Reconstructing Graphs from Neighborhood Data

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Dora Erdos, Rainer Gemulla, Evimaria Terzi

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

	O DIA		NOISSIN
Alice		0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

M

	Alice	B B B B	Gecile	
Alice	2	1	1	
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Left neighborhood information of M.

	OUT THE OUT		INDISSION
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

	Alice	B B B B	Gecile	
Alice	2	1	1	
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Left neighborhood information of M.

	OUT THE OUT		INDISSION
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

	Alice	B B B B	Gecile	
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Left neighborhood information of M.

	O THE OOTHER		NOISSIN
Alice		0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

	Alice	Bob	Cecile	
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Left neighborhood information of M.

	O THE OOTHER		NOISSIN
Alice		0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

	Alice	Bob Bob	Gecile	
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Left neighborhood information of M.

	OUT THE OUT		INDISSION
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

	Alice	B B B B	Gecile	
Alice	2	1	1	
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Left neighborhood information of M.

	O THE O THE O		NOISSIN
Alice	1	0	1
Bob	1	0	0
cile	0	1	1
Dave	0	1	1

L is a similarity matrix between people

	Alice	B B B B	Gecile	
Alice	2	1	1	
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Right neighborhood information of M.

	A LEAGONING		NOISSIN
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

IV

MOISSIM

2

	Alice	B B B	Gecile	
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Right neighborhood information of M.

	A LEAGONING		NOISSIN
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

 \mathbb{N}

MOISSIM

2

	Alice	B B B	Gecile	
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Right neighborhood information of M.

	ALL DE CONTRACTOR		MOISSIM
Alice		0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

A LEADER FRIENDER		MOISSION
2	0	1
0	2	2
1	2	3
	R	

	Alice	B B B B	<u>Cecile</u>	
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Right neighborhood information of M.

	ALL DE CONTRACTOR		MOISSIM
Alice		0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

ANTHERE OF		NOISSIN
2	0	1
0	2	2
1	2	3
	R	

	Alice	B B B B	<u>Cecile</u>	
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Right neighborhood information of M.

	ALL DE CONTRACTOR		MOISSIM
Alice		0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

IV

ANTI-LEGOOLITE		NOISSIN
2	0	1
0	2	2
1	2	3
	R	

	Alice	Bob	Gecile	Dave
Alice	2	1	1	
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2
	I			

L is a similarity matrix between people R is a similarity matrix between movies

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

	A LEAGONING		NOISSIN
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

IV

MOISSIM

1

2

	Alice	B B B C	Gecile	
Alice	2	1	1	1
Bob	1	1	0	С
Cecile	1	0	2	2
Dave	1	0	2	2
		I		

L is a similarity matrix between people R is a similarity matrix between movies

NETFLIX

Recommend movies to users

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

	A LEAGONING		NOISSIN
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

MOISSIM

1

2

	Alice	B B B C	Gecile	
Alice	2	1	1	1
Bob	1	1	0	С
Cecile	1	0	2	2
Dave	1	0	2	2
		I		

L is a similarity matrix between people R is a similarity matrix between movies

NETFLIX

Recommend movies to users

	Alice	B B B B	Gecile	
Alice	2	1	1	1
Bob	1	1	0	С
Cecile	1	0	2	2
Dave	1	0	2	2
	L		I	

What do we do if M is hidden?

	Alice	Bob	Gecile	
Alice	2	1	1	1
Bob	1	1	0	С
Cecile	1	0	2	2
Dave	1	0	2	2

What do we do if M is hidden?

Reconstruction problem: Given L and R reconstruct M.

ANTI-TELECO		MOISSIN *
2	0	1
0	2	2
1	2	3
	R	

Outline

Problem definition

Connection to SVD

Greedy SVD reconstruction

Experiments

Discussion

Outline

Problem definition

Connection to SVD

Greedy SVD reconstruction

Experiments

Discussion

	Alice	Bob Bob	Gecile	
Alice	2	1	1	
Bob	1	1	0	С
Cecile	1	0	2	2
Dave	1	0	2	2

Given the neighborhood information L and R how would you reconstruct M?

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

	A LEAGONING		NOISSIN
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

MOISSIM

2

	Alice	B B B	Gecile	
Alice	2	1	1	
Bob	1	1	0	С
Cecile	1	0	2	2
Dave	1	0	2	2

Given the neighborhood information L and R how would you reconstruct M?

$L = MM^T$ $R = M^T M$

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

	A LEAGONING		NOISSIN
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

MISSIO

2

Reconstruction problem:

Given neighborhood matrices L and R construct binary matrix \hat{M} Such that $F_L(\hat{M}) + F_R(\hat{M})$ is minimized

$F_L(\hat{M}) = \left\| \hat{M} \hat{M}^T - L \right\|$ $F_R(\hat{M}) = \|\hat{M}^T \hat{M} - R\|$

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Measures the distance between L, R and the neighborhood matrices of \hat{M}

Outline

Problem definition

Connection to SVD

Greedy SVD reconstruction

Experiments

Discussion

Connection to SVD

Idea: Reconstruct M by obtaining its SVD decomposition

Connection to SVD

Idea: Reconstruct M by obtaining its SVD decomposition

SVD decomposition of M:

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

$M: \qquad M = U\Sigma V^T$

Connection to SVD

Idea: Reconstruct M by obtaining its SVD decomposition

$M = U\Sigma V^{T}$ SVD decomposition of M:

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Eigen decomposition of L: $L = U\Lambda U^T$ Remember: $L = MM^T$

Connection to SVD

Idea: Reconstruct M by obtaining its SVD decomposition

$M = U\Sigma V'$ SVD decomposition of M:

Eigen decomposition of R:

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Remember: $L = MM^T$ $R = M^T M$

Connection to SVD

Idea: Reconstruct M by obtaining its SVD decomposition

SVD decomposition of M: $M = U\Sigma V'$

Eigen decomposition of R: $R = V \Lambda V^T$

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Remember: $L = MM^T$ $R = M^T M$

Connection to SVD

Eigen decomposition of L and R: $L = U\Lambda U^T$ $R = V\Lambda V^T$ $\Lambda = \Sigma^2$

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

As a result we have all components of the SVD representation of MU, V and $\Sigma = \sqrt{\Lambda}$

Connection to SVD

Eigen decomposition of L and R: $L = U\Lambda U^T$ $R = V\Lambda V^T$ $\Lambda = \Sigma^2$

As a result we have all components of the SVD representation of M

Compute $\hat{M} = U\sqrt{\Lambda}V^T$

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

U,V and $\Sigma = \sqrt{\Lambda}$

Connection to SVD

Eigen decomposition of L and R: $L = U\Lambda U^T$ $R = V\Lambda V^T$ $\Lambda = \Sigma^2$

As a result we have all components of the SVD representation of M

Compute $\hat{M} = U\sqrt{\Lambda}V^T$

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

U,V and $\Sigma = \sqrt{\Lambda}$

Connection to SVD

Eigen decomposition of L and R: $L = U\Lambda U^T$ $R = V\Lambda V^T$ $\Lambda = \Sigma^2$

As a result we have all components of the SVD representation of M

Compute $\hat{M} = U\sqrt{\Lambda V^T}$

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

U,V and $\Sigma = \sqrt{\Lambda}$

Done?

We don't know what sign to pick for the singular values

$$\hat{\Sigma}_i = \pm \sqrt{\Lambda}_i$$

We don't know whether the resulting \hat{M} is binary.

Outline

Problem definition

Connection to SVD

Greedy SVD reconstruction

Experiments

Discussion

Greedy SVD reconstruction

1. Compute eigenvalue decompositions of L and R to obtain U,V,Λ

Set $\hat{\Sigma}_i = \pm \sqrt{\Lambda}_i$

2. Fix signs of singular values in decreasing order of magnitude $|\Sigma_1| \ge |\Sigma_2| \ge \dots |\Sigma_n|$

Greedy SVD reconstruction

1. Compute eigenvalue decompositions of L and R to obtain U, V, Λ

2. Fix signs of singular values in decreasing order of magnitude $|\Sigma_1| \ge |\Sigma_2| \ge \dots |\Sigma_n|$

Iteration *i*:

 $M_i^+ = M_{i-1} + U_i \cdot |\Sigma_i| \cdot V_i^T$

 $M_i^- = M_{i-1} - U_i \cdot |\Sigma_i| \cdot V_i^T$

Greedy SVD reconstruction

1. Compute eigenvalue decompositions of L and R to obtain U, V, Λ

2. Fix signs of singular values in decreasing order of magnitude $|\Sigma_1| \ge |\Sigma_2| \ge \dots |\Sigma_n|$

Iteration *i*.

 $M_i^+ = M_{i-1} + U_i \cdot |\Sigma_i| \cdot V_i^T$

 $M_i^- = M_{i-1} - U_i \cdot |\Sigma_i| \cdot V_i^T$

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Compute binary matrix by rounding: $BM_i^+ = (M_i^+ \ge t)$ $BM_i^- = \left(M_i^- \ge t\right)$

Greedy SVD reconstruction

1. Compute eigenvalue decompositions of L and R to obtain U, V, Λ

2. Fix signs of singular values in decreasing order of magnitude $|\Sigma_1| \ge |\Sigma_2| \ge \dots |\Sigma_n|$

Iteration *i*:

 $M_i^+ = M_{i-1} + U_i \cdot |\Sigma_i| \cdot V_i^T$

 $M_i^- = M_{i-1} - U_i \cdot |\Sigma_i| \cdot V_i^T$

Choose binary matrix that is closest to its real version

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Compute binary matrix by rounding: $BM_i^+ = (M_i^+ \ge t)$ $BM_i^- = (M_i^- \ge t)$

Greedy SVD reconstruction

 $M_i^+ = M_{i-1} + U_i \cdot |\Sigma_i| \cdot V_i^T$

 $M_i^- = M_{i-1} - U_i \cdot |\Sigma_i| \cdot V_i^T$

Choose binary matrix that is closest to its real version

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

- t = 0.5 Closest binary matrix
- t = 0.1 Predicts mostly 1s
- t = 0.9 Predicts mostly 0s

Compute binary matrix by rounding: $BM_i^+ = (M_i^+ \ge t)$ $BM_i^- = (M_i^- \ge t)$

Outline

Problem definition

Connection to SVD

Greedy SVD reconstruction

Experiments

Discussion

Experiments

Flickr dataset¹:

2000 users x 1989 groups Density 5%

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Users exhibit power law degree distribution Groups have exponential degree distribution

Experiments

- Data is very sparse

Relative absolute error

 $\|\hat{BM} - M\|$

|M|

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Flickr dataset¹: 2000 users x 1989 groups Density 5%

estimating M to be all 0 would yield very small error

Experiments

relative absolute error:

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Flickr dataset¹: 2000 users x 1989 groups Density 5%

singular values scale)

X axis: number k of highest magnitude Y axis: relative absolute error (log

Experiments

relative absolute error:

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Flickr dataset¹: 2000 users x 1989 groups Density 5%

singular values scale)

We

X axis: number k of highest magnitude Y axis: relative absolute error (log

- Matrix M has rank 1989, but
- with only 900 singular values
 - achieve almost can
- perfect reconstruction.

Outline

Problem definition

Connection to SVD

Greedy SVD reconstruction

Experiments

Discussion

	Alice	B B B B	Gecile	
Alice	2	1	1	
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

	OOTIN THE OO		NOISSIN
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

IV

MOISSIM

2

	Alice	B B B B	O e c i e	
Alice	2	1	1	1
Bob	1	1	0	С
Cecile	1	0	2	2
Dave	1	0	2	2

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

	OOTIN THE OO		NOISSIN
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

IV

MOISSIM

2

	Alice	B B B B	Oecile	
Alice	2	1	1	1
Bob	1	1	0	С
Cecile	1	0	2	2
Dave	1	0	2	2

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

	CONTRACTICO OF THE OF T		MOISSIN
Alice		0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

IV

2

	Alice	B B B	O B C B C I B	
Alice	2	1	1	
Bob	1	1	0	С
Cecile	1	0	2	2
Dave	1	0	2	2

Knowing degrees of nodes carries a lot of extra information

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

	CONTRACTICO OF THE OF T		MOISSIN
Alice		0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

2

	Alice	B B B C B	Gecile	
Alice	0	1	1	
Bob	1	0	0	C
Cecile	1	0	0	2
Dave	1	0	2	С
	L		_	

Knowing degrees of nodes carries a lot of extra information

Obtain L' and R' by setting the main diagonals to 0.

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

	O THE O THE O		NOISSIN
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

Wille's

	Alice	B B B	Gecile	
Alice	0	1	1	
Bob	1	0	0	С
Cecile	1	0	0	2
Dave	1	0	2	С

Knowing degrees of nodes carries a lot of extra information

Reconstruction problem: Given L' and R' reconstruct M.

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

ALL DE COOL		NOISSIN			
0	0	1			
0	0	2			
1	2	0			
,					

Conclusions

(Bipartite) graphs can be reconstructed from neighborhood data with quite high accuracy.

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Often a smaller than rank(M) number of singular values is sufficient.

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

Thank You!

