
Ricardo: Integrating R and Hadoop

Sudipto Das1∗ Yannis Sismanis2 Kevin S. Beyer2

Rainer Gemulla2 Peter J. Haas2 John McPherson2

1University of California 2IBM Almaden Research Center
Santa Barbara, CA, USA San Jose, CA, USA

sudipto@cs.ucsb.edu {syannis, kbeyer, rgemull, phaas, jmcphers}@us.ibm.com

ABSTRACT
Many modern enterprises are collecting data at the most detailed
level possible, creating data repositories ranging from terabytes to
petabytes in size. The ability to apply sophisticated statistical anal-
ysis methods to this data is becoming essential for marketplace
competitiveness. This need to perform deep analysis over huge
data repositories poses a significant challenge to existing statistical
software and data management systems. On the one hand, statisti-
cal software provides rich functionality for data analysis and mod-
eling, but can handle only limited amounts of data; e.g., popular
packages like R and SPSS operate entirely in main memory. On the
other hand, data management systems—such as MapReduce-based
systems—can scale to petabytes of data, but provide insufficient
analytical functionality. We report our experiences in building Ri-
cardo, a scalable platform for deep analytics. Ricardo is part of the
eXtreme Analytics Platform (XAP) project at the IBM Almaden
Research Center, and rests on a decomposition of data-analysis al-
gorithms into parts executed by the R statistical analysis system and
parts handled by the Hadoop data management system. This de-
composition attempts to minimize the transfer of data across system
boundaries. Ricardo contrasts with previous approaches, which try
to get along with only one type of system, and allows analysts to
work on huge datasets from within a popular, well supported, and
powerful analysis environment. Because our approach avoids the
need to re-implement either statistical or data-management func-
tionality, it can be used to solve complex problems right now.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Design

∗The author conducted parts of this work at the IBM Almaden Re-
search Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

1. INTRODUCTION
Many of today’s enterprises collect data at the most detailed level

possible, thereby creating data repositories ranging from terabytes
to petabytes in size. The knowledge buried in these enormous
datasets is invaluable for understanding and boosting business per-
formance. The ability to apply sophisticated statistical analysis
methods to this data can provide a significant competitive edge in
the marketplace. For example, internet companies such as Amazon
or Netflix provide personalized recommendations of products to
their customers, incorporating information about individual prefer-
ences. These recommendations increase customer satisfaction and
thus play an important role in building, maintaining, and expanding
a loyal customer base. Similarly, applications like internet search
and ranking, fraud detection, risk assessment, microtargeting, and
ad placement gain significantly from fine-grained analytics at the
level of individual entities. This paper is about the development of
industrial-strength systems that support advanced statistical analy-
sis over huge amounts of data.

The workflow for a data analyst comprises multiple activities.
Typically, the analyst first explores the data of interest, usually via
visualization, sampling, and aggregation of the data into summary
statistics. Based on this exploratory analysis, a model is built. The
output of the model is itself explored—often through visualization
and also through more formal validation procedures—to determine
model adequacy. Multiple iterations of model-building and evalua-
tion may be needed before the analyst is satisfied. The final model
is then used to improve business practices or support decision mak-
ing. Feedback from model users can lead to further iterations of the
model-development cycle.

During this process, the data analyst’s indispensable toolkit is a
statistical software package such as R, SPSS, SAS, or Matlab. Each
of these packages provides a comprehensive environment for sta-
tistical computation, including a concise statistical language, well
tested libraries of statistical algorithms for data exploration and
modeling, and visualization facilities. We focus on the highly pop-
ular R statistical analysis program. The Comprehensive R Archive
Network (CRAN) contains a library of roughly 2000 add-in pack-
ages developed by leading experts and covering areas such as lin-
ear and generalized linear models, nonlinear regression models,
time series analysis, resampling methods, classical parametric and
nonparametric tests, classification, clustering, data smoothing, and
many more [13]. We refer to the application of these sophisticated
statistical methods as deep analytics.

Most statistical software packages, including R, are designed to
target the moderately-sized datasets commonly found in other areas
of statistical practice (e.g., opinion polls). These systems operate
on a single server and entirely in main memory; they simply fail
when the data becomes too large. Unfortunately, this means that

987

data analysts are unable to work with these packages on massive
datasets. Practitioners try to avoid this shortcoming either by ex-
ploiting vertical scalability—that is, using the most powerful ma-
chine available—or by working on only subsets or samples of the
data. Both approaches have severe limitations: vertical scalabil-
ity is inherently limited and expensive, and sampling methods may
lose important features of individuals and of the tail of the data
distribution [9].

In parallel to the development of statistical software packages,
the database community has developed a variety of large-scale data
management systems (DMSs) that can handle huge amounts of
data. Examples include traditional enterprise data warehouses and
newer systems based on MapReduce [11], such as Hadoop. The
data is queried using high-level declarative languages such as SQL,
Jaql, Pig, or Hive [14, 19, 23]. These systems leverage decades of
research and development in distributed data management, and ex-
cel in massively parallel processing, scalability, and fault tolerance.
In terms of analytics, however, such systems have been limited pri-
marily to aggregation processing, i.e., computation of simple ag-
gregates such as SUM, COUNT, and AVERAGE, after using fil-
tering, joining, and grouping operations to prepare the data for the
aggregation step. For example, traditional reporting applications
arrange high-level aggregates in cross tabs according to a set of hi-
erarchies and dimensions. Although most DMSs provide hooks for
user-defined functions and procedures, they do not deliver the rich
analytic functionality found in statistical packages.

To summarize, statistical software is geared towards deep ana-
lytics, but does not scale to large datasets, whereas DMSs scale
to large datasets, but have limited analytical functionality. Enter-
prises, which increasingly need analytics that are both deep and
scalable, have recently spurred a great deal of research on this prob-
lem; see Section 6. Indeed, the work in this paper was strongly mo-
tivated by an ongoing research collaboration with Visa to explore
approaches to integrating the functionality of R and Hadoop [10].
As another example, Cohen at al. [9] describe how the Fox Audi-
ence Network is using statistical functionality built inside a large-
scale DMS. As discussed in Section 6, virtually all prior work at-
tempts to get along with only one type of system, either adding
large-scale data management capability to statistical packages or
adding statistical functionality to DMSs. This approach leads to so-
lutions that are often cumbersome, unfriendly to analysts, or waste-
ful in that a great deal of well established technology is needlessly
re-invented or re-implemented.

In this paper, we report our experience in building Ricardo, a
scalable platform for deep analytics. Ricardo—which is part of the
eXtreme Analytics Platform (XAP) project at the IBM Almaden
Research Center—is named after David Ricardo, a famous econo-
mist of the early 19th century who studied conditions under which
mutual trade is advantageous. Ricardo facilitates “trading” between
R and Hadoop, with R sending aggregation-processing queries to
Hadoop (written in the high-level Jaql query language), and Hadoop
sending aggregated data to R for advanced statistical processing or
visualization—each trading partner performs the tasks that it does
best. In contrast to previous approaches, Ricardo has the following
advantages:

• Familiar working environment. Analysts want to work within
a statistical environment, and Ricardo lets them continue to
do so.

• Data attraction. Ricardo uses Hadoop’s flexible data store
together with the Jaql query language. This combination al-
lows analysts to work directly on any dataset in any format;
this property of “attracting” data of any type has been iden-

tified as a key requirement for competitive enterprise analyt-
ics [9].

• Integration of data processing into the analytical workflow.
Analysts traditionally handle large data by preprocessing and
reducing it—using either a DMS or shell scripts—and then
manually loading the result into a statistical package, e.g., as
delimited text files. By using an integrated approach to data
processing, Ricardo frees data analysts from this tedious and
error-prone process, and allows them to leverage all available
data.

• Reliability and community support. Ricardo is built from
widely adopted open-source projects from both the data man-
agement community and the statistical community. It lever-
ages the efforts of both communities and has a reliable, well
supported, and state-of-the-art code base.

• Improved user code. Ricardo facilitates more concise, more
readable, and more maintainable code than is possible with
previous approaches.

• Deep analytics. By exploiting R’s functionality, Ricardo can
handle many kinds of advanced statistical analyses, includ-
ing principal and independent component analysis, k-means
clustering, and SVM classification, as well as the fitting and
application of generalized-linear, latent-factor, Bayesian, time-
series, and many other kinds of statistical models.

• No re-inventing of wheels. By combining existing statistical
and DMS technology, each of which represents decades of
research and development, we can immediately start to solve
many deep analytical problems encountered in practice.

Ricardo is inspired by the work in [8], which shows that many
deep analytical problems can be decomposed into a “small-data
part” and a “large-data part.” In Ricardo, the small-data part is ex-
ecuted in R and the large-data part is executed in the Hadoop/Jaql
DMS. A key requirement for the success of this combined approach
is that the amount of data that must be communicated between both
systems be sufficiently small. Fortunately, this requirement holds
for almost all of the deep analytics mentioned above.

In the following sections, we show how Ricardo can facilitate
some key tasks in an analyst’s typical workflow: data exploration,
model building, and model evaluation, all over a very large dataset.
For illustrative purposes, we use the dataset provided for the Net-
flix movie-recommendation competition [16]. Although the com-
petition itself was based on a subset of just 100M movie ratings,
our experiments on a Hadoop cluster in the Amazon Elastic Com-
pute Cloud (EC2) indicate that Ricardo can scale R’s functionality
to handle the billions of ratings found in practice—over a terabyte
of data in our case.

We emphasize that an analyst who uses Ricardo need not neces-
sarily be an expert in Jaql nor understand exactly how to decompose
all the deep analytics appropriately. Ricardo can potentially deliver
much of its deep-analytics functionality in the form of R packages
and functions that hide most of the messy implementation details.
For example, we describe in the sequel how Ricardo can be used
to efficiently fit a latent-factor model of movie preferences over
a massive dataset stored in a Hadoop cluster, as well as how Ri-
cardo can be used for large-scale versions of principal component
analysis (PCA) and generalized linear models (GLMs). This func-
tionality can potentially be delivered to the analyst via high-level R
functions called, e.g., jaqlLF, jaqlPCA, and jaqlGLM. Of course,
if existing Ricardo packages do not meet the needs of a particular

988

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
ll

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l
l

l

l

1950 1960 1970 1980 1990 2000

3
.5

3
.6

3
.7

3
.8

3
.9

4
.0

Year of Release

A
v
er

a
g
e

R
a
ti

n
g

Data

Fit

l

Figure 1: Average rating of a movie depending on its age

analysis, then the analyst will have to implement the lower-level
functionality. The hope is that, over time, users will develop a large
library of Ricardo packages in the same way that the CRAN repos-
itory has been developed for in-memory analytical packages. The
XAP project team is trying to kick off this effort by providing pack-
ages for the most common types of large-scale analyses.

The remainder of this paper is structured as follows. In Section 2,
we drill down into key aspects of a typical analytics workflow, us-
ing movie recommendation data as a running example. Section 3
briefly describes the systems of interest: the R package for statis-
tical computing, the Hadoop DMS, and the Jaql query language.
In Section 4, we describe Ricardo and illustrate its use on several
analysis tasks. Section 5 describes our experimental study on the
Netflix data. We discuss prior work in Section 6 and give our con-
clusions in Section 7.

2. MOTIVATING EXAMPLES
We motivate Ricardo in the context of three examples that cover

key aspects of the analyst’s workflow. The examples are centered
around the Netflix competition [5]. This competition was estab-
lished in 2006 in order to improve the recommender system that
Netflix uses to suggest movies to its ten million customers. Since
recommendations play an important role in establishing, maintain-
ing and expanding a loyal customer base, such systems have be-
come the backbone of many of the major firms on the web such
as Amazon, eBay, and Apple’s iTunes [15, 25]. Unlike search en-
gines, which help find information that we know we are interested
in, recommender systems help discover people, places, and things
previously unknown to us. We classify the examples by the degree
of complexity in the trading between R and Hadoop.

2.1 Simple Trading
Our first two examples concern the exploration and evaluation

phases of the analyst’s workflow. During the exploration phase, an
analyst tries to gain preliminary insights about the dataset of inter-
est. For example, Figure 1 depicts how movies are perceived with
respect to their age. We can see that, on average, older movies are
perceived more positively than newer movies. To produce this sim-
ple data visualization, the analyst first performs a linear regression
and then calls upon a plotting facility to display the raw data and
fitted model. The analyst might also want to formally verify that
the fitted trend is statistically significant by looking at summary
test statistics such as the t-statistic for the slope. Statistical soft-

ware such as R offers a convenient and powerful environment for
performing this type of exploration. However, such software can-
not scale to the size of the datasets found in practice. Although,
for the competition, Netflix published only a small subset of its rat-
ings (100M), the actual number of (explicit and implicit) ratings
encountered in practice is orders of magnitude larger. Ricardo al-
lows such data to be efficiently preprocessed, aggregated, and re-
duced by Hadoop, and then passed to R for regression analysis and
visualization.

During the evaluation phase the analyst wants to understand and
quantify the quality of a trained model. In our second example, we
assume that the analyst has built a model—such as a latent-factor
recommendation model as described in the sequel—and wants to
identify the top-k outliers, i.e., to identify data items on which the
model has performed most poorly. Such an analysis, which must be
performed over all of the data, might lead to the inclusion of addi-
tional explanatory variables (such as movie age) into the model, to
improve the model’s accuracy. Ricardo enables such outlier analy-
sis by allowing the application of complex R-based statistical mod-
els over massive data. It does so by leveraging the parallelism of
the underlying Hadoop DMS.

The foregoing examples illustrate “simple trading” scenarios be-
tween R and Hadoop. In the first case, data is aggregated and pro-
cessed before it is passed to R for advanced analysis; in the second
case, an R statistical model is passed to Hadoop for efficient paral-
lel evaluation over the massive dataset. As discussed below, other
analyses require more intricate exchanges, which Ricardo also sup-
ports.

2.2 Complex Trading
Our third example illustrates the use of Ricardo during the mod-

eling phase of an analyst’s workflow. One approach to model build-
ing over a huge dataset might use a simple-trading scheme in which
Hadoop reduces the data by aggregation or sampling, and then
passes the data to R for the model-building step. The downside
of this approach is that detailed information, which must be ex-
ploited to gain a competitive edge, is lost. As shown below, Ri-
cardo permits a novel “complex trading” approach that avoids such
information loss.

The complex-trading approach, like simple trading, requires a
decomposition of the modeling into a small-data part, which R han-
dles, and a large-data part, which Hadoop handles—as mentioned
in Section 1, many deep analytical problems are amenable to such a
decomposition. Unlike simple trading, however, a complex-trading
algorithm involves multiple iterations over the data set, with trading
back and forth between R and Hadoop occurring at each iteration.

As an instructive example, we consider the problem of building a
latent-factor model of movie preferences over massive Netflix-like
data. This modeling task is central to the winning Netflix com-
petition technique [18], and enables accurate personalized recom-
mendations for each individual user and movie, rather than global
recommendations based on coarse customer and movie segments.
Because such a model must discern each customer’s preferences
from a relatively small amount of information on that customer, it
is clear that every piece of available data must be taken into ac-
count. As with many other deep analytics problems, the sampling
and aggregation used in a simple-trading approach is unacceptable
in this setting.

To understand the idea behind latent-factor models, consider the
data depicted in Figure 2, which shows the ratings of three cus-
tomers and three movies in matrix form. The ratings are printed in
boldface and vary between 1 (hated the movie) and 5 (loved it). For
example, Michael gave a rating of 5 to the movie “About Schmidt”

989

About Schmidt Lost in Translation Sideways
(2.24) (1.92) (1.18)

Alice ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Michael 5 ? 3
(2.30) (5.2) (4.4) (2.7)

Figure 2: A simple latent-factor model for predicting movie
ratings. (Data points in boldface, latent factors and estimated
ratings in italics.)

and a rating of 3 to “Sideways”. In general, the ratings matrix is
very sparse; most customers have rated only a small set of movies.
The italicized number below each customer and movie name is a
latent factor. In this example, there is just one factor per entity:
Michael is assigned factor 2.30, the movie “About Schmidt” gets
2.24. In this simple example, the estimated rating for a particu-
lar customer and movie is given by the product of the correspond-
ing customer and movie factors.1 For example, Michael’s rating
of “About Schmidt” is approximated by 2.30 · 2.24 ≈ 5.2; the
approximation is printed in italic face below the respective rating.
The main purpose of the latent factors, however, is to predict rat-
ings, via the same mechanism. Our estimate for Michael’s rating of
“Lost in Translation” is 2.30 · 1.92 ≈ 4.4. Thus, our recommender
system would suggest this movie to Michael but, in contrast, would
avoid suggesting “Sideways” to Bob, because the predicted rating
is 1.21 · 1.18 ≈ 1.4.

Latent factors characterize the interaction between movies and
customers and sometimes have obvious interpretations. For exam-
ple, a movie factor might indicate the degree to which a movie is
a “comedy” and a corresponding customer factor might indicate
the degree to which the customer likes comedies. Usually, how-
ever, such an interpretation cannot be given, and the latent fac-
tors capture correlations between customers and movies without
invoking domain-specific knowledge. Under the assumption that
the preferences of individual customers remain constant, the more
available feedback, the better the modeling power of a latent-factor
model [15, 17]. Netflix and other companies typically collect bil-
lions of ratings; taking implicit feedback such as navigation and
purchase history into account, the amount of data subject to recom-
mendation analysis is enormous.

In Section 4 below, we discuss in detail how Ricardo handles
the foregoing exploration, evaluation, and model-building example
tasks that we have defined, and we indicate how Ricardo can be
applied to other deep analytics tasks over massive data.

3. PRELIMINARIES
In this section, we briefly describe the main components of Ri-

cardo: the R statistical software package, the Hadoop large-scale
DMS, and the Jaql query language.

1In an actual recommender system, there is a vector of latent factors
associated with each customer and movie, and the estimated rating
is given by the dot product of the corresponding vectors.

3.1 The R Project for Statistical Computing
R was originally developed by Ross Ihaka and Robert Gentle-

man, who were at that time working at the statistics department
of the University of Auckland, New Zealand. R provides both an
open-source language and an interactive environment for statisti-
cal computation and graphics. The core of R is still maintained
by a relatively small set of individuals, but R’s enormous popu-
larity derives from the thousands of sophisticated add-on packages
developed by hundreds of statistical experts and available through
CRAN. Large enterprises such as AT&T and Google have been
supporting R, and companies such as REvolution Computing sell
versions of R for commercial environments.

As a simple example of R’s extensive functionality, consider the
following small program that performs the regression analysis and
data visualization shown previously in Figure 1. It takes as input a
“data frame” df that contains the mean ratings of the movies in the
Netflix dataset by year of publication, performs a linear regression,
and plots the result:

fit <- lm(df$mean ~ df$year)
plot(df$year, df$mean)
abline(fit)

(A data frame is R’s equivalent of a relational table.) Older movies
appear to be rated more highly than recent ones; a call to the R
function summary(fit) would validate that this linear trend is in-
deed statistically significant by computing assorted test statistics.

3.2 Large-Scale Data Management Systems
Historically, enterprise data warehouses have been the dominant

type of large-scale DMS, scaling to hundreds of terabytes of data.
These systems are usually interfaced by SQL, a declarative lan-
guage for processing structured data. Such systems provide exten-
sive support for aggregation processing as defined in Section 1. Im-
plementations of enterprise data warehouses benefit from decades
of experience in parallel SQL processing and, as indicated by the
recent surge of new vendors of “analytical databases,” continue to
provide innovative data management solutions.

Besides being very expensive, these systems suffer from the dis-
advantage of being primarily designed for clean and structured data,
which comprises an increasingly tiny fraction of the world’s data.
Analysts want to be able to work with dirty, semi-structured or
even unstructured data without going through the laborious cleans-
ing process needed for data warehousing [9]. For these situations,
MapReduce and its open-source implementation Apache Hadoop
have become popular and widespread solutions.

Hadoop comprises a distributed file system called HDFS bundled
with an implementation of Google’s MapReduce paradigm [11].
Hadoop operates directly on raw data files; HDFS takes care of
the distribution and replication of the files across the nodes in the
Hadoop cluster. Data processing is performed according to the
MapReduce paradigm. The input files are split into smaller chunks,
each of which is processed in parallel using a user-defined map
function. The results of the map phase are redistributed (accord-
ing to a user-defined criterion) and then fed into a reduce function,
which combines the map outputs into a global result. Hadoop has
been successfully used on petabyte-scale datasets and thousands of
nodes; it provides superior scalability, elasticity and fault-tolerance
properties on large clusters of commodity machines. Hadoop is an
appealing alternative platform for massive data storage, manipula-
tion and parallel processing.

990

3.3 Jaql: A JSON Query Language
Perhaps the main drawback of Hadoop is that its programming

interface is too low-level for most of its users. For this reason, a
variety of projects aim at providing higher-level query interfaces
on top of Hadoop; notable examples include Jaql [14], Pig [19],
Hive [23] and Cascading2. Ricardo uses Jaql as its declarative inter-
face to Hadoop. Jaql is an open-source dataflow language with rich
data processing features such as transformation, filtering, join pro-
cessing, grouping and aggregation. Jaql scripts are automatically
compiled into MapReduce jobs, which are then executed in paral-
lel by Hadoop. Since Jaql is built around the JSON data model and
is highly extensible, it enhances Hadoop’s usability while retaining
all of Hadoop’s flexibility.

Although Jaql operates directly on user data files, it makes use
of JSON views to facilitate data processing. For example, consider
the following JSON view over the Netflix dataset:

[
{
customer: "Michael",
movie: { name: "About Schmidt", year: 2002 },
rating: 5

},
...

],

Square brackets denote arrays (all ratings) and curly braces enclose
structured objects (individual rating or movie). The following Jaql
query computes average ratings as a function of movie age; this
data can then be “traded” to R, which can in turn process the data
to produce Figure 1.

read("ratings")
-> group by year = $.movie.year
into { year, mean: avg($[*].rating) }

-> sort by [$.year].

The operator -> pipes the output of the expression on the left
hand side into the right hand side; the current record is accessed
via reference to the special variable $. Jaql provides functionality
that would be tedious to implement using the native Hadoop API.

4. TRADING WITH RICARDO
In this section, we describe Ricardo in more detail, using the

examples of Section 2.

4.1 Architecture Overview
Figure 3 gives an overview of Ricardo’s design. Ricardo consists

of three components: an R driver process operated by the data ana-
lyst, a Hadoop cluster that hosts the data and runs Jaql (and possi-
bly also some R sub-processes), and an R-Jaql bridge that connects
these two components.

R serves as an interactive environment for the data analyst, but in
contrast to classical R usage, the data itself is not memory-resident
in R. Instead, the base data is stored in a distributed file system
within the Hadoop cluster, which comprises a set of worker nodes
that both store data and perform computation. As described previ-
ously, Jaql provides a high-level language to process and query the
Hadoop data, compiling into a set of low-level MapReduce jobs.

The third, novel component of Ricardo is the R-Jaql bridge, which
provides the communication and data conversion facilities needed
to integrate these two different platforms. The bridge not only al-
lows R to connect to a Hadoop cluster, execute Jaql queries, and
2http://www.cascading.org

receive the results of such queries as R data frames, but also allows
Jaql queries to spawn R processes on Hadoop worker nodes. The
bridge comprises an R package that provides integration of Jaql into
R and a Jaql module that integrates R into Jaql. The latter module
allows worker nodes to execute R scripts in parallel and R functions
to be used inside Jaql queries. The key functions3 provided by the
R package are:

jaqlConnect() Opens a channel connecting R to a
Hadoop cluster.

jaqlSave() Saves data from R to HDFS.
jaqlValue() Returns to R arbitrarily complex JSON

results from Jaql queries.
jaqlTable() Like jaqlValue() but optimized for

data frames (i.e. tabular data).
jaqlExport() Exports R objects from the R driver

process to R processes running on the
worker nodes.

The components of Ricardo work together to support an analyst’s
workflow. The analyst typically starts by issuing Jaql queries from
inside a top-level R process. These queries sample or aggregate the
data to allow viewing and visualization of the data from within R.
Next, the analyst builds models of the data. The building of these
models—e.g., by training the model or fitting parameters—as well
as the validation of their quality—e.g., by visualization, by cross
validation, or by computing measures of fit or test statistics—is
performed as a joint effort of R, Jaql, and the R-Jaql bridge. In the
following subsections, we give specific examples of how Ricardo
can be used in an analytic workflow.

4.2 Simple Trading
First recall the data-exploration example of Section 2.1. The fol-

lowing R script shows how the jaqlTable() function is used to
push the aggregation of the data to the Hadoop cluster using Jaql.
It computes the data frame df that holds the average ratings for
movies of different ages; R then processes df using the code given
in Section 3.1 to fit a regression model and produce Figure 1. As
discussed in Section 3, R can use the summary(fit) command to
determine the adequacy of the regression model.

ch <- jaqlConnect()
df <- jaqlTable(ch, ’
read("ratings")
-> group by year = $.movie.year
into { year, mean: avg($[*].rating) }

-> sort by [$.year]
’)

Now recall the second example of Section 2.1, in which the an-
alyst wants to apply a trained model over all the data in order to
compute the top-k outliers. The following R script shows how a
trained model can be invoked in parallel using jaqlExport(). In
this example, we use the linear model computed above.

mymodel <- function(x) {
fit$coeff[2]*x[1] + fit$coeff[1]

}
jaqlExport(ch, fit)
jaqlExport(ch, mymodel)
res <- jaqlTable(ch, ’
read("ratings")
-> transform { $.*,

3At the time of this writing, the implementation of jaqlExport is
still underway.

991

http://www.cascading.org

Figure 3: Overview of Ricardo’s architecture.

error: pow(R("mymodel", [$.movie.year])
- rating, 2) }

-> top 10 by [$.error desc]
’)

Here mymodel() is an R function that implements the linear model
evaluation, outputting an estimated average rating corresponding
an input movie age. The jaqlExport() invocations ensure that
both the computed model fit and the function mymodel() are
“known” by the R-processes that are spawned on the worker nodes.
During execution of the Jaql query, the worker nodes, in parallel,
each execute the mymodel() function and compute the correspond-
ing squared errors. The errors are sorted in descending order (us-
ing the MapReduce framework), and the top-k outliers are returned
back to R as a data frame. Note that the function mymodel() is
simple enough to be implemented entirely in Jaql, without requir-
ing R to evaluate it. In practice, however, this is seldom the case.
See, for example, the time-series models discussed in Section 4.4.

4.3 Complex Trading
In this section, we describe in detail how Ricardo can be used

for building statistical models over massive data when simple trad-
ing approaches do not suffice. We first illustrate our approach us-
ing the latent-factor model mentioned in Section 2.2, and then in
Section 4.4 we briefly indicate other types of analysis that can be
handled by Ricardo.

Recall that complex-trading scenarios arise when the model of
interest must incorporate all of the available (massive) data. Be-
cause data reduction prior to modeling is not allowed, the data will
not fit in main memory. Ricardo does require that the model itself—
e.g., the set of latent factors in our Netflix example—fit into the
main memory of the analyst’s R process. This assumption holds
for all but extremely large models (such as those in PageRank algo-
rithms). In the case of Netflix, the latent factors occupy on the order
of tens to hundreds of megabytes of memory, even after scaling up
the numbers of customers and movies used in the competition by
several orders of magnitude. A model of this size can easily fit in
main memory. In contrast, the base data on customers and movies
ranges from hundreds of gigabytes to terabytes and is thus signifi-
cantly larger than the model. Ricardo places no restrictions on the
base-data size, as long as the Hadoop cluster is equipped with a
sufficient number of worker nodes to process the data.

4.3.1 Computing a Latent-Factor Model
Recall from Section 2 that the latent-factor model for movie

recommendations assigns a set of latent factors to each customer
and each movie. These factors are used to predict ratings that are
unknown; movies with high predicted ratings can then be recom-
mended to the customer. This general scheme also applies to other
recommendation problems. In general, our goal is to recommend
items (movies) to users (customers) based on known relationships
between items and users.

Indexes u and i denote users and items. Denote by pu the latent
factor associated with user u and by qi the latent factor for item i.
Once learned, these factors allow us to compute a predicted rating
r̂ui of u for i via a simple product:

r̂ui = puqi. (1)

The value of r̂ui predicts how much user u will like (or dislike) item
i. As mentioned previously, this latent-factor model is highly sim-
plified for aid in understanding Ricardo; an industrial-strength rec-
ommender system would (1) maintain a vector of factors for each
user and items, (2) use additional information about the user and
item (such as demographic information), and (3) would account for
shifts of preferences over time [17]. All of these extensions can be
handled by Ricardo.

Recent work [4, 7, 16] has suggested that the latent factors be
learned via an optimization-based approach that tries to minimize
the sum of squared errors between the observed ratings and the
corresponding predicted ratings from the model. Thus we want to
solve the problem

min
{pu},{qi}

X
u,i

(rui − puqi)
2, (2)

where the sum is taken over the set of observed ratings.4

The above optimization problem is large and sparse, and has to
be solved using numerical methods. The general algorithm is as
follows:

1. Pick (random) starting points for the values of pu and qi.
4In fact, (2) has been simplified; our actual implementation makes
use of “regularization” techniques to avoid overfitting. For Netflix
data, a simple weight decay scheme—which amounts to adding a
penalty term to (2)—has proven successful [16].

992

2. Compute the squared error and the corresponding gradients
with respect to each pu and qi, using the current values of pu

and qi.

3. Update the values of each pu and qi according to some up-
date formula.

4. Repeat steps 2 and 3 until convergence.

The idea behind this “gradient descent” algorithm is to use the gra-
dient information to try and reduce the value of the squared error as
much as possible at each step. Observe that step 2 corresponds to a
summation over the entire dataset and is thus data-intensive, while
step 3 requires the use of a sophisticated optimization algorithm
that is able to deal with a large number of parameters.

4.3.2 The R Component
We next describe how R contributes to the model-fitting proce-

dure described in Section 4.3.1 by using its sophisticated optimiza-
tion algorithms. We assume the existence of two functions e and
de, which compute the squared error and the corresponding gradi-
ents for specific values of the latent factors. Both functions take
a single argument pq, which holds the concatenation of the latent
factors for users and items. (The description of how we implement
these functions is deferred to Sections 4.3.3 and 4.3.4.) R can then
use its optim function to drive the overall optimization process.
The optim function operates by using the current squared error
value and gradient computed by e and de. Then optim uses this
information to update the pq values in such a manner as to reduce
the squared error as much as possible. This process is repeated
until the squared error no longer decreases significantly. The up-
dating process can be viewed as taking a “downhill step” in the
space of possible pq values. Both the direction and size of the step
are determined by the specific optimization method that is chosen,
and can be quite complex. As discussed below, R has a number of
optimization methods to choose from.

The following snippet contains all of the high-level R code that
is required to run the optimization:

model <- optim(pq, e, de,
method="L-BFGS-B",
...)

where pq is the starting point and model is the resulting solution.
The first three arguments thus describe the input to the optimiza-
tion problem. The method argument determines the optimization
method to be used. The optim function also takes a number of ad-
ditional arguments that allow fine-grained control of the optimiza-
tion algorithm, such as setting error tolerances and stopping criteria
or bounding the number of iterations.

Some popular optimization algorithms provided by R include the
conjugate-gradient method [3] and L-BFGS [6]. Optimization is a
complex field and there are many different methods, each with its
own strengths and weaknesses. We experimented with many differ-
ent optimization methods and we found that the L-BFGS method
is very effective. L-BFGS is an optimization technique for solv-
ing large non-linear optimization problems; it implements a lim-
ited memory quasi-Newtonian optimization algorithm based on the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The details
of this method are beyond the scope of this paper; in essence, it
makes use of the values of e and de to learn the “curvature” of the
objective function (the squared error in our case) by maintaining a
low-memory approximation of the inverse of the Hessian Matrix.
This information is then used to estimate the best direction and size
for the next optimization step.

4.3.3 The Hadoop and Jaql Component
In Ricardo, Hadoop and Jaql are responsible for data storage and

large-scale aggregation processing. For the latent-factor example,
this latter processing corresponds to the computation of e and de
at each step of the R-driven optimization algorithm. For the Net-
flix data, the ratings are stored in a table r and the latent factors
are stored in tables p and q. For simplicity, we assume that the
following JSON views have been defined over these datasets:

r: schema { u: long, i: long, rating: double }
p: schema { u: long, factor: double }
q: schema { i: long, factor: double }

Each record in the ratings table corresponds to a single rating by
user u of item i. Each record in p or q corresponds to a latent
factor.

We start with a simple “naive” Jaql implementation of the e and
de functions and then discuss some potential optimizations. Our
goal is to compute the following quantities:

e =
X
u,i

(rui − puqi)
2,

∂e

∂pu
= −2

X
i

(rui − puqi)qi,

∂e

∂qi
= −2

X
u

(rui − puqi)pu,

where, as before, the sums are taken over the observed ratings. For
the computation of the squared error e, we have to bring together
the rating from the r table and the corresponding factors from the
p and q tables. The following Jaql query does the trick:

join r, p, q
where r.u == p.u and r.i == q.i
into { pu: p.factor, qi: q.factor, rui: r.rating }

-> transform { error: pow($.rui - $.pu*$.qi, 2)}
-> sum($.error);

This query first performs a three-way join between r, p, and q, then
computes the squared error for each of the observed ratings, and fi-
nally accumulates all of these squared errors. The computation of
the gradients is performed in a similar way, but requires an addi-
tional grouping step. The following query computes the derivatives
with respect to the user factors:

join r, p, q
where r.u == p.u and r.i == q.i
into { u: r.u, rui: r.rating,

pu: p.factor, qi: q.factor }
-> transform { u: $.u,

gradient: ($.rui-$.pu*$.qi)*$.qi }
-> group by u = $.u
into { u, gradient: -2.0*sum($[*].gradient)};

The query returns a table containing pairs of users u and the cor-
responding gradient ∂e/∂pu. The query for the gradients with re-
spect to the movie factors is similar.

In our actual implementation, we used an optimized query that
computes the error and gradients simultaneously. This has the ad-
vantage that the number of MapReduce jobs generated by Jaql—
and thus the number of passes over the data—is reduced from three
to one. The optimized query is given by:

r -> hashJoin(fn(r) r.i, q, fn(q) q.i,
fn(r,q) { r.*, qi: q.factor })

-> hashJoin(fn(r) r.u, p, fn(p) p.u,
fn(r,p) { r.*, pu: p.factor })

-> transform { $.*, diff: $.rating-$.pu*$.qi }

993

-> expand [{ value: pow($.diff, 2.0) },
{ $.u, value: -2.0*$.diff*$.qi },
{ $.i, value: -2.0*$.diff*$.pu }]

-> group by g = { $.u, $.i }
into { g.u?, g.i?, total: sum($[*].value) }

This query, though compact in terms of lines of Jaql code, is rather
subtle in the way it exploits the features of the underlying map-
combine-reduce framework. To avoid going into onerous detail,
we simply mention that hashJoin is an efficient function that in-
cludes in its argument list a key-extractor function for the probe
side, a dataset for the build side, a key extractor for the build side,
and a function that pairs matching tuples of the join. The first hash
join joins r and p, and the second hash join takes the result and
joins it with q. The remainder of the query performs all of the ag-
gregations at once. It works with three different kind of records:
(1) records with only a u field, (2) records with only an i field, and
(3) records with neither u nor i. The records are distinguished us-
ing the existence operator (denoted as a question mark in the query
above). During the aggregation, records of type (1) contribute to
the gradients of user factors, records of type (2) to the gradients of
item factors, and records of type (3) to the overall squared error.
The execution plan resembles the execution of a “grouping-sets”
SQL query. We expect future versions of Jaql to automatically per-
form some of the above optimizations.

4.3.4 Integrating the Components
In what follows, we show how to integrate the “large-data” com-

putation of Section 4.3.3 with the “small-data” computation of Sec-
tion 4.3.2, using the bridge. In particular, the naive version of the
squared-error function e that is passed to R’s optimization function
optim has the following form:

e <- function(pq) {
jaqlSave(ch, pq[1:np], p);
jaqlSave(ch, pq[(np+1):(np+nq)], q);
jaqlValue(ch, "<query>");

}

The argument pq given to the error function is a concatenation
of the current customer and movie factors; it is provided to e by
optim. The first two lines of the function body split pq into its
components and then save the result in Jaql via a call to jaqlSave.
Here, variables p and q point to locations in the Hadoop cluster.
The final line in the function body then executes the Jaql query that
performs the actual computation and returns the result as a float-
ing point value—here "<query>" is an abbreviation for the naive
Jaql code for computing e that was given in Section 4.3.3. The
naive function de for computing the gradients looks similar, but the
call to jaqlValue() is replaced by jaqlTable(), since multiple
numbers are returned. The result is automatically converted into an
R data frame. All functions provided by the bridge automatically
perform any necessary conversions of data types.

In our implementation we use the optimized Jaql query (described
in Section 4.3.3) to compute the squared error and the correspond-
ing gradients concurrently. Thus, the implementation of e and de
must be adjusted slightly. For brevity we omit the details.

4.4 Other Deep Analytics
In the previous sections, we provided examples of how Ricardo

enhances the analyst’s workflow by scaling deep analytics to mas-
sive datasets, exploiting Hadoops parallelism while staying in the
analyst-friendly environment that R provides. We discussed how
Ricardo handles “simple trading” and “complex trading” scenarios
during the key phases of an analyst’s workflow.

For purposes of exposition, all of our examples so far have been
in the setting of the Netflix dataset, so that our focus has been a
bit narrow. E.g., the latent-factor model, while certainly nontrivial
and providing a good demonstration of the power of the Ricardo
framework, is actually somewhat simple in terms of statistical so-
phistication. In this section we briefly outline how Ricardo can
be used to perform a number of other, more complex analyses, by
leveraging R’s extensive library of statistical functions.

As one example, we experimented with R’s time-series analy-
sis functions and incorporated them in the recommender system.
In this scenario, we took the time of the rating into account, since
people often change preferences over time. (For simplicity, we take
the “time” for a rating to be the total number of movies that the cus-
tomer has rated up to and including the current movie.) The follow-
ing R/Jaql code shows how one computes, in parallel, an “autore-
gressive integrated moving average” (ARIMA) time-series model
for each individual customer:

my.arima <- function(x) {
library(forecast)
auto.arima(x[[1]][sort.list(x[[2]])])

}
jaqlExport(ch, my.arima)
arima.models <- jaqlTable(ch, ’
r -> group by g={ $.u }

into { g.u,
model: R("my.arima", [

$[*].rating, $[*].date
]) }

’)

Here my.arima() is an R function that first orders the ratings vec-
tor of a customer in increasing time order and then computes an
ARIMA model by automatically fitting the model parameters. The
embedded Jaql query groups the ratings by customer u and then
constructs the corresponding rating and rating-date vectors in par-
allel. Other extensions of the recommender system are possible,
such as incorporation of demographic and movie genres informa-
tion. By exploiting R’s machine learning library functions, one
could easily train, in parallel, decision trees and self-organizing
maps that capture important properties of demographic and movie
genre segments.

We have also demonstrated that Ricardo can perform large-scale
principal component analysis (PCA) and generalized linear models
(GLM). For PCA, we use the covariance method: Hadoop/Jaql first
shifts and scales the data by subtracting the empirical mean and
dividing by the empirical standard deviation (after using Hadoop
to compute these quantities), and then computes the empirical co-
variance matrix. Next, R performs an eigenvector decomposition
of the covariance matrix, and finally Hadoop/Jaql projects the orig-
inal data onto the lower-dimensional space spanned by the major
eigenvectors.

GLMs generalize classical linear regression models by (1) allow-
ing the response variable to be expressed as a nonlinear function—
called the link function—of the usual linear combination of the in-
dependent variables, and (2) by allowing the variance of each noisy
measurement to be a function of its predicted value. To fit a GLM
model to a massive dataset, Ricardo exploits Hadoop, together with
R’s library of distributions and link functions (which includes their
derivatives and inverses). The model-fitting algorithm is similar to
the algorithm for fitting a latent-factor model, except that R is used
not only for the driver process, but also at the worker nodes.

More generally, as pointed out in [8], many deep analytics can
be decomposed into a small-data part and a large-data part. Such
decompositions are possible not only for linear regression, latent-
factor, PCA, and GLM analyses, but also for k-means clustering,

994

independent component analysis, support vector machines, classi-
fication, and many more types of analysis. The general approach to
scaling up these analytical tasks is to reformulate them in terms of
“summation forms”. These sums, which are inherently distributive,
can be executed in parallel. Then the results flow into algorithms
that typically perform small matrix operations, such as (pseudo)-
inversions or eigenvector decompositions, depending upon the spe-
cific analysis. Thus, although a relatively small collection of scal-
able analytics has been implemented so far, Ricardo can potentially
be applied much more generally.

4.5 Implementation Details
The design philosophy of Ricardo is to minimize the transfer

of functionality between R and Hadoop—letting each component
do what it does best—as well as the amount of data transferred.
The data that crosses the boundary between R and Jaql is usu-
ally aggregated information. As shown by our latent-factor ex-
ample, complex trading involves multiple iterations over the data,
with aggregates crossing the R-Jaql bridge many times. The bridge
must therefore be very efficient so as not to become a performance
bottleneck. The design of the bridge turned out to be rather in-
tricate, for a couple of reasons. One challenge is that R is im-
plemented entirely in C and Fortran, whereas Hadoop and Jaql
belong to the Java world. An even greater challenge arises be-
cause the data formats of R and Jaql differ considerably. For ex-
ample, R uses a column-oriented structure (data frames), whereas
Jaql and Hadoop are designed for row-oriented access to data. As
another example, R freely intermingles references to data items
by position (e.g., customer[[3]]) and references by association
(e.g., customer$income), whereas JSON objects represent data in
a way that maintains either position or association, but not both. In
this section, we discuss some of the design choices that we made
in implementing the R-Jaql bridge and their impacts on the perfor-
mance of data transfers across the bridge.

Bridging C with Java The problem of interfacing Java and C has
been well studied, and the Java Native Interface (JNI) is a common
solution for bridging these languages. A straightforward solution
would be to use JNI to submit the query from R to the Jaql engine,
and when Jaql finishes computation, use JNI calls to iteratively
fetch data from Jaql into R, one tuple at a time. But this approach
is inefficient for transferring even a few hundred data tuples, i.e., a
few megabytes of data. For the Netflix latent-factor model, com-
puting an aggregate rating for a movie (over the customers who
rated the movie) requires about 17K data tuples to be transferred
from Jaql to R. Using a JNI call for each tuple, the transfer takes
tens of minutes, making this approach infeasible for any real-world
applications. We therefore designed the bridge to pass only meta-
and control-information using JNI calls, and wrappers on both the
R side and the Jaql side use this information to perform bulk data
transfers using shared files. For instance, when transferring results
of a Jaql query to R, a Jaql wrapper materializes the result into a
file in a format that can be directly loaded into R, and passes the
location of this file to the R process through JNI. A wrapper on
the R side reads this file and constructs an R object from the data,
which can then be used for further R processing and analysis. This
indirection through files (or even through shared memory) results
in orders-of-magnitude improvement in performance—the forego-
ing 17K tuple transfer now takes only a few seconds. A similar
approach is used for transferring data from R to Jaql.

Handling data-representation incompatibilities In R, large data
objects resembling relational tables are primarily manipulated as
data frames, which are column-oriented structures. On the other

Property Value
mapred.child.java.opts -Xmx700m
io.sort.factor 100
io.file.buffer.size 1048576
io.sort.mb 256
mapred.reduce.parallel.copies 20
mapred.job.reuse.jvm.num.tasks -1
fs.inmemory.size.mb 100

Table 1: Hadoop configuration used in experiments

hand, Jaql and Hadoop are primarily row-oriented. Surprisingly,
when large R objects are serialized in a row-oriented format, the
cost within R of reading these objects from disk (or from any I/O
channel) grows super-linearly in the number of columns transferred.
This realization led us to design the bridge to perform the transla-
tion from row-oriented to column-oriented formats and vice versa.
The Jaql wrapper translates the row-oriented results and outputs
one file per column of data, while the wrapper on the R side reads
the files one column at a time, and constructs the data frame from
the individual columns. This approach ensures that cost of data
transfer is linear with respect to the number of rows and the num-
ber of columns. Similar approaches were used to circumvent the
remaining incompatibilities between R and JSON objects.

5. EXPERIMENTAL STUDY
In this section, we report experimental results and share our ex-

periences in implementing the latent factor model for movie recom-
mendations. Our discussion focuses on performance and scalability
aspects, although, as we have argued, Ricardo’s technical approach
has many advantages beyond simply providing a workable solution.

5.1 Test Setup
All performance experiments were conducted on a cluster of 50

nodes in the Amazon Elastic Compute Cloud (EC2). Each node
was of type “High CPU Extra Large,” i.e., a 64-bit virtual machine
with 7 GB of memory, 20 EC2 Compute Units CPU capacity (8 vir-
tual cores with 2.5 EC2 Compute Units each), and 1690GB of lo-
cal storage. Aggregated over the cluster, this amounts to about 400
CPU cores, 70TB of aggregated disk space, and 350 GB of main
memory. We installed Hadoop version 0.20.0 on each of the nodes.
One of the nodes was selected as master and ran the Hadoop name-
node and jobtracker processes; the rest of the nodes were worker
nodes and provided both storage and CPU. Each worker node was
configured to run up to seven concurrent map tasks and one reduce
task. This map-heavy configuration was chosen because the bulk of
the processing is performed during the map phase; reducers merely
aggregate the map output. Table 1 lists other Hadoop parameters
that we chose; the remaining parameters match the default config-
uration of Hadoop. The R driver itself was running on a separate
EC2 gateway node of type “Standard Extra Large”, which differs
from the remaining nodes in that it had more memory (15GB) but
less CPU power (8 EC2 Compute Units: 4 virtual cores with 2 EC2
Compute Units each).

Our experiments were performed on “inflated” versions of the
original Netflix competition dataset [5]. The original dataset con-
tains data for 100M ratings, including anonymized customer iden-
tifiers (about 480K distinct), information about the movies (such
as title and date of release; about 18K distinct), and the date that
the rating was entered. The inflation process allowed us to evaluate
the performance of Ricardo on datasets having real-world scales.

995

Number of Rating Tuples Data Size in GB
500M 104.33

1B 208.68
3B 625.99
5B 1,043.23

Table 2: Data set sizes used in the scale out experiments

Specifically, we added six additional attributes to each tuple in or-
der to simulate a real recommender system, where the logged in-
formation contains fine-grained information such as demographics
and navigation history. We also increased the number of ratings,
with the largest inflated dataset containing 5B ratings (roughly 1TB
of raw data). Table 2 summarizes the various dataset sizes used
in the scale-up experiments. The numbers of distinct customers
and distinct movies were retained from the original data, which
amounts to a space requirement of about 4MB per factor of the
model.

5.2 Performance and Scalability
Virtually all of the processing time for computing the latent fac-

tor model was spent on the Jaql/Hadoop side, rather than in R. This
is not surprising, since scanning, joining, and aggregating large
datasets is both I/O and CPU intensive, whereas R’s adjustment
of latent-factor values during the optimization procedure is compa-
rably cheap. Nevertheless, the total system performance depends
on the time required per iteration over the data and on the number
of iterations until convergence. Thus both the DMS and R play an
integral part in overall performance.

Figure 4 shows the performance results for a single iteration—
i.e., the computation of the squared error and the corresponding
gradient—for various dataset sizes. Recall that we presented the
latent factor model using only a single latent factor per user and
per movie. In the experiments, we actually fit a vector of latent
factors per user and per movie during a single pass. For simplic-
ity we omit the details, since the overall response time was only
slightly affected by the vector size. We used two different imple-
mentations: a baseline implementation using a hand-tuned Hadoop
job and a Jaql implementation as used by Ricardo. As can be seen
in the figure, both implementations scale linearly with the size of
the dataset and thus provide a scalable solution. The execution
plans used by raw Hadoop and Jaql are similar, but Jaql requires
about twice as much time as raw Hadoop. The reason for this dif-
ference lies in Jaql’s higher level of abstraction: Jaql is designed
to handle arbitrary queries, data formats, and data types, whereas
our Hadoop implementation is specifically tailored to the problem
at hand. This is also reflected in code complexity: the Jaql code
comprises roughly 10 lines per query, whereas the Hadoop imple-
mentation takes around 200 lines.

The execution times as shown in Figure 4 should be taken with
a grain of salt, as both Hadoop and Jaql are under active develop-
ment. Each iteration currently takes a relatively large amount of
time, up to an hour for large (1TB) data. We believe that with in-
creasing maturity, both the relative difference between systems as
well as the total execution time will decrease further. Indeed, our
initial work on Ricardo has already led to multiple improvements
in Jaql, e.g., better schema support, efficient serialization code, and
runtime tuning.

1 2 3 4 5

0
5
0
0

1
5
0
0

2
5
0
0

Number of rat ings in billions

T
im

e
in

 s
ec

o
n

d
s

l

l

l

l

l J aql

Hadoop (handtuned)

Figure 4: Performance comparison (single iteration)

0 5 10 15 20

1
.0

0
1
.0

5
1
.1

0

Number of passes

R
o

o
t

m
ea

n
 s

q
u

a
re

 e
rr

o
r

l

l

l
l

l

l

l
l

l
l

l

l

Conjugate gradient

L− BFGS

l

Figure 5: Number of passes and RMSE using one latent factor

5.3 Optimization Evaluation
We experimented with many different optimization routines, in-

cluding naive gradient descent as well as more sophisticated al-
gorithms such as the conjugate-gradient method or L-BFGS. This
experimentation was easy to perform, since we could directly and
easily take advantage of R’s large optimization library.5

Figure 5 displays the root-mean-squared error (RMSE) of the la-
tent-factor model as a function of the number of iterations of the
optimization algorithm, i.e., the number of passes over the data.
Results are given for both the conjugate-gradient and L-BFGS op-
timization methods. The conjugate gradient method performs a
gradient computation followed by a line search and thus requires
multiple passes over the data to arrive at a new point estimate. The
line searches account for the fluctuations in the RMSE curve that
can be seen in Figure 5. In contrast, L-BFGS is a quasi-Newton
method with low memory footprint and exhibits a completely dif-
ferent behavior. Both methods converge, but L-BFGS converges
faster for this particular problem.

5
http://cran.r-project.org/web/views/Optimization.html

996

http://cran.r-project.org/web/views/Optimization.html

6. RELATED WORK
This section discusses prior work on alternative approaches to

Ricardo. Unlike Ricardo, these approaches do not trade data and
functionality between a DMS and a statistical package, but rather
try to either scale out R or incorporate deep analytics into a DMS.

6.1 Scaling Out R
The R community is very active in improving the scalability of

R and there are dozens of approaches that aim at parallelizing R
across multiple processors or nodes. The main drivers for this work
are increased dataset sizes and the increasing demands of scientific
research and high-performance computing [21].

The existing approaches to parallelizing R can be classified by
their degree of abstraction. These range from low-level message
passing to task- and data-parallel processing to high-level (largely)
automatic parallelization.

Packages of the message-passing type include Rmpi and rpvm,
both of which are wrappers for their respective parallel computing
middlewares. Direct use of message-passing systems requires sig-
nificant expertise in parallel programming. More importantly, these
packages require a “tightly” connected cluster, where fault toler-
ance, redundancy and elasticity are not provided. This restriction
limits scalability to relatively small clusters. In contrast, Hadoop
(and hence Ricardo), provides all of the foregoing functionality,
and hence can scale to very large clusters.

Higher-level task- and data-parallel computing systems for par-
allelizing R are usually built on top of a message-passing package,
and are easier to use. The most popular representative R package
of this type is SNOW [24] (for Simple Network Of Workstations).
SNOW provides functionality to spawn a cluster (using, for exam-
ple, MPI), to distribute values across the cluster, and to apply in par-
allel a given function to a large set of alternative arguments. SNOW
can be used to implement task parallelism (arguments are tasks) or
data parallelism (arguments are data). SNOW’s data-parallelism
functionality is similar to the map operator in Hadoop; reduce op-
erations, however, require more elaborate solutions.

In general, SNOW appears to be too low-level for conveniently
implementing scalable deep analytics. This assertion is based on
our experience in using the SNOW package to implement the com-
putation of the latent-factor model for movie recommendations.
The implementation involved the following steps:

1. Distribution of data. The base data had to be distributed
across the cluster so that worker nodes can access it. This
was achieved by using a distributed file system and by split-
ting the data into smaller chunks, which are then handled by
the individual nodes.

2. Data processing. Operations such as the filter, group-by and
join were implemented in R.

3. Parallelization. The data processing operations were broken
down into fragments, executed in parallel, and then the re-
sults where combined.

It is evident that the above steps constitute the core functionality of
a large-scale DMS. Our implementation of latent-factor computa-
tion using SNOW required 50% more code than the implementa-
tion in Ricardo, while at the same time being much more compli-
cated and error prone. Additional features such as scalability to a
large number of nodes, fault tolerance and elasticity were so tedious
to implement using R and SNOW that they were dropped from
our implementation. A recent package called RHIPE [12] provides
SNOW-like functionality using Hadoop as the runtime environment

and thus alleviates some of these problems. Data processing oper-
ators and their parallelization are not yet implemented, however.
Thus, analysis tasks such as latent-factor modeling are currently
easier to implement in Ricardo, and the Ricardo implementations
have better runtime properties.

At the highest level, one would like a system that supports auto-
matic parallelization of high-level R commands. Recently, there
have been some promising results in this direction. Not all se-
quential R code can be parallelized automatically, of course, but
linear-algebra operations can be handled by some systems, includ-
ing pR [20] and RIOT [26]. Both packages are similar to Ricardo
in spirit, but instead of offloading data processing, they offload par-
allel matrix computations to systems specifically designed for this
purpose.

6.2 Deepening a DMS
Whereas the R community has tried to incorporate large-scale

DMS functionality, the DMS community has tried to incorporate
analytics. Early efforts in this direction incorporated some sim-
ple statistical analyses into parallel relational database systems [1];
indeed, the SQL standard now covers computation of basic sum-
mary statistics such as standard deviation and covariance, as well
as simple (single-variable) linear regression. Moreover, the ma-
jor commercial vendors have all incorporated some simple vendor-
specific analytic extensions. Cohen et al. [9] describe an attempt
to incorporate into a relational DBMS such analytical functionality
as vector and matrix operations, ordinary least squares, statistical
tests, resampling techniques, and parameter fitting via the conju-
gate-gradient method. The implementation exploits the extensible
datatype facilities of Postgres. Although the resulting SQL queries
are closer to what an analyst would use than classical SQL, it is un-
clear whether an analyst would ever be truly comfortable enough
with the quasi-SQL syntax to abandon the familiar constructs of R,
SPSS, SAS, or Matlab. The statistical functionality would probably
need to be hidden in stored procedures.

Moving away from relational databases, we come to the Mahout
project [2], which directly implements various machine-learning
algorithms in Hadoop. The Mahout implementation currently nei-
ther exploits high-level data processing languages built on top of
Hadoop nor does it make use of any statistical software. However,
Mahout is still at an early stage. As more and more sophisticated
methods are added, leveraging such existing functionality adds to
the stability and simplicity of the implementation.

Arguably, the functionality of statistically enriched DMSs will
always lag behind that of statistical software packages, and will not
enjoy the same level of community support as can be found, for
example, in the CRAN repository. Statistical packages also pro-
vide analysts with a more comfortable interface to access this func-
tionality. In contrast, expressing statistical functionality in a query
language is tedious. For example, the SQL implementation of the
Mann-Whitney U Test in [9] is much more complex and difficult to
read than a call to a function like wilcox.test as provided by R.
For these reasons, it is highly likely that data analysts will always
want to work with statistical software.

We conclude this section by mentioning SciDB [22]. This sys-
tem embodies a very interesting and radical approach that attempts
to completely redesign the data model—by using multidimensional
arrays for storage and making vectors and arrays first-class objects—
and scale both data management and computation by executing
functions and procedures in parallel and as close to the data as pos-
sible.

997

7. CONCLUSION
We have presented Ricardo, a scalable platform for deep analyt-

ics. Ricardo combines the data management capabilities of Hadoop
and Jaql with the statistical functionality provided by R. Compared
to previous approaches, Ricardo provides a feature-rich and scal-
able working environment for statistical computing, and benefits
from decades of experience from both the statistical and the data
management communities. Although our experiments indicated
that the performance of both Hadoop and Jaql is still suboptimal,
we expect significant performance improvements in the future as
this technology matures. Our work has focused on Hadoop and R,
but it is evident that our approach is potentially applicable to other
statistical packages and other DMSs.

In ongoing work, we are identifying and integrating additional
statistical analyses that are amenable to the Ricardo approach. Al-
though Ricardo currently requires knowledge of the Jaql query lan-
guage, a tighter and transparent integration into the R language
is possible using packages and functions that hide the underly-
ing data-management details from the analyst. For certain types
of analyses, it may be possible to combine our work with auto-
matic compilation technology to integrate R and Hadoop even more
seamlessly. Our ultimate vision is to enable analysts to work with
massive data just as they work with main-memory-size data today;
Ricardo can be seen as a first step in this direction.

8. REFERENCES
[1] N. R. Alur, P. J. Haas, D. Momiroska, P. Read, N. H.

Summers, V. Totanes, and C. Zuzarte. DB2 UDB’s High
Function Business Intelligence in e-Business. IBM Redbook
Series, ISBN 0-7384-2460-9, 2002.

[2] Apache Mahout. http://lucene.apache.org/mahout/.
[3] M. Avriel. Nonlinear Programming: Analysis and Methods.

Dover Publishing, 2003.
[4] R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at

multiple scales to improve accuracy of large recommender
systems. In KDD, pages 95–104, 2007.

[5] J. Bennett and S. Lanning. The Netflix prize. In KDD Cup
and Workshop, 2007.

[6] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory
algorithm for bound constrained optimization. SIAM J. Sci.
Comput., 16(5):1190–1208, 1995.

[7] J. Canny. Collaborative filtering with privacy via factor
analysis. In SIGIR, pages 238–245, 2002.

[8] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski, A. Y.
Ng, and K. Olukotun. Map-Reduce for machine learning on
multicore. In NIPS, pages 281–288, 2006.

[9] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and

C. Welton. MAD skills: New analysis practices for big data.
PVLDB, 2(2):1481–1492, 2009.

[10] J. Cunningham. Hadoop@Visa, Hadoop World NY, 2009.
http://www.slideshare.net/cloudera/
hw09-large-scale-transaction-analysis.

[11] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[12] S. Guha. RHIPE - R and Hadoop Integrated Processing
Environment. http://ml.stat.purdue.edu/rhipe/.

[13] K. Hornik. The R FAQ, 2009.
http://CRAN.R-project.org/doc/FAQ/R-FAQ.html.

[14] JAQL: Query Language for JavaScript Object Notation
(JSON). http://code.google.com/p/jaql, 2009.

[15] J. A. Konstan. Introduction to recommender systems. In
SIGMOD Conference, pages 1373–1374, 2008.

[16] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD, pages
426–434, 2008.

[17] Y. Koren. Collaborative filtering with temporal dynamics. In
KDD, pages 447–456, 2009.

[18] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer,
42(8):30–37, 2009.

[19] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In SIGMOD, pages 1099–1110, 2008.

[20] N. F. Samatova. pR: Introduction to Parallel R for Statistical
Computing. In CScADS Scientific Data and Analytics for
Petascale Computing Workshop, pages 505–509, 2009.

[21] M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu,
L. Tierney, and U. Mansmann. State of the art in parallel
computing with R. Journal of Statistical Software,
31(1):1–27, June 2009.

[22] M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim, D. Maier,
O. Ratzesberger, and S. B. Zdonik. Requirements for science
data bases and SciDB. In CIDR, 2009.

[23] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive - a
warehousing solution over a Map-Reduce framework.
PVLDB, 2(2):1626–1629, 2009.

[24] L. Tierney, A. J. Rossini, N. Li, and H. Sevcikova. snow:
Simple network of workstations.
http://cran.r-project.org/web/packages/snow/.

[25] M. Wedel, R. T. Rust, and T. S. Chung. Up close and
personalized: a marketing view of recommendation systems.
In RecSys, pages 3–4, 2009.

[26] Y. Zhang, H. Herodotou, and J. Yang. RIOT: I/O-efficient
numerical computing without SQL. In CIDR, 2009.

998

http://lucene.apache.org/mahout/
http://www.slideshare.net/cloudera/hw09-large-scale-transaction-analysis
http://www.slideshare.net/cloudera/hw09-large-scale-transaction-analysis
http://ml.stat.purdue.edu/rhipe/
http://CRAN.R-project.org/doc/FAQ/R-FAQ.html
http://code.google.com/p/jaql
http://cran.r-project.org/web/packages/snow/

	Introduction
	Motivating Examples
	Simple Trading
	Complex Trading

	Preliminaries
	The R Project for Statistical Computing
	Large-Scale Data Management Systems
	Jaql: A JSON Query Language

	Trading with RICARDO
	Architecture Overview
	Simple Trading
	Complex Trading
	Computing a Latent-Factor Model
	The R Component
	The Hadoop and Jaql Component
	Integrating the Components

	Other Deep Analytics
	Implementation Details

	Experimental Study
	Test Setup
	Performance and Scalability
	Optimization Evaluation

	Related Work
	Scaling Out R
	Deepening a DMS

	Conclusion
	References

