partitions and E is obtained from A and 
B via a multiset operation, then we can compute an AKMV 
synopsis for E from the corresponding AKMV synopses for A 
and B, and unbiasedly estimate the number of DVs in E from 
this resulting synopsis. This procedure avoids the need to 
access the synopsis for each of the base partitions that were 
used to create A and B. The AKMV synopsis can also handle 
deletions of individual items from the dataset. As discussed 
below, the actual DV estimators that we use for compound 
partitions are, in general, extensions of the simple D̂k

UB esti-
mator developed in Section 4.

5.1. AKMV synopses
We assume throughout that all synopses are created using 
the same hash function h: D  {0, 1, …, M}, where D 
denotes the domain of the data values that appear in the par-
titions and M = W(|D |2) as discussed in Section 2. We start by 
focusing on insertion-only environments, and discuss dele-
tions in Section 5.3.

We first define the AKMV synopsis of a base partition 
A, where A has a KMV synopsis L = (h(v1), h(v2),…, h(vk) ) of 
size  k, with h(v1) < h(v2) < . . . < h(vk). The AKMV synopsis 
of A  is defined as L+ = (L, c), where c = (c(v1), c(v2), …, c(vk) ) 

Figure 4. Combining two AKMV synopses of size k = 6 (synopsis 
elements are colored).
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Theorem 4. If k > 1 then E[D̂E] = DE. If k > 2, then

Var [D̂E] = 
 DE(kD

+
 - k2 - D

+
 + k  + DE)

	  k(k - 2)

Proof. The distribution of KE does not depend on the hash 
values {h(v): v ∈ D  (A

+
)}. It follows that the random vari-

ables KE and U(k), and hence the variables p̂ and U(k), are 
statistically independent. By standard properties of the 
hypergeometric distribution, E[KE] = kDE/D

+
, so that E[D̂E] = 

E[r̂  D̂
+

] = E[r̂ ]E[D̂
+

] = r D
+

 = DE. The second assertion fol-
lows in a similar manner. ❑

Thus D̂E is unbiased for DE. It also follows from the proof 
that the estimator r̂  is unbiased for DE/D

+
. In the special 

case where E = A  B for two ordinary sets A and B, the ratio 
r corresponds to the Jaccard distance J(A, B), and we obtain 
an unbiased estimator of this quantity. We can also obtain 
probability bounds that generalize the bounds in (6); see 
Beyer et al.3 for details.

Figure 5 displays the accuracy of the AKMV estima-
tor when estimating the number of DVs in a compound 
partition. For this experiment, we computed a KMV synop-
sis of size k = 8192 for each dataset in the RDW database. 
Then, for every possible pair of synopses, we used Dˆ

E to 
estimate the DV count for the union and intersection, and 
also estimated the Jaccard distance between set domains 
using our new unbiased estimator rˆ defined in (7). We 
also estimated these quantities using a best-of-breed esti-
mator: the SDLogLog estimator, which is a highly tuned 
implementation of the LogLog estimator given in Durand 
and Flajolet.8 For this latter estimator, we estimated the 
number of DVs in the union directly, and then used the 
inclusion/exclusion rule to estimate the DV count for the 
intersection and then for the Jaccard distance. The figure 
displays, for each estimator, a relative-error histogram for 
each of these three multiset operations. (The histogram 
shows, for each possible RE value, the number of dataset 
pairs for which the DV estimate yielded that value.) For the 

Figure 5. Accuracy Comparison for Union, Intersection, and Jaccard 
Distance on the RDW Dataset.
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of v in E; observe that cE(v) = 0 if v is not present in E, so that 
there may be one or more zero-valued counters; see line 4 of 
Figure 4 for the case E = A +  B.

With these definitions, the collection of AKMV syn-
opses over compound partitions is closed under mul-
tiset operations, and an AKMV synopsis can be built up 
incrementally from the synopses for the base partitions. 
Specifically, suppose that we combine (base or compound) 
partitions A  and B—having respective AKMV synopses  
L+

A = (LA, cA) and L+
B = (LB, cB)—to create E = A ◊ B, where  

◊ Î {+, +  , \+}. Then the AKMV synopsis for E is (LA ⊕ LB,cE), 
where

	 	 cA(n) + cB(n)	 if ◊ = + ;

	 cE(n) =   	min (cA(n), cB(n))	 if ◊ = + ;

		  max (cA(n) - cB(n), 0)	 if ◊ = \ +.

As discussed in Beyer et al. and Gemulla,3, 11 the AKMV 
synopsis can be sometimes be simplified. If, for example, 
all partitions are ordinary sets (not multisets) and ordinary 
set operations are used to create compound partitions, then 
the AKMV counters can be replaced by a compact bit vector, 
yielding an O(k log D) synopsis size.

5.2. DV estimator for AKMV synopsis
We now show how to estimate the number of DVs for a 
compound partition using the partition’s AKMV synop-
sis; to this end, we need to generalize the unbiased DV 
estimator of Section 4. Consider a compound partition E 
created from n ≥ 2 base partitions A1, A2, …, An using mul-
tiset operations, along with the AKMV synopsis L+

E = (LE, cE), 
where LE = (h(v1), h(v2), …, h(vk) ). Denote by VL = {v1, v2, …, vk} 
the set of data values corresponding to the elements of LE. 
(Recall our assumption that there are no hash collisions.) 
Set KE  = |{v Œ VL: cE(v) > 0}|; for the example E = A +  B in 
Figure 4, KE = 2. It follows from Theorem 3 that LE is a size-
k KMV synopsis of the multiset A

+
 = A1+ A2+

 . . . + An. The 
key observation is that, under our random hashing model, 
VL can be viewed as a random sample of size k drawn uni-
formly and without  replacement from D (A

+
); denote by 

D
+

 = |D (A
+

)| the number of DVs in A
+

. The quantity KE is a 
random variable that represents the number of elements 
in VL that also belong to the set D (E). It follows that KE has 
a hypergeometric distribution: setting DE = |D (E)|, we have 
P{KE = j} =  Dj E   D +

k  - j
- DE  /  Dk+

   .
We now estimate DE using KE, as defined above, and U(k), the 
largest hash value in LE. From Section 4.1 and Theorem 3, 
we know that D̂

+
 = (k − 1)/U(k) is an unbiased estimator of D

+
; 

we would like to “correct” this estimator via multiplication 
by the ratio r = DE/D

+
. We do not know r, but a reasonable 

estimate is

	 r̂ = KE/k	 (7)

the fraction of elements in the sample VL ⊆ D (A
+

) that 
belong to D (E). This leads to our proposed estimator

D̂E =  KE  k - 1
	 k      U(k)	

(8)
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7. SUMMARY AND CONCLUSION
We have revisited the classical problem of DV estimation, 
but from a synopsis-oriented point of view. By combining 
and extending previous results on DV estimation, we have 
obtained the AKMV synopsis, along with corresponding 
unbiased DV estimators. Our synopses are relatively inex-
pensive to construct, yield superior accuracy, and can be 
combined to easily handle compound partitions, permitting 
flexible and scalable DV estimation.	
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