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ABSTRACT
We propose ClausIE, a novel, clause-based approach to open
information extraction, which extracts relations and their
arguments from natural language text. ClausIE fundamen-
tally differs from previous approaches in that it separates
the detection of “useful” pieces of information expressed in
a sentence from their representation in terms of extractions.
In more detail, ClausIE exploits linguistic knowledge about
the grammar of the English language to first detect clauses
in an input sentence and to subsequently identify the type
of each clause according to the grammatical function of its
constituents. Based on this information, ClausIE is able
to generate high-precision extractions; the representation of
these extractions can be flexibly customized to the under-
lying application. ClausIE is based on dependency parsing
and a small set of domain-independent lexica, operates sen-
tence by sentence without any post-processing, and requires
no training data (whether labeled or unlabeled). Our exper-
imental study on various real-world datasets suggests that
ClausIE obtains higher recall and higher precision than ex-
isting approaches, both on high-quality text as well as on
noisy text as found in the web.

Categories and Subject Descriptors
I.2.7 [Computing Methodologies]: Artificial intelligence-
Natural language processing
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1 Introduction
Open information extraction (OIE) aims to obtain a shal-
low semantic representation of large amounts of natural-
language text in the form of verbs (or verbal phrases) and
their arguments [1, 2, 3, 5, 7, 9, 12, 10, 13, 19]. The key goals
of OIE are (1) domain independence, (2) unsupervised ex-
traction, and (3) scalability to large amounts of text. Most
OIE techniques do not require any background knowledge or
manually labeled training data; they are therefore not lim-
ited to a set of pre-specified relations or entities. For these
reasons, OIE has gained significant traction in the recent
past.
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Consider for example the sentence “A. Einstein, who was
born in Ulm, has won the Nobel Prize”. OIE systems aim to
extract triples (“A. Einstein”, “has won”, “the Nobel Prize”)
and (“A. Einstein”, “was born in”, “Ulm”) from this sen-
tence; no entity resolution or disambiguation of the verbal
phrase is performed. We call each extraction a proposition;
each proposition consists of a subject (“A. Einstein”), a re-
lational phrase or simply relation (“has won”), and zero,
one, or more arguments (“the Nobel Prize”). The extracted
propositions can be used directly for shallow semantic query-
ing (Who has won the Nobel Prize?), and—potentially com-
bined with other techniques such as entity resolution—may
serve as input for richer tasks such as targeted information
extraction, semantic role labeling, coreference resolution, or
ontology extension. Consider for example the task of extend-
ing a given ontology about persons and their prizes. Entity
resolution techniques may identify both Albert Einstein and
the Nobel Prize in the above sentence, OIE techniques es-
tablish the connection (Albert Einstein, “has won”, Nobel
Prize) between these entities, and ontology extension tech-
niques such as [17] use statistical reasoning to try to obtain
the fully disambiguated fact HasWon(Albert Einstein, Nobel
Prize).

Virtually all of existing OIE techniques make use of hand-
crafted extraction heuristics or automatically constructed
training data to learn extractors or estimate the confidence
of propositions. Some approaches—such as TextRunner [3],
WOEpos [19], Reverb [9], and R2A2 [7]—focus on efficiency
by restricting syntactic analysis to part-of-speech tagging
and chunking. These fast extractors usually obtain high pre-
cision for high-confidence propositions, i.e., at low points of
recall, but the restriction to shallow syntactic analysis lim-
its maximum recall and/or may lead to a significant drop of
precision at higher points of recall. Other approaches—such
as Wanderlust [1], WOEparse [19], KrakeN [2], OLLIE [13],
and [10]—additionally use dependency parsing. These ex-
tractors are generally more expensive than the extractors
above; they trade efficiency for improved precision and re-
call. Each of these approaches makes use of various heuris-
tics to obtain propositions from the dependency parses.

In this paper, we propose a novel approach to OIE called
ClausIE1 (for clause-based open information extraction),
which falls into the second category, i.e., it also makes use
of dependency parsing. ClausIE fundamentally differs from
previous approaches in that it separates (i) the detection

1ClausIE’s source code and other resources are available at
http://www.mpi-inf.mpg.de/departments/d5/software/
clausie.

http://www.mpi-inf.mpg.de/departments/d5/software/clausie
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of “useful” pieces of information expressed in a sentence
from (ii) its representation in terms of one or more propo-
sitions. The main reasoning behind this separation is that
(i) can be addressed accurately and in a principled way by
exploiting properties of the English language. In particu-
lar, we identify the set of “clauses” of each sentence and, for
each clause, the corresponding clause type according to the
grammatical function of its constituent (e.g., subject-verb-
object, SVO). Our detection of clauses is based on the de-
pendency parse; to detect clause types, we additionally use
a small set of domain-independent lexica (e.g., of copular
verbs). In contrast to many previous approaches, ClausIE
does not make use of any training data, whether labeled or
automatically constructed, and does not require global post-
processing (e.g., to filter out low-precision extractions), i.e.,
sentence processing in ClausIE is embarrassingly parallel.
These properties allow ClausIE to process both individual
sentences as well as large document collections automatically
and in a scalable way.

Once clauses have been detected, we generate one or more
propositions for each clause based on the type of the clause;
the generation of propositions can be customized to the un-
derlying application. For example, from the clause “Anna
passed the exam with ease”, we may want to generate one
or more of the following propositions: (“Anna”, “passed the
exam with”,“ease”), (“Anna”,“passed”,“the exam with ease”),
(“Anna”,“passed”,“the exam”), or 4-tuple (“Anna”,“passed”,
“the exam”, “with ease”?). Moreover, ClausIE can (option-
ally) extract propositions in which the subject or one or
more of the arguments do not constitute a noun phrase.
For example, ClausIE may generate from “A.E. from Ulm is
vegetarian” propositions (“A.E.”, “is”, “vegetarian”) and/or
(“A.E. from Ulm”, “is”, “vegetarian”), if so desired.

We conducted an experimental study on multiple real-
world datasets of varying quality in order to compare Claus-
IE to alternative techniques. We found that ClausIE obtains
significantly more propositions than previous approaches at
similar or higher precision. In particular, ClausIE produced
2.5–3.5 times more correct propositions than OLLIE, which
was the best-performing alternative extractor in our experi-
ments. Most of the extraction errors performed by ClausIE
were due to incorrect parse trees; here post-processing tech-
niques—e.g., similar to the statistical techniques employed
by Reverb [9] or OLLIE [13]—may help to further increase
precision.

The remainder of this paper is structured as follows: In
Sec. 2, we briefly summarize related work in the areas of
OIE, semantic role labeling, and ontology construction. Sec. 3
establishes the connection between clauses and OIE. Our
ClausIE extractor is described in Sec. 4. We present results
of our experimental study in Sec. 5 and conclude in Sec. 6.

2 Related Work
The task of open information extraction was introduced by
the seminal work of Banko et al. [3], who also proposed the
TextRunner OIE system. A number of techniques have been
developed to improve on TextRunner. At a high level, all
of these approaches make use of a set of patterns in order
to obtain propositions. Depending on the specific approach,
these patterns are either hand-crafted (based on on various
heuristics) or learned from automatically generated training
data (e.g., in the form of a classifier); the patterns apply

to part-of-speech (POS) tags, chunks, or dependency parses
(DP). Most of the existing approaches aim to extract triples,
i.e., propositions of form (subject, relation, argument); ex-
traction of higher-arity propositions are handled by [2, 5].

As mentioned previously, there are two major categories of
OIE systems: approaches that make use of only shallow syn-
tactic parsing, and approaches that apply heavier NLP tech-
nology. TextRunner [3] belongs to the former class. It first
trains a Bayes classifier based on DPs of 1000s of sentences
in an offline phase; the classifier is then applied to efficiently
extract propositions in an online phase. WOEpos [19] also
uses a classifier, but the classifier is based on a high-quality
training corpus obtained automatically from Wikipedia for
improved precision and recall. Reverb [9] is the perhaps sim-
plest (and thus very attractive) shallow extractor; it makes
use of syntactical and lexical constraints that aim to reduce
the amount of uninformative, incoherent, and over-specified
extractions (see Sec. 3). Finally, R2A2 [7] uses a number
of classifiers to identify the arguments of a verbal phrase
(based on hand-labeled training data), and is able to ex-
tract propositions that contain arguments that are not noun
phrases. R2A2 is the best-performing shallow OIE extrac-
tor to date. ClausIE is significantly slower than all of the
above techniques, but produces high-quality extractions that
can potentially be used as training data for systems such as
R2A2.

The second category of OIE systems makes use of depen-
dency parsing [1, 19, 2, 13, 10]. Some systems use either
hand-labeled (Wanderlust [1]) or automatically generated
(WOEparse [19], OLLIE [13]) training data to learn extrac-
tion patterns on the dependency tree. Other approaches
(KrakeN [2] and [10, 20]) use a set of hand-crafted pat-
terns on the dependency parse. In contrast to all existing
approaches, ClausIE reasons about the set of clauses (and
their types) that appear in an input sentence; this reasoning
is based on the dependency parse and a small set of domain-
independent lexica. Most of the patterns of [2, 10, 20] are
naturally captured by ClausIE. Moreover, ClausIE can be
customized to output triples or n-ary facts, to focus on ei-
ther noun-phrase or more general subjects and arguments,
or to flexibly adjust how much information is included in the
relational phrase and how much in its arguments.

OIE is the perhaps simplest form of semantic analysis. A
closely related and more general problem is semantic role
labeling (SRL), which aims to identify arguments of verbs
as well as their semantic roles. Christensen et al. [5] have
shown that SRL can be used to increase the precision and
recall of OIE; however, existing SRL systems heavily rely
on manually labeled training data and are generally more
compute-intensive than dependency parsing. Both SRL and
OIE focus mainly on verb-mediated propositions. Although
ClausIE does identify non-verb-mediated propositions to a
very limited extent, specialized techniques—such as [18] for
extracting the “is-a” relationship—go significantly further.
OIE can also be seen as a first step towards richer semantic
analysis. Patty [14], for example, aims to extract a set of
typed lexical patterns that are indicative of a relation. Many
techniques for automated ontology construction (e.g., [4,
17]) are also based on lexical patterns, but in contrast to
Patty focus on a prespecified set of ontological relations.
Since OIE readily identifies relations and their arguments in
text, a combination of OIE with these techniques appears
promising.



Table 1: Patterns and clause types (based on [15]).

Pattern Clause type Example Derived clauses

Basic patterns

S1: SVi SV AE died. (AE, died)
S2: SVeA SVA AE remained in Princeton. (AE, remained, in Princeton)
S3: SVcC SVC AE is smart. (AE, is, smart)
S4: SVmtO SVO AE has won the Nobel Prize. (AE, has won, the Nobel Prize)
S5: SVdtOiO SVOO RSAS gave AE the Nobel Prize. (RSAS, gave, AE, the Nobel Prize)
S6: SVctOA SVOA The doorman showed AE to his office. (The doorman, showed, AE, to his office)
S7: SVctOC SVOC AE declared the meeting open. (AE, declared, the meeting, open)

Some extended patterns

S8: SViAA SV AE died in Princeton in 1955. (AE, died)
(AE, died, in Princeton)
(AE, died, in 1955)
(AE, died, in Princeton, in 1955)

S9: SVeAA SVA AE remained in Princeton until his death. (AE, remained, in Princeton)
(AE, remained, in Princeton, until his death)

S10: SVcCA SVC AE is a scientist of the 20th century. (AE, is, a scientist)
(AE, is, a scientist, of the 20th century)

S11: SVmtOA SVO AE has won the Nobel Prize in 1921. (AE, has won, the Nobel Prize)
(AE, has won, the Nobel Prize, in 1921)

S12: ASVmtO SVO In 1921, AE has won the Nobel Prize. (AE, has won, the Nobel Prize)
(AE, has won, the Nobel Prize, in 1921)

S: Subject, V: Verb, C: Complement, O: Direct object, Oi: Indirect object, A: Adverbial, Vi: Intransitive verb, Vc: Copular verb,
Vc: Extended-copular verb, Vmt: Monotransitive verb, Vdt: Ditransitive verb, Vct: Complex-transitive verb

3 The Seven Clauses
We first establish the connection between clauses, clause
types, and OIE; a description of ClausIE can be found in
Sec. 4.

A clause is a part of a sentence that expresses some coher-
ent piece of information; it consists of one subject (S), one
verb (V), and optionally of an indirect object (O), a direct
object (O), a complement (C), and one or more adverbials
(A). Not all combinations of these constituents appear in
the English language. In fact, when clauses are classified
according to the grammatical function of their constituents,
we obtain only seven different clause types [15].2 For exam-
ple, the sentence “AE has won the Nobel Prize” is of type
SVO; here “AE” is the subject, “has won” the verb, and “the
Nobel Prize” the object. A complete list of all seven clause
types is given in the upper part of Table 1.

Assume for the moment that the input sentence consists
of only a single clause. ClausIE is based on the observation
that the clause type conveys the minimal unit of coherent
information in the clause. Intuitively, this means that if we
remove a constituent of a clause that is also part of its type,
the resulting clause does not carry semantically meaningful
information (or the sense of the verb changes). For exam-
ple, the sentence “AE remained in Princeton” consists of a
subject, a verb, and an adverbial. The clause is of type
SVA, i.e., the clause “AE remained” obtained by ignoring
the adverbial is incoherent (and indeed semantically mean-
ingless). In contrast, clause “AE died in Princeton”—which
also consists of a subject, a verb, and an adverbial—is of
type SV. Since here the adverbial does not appear in the

2There is also an existential clause (such as this one), which
we treat similarly to SV.

clause type, the derived clause “AE died” is coherent. In
what follows, we call constituents of a clause that are also
part of the clause type essential (here “AE” and “died”);
all other constituents are called optional (“in Princeton”).
Note that subjects, verbs, (direct and indirect) objects, and
complements are always essential; adverbials, however, may
or may not be essential.

Coherence plays an important role in OIE. For example,
Reverb [9] employs heuristic rules in order to avoid (some)
incoherent extractions. ClausIE ultimately aims to gener-
ate propositions from the constituents of the clause. Co-
herency tells us which constituents must be included into a
proposition and which may be omitted. One option to en-
sure coherent extractions is to always construct propositions
that include all constituents of a clause. Such an approach
addresses coherency, but—as argued by [9]—may in turn
lead to over-specified extractions. Consider, for example,
sentence “AE was awarded the NP in Sweden in 1921” and
suppose we limit attention to noun-phrase arguments; such
an approach is followed by most OIE systems. We can then
extract coherent propositions

P1=(“AE”, “was awarded”, “the NP”),
P2=(“AE”, “was awarded the NP in”, “Sweden”),
P3=(“AE”, “was awarded the NP in”, “1921”),
P4=(“AE”, “was awarded the NP in Sweden in”, “1921”).

Here P4 (and perhaps P2 and P3) is over-specified in that
phrase “was awarded the Nobel Prize in Sweden in” is not
relational. Since ClausIE detects essential and optional con-
stituents of a clause, we can customize proposition genera-
tion as desired; coherency is always guaranteed. One poten-
tial customization—which we also used in our experimental
study—is to extract all coherent propositions in combination
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Figure 1: An example sentence with dependency parse, chunks, and POS tags (chunks by Apache OpenNLP)

with zero or one optional adverbial. With this approach, we
extract P1, P2, and P3, but not P4 from the sentence above.3

Heuristic approaches such as Reverb do not allow for such
flexibility (in our example, Reverb extracts P2 only). As
a final note, over-specificity can also arise in subjects, ob-
jects, and complements; here the dependency parse can be
exploited to address over-specificity in a natural way, and
ClausIE does so to a limited extent.

Given a clause, we can (in principle) determine its type.
First observe that each occurrence of a verb in an English
sentence is of exactly one of the following types: intransitive,
(extended) copular, monotransitive, ditransitive, or complex
transitive. For example, a verb is intransitive if it does not
take an object argument, monotransitive if it takes a direct
object, and ditransitive if it takes both a direct and an in-
direct object. As another example, copular verbs link the
subject with a complement or predicative, while extended-
copular verbs express a relation between the subject and
an adverbial [15]. As can be seen in Table 1, which also
gives an example sentence for each verb type, the verb type
along with the presence of a direct object, indirect object,
or complement uniquely identifies the type of a clause. Vice
versa, the verb type is uniquely determined by the (type of
the) constituents and the type of the clause. We exploit this
observation directly in ClausIE, i.e., we exploit information
about the clause obtained from the dependency parse, and
information about verb types from a small set of-domain
independent lexica. In many cases, this combined approach
allows us to accurately determine the clause type; see Sec. 4.

If a sentence contains multiple (potentially nested) clauses,
ClausIE considers each clause separately. Consider, for ex-
ample, sentence“AE was awarded the NP before Schrödinger
devised his famous thought experiment.”. The sentence con-
tains two clauses (one spanning the entire sentence, and
one starting at “Schrödinger”); coherent propositions in-
clude (“AE”, “was awarded”, “the NP”) and (“Schrödinger”,
“devised”, “his famous thought experiment”). OIE does not
aim to capture the “context” of each clause; this simplifi-
cation allows for effective extraction but may also lead to
non-factual extractions [13]. For example, the proposition
(“the only real valuable thing”, “is”, “intuition”) obtained
from the second clause of sentence “AE said the only real
valuable thing is intuition” is non-factual. We do not specif-
ically avoid non-factual propositions in ClausIE; see [13] for
techniques that can detect such propositions.

3ClausIE may also be customized to extract n-tuple (“AE”,
“was awarded”, “the NP”, “in Sweden”?, “in 1921”?), where
“?” indicates optional arguments.

4 ClausIE
We now describe how we obtain and subsequently exploit
clauses and clause types in ClausIE. For each input sentence,
ClausIE conducts the following steps:

1. Compute the DP of the sentence (Sec. 4.1).

2. Determine the set of clauses using the DP (Sec. 4.2)

3. For each clause, determine the set of coherent derived
clauses based on the DP and small, domain-independent
lexica (Sec. 4.3).

4. Generate propositions from (a subset of) the coherent
clauses (Sec. 4.4).

The overall runtime of ClausIE is dominated by dependency
parsing in step 1; steps 2–4 are inexpensive.

4.1 Step 1: Dependency Parsing
ClausIE makes use of the unlexicalized Stanford dependency
parser [11] to discover the syntactical structure of an input
sentence. The DP consists of a set of directed syntactic
relations between the words in the sentence. The root of the
DP is either a non-copular verb or the subject complement
of a copular verb. For instance, in sentence “Messi plays
football”, word “plays” forms the root of DP; it is connected
to“Messi”via a subject relation (nsubj) and to“football”via
the direct-object relation (dobj). A more complex example
is shown in Fig. 1; a complete list of relations can be found
in [6].

4.2 Step 2: From Dependencies to Clauses
We first identify the clauses in the input sentence, i.e., we
aim to obtain the head word of all the constituents of each
clause. For example, we obtain (S: Bell, V: makes, O: prod-
ucts) for the main clause of the sentence shown in Fig. 1.
We use a simple mapping of dependency relations to clause
constituents. First, we construct a clause for every subject
dependency in the DP (e.g., nsubj); the dependant consti-
tutes the subject (S) and the governor the verb (V).4 All
other constituents of the clause are dependants of the verb:
objects (O) and complements (C) via dobj, iobj, xcomp,
or ccomp; and adverbials (A) via dependency relations such
as advmod, advcl, or prep_in.

To improve recall and informativeness of extractions, Claus-
IE additionally creates a number of “synthetic clauses”, i.e.,
clauses that do not directly appear in the sentence. In subse-
quent steps, these synthetic clauses are treated in the same

4Except for the SVC clause type. Here the governor of the
subject dependency is the complement (C), and both verb
and adverbials are dependants of the complement.
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Figure 2: Flow chart for verb-type and clause-type detection

way as the actual clauses of the sentence. As discussed be-
low, the constituents of a synthetic clause either refer to a
word in the DP or correspond to an artificially created verb.
In more detail, we replace the relative pronoun (e.g., who or
which) of a relative clause by its antecedent, which is ob-
tained via rcmod dependency to the governor of the relative
pronoun. The replacement of relative pronouns aims to in-
crease the informativeness of extractions; e.g., we obtain (S:
Bell, V: based, A: Angeles) instead of (S: which, V: based, A:
Angeles). ClausIE also handles non-verb-mediated extrac-
tions to a limited extent: We create synthetic clauses for
appositions (appos) and possessives (pos or via the pronoun
whose; see above). The so-obtained clauses use an artificial
verb such as “is” (typed as copula) or “has” (typed as mono-
transitive), respectively. In our example, we obtain clause
(S: Bell, Vc: “is”, O: company) in this way, where words
within quotation marks refer to an artificial verb and with-
out quotation marks refer to a word in the (DP of the) orig-
inal sentence. Finally, we generate a synthetic clause from
participial modifiers (partmod), which indicate reduced rela-
tive clauses. The dependant of a participial modifier relation
is a participial verb form, which we combine with an artifi-
cial verb such as “are” to obtain the “verb” of the synthetic
clause (typed SVA). For example, we obtain from sentence
“Truffles picked during the spring are tasty” the synthetic
clause (S: Truffles, V: “are picked”, A: [during the] spring).

In summary, we identify the following clauses for the sen-
tence of Fig. 1:

(S: Bell, V: makes, O: products),
(S: Bell, V: based, A: Angeles),
(S: Bell, Vc: “is”, C: company).

4.3 Step 3: Identifying Clause Types
Once clauses have been obtained, ClausIE tries to identify
the type of each clause (recall Tab. 1). As argued in Sec. 3,
we can combine knowledge of properties of verbs with knowl-
edge about the structure of the input clause. Our approach
to clause-type detection can be viewed as a decision tree,
i.e., we ask a number of question whose answers ultimately
determine the clause type. The decision tree is shown as
Fig. 2; here questions Q1–Q3 and Q7–Q9 refer to the clause
structure; questions Q4, Q5, and Q10 to verb properties,
and questions Q6 and Q11 deal with ambiguous cases. We
describe each of these questions in detail below, and also
discuss some techniques that help dealing with errors in the

DP. After clause types have been identified, we mark all
optional adverbials. In our example of Fig. 1, we obtain

(S: Bell, V: makes, O: products),
(S: Bell, V: based, A!: Angeles),
(S: Bell, V: “is”, A!: company),

where “A!” indicates essential adverbials and “A?” indicates
optional adverbials.

Clause types SVC, SVOO, and SVOC are identified solely
by the structure of the clause; all adverbials are optional for
these types. For example, if a clause does not contain an
object (Q1) but does contain a complement (Q2), it must
be of type SVC. For example, we identify S10 of Tab. 1 as
SVC so that its adverbial “of the 20th century” is optional.

If the sentence contains neither object nor complement,
we are left with distinguishing clause types SV (intransi-
tive verb) and SVA (extended-copular verb), a more difficult
task. In many cases, the distinction can be performed accu-
rately. We say that an adverbial is a candidate adverbial (for
an essential adverbial) if it (1) is a dependant of the verb
and (2) appears to the right of the verb. If the clause does
not contain a candidate adverbial (Q3), it is of type SV; e.g.,
“The year after, AE succeeded”. Otherwise, ClausIE makes
use of two lexica of verb types: a lexicon of verbs that are
known to be non-extended-copular (Q4, implies SV) and a
lexicon of verbs known to be extended-copular (Q5, implies
SVA).5 E.g., the adverbial in “AE remained in Princeton” is
identified as essential since remain is a copular verb. If both
dictionaries fail, we cannot determine the clause type accu-
rately. In its default configuration, ClausIE then proceeds
conservatively (Q6), i.e., it assumes SVA to avoid marking
an essential adverbial as optional.

We proceed to distinguishing SVO and SVOA for clauses
that neither contain a complement nor both a direct and an
indirect object (SVOO). If the clause does not have a can-
didate adverbial (Q9), we mark it as SVO. Similarly, if the
clause has an indirect object (but not a direct object, Q9),

5Note that these lexica can be learned automatically by ob-
serving which verbs appear (sufficiently frequently) without
a candidate adverbial in the text collection. We did not yet
employ such techniques; our current implementation makes
use of only a small hand-crafted dictionary of 31 extended-
copular verbs (e.g., “be” or “remain”) and two non-extended
copular verbs (“die”and“walk”). The dictionary is not hard-
wired into ClausIE, though, and can be customized by ap-
plications.



it cannot be of type SVOA [15] so that we also mark it SVO;
e.g., as in “He taught his students passionately.” Otherwise,
the clause contains both a direct object (but no indirect
object and no complement) and a candidate adverbial. The
distinction between SVO and SVOA is difficult in this (quite
common) case; e.g., S11 (SVO) and S6 (SVOA) in Tab. 1.
Here we proceed heuristically. First, ClausIE accepts a lex-
icon of verbs that are potentially complex-transitive (Q10)
and outputs SVOA if the verb appears in the lexicon.6 Oth-
erwise, in ClausIE’s default configuration, we proceed greed-
ily (Q11) and choose SVO, i.e., we mark the adverbial as
optional.

Dealing with DP ClausIE performs a number of addi-
tional steps in order to deal with design choices and errors
of the Stanford parser.

We first discuss how we deal with clauses that have con-
stituents of clausal form. The Stanford parser outputs de-
pendency relations such as xcomp or ccomp for the object
and the complement of a clause if they have a clausal form.
We treat these dependencies as complements if the verb ap-
pears in our lexicon of copular verbs, and treat them as
objects (or object complements) otherwise. If the clause
additionally contains an indirect object, the parser outputs
dobj instead of iobj. In this case, we cannot distinguish
between SVOO and SVOC. Since we are ultimately inter-
ested in optional adverbials, and since all adverbials are op-
tional for both SVOO and SVOC, we still obtain correct
extractions. The Stanford parser sometimes places the ob-
ject complement within the direct object. If this happens,
we may determine clause types SVO or SVOA instead of
SVOC. In both cases, extractions are coherent; if we detect
SVOA, however, an optional adverbial is incorrectly flagged
as essential. Finally, the parser outputs relation dep when it
is unable to identify the type of a relation. ClausIE avoids
processing the dependant of dep in verbal phrases to reduce
potential extraction errors.

4.4 Step 4: From Clauses to Propositions
As a consequence of ClausIE’s separation of clause and clause-
type detection from proposition generation, the latter is flex-
ible and can be customized to the application. There are
two basic steps involved in proposition generation. The first
step is to decide which (combinations of) constituents form a
proposition; the second step then generates the proposition
from the constituents.

Constituent selection. Recall that a proposition consists
of a subject, a relation, and zero, one, or more arguments.
A natural choice is to generate n-ary propositions that con-
sist of all the constituents of the clause, potentially with
some arguments being marked optional. ClausIE supports
generation of such n-ary propositions, but in addition al-
lows to generate triple propositions, i.e., propositions that
consist of a subject, a relation, and a (potentially empty)
argument.7 In fact, the concept of a triple (or binary rela-
tion) is fundamental to the semantic web, most ontological
knowledge bases, and most OIE systems. A key question

6The lexicon currently contains 15 verbs (e.g., “put” and
“get”).
7In OIE, the argument component of a triple is often
called “object”; e.g., “1921” in (“AE”, “has won the NP in”,
“1921”). Here we avoid the term object for the argument of
a triple to avoid confusion with the object of the clause.

is which constituents should be included into the generated
triple. ClausIE takes a pragmatic approach: We do not only
generate a single triple from each clause, but allow for the
generation of multiple triples, each exposing different pieces
of information. Consider for example the clause (S: AE, V:
died, A?: [in] Princeton, A?: [in] 1955 ) obtained from S8 in
Tab. 1. Since both adverbials are marked optional, we can
select four coherent derived clauses:

(S: AE, V: died),
(S: AE, V: died, A: [in] Princeton),
(S: AE, V: died, A: [in] 1955 ),
(S: AE, V: died, A: [in] Princeton, A: [in] 1955 ).

In general, if there are n optional adverbials, there are 2n

coherent derived clauses. To avoid over-specified triples, our
default choice in ClausIE—which we also used in our experi-
ments—is to select at most one optional adverbial (and all
essential constituents). ClausIE also makes use of a lexicon
consisting of small set of adverbials to be always omitted
(e.g., “so”) or included (e.g., “hardly”) when optional.

Coordinated conjunctions (CC). A coordinated conjunc-
tion is a conjunction that connects two or more parts of the
sentence—called conjoints—via a coordinator such as “and”
or “or”. CCs are detected by the Stanford parser and indi-
cated by dependency relations such as conj, conj_and, or
conj_or, respectively. If a CC is present in a constituent of
a clause, ClausIE optionally processes the CC, i.e., replaces
the CC by each of its conjoints to avoid over-specified extrac-
tions. Consider the example sentence shown in Fig. 1. There
is a CC in the verb constituent (“makes and distributes”) and
in the object constituent (“electronic, computer, and build-
ing products”) of the main clause. By replacing CCs by
conjoints, we obtain the following clauses:

(S: Bell, V: makes, O: [electronic] products),
(S: Bell, V: makes, O: [computer ] products),
(S: Bell, V: makes, O: [building ] products),
(S: Bell, V: distributes, O: [electronic] products),
(S: Bell, V: distributes, O: [computer ] products),
(S: Bell, V: distributes, O: [building ] products).

The processing of CCs is closely related to text simplifica-
tion [8]; we can view the resulting clauses as simpler versions
of the original clauses.

Note that in noun phrases, the replacement of a CC by
one of its conjoints may lead to incorrect extractions when
the CC is combinatory (as opposed to segregatory). For
example, the CC in “Anna and Bob married each other”
is combinatory; thus an extraction such as “Anna married
each other” is incoherent. If the CC has an ampersand as
coordinator, ClausIE treats it as combinatory and thus does
not process it (e.g., “Standard & Poor’s”). Similarly, CCs
headed by words such as “between” are not processed (e.g.,
“between Norway and Finland”). In all other cases, the CC
is treated as segregatory and thus processed. Combinatory
CCs are rare in some domains [8], but may occur frequently
in others. Since combinatory CCs are hard to detect (in
some cases even for humans), ClausIE exposes an option to
disable processing of CCs.

Finally, ClausIE treats CCs with preconjuncts (preconj
dependency; e.g., “both [red and blue]”) and (pre)determin-
ers ((pre)det; e.g., “both [the boys and the girls]”) specially.
In particular, we omit all preconjuncts and some (pre)deter-
miners when processing a CC. For example, we extract from



“Anna likes both red and blue” the propositions (“Anna”,
“likes”, “red”) and (“Anna”, “likes”, “blue”).

Proposition generation. ClausIE generates one proposi-
tion for each selected subset of constituents. To generate
a proposition, ClausIE needs to decide which part of each
constituent to place into the subject, the relation, and the
arguments. The perhaps simplest option is to first generate a
textual representation of each constituent in its entirety and
then use these representations to construct the proposition.
ClausIE currently follows this approach but omits relative
clauses (but ClausIE does generate propositions from each
relative clause in separation). We map the subject (verb)
of each clause to the subject (relation) of the proposition.
When n-ary facts are extracted, we create an argument for
each of the remaining constituents (first all constituents fol-
lowing the verb, then all constituents preceding the verb, in
the order in which they appear). To extract triples, we con-
catenate all arguments. From the sentence of Fig. 1, ClausIE
extracts the following triples:

(“Bell”, “is”, “a telecommunication company”),
(“Bell”, “is based”, “in Los Angeles”),
(“Bell”, “makes”, “electronic products”),
(“Bell”, “makes”, “computer products”),
(“Bell”, “makes”, “building products”),
(“Bell”, “distributes”, “electronic products”),
(“Bell”, “distributes”, “computer products”),
(“Bell”, “distributes”, “building products”).

In future work, we plan to further customize the final step
of proposition generation in multiple ways. For example,
we can obtain extractions similar to Reverb [9] by append-
ing all but the final argument into the relation; if the fi-
nal argument is a prepositional phrase, we also include the
preposition into the relation. Another natural direction is
to analyze the composition of each constituent in order to
generate alternative textual representations.

5 Experiments
We conducted an experimental study to compare ClausIE
to alternative approaches. We found that ClausIE achieved
significantly higher recall than the OIE extractors we com-
pared to. Moreover, ClausIE consistently provided higher
precision than alternative extractors over all levels of recall.

5.1 Experimental Setup
We first describe the datasets and the methodology used
in our experiments.8 We compared ClausIE to TextRun-
ner [3], Reverb [9], WOE [19] (using DP), OLLIE [13] and
KrakeN [2]; neither extractions nor source code of any other
extractor were available to us. Since most of OIE tech-
niques make use of machine-learning techniques, which re-
quire sensibly-chosen training data, or may need tweaking
to provide good extractions, we did not compare ClausIE to
these other OIE extractors. In all our experiments, we used
the unlexicalized version of the Stanford DP (version 2.0.4).
We configured ClausIE to generate triple propositions and
ran it both with and without processing of coordinated con-
junctions in subjects and arguments (denoted“ClausIE”and

8All datasets, extractions, labels, as well as ClausIE’s
source code are available at http://www.mpi-inf.mpg.de/
departments/d5/software/clausie.

“ClausIE w/o CCs,” respectively); coordinated conjunctions
in verbal phrases were processed in both configurations.

We used three different datasets in our experiments. First,
the Reverb dataset9 consists of 500 sentences with manually-
labeled extractions for TextRunner, TextRunner trained us-
ing Reverb, Reverb, OLLIE, and WOE. The sentences have
been obtained via the random-link service of Yahoo and are
generally very noisy. Second, we extracted 200 random sen-
tences from Wikipedia pages. These sentences are shorter,
simpler, and less noisy than those of the Reverb dataset.
Since some Wikipedia articles are written by non-native
speakers, however, the Wikipedia sentences do contain some
incorrect grammatical constructions. Finally, we extracted
200 random sentences from the New York Times collection
(NYT, [16]); these sentences are generally very clean but
tend to be long and complex.

We manually labeled the extractions obtained from all
extractors. To maintain consistency among the labels, the
entire set of extractions of TextRunner, WOE, and Reverb
for the Reverb dataset was relabeled; the precision num-
bers obtained using our labels closely agreed with those ob-
tained using the original labels. For the Wikipedia and NYT
datasets, we compare ClausIE with only Reverb and OL-
LIE, for which an extractor was publicly available. Each
extraction was labeled by two independent labelers; an ex-
traction was treated as correct only if it was labeled as cor-
rect by both labelers. Since we are primarily interested in
the ability of OIE to capture verb-mediated propositions,
labelers were instructed to ignore the context of the clause
during labeling. For example, in the sentence “But inex-
pensive point-and-shoot cameras can do the job if they have
a telephoto setting or a zoom lens”, the proposition (“in-
expensive point-and-shoot cameras”, “can do”, “the job”) is
treated as a correct extraction. We also asked labelers to be
liberal w.r.t. coreference or entity resolution; e.g., a propo-
sition such as (“he”, “has”, “office”), or any unlemmatized
version thereof, is treated as correct. Finally, we instructed
labelers to label as incorrect relations that were overly spe-
cific, i.e., that contained named entities or numbers, or were
excessively long (e.g., “has reported 1993 events in Moscow
in”). We measured the agreement between labelers in terms
of Cohen’s Kappa (Scott’s Pi). The score was 0.57 (0.57) for
the Reverb dataset, 0.68 (0.68) for the Wikipedia dataset,
0.63 (0.63) for the New York Times dataset. The lower
agreement score for the Reverb data might be attributed to
the high amount of noise in the input sentences, which made
it hard to judge the correctness of some of the extractions.

We used the absolute number of extractions instead of
recall since it is infeasible to obtain the set of “all correct”
propositions. For ClausIE, we determined the total num-
ber of extractions but also the number of non-redundant
extractions (marked “non-red.”), i.e., extractions not “con-
tained” in other extractions. For example, ClausIE extracts
from sentence “AE remained in Princeton until his death”
propositions (“AE”, “remained”, “in Princeton”) and (“AE”,
“remained”, “in Princeton until his death”); the former ex-
traction is marked redundant. We ordered all extractions by
decreasing confidence; for ClausIE, we took the confidence of
the DP as obtained by the Stanford parser as the confidence
of a proposition. For KrakeN, extractions were unavailable
to us; we reproduce the information provided in [2] instead.

9http://reverb.cs.washington.edu/

http://www.mpi-inf.mpg.de/departments/d5/software/clausie
http://www.mpi-inf.mpg.de/departments/d5/software/clausie
http://reverb.cs.washington.edu/


5.2 Example Extractions
We first illustrate the differences between the extractors for
some manually-selected example sentences; Tab. 3 shows the
extractions of each OIE extractor for a sentence of each of
the datasets.

On the Reverb sentence, all OIE extractors agree on propo-
sition R1, which is correct. Reverb obtains a second propo-
sition R2, which is incorrect; it is obtained because Reverb
restricts subjects to noun phrases without prepositions and
thus incorrectly omits“the only other name on”. In contrast,
ClausIE identifies the subject correctly and hence extracts
a correct proposition (R20); it exploits access to the DP,
which is (deliberately) not used by Reverb. WOE and OL-
LIE also make use of the DP, but still fail to identify the
subject of the second clause correctly (R5 and R11, resp.),
perhaps due to their use of automatically learned DP pat-
terns (e.g., OLLIE learns from Reverb). For this reason,
OLLIE also produces a number of additional incorrect ex-
tractions. Note that propositions R18 and R20 produced by
ClausIE are labeled as redundant. As argued below, redun-
dant extractions may be valuable by themselves due to their
simpler structure.

On the Wikipedia dataset, almost all of the extractions are
correct; ClausIE extracts the largest number of propositions,
followed by OLLIE and Reverb. OLLIE misses the essen-
tial adverbial “in Aberdeen” in proposition N5, but still pro-
duces a correct (although tautological) proposition. ClausIE
produces incorrect proposition N11 due to an error in the
dependency parse (which does not associate “from Tubercu-
losis” with “death”). Proposition N12 was labeled correct
(although this is arguable); here “his” refers to “he”, and
“has” is our synthetic verb for a possessive. Finally, ClausIE
produces propositions N6–N8 due to its processing of the
coordinated conjunctions. In this particular case, the parser
identified “two children”, “Edna”, and “Donald” incorrectly
as conjoints; otherwise propositions N7 and N8 would not
have been generated.

Finally, on the NYT dataset, Reverb produces incorrect
proposition W2 by incorrectly identifying the argument. Re-
verb is designed to extract at most one prepositional phrase
following the verb and thus misses“outside the United States”.
It also misses “in NATO” due its use of a lexical constraint
(i.e., the phrase “includes the biggest standing army in”,
which is over-specified, does not appear sufficiently frequent
in the corpus). ClausIE creates a correct and an incor-
rect (but coherent) proposition (W13 and W12, resp.) from
this clause of the sentence; the latter proposition is incor-
rect due to an error in the DP parse (which does not cor-
rectly associate “in NATO outside the United States” with
“army”). ClausIE also produces three additional incorrect
propositions (W15–W17). Proposition W15 has an incorrect
subject due to an incorrect DP, propositions W16 and W17

are non-informative and thus labeled as incorrect (here we
labeled conservatively). The sentence also contains a pos-
sessive, which is processed correctly by ClausIE to obtain
proposition W14. Finally, OLLIE extracts three incorrect
propositions with an over-specified relation (W3–W5), and
incorrect proposition W6 due to a noisy extraction pattern.

5.3 Precision and Number of Extractions
Our results are summarized in Tab. 2 and Fig. 3. Tab. 2
shows the total number of correct extractions as well as the
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Figure 3: Experimental results



Table 2: Number of correct extractions and total number of extractions
ClausIE ClausIE w/o CCs ClausIE ClausIE w/o CCs OLLIE Reverb WOE TextRunner TextRunner

(non-redundant) (non-redundant) (Reverb)

Reverb dataset 1706/2975 1466/2344 1221/2161 1050/1707 547/1242 388/727 447/1028 343/837 286/798
Wikipedia dataset 598/1001 536/792 424/727 381/569 234/565 165/249 - - -

NYT dataset 696/1303 594/926 508/926 444/685 211/497 149/271 - - -

total number of extractions for each method and dataset.
Fig. 3 plots the precision of each OIE extractor as a func-
tion of the number of extractions (ordered by decreasing
confidence).

We found that in its default configuration, ClausIE pro-
duced 2.5–3.5 times more correct extractions than OLLIE,
the best-performing alternative method. This increase in re-
call is obtained because ClausIE considers all adverbials in
a clause (instead of only the one following the verb), extracts
non-verb-mediated propositions, detects non-consecutive con-
stituents, processes coordinated conjunctions, and outputs
triples with non-noun-phrase arguments. Roughly 27–29%
of the extractions of ClausIE were redundant. We believe
that redundant extractions can be valuable: Even though a
non-redundant proposition expresses more information, the
corresponding redundant propositions has a simpler struc-
ture and is easier to deal with. When redundant extractions
are removed, ClausIE produces 1.8–2.4 times more correct
extractions than OLLIE.

The precision of TextRunner was significantly lower than
that of Reverb, WOE, and ClausIE. The latter three ex-
tractors obtain high precision on high-confidence proposi-
tions; the precision drops as we include more and more low-
confidence propositions. In the case of ClausIE, the preci-
sion dropped quickly initially but then stabilized at between
53% and 60% (whether or not we include redundant proposi-
tions). Except for the Wikipedia dataset, the precision over
all extractions obtained by ClausIE was higher than that of
any other method, and ClausIE extracted significantly more
propositions.

We also ran a configuration of ClausIE in which processing
of coordinated conjunctions in subjects and arguments was
disabled. This resulted in an increase of precision between
5% and 10.7% (on Wikipedia). Thus ClausIE’s processing of
CCs is somewhat error-prone, partly due to the presence of
combinatory conjunctions and partly due to errors in the de-
pendency parse. Nevertheless, when CCs are not processed,
the number of extractions dropped significantly (between
11% and 27%), so that CC processing appears to be benefi-
cial overall.

According to [2], KrakeN extracts 572 propositions from
the Reverb data; 308 of these propositions were correct and
complete, 81 were correct but not complete. Note that
KrakeN extracts n-ary propositions, whereas our experi-
ments focus on triples (which cannot be produced by KrakeN
for n > 3). Note that KrakeN did not extract propositions
from dependency parses that contained the dep relation (i.e.,
an unknown dependency); this was true for 155 out of the
500 sentences in the Reverb data. ClausIE handles such
cases gracefully, e.g., by extracting propositions from clauses
that appear unaffected by the unknown dependency.

The high recall and consistently good precision of ClausIE
observed in our experiments indicates that reasoning over
clauses and clause-types is a viable approach to OIE.

5.4 Extractions Errors of ClausIE
We did a preliminary analysis of the results obtained by
ClausIE. We found that in most of the cases, ClausIE’s ex-
traction errors were due to incorrect dependency parses (see
Sec. 5.2 for examples). In some cases, the incorrect DP re-
sulted from noise in the input sentences, such as bad gram-
matical forms or spurious words. Our hope is that potential
future improvements in dependency parsing will also lead to
higher-precision extractions obtained by ClausIE. Another
source of imprecision of ClausIE was due to our processing
of coordinated conjunctions; see the discussion in Sec. 5.3.
On the one hand, the Stanford DP parser tended to produce
erroneous parses in the presence of CCs. On the other hand,
when the coordinated conjunction was combinatory, the ex-
tractions obtained by ClausIE were incorrect. ClausIE also
misclassified some SVOA clauses as SVO and thus omitted
an essential adverbial. As mentioned previously, it is of-
ten hard to distinguish SVO from SVOA; an improved dic-
tionary of potentially complex-transitive verbs may help to
avoid some of these extraction errors. Moreover, Quirk [15]
notes that adverbials in SVA and SVOA clauses are largely
restricted to space adjuncts, which may also help in identify-
ing such clauses. Finally, this problem is alleviated to some
extent if ClausIE is configured to produce n-ary extractions;
then essential adverbials will not be omitted, although they
can potentially be flagged as optional.

6 Conclusion
We presented a novel, clause-based approach to open in-
formation extraction called ClausIE. In contrast to previ-
ous approaches, ClausIE separates the detection of clauses
and clause types from the actual generation of propositions.
This allows ClausIE to obtain more and higher-precision ex-
tractions than alternative methods, but also enables flexible
generation of propositions. ClausIE can be seen as a first
step towards clause-based open information extraction. Po-
tential improvements include construction of richer lexica,
improved processing of the constituents of each clause to
avoid over-specification in subjects and arguments, as well
as context analysis to detect relations between clauses.
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Table 3: Example extractions from a sentence of each dataset

System # Proposition Label

Reverb dataset

The principal opposition parties boycotted the polls after accusations of vote-rigging , and the only other name on the ballot was a little-known
challenger from a marginal political party.

Reverb R1: (“The principal opposition parties”, “boycotted”, “the polls”) Correct
R2: (“the ballot”, “was”, “a little-known challenger”) Incorrect

TextRunner R3: (“The principal opposition parties”, “boycotted”, “the polls”) Correct

WOE R4: (“The principal opposition parties”, “boycotted”, “the polls”) Correct
R5: (“the only other name”, “was”, “a little-known challenger”) Incorrect

OLLIE R6: (“The principal opposition parties”, “boycotted”, “the polls”) Correct
R7: (“The principal opposition parties”, “boycotted the polls after”, “accusations of vote-rigging”) Correct
R8: (“The principal opposition parties”, “was”, “a little-known challenger”) Incorrect
R9: (“The principal opposition parties”, “was a little-known challenger from”,

“a marginal political party”) Incorrect
R10: (“the polls”, “be boycotted after”, “accusations of vote-rigging”) Correct
R11: (“the only other name”, “was”, “a little-known challenger”) Incorrect
R12: (“the only other name”, “was a little-known challenger from”, “a marginal political party”) Incorrect
R13: (“the only other name”, “boycotted”, “the polls”) Incorrect
R14: (“the only other name”, “boycotted the polls after”, “accusations of vote-rigging”) Incorrect
R15: (“a little-known challenger”, “be the only other name on”, “the ballot”) Correct
R16: (“only”, “be other name on”, “the ballot”) Incorrect
R17: (“other”, “be name on”, “the ballot”) Incorrect

ClausIE R18: (“The principal opposition parties”, “boycotted”, “the polls”) Correct (red.)
R19: (“The principal opposition parties”, “boycotted”, “the polls after accusations of vote-rigging”) Correct
R20: (“the only other name on the ballot”, “was”, “a little-known challenger”) Correct (red.)
R21: (“the only other name on the ballot”, “was”,

“a little-known challenger from a marginal political party”) Correct

Wikipedia dataset

He fathered two children, Edna and Donald, and lived in Aberdeen until his death from tuberculosis in 1942.

Reverb N1: (“He”, “fathered”, “two children”) Correct
N2: (“two children”, “lived in”, “Aberdeen”) Correct

OLLIE N3: (“He”, “fathered”, “two children”) Correct
N4: (“He”, “lived in”, “Aberdeen”) Correct
N5: (“He”, “lived until”, “his death”) Correct

ClausIE N6: (“He”, “fathered”, “two children”) Correct
N7: (“He”, “fathered”, “Edna”) Correct
N8: (“He”, “fathered”, “Donald”) Correct
N9: (“He”, “lived”, “in Aberdeen”) Correct (red.)
N10: (“He”, “lived”, “in Aberdeen until his death”) Correct
N11: (“He”, “lived”, “in Aberdeen from tuberculosis in 1942”) Incorrect
N12: (“his”, “has”, “death”) Correct

New York Times dataset

Taken for granted it sometimes may be, but this year the Defense Department sought $950 million in assistance from Congress (and secured
half that amount) for Ankara’s huge military machine, which includes the biggest standing army in NATO outside the United States.

Reverb W1: (“the Defense Department”, “sought”, “$ 950 million”) Correct
W2: (“Ankara’s huge military machine”, “includes”, “the biggest standing army”) Incorrect

OLLIE W3: (“the Defense Department”, “sought $ 950 million in assistance from Congress half ”,
“( and secured half)”) Incorrect

W4: (“the Defense Department”, “sought $ 950 million in assistance from Congress in”, “this year”) Incorrect
W5: (“Ankara ’s huge military machine”, “includes the biggest standing army in NATO outside”,

“the United States”) Incorrect
W6: (“the biggest standing army”, “be includes by”, “Ankara ’s huge military machine”) Incorrect

ClausIE W7: (“the Defense Department”, “sought”, “$ 950 million”) Correct (red.)
W8: (“the Defense Department”, “sought”, “$ 950 million in assistance”) Correct
W9: (“the Defense Department”, “sought”, “$ 950 million this year”) Correct
W10: (“the Defense Department”, “sought”, “$ 950 million for Ankara’s huge military machine”) Correct
W11: (“the Defense Department”, “sought”, “$ 950 million from Congress”) Correct
W12: (“Ankara’s huge military machine”, “includes”, “the biggest standing army in NATO”) Incorrect
W13: (“Ankara’s huge military machine”, “includes”,

“the biggest standing army in NATO outside the United States”) Correct
W14: (“Ankara”, “has”, “huge military machine”) Correct
W15: (“Taken for”, “granted”, “it sometimes may be”) Incorrect
W16: (“it”, “may be”) Incorrect
W17: (“it”, “may be”, “sometimes”) Incorrect
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