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Abstract

In this study, we compare token repre-
sentations constructed from visual features
(i.e., pixels) with standard lookup-based
embeddings. Our goal is to gain insight
about the challenges of encoding a text
representation from low-level features,
e.g. from characters or pixels. We fo-
cus on Chinese, which—as a logographic
language—has properties that make a rep-
resentation via visual features challenging
and interesting. To train and evaluate dif-
ferent models for the token representation,
we chose the task of character-based neu-
ral machine translation (NMT) from Chi-
nese to English. We found that a token
representation computed only from visual
features can achieve competitive results to
lookup embeddings. However, we also
show different strengths and weaknesses
in the models’ performance in a part-of-
speech tagging task and also a semantic
similarity task. In summary, we show that
it is possible to achieve a text representa-
tion only from pixels. We hope that this
is a useful stepping stone for future stud-
ies that exclusively rely on visual input, or
aim at exploiting visual features of written
language.

1 Introduction

Language representation beyond the word level
can be advantageous for words from the tail of the
distribution, as has been shown in recent neural
approaches for various tasks (Schütze, 2017; Kim
et al., 2016; Lee et al., 2017; Wu et al., 2016; Sen-
nrich et al., 2016). In these approaches, a neu-
ral model represents an input text based on its se-
quence of characters or character n-grams (instead

of its words). This helps the model to handle out-
of-vocabulary tokens and avoids the need of text
segmentation or tokenization, which remains an
unsolved problem for many languages. For some
applications, e.g. language processing for social
media, models should be able to capture the cre-
ative use of language. However, a disadvantage
is that we loose the certainty of a known vocab-
ulary. Also, regarding computational complexity,
there is a trade-off between the memory that is re-
quired for large embedding lookup tables and the
additional computational cost that is required to
compose representations from low-level features.

In contrast to the characters of languages based
on the Latin alphabet, the Chinese written lan-
guage is defined over a set of ≈ 8000 characters
that already carry meaning. The characters can
either appear in a traditional or simplified form,
and many share visual components that can in-
dicate a related meaning. Thus, it is reasonable
to hypothesize that encoding Chinese characters
directly from their visual components might im-
prove their token representation in a neural net-
work model.

In recent studies, Liu et al. (2017) evaluated
character encodings from visual features by clas-
sifying Wikipedia titles into 12 categories and
Su and Lee (2017) evaluated such encodings by
measuring correlation with human similarity judg-
ments. Both studies found that using character en-
codings from visual input did not outperform or
were equal to lookup-based embeddings. No sup-
port for the hypothesis above is thus provided.

In this study, we aim to explore the question of
whether and when visual-feature representations
are beneficial or detrimental. We make the follow-
ing contributions: (i) Since the evaluation tasks
from prior studies did not test the capabilities of
the visual features for text representation, we pro-
pose to employ the task of neural machine trans-
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lation (NMT) for training and evaluation. We ar-
gue that NMT requires the token representation to
serve as a reliable syntactic and semantic signal.
(ii) Prior work reported evaluations for one archi-
tecture to encode the visual features. In this paper,
we evaluate different settings and argue for archi-
tecture choices that performed well in our experi-
ments. (iii) We provide evidence for the possibil-
ity to compute token representations from visual
features that perform on-par with lookup-based
embeddings in NMT. (iv) Finally, we revisit two
of the tasks from prior work that use visual fea-
tures: measuring correlation with semantic simi-
larity judgments by humans as well as joint seg-
mentation and part-of-speech tagging. We use the
best models from the NMT evaluation in these two
tasks. For semantic similarity, we find that token
representation from pixels are clearly beneficial
for unseen characters, while a lookup embedding
performs better for seen characters. For joint seg-
mentation and part-of-speech tagging we find no
clear difference between lookup embeddings and
character representation from pixels.

2 Related Work

We start by summarizing prior work, in which to-
ken representations were obtained from bitmaps of
Chinese characters.

Su and Lee (2017) propose several embedding
models for Chinese, including one from visual fea-
tures. For the evaluation they create a dataset with
Chinese word pairs in traditional Chinese. In their
evaluation, they measure the correlation of the co-
sine similarity of embedded word pairs against hu-
man similarity judgments for those word pairs. In
their experiments, they found that the representa-
tion from visual features was not competitive to
an embedding lookup model, but a combination
of lookup embeddings with visual features was.
For their model, they train a 5-layer CNN auto-
encoder on bitmaps of Chinese characters. The
auto-encoder character representation is fed into
two GRU layers and two fully connected layers
with ELU activation to encode the characters into
a word. The model was trained to predict the Skip-
Gram objective (Mikolov et al., 2013) or the Glove
objective (Pennington et al., 2014).

Liu et al. (2017) evaluate the classification of
Chinese Wikipedia titles into 12 categories. They
found that the representation from visual features
representations was not competitive to embedding

lookup models. They did find, however, that a
combination of lookup-based embeddings and vi-
sual features can be beneficial. Their character
encoder is a convolutional neural network (CNN).
The CNN consists of 3 convolutional layers with
max-pooling followed by a fully connected trans-
formation layer with ReLU activation. The char-
acter encodings are fed as input to a recurrent neu-
ral network (RNN) that encodes the Wikipedia ti-
tle. Both, character encoder and classifier were
trained jointly.

Costa-jussà et al. (2017) investigate the neural
machine translation from Chinese to Spanish. To
investigate the helpfulness of visual features they
augmented lookup embeddings by concatenating
the corresponding bitmap features of the charac-
ters. They showed that this approach improved
the performance of both, their character-based and
their word-based NMT system. They did not study
the exclusive use of visual features.

Shao et al. (2017) investigate joint part-of-
speech tagging and segmentation for Chinese. In
contrast to the studies mentioned above, they
found that the inclusion of visual features did not
help. However, in their study, the CNN encoder
was not pre-trained and only a small amount of
training data was available, which may explain
this finding. In their approach, they augmented
character and n-gram embeddings with visual fea-
tures. The model is a 2-layer CNN with max-
pooling and a consecutive fully-connected trans-
formation layer. They concatenated the CNN-
based character embeddings to the lookup embed-
dings and fed them to a BI-LSTM-CRF.

Other related approaches with regards to en-
coding symbols from visual features are: Deng
et al. (2017) proposed to translate from images
to a markup language; e.g.; images of mathemat-
ical expressions to LATEX code. While their sys-
tem performed remarkably well on those regular
languages, they did not discuss their approach in
the context of natural language. Remotely related
is optical character recognition (OCR) and multi-
model machine translation. While OCR could
benefit from this study, its main goal is character
recognition under noisy conditions. Multi-modal
machine translation augments a main task with ad-
ditional features or when the translation is from
a non-textual source, e.g. images, to text (Elliott
et al., 2017). In contrast, our goal is to study text
representation from low-level features.
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Model transformation activation transformation activation

CNN+FC+ReLU CNN(484→ F ), BN+ReLU FC(F → 512) BN+ReLU
CNN+SM+FC CNN(484→ F ) Softmax FC(F → 512)
CNN+ReLU CNN(484→ 512) BN+ReLU
FC 1L FC(484→ 512)
FC 2L FC(484→ 512) BN+ReLU FC(512→ 512)

Table 1: Character encoder architectures. Abbreviations: FC = fully connected, SM = softmax, BN =
Batchnorm (Ioffe and Szegedy, 2015), F = CNN output size (see Table 2).

in out kernel stride

(0): Conv2d 1 32 (3, 3) (1, 1)
(1): ReLU
(2): MaxPool2d (2, 2) (2, 2)
(3): Conv2d 32 32 (3, 3) (1, 1)
(4): ReLU
(5): MaxPool2d (2, 2) (2, 2)
(6): Conv2d 32 F (4, 4) (1, 1)

Table 2: Configuration of the CNN layers. F is
the CNN output feature size and takes values in
[256, 512, 1024, 2048, 4096].

3 Character Encoding

In this section, we first describe how a tokenized
text is mapped to vector representations of its to-
kens. Then, we describe the character encoders
that we have evaluated.

3.1 Preliminaries

Neural approaches that compute a function from
text input commonly map each token ti (e.g., a
word) from the input text T to a dense vector rep-
resentation ti ∈ Rd via some function D(ti) →
ti. Lookup-based models associate each token
of a fixed vocabulary V with its own dense rep-
resentation (embedding). In particular, lookup-
based models use (or learn) an embedding matrix
E ∈ Rn×d, where n = |V |. The j-th row of E
holds the embedding of the j-th token in the vo-
cabulary. Thus D(ti) = eTj E, where j is the to-
ken number of token ti in V and ej denotes the
j-th standard basis vector.

If we represent each character from its visual
features—i.e., the pixels of its bitmap image—,
we compute the embedding instead of performing
a lookup in an embedding matrix. In particular,
D(ti) computes a dense representation of token

ti from its pixels p(ti) via a character encoder C.
Therefore, there is no fixed vocabulary of tokens
any more. We have D(ti) = C(p(ti)).

3.2 Character Encoders

As discussed in Section 2, most of the prior re-
lated work—except Costa-jussà et al. (2017)—
used CNNs to learn position-invariant features of
the character image. In Table 2, we report the con-
figuration of the convolutional layers that was used
in our models. All studies report different numbers
of layers and different numbers of CNN features,
therefore, we vary the CNN feature size F as a
hyper-parameter. In Table 1 we report the char-
acter encoder architectures, that roughly cover the
architectures from previous work. After the CNN,
Liu et al. (2017) and Shao et al. (2017) use fully
connected layers (CNN+FC+ReLU), while Su
and Lee (2017) directly feed the CNN features into
a recurrent neural network encoder (CNN+ReLU).
We also consider a similar setup as Costa-jussà
et al. (2017) by including two settings with one
or two fully connected layers, (FC 1L and FC 2L).
In addition to previous work, we also evaluated a
model architecture that computes a softmax acti-
vation over the image features (CNN+SM+FC).
Our hypothesis is that the sparse activation from
the softmax may act like a soft lookup (in an
F × 512 embedding matrix).

4 Experimental Study

In this section, we describe the results of our ex-
perimental study. First, we report how the char-
acter images were created, followed by the ex-
periments for the neural machine translation task.
To expand on these results, we describe experi-
ments and results for joint segmentation and part-
of-speech tagging, as well as for measuring corre-
lation with semantic similarity judgments.
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4.1 Character Images

We convert each character from the source vocab-
ulary into a 22 × 22 binary representation of its
glyph.1 This was the lowest resolution that did
not collapse nearby strokes into indistinguishable
clusters.

4.2 Experiments for Machine Translation

For the machine translation experiments, we
trained a NMT model to translate from Chinese to
English. In the following sections, we describe the
model, the data and the training settings, followed
by the results.

NMT Model We used a standard sequence-to-
sequence model with a recurrent encoder and
attention-based decoder (Luong et al., 2015). This
architecture does not represent the state of the art
in neural machine translation. However, due to
its wide adoption in empirical research, there is
broad knowledge about suitable hyper-parameters,
which makes it a preferred choice for our study.

The coarse architecture of this model can be de-
scribed by an encoder enc and a decoder dec. The
encoder enc is a function that takes a tokenized
text T in a source vocabulary as input and com-
putes a representation that is the input for the sub-
sequent decoder. The decoder dec then creates a
sequence of tokens in the target vocabulary. The
final output is dec(enc(T )).

The input of the encoder enc is first transformed
to a dense vector representation, i.e., each input to-
ken is transformed by function D of Section 3.1.
In the following experiments, we evaluate differ-
ent choices for D.

Data For training the translation model, we used
a subset of the available data from the WMT 2017
Workshop on Machine Translation (Bojar et al.,
2017),2, namely the News Commentary v12 cor-
pus as well as Casia2015 and Neu2017 from the
CWMT Corpus. Overall, these datasets yielded
3,277,330 sentences. For development and eval-
uation, we used WMT 2017 dev and test data, re-
spectively.

Training For Chinese, we use characters as
input. For English, we use byte pair encod-
ing (Sennrich et al., 2016) with ≈32,000 sym-

1We use ImageMagick’s convert command together with
the open source font NotoSansCJK-Regular.

2See http://www.statmt.org/wmt17/
translation-task.html

Encoder Decoder

Emb. size 512 512
Layers bi-dir + uni-dir uni-dir + uni-dir
Hid. size 512 + 1024 512 + 1024
Voc. size 8457 32413
Voc. type character byte pair enc.

Table 3: Hyperparameters of the sequence-to-
sequence model for the NMT task.

bols. We implemented the model in PyTorch
(Version 0.3.1) (Paszke et al., 2017). The recur-
rent neural networks in the encoder and decoder
are LSTMs (Hochreiter and Schmidhuber, 1997).
Table 3 summarizes the hyper-parameters of the
NMT model.

For training, we used Adam (Kingma and Ba,
2014) with the standard parameters of PyTorch.
We used a learning rate of 10−3 for 4 epochs, then
we halved the learning rate every epoch until we
reached 10−5. For regularization, we used dropout
with probability 0.2 in both encoder and decoder
RNNs. We pretrained the decoder for 20 epochs
to a perplexity of 108.21 on the validation data.
This did result in: faster convergence, improved
fluency of translations, and less variance of eval-
uation results. We trained all the models for 10
epochs. We selected the models by the best batch-
based approximate BLEU score on the develop-
ment set. This worked slightly better than select-
ing them by the best perplexity. We perform trans-
lation via beam search with a beam-size of 10 and
length normalization of 0.9.

We trained the NMT models with each of the
character encoders of Table 1 as well as with
lookup-based embeddings (EMB) as a baseline.

Results Table 4 summarizes the results of the
machine translation experiments. We include the
result from a WMT 2017 system to give context
for the expected BLEU score in this task. This
result is from a baseline NMT system for Chi-
nese to English (Wang et al., 2017), which is most
comparable to our approach (i.e., no reranking,
no ensembles, no special treatment of names and
numbers). However, a crucial difference is that
the WMT 2017 system uses pre-segmented text,
which yields a vocabulary size of 300k on the

2We use the BLEU implementation sacrebleu,
https://github.com/awslabs/sockeye/tree/
master/contrib/sacrebleu.

http://www.statmt.org/wmt17/translation-task.html
http://www.statmt.org/wmt17/translation-task.html
https://github.com/awslabs/sockeye/tree/master/contrib/sacrebleu
https://github.com/awslabs/sockeye/tree/master/contrib/sacrebleu
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Model F BLEU

EMB - 16.63
CNN+FC+ReLU 256 16.34

512 16.33
1024 16.60
2048 16.40
4096 16.20

CNN+SM+FC 512 15.85
1024 15.49
2048 15.36
4096 16.03

CNN+ReLU 512 16.22

FC 1L 512 15.75
FC 2L 512 16.32

Word-segmented - 19.4

Table 4: BLEU scores for translation zh-en on the
WMT17 test data. Result for a word-segmented
baseline model reported by Wang et al. (2017).

Model full low mid high

EMB 16.63 15.60 17.17 16.03
CNN+SM+FC 16.03 13.91 16.86 15.41
CNN+FC+R 16.60 14.47 17.11 16.91
FC 2L 16.32 15.10 17.20 16.37

Table 5: BLEU scores on the WMT17 test data
for sentence buckets with low, medium and high
frequency characters.

source side, while our system is character-based.
Our results indicate that using only one fully

connected transformation layer FC 1L for charac-
ter encoding is possible but does not yield compa-
rable results to the best-performing convolutional
architectures. However, the FC 2L comes close to
the CNN models. Note that CNN+SM+FC 4096
needs a larger number of CNN features to perform
comparable to CNN+FC+ReLU 1024. In terms of
BLEU score, the best character encoders perform
equal to a standard lookup embedding.

To gain insight into the differences between the
models, we split the test data into three buck-
ets. Each sentence is scored with 1/n

∑n
i=1#ti,

where #ti is the training data frequency of char-
acter ti. We partition the test data into a low and
high bucket with the sentences scored in the lower
and upper quartile, respectively, and a mid bucket
with the remaining 2nd and 3rd quartile. Table 5

Figure 1: Distributions of the top-3 softmax acti-
vation magnitudes per character.

shows the results per bucket for CNN+FC+ReLU
1024, CNN+SM+FC 4096, FC 2L and EMB. In-
terestingly, the CNN+FC+ReLU 1024 and EMB
perform differently well in the frequency buck-
ets. The CNN+FC+ReLU 1024 model, sur-
prisingly, performs better than EMB for high-
frequency characters, while this is inversed for the
low-frequency characters.

For the CNN+SM+FC encoders, our hypothe-
sis was that the sparse activation of the softmax
could act like a soft lookup function; i.e., it selects
only few rows for the subsequent fully connected
layer. We measured the top-3 softmax activation
magnitudes per character from a random sample
of 350 sentences from the training data (a total of
11234 words). As shown in Figure 1, the activa-
tions are indeed spiked, which supports our hy-
pothesis. However, in our evaluation, we found no
advantage over CNN+FC+ReLU encoders.

4.3 Experiments for Joint Part-of-Speech
Tagging and Segmentation

In the translation experiment we evaluated the to-
ken representations for a syntactic and semantic
signal. In this experiment, we want to investigate
the morpho-syntactic information in the represen-
tations. To evaluate this, we employ the task of
joint part-of-speech tagging and segmentation.

Model We used a Linear-Chain-CRF with a
CNN encoder (Strubell et al., 2017) to compute
the emissions. The encoder is a three-layer CNN
with kernel size 3, iteratively growing dilations,
residual connections, ReLU activations, and a hid-
den size of 512. We do not report numbers for
a BI-RNN-CRF similar to Shao et al. (2017), be-
cause our implementation did not yield their re-
sults for unigrams which is most likely caused by
the different embeddings.
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Model F1

adapt fix

EMB 91.42 92.18
CNN+FC+ReLU 1024 91.99 90.75
FC2L 512 88.45 91.32
CNN+SM+FC 4096 71.54 87.63

1-gram BI-RNN-CRF*/** 92.45
3-gram BI-RNN-CRF* 94.07

Table 6: Results for joint segmentation and POS
tagging on the test set of CTB-5.0. (*) 1-gram
and 3-gram BI-RNN-CRF reported by Shao et al.
(2017), (**) the 1-gram BI-RNN-CRF result was
reported on the development set.

Data The Chinese Treebank 5.0 (Xue et al.,
2005) has joint annotations for word segmenta-
tion and part-of-speech tags. The commonly used
cross validation split was reported by Jiang et al.
(2008). Instead of the BIES tagging scheme (be-
gin, inside, end, single), we used the BI scheme,
which worked better for our models.

Training We use the parameters from the
EMB, CNN+FC+ReLU 1024, FC2L 512 and
CNN+SM+FC 4096 of the NMT task. We either
adjust these parameters during training (adapt) or
keep them fixed (fix). For training, we used Ada-
grad (Duchi et al., 2010) with an initial learning
rate of 0.1, and dropout for regularization with
probability 0.1 for the encoder and 0.5 for the out-
put classifier. We trained the models for 50 epochs
and selected the model with the best accuracy on
the development set.

Results Our results reported in Table 6 are av-
eraged over two distinct runs each. For compari-
son, we show results reported for the 1-gram and
3-gram lookup model of Shao et al. (2017). Our
models correspond to the 1-gram model, as they
are character-based. We find no clear difference
between lookup-based and the best character en-
coder models. Interestingly, CNN+SM+FC 4096
(softmax) is the weakest model. The sparseness
in the in the signal apparently removes syntactic
information. Comparing the adapt and the fix set-
ting, we see that adapting the character encoder
during training is —in most cases— not helpful.
This is most likely due to the small amount of
training data.

4.4 Experiments for Word Similarity

In our final experiment, we evaluated the repre-
sentation of semantic information. The task is
to compute a similarity score for pairs of words.
The evaluation is the Spearman’s correlation be-
tween the scores and numerical similarity judg-
ments by humans. The words in this data set are
translated into traditional Chinese. The training
data from the NMT task is mostly from news and
web sources, which is why our vocabulary con-
tains many but not all Chinese characters. The
characters in the modern simplified Chinese some-
times can be visually similar to their predecessors
in traditional Chinese, i.e. they share visual com-
ponents with a related meaning. Therefore, we can
also evaluate the capability of the models to gen-
eralize to unseen characters.

Data and Experimental Setup For the exper-
iments we use the WordSim-240, WordSim-296
and SimLex-999 datasets provided and described
by Su and Lee (2017). Due to the use of tradi-
tional Chinese we are missing at least one char-
acter in 430 out of 1536 test examples. On aver-
age, we are missing 1.1 characters per word, where
each word has in average 2.13 characters. We split
the data into word pairs in which all characters are
completely covered (seen words), and into word
pairs where at least one character is not seen (un-
seen words). We evaluate unseen words in two
settings: either we remove the unseen characters
(seen chars) or not (all chars).

We did not train any model for this experiments.
Most of the words in the dataset are composed of
multiple characters, therefore, we average the out-
put of the character encoder into a single word-
vector. Subsequently, we compute the cosine sim-
ilarity between these vectors of word pairs.

Results The results in Table 7 show that, for
words with seen characters, the lookup embed-
dings correlate better with human judgments of
similarity than the embeddings based on character
encoders. However, especially the results for un-
seen words in WordSim-240 show that the char-
acter encoders can generalize to all characters.
Surprisingly, the FC2L model, the model without
CNNs, yields the best results. In the results re-
ported by Su and Lee (2017), the lookup embed-
ding model SG-EMB performs much better than
EMB. However, they learn a RNN-based character
composition, while we average the embeddings.
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Model WordSim-240 WordSim-297 SimLex-999

Words seen unseen seen unseen seen unseen

Characters all seen all seen all seen

EMB 0.33 n/a 0.06 0.47 n/a 0.15 0.32 n/a 0.32
CNN+SM+FC 4096 0.09 0.11 0.07 0.22 0.23 0.16 0.25 0.29 0.26
CNN+FC+R 1024 0.24 0.17 0.07 0.35 0.28 0.25 0.26 0.30 0.25
FC 2L 512 0.21 0.26 0.15 0.36 0.29 0.30 0.33 0.28 0.19

SG-EMB 0.59 n/a n/a 0.59 n/a n/a 0.36 n/a n/a
SG-CNN 0.34 n/a n/a 0.36 n/a n/a 0.24 n/a n/a

Table 7: Results for semantic similarity on the WordSim-240, WordSim-296 and SimLex-999 data.
Lookup SkipGram (SG-EMB) and SkipGram char. encoder (SG-CNN) reported by Su and Lee (2017).

5 Conclusion

We have shown that it is possible to compute use-
ful text representations from visual features, i.e.,
pixels of Chinese characters. We used neural ma-
chine translation as a framework for training and
evaluating token representations. In the NMT ex-
periment, we found that representations from vi-
sual features are competitive to lookup embed-
dings in a standard NMT model. In contrast to
our expectations, the visual features outperform
lookup embeddings on high-frequency characters,
but are weaker in low-frequency characters. We
conjecture that one of the reasons is that shared
visual features between characters can have re-
lated meanings or related syntactic functions, but
also the opposite can be true. For example, 沐
is the reflexive verb of ”washing” and it contains
the phonetic component 木 , which can also mean
”tree”. Therefore, the visual information for rare
characters introduces probably as many difficul-
ties as it can be helpful.

We performed additional experiments akin to
prior studies and could show that the advantage of
a representation by visual features is the ability to
generalize to unseen Chinese characters. Also, we
could show that joint part-of-speech tagging and
segmentation achieved similar results with repre-
sentation from visual features.

With regard to the character encoder architec-
ture, we find only a slight advantage of using
CNNs to simply using two fully connected lay-
ers in the NMT experiment, while 2 fully con-
nected layers outperform CNNs in the similarity
experiment. Whether or not there is an advantage
could only be answered by an exhaustive hyper-
parameter search.

Future work is to explore how we can create a
model that can distinguish helpful from unhelpful
visual information for rare characters.

References
Ondrej Bojar, Christian Buck, Rajen Chatterjee, Chris-

tian Federmann, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno-Yepes, Philipp
Koehn, and Julia Kreutzer, editors. 2017. Proceed-
ings of the Second Conference on Machine Transla-
tion, Copenhagen, Denmark, September 7-8, 2017,
WMT 2017.

Marta R. Costa-jussà, David Aldón, and José A. R.
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