Reconstructing Graphs from Neighborhood Data

Dora Erdos, Rainer Gemulla, Evimaria Terzi

BOSTON
UNIVERSITY

-IIU!
 max planck institut
 informatik

 UNIVERSITY
D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12 UNIVERSITY

	蹗		W
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
		M	

D. Erdos, R. Gemulla, E. Terzi: Reconstructing graphs from neighborhood data @ ICDM12

ComputerScience

 UNIVERSITY| | $\stackrel{\text { OU }}{\stackrel{\text { U }}{4}}$ | - | $\begin{aligned} & \stackrel{0}{\bar{O}} \\ & \stackrel{\otimes}{0} \end{aligned}$ | $\stackrel{\text { ® }}{\stackrel{\text { ® }}{\sim}}$ |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

Alice	(${ }^{\text {易 }}$		悃
	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
		M	

ComputerScience

 UNIVERSITY| | $\frac{\mathbb{O}}{\stackrel{U}{\mathbb{C}}}$ | 응 | $\begin{aligned} & \stackrel{0}{\bar{O}} \\ & \text { © } \end{aligned}$ | - ® |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

Alice	(${ }^{\text {易 }}$		悃
	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
		M	

ComputerScience

 UNIVERSITY| | $\frac{\otimes 巳}{\stackrel{0}{⿺}}$ | O | $$ | $\stackrel{\text { - }}{\sim}$ |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

	(${ }^{\text {che }}$		
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
		M	

ComputerScience

 UNIVERSITY| | $\frac{\otimes}{\stackrel{0}{⿺}}$ | O | $\begin{aligned} & \stackrel{0}{\bar{O}} \\ & \stackrel{\otimes}{0} \end{aligned}$ | $\stackrel{\text { ® }}{\stackrel{\text { ® }}{0}}$ |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

	(${ }^{\text {che }}$		
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
		M	

ComputerScience

 UNIVERSITY| Alice | $\frac{.0}{\frac{0}{4}}$ | O | ©
 0
 0 | $\stackrel{\text { ® }}{\stackrel{\text { ® }}{0}}$ |
| :---: | :---: | :---: | :---: | :---: |
| | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

	(${ }^{\text {che }}$		
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
		M	

ComputerScience

Alice	$\frac{.0}{\frac{0}{4}}$	O	© 0 0	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{0}}$
	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Alice
Bob
Cecile

Dave

	盛		
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
		M	

L is a similarity matrix between people

ComputerScience

 UNIVERSITY| | $\frac{\otimes}{\stackrel{O}{\mathbb{C}}}$ | $\begin{aligned} & \text { 응 } \\ & \hline 0 \end{aligned}$ | $\stackrel{0}{0}$
 0 | $\stackrel{\text { ® }}{\text { ® }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

	,	近	匋
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

ComputerScience

 UNIVERSITY| | $\stackrel{\otimes}{\underset{Z}{2}}$ | ㅇㅇ | $\begin{aligned} & \stackrel{0}{\bar{O}} \\ & \underset{\sim}{0} \end{aligned}$ | ® |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

	,	近	匋
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

ComputerScience

 UNIVERSITY| | $\frac{\mathbb{O}}{\stackrel{U}{\mathbb{C}}}$ | 응 | $\begin{aligned} & \stackrel{0}{\bar{O}} \\ & \text { © } \end{aligned}$ | - ® |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

	,	近	匋
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

ComputerScience

 UNIVERSITY| | $\frac{\otimes}{\stackrel{O}{\mathbb{C}}}$ | $\begin{aligned} & \text { 응 } \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \mathbb{0} \\ & \hline \overline{0} \\ & 0 \end{aligned}$ | $\stackrel{\text { ® }}{\sim}$ |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

	,	近	匋
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

ComputerScience

 UNIVERSITY| | $\frac{\mathbb{O}}{\stackrel{U}{\mathbb{C}}}$ | 응 | $\begin{aligned} & \stackrel{0}{\bar{O}} \\ & \text { © } \end{aligned}$ | - ® |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

	,	近	匋
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

	$\frac{\text { U }}{\stackrel{\text { U }}{<}}$	-0	O	$\stackrel{\text { ® }}{\text { ® }}$
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

	,	物	
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

L is a similarity matrix between people
R is a similarity matrix between movies

	$\stackrel{\otimes}{\stackrel{U}{\mathbb{Z}}}$	\%		$\stackrel{0}{\stackrel{\text { ® }}{0}}$
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

Alice	(${ }^{\text {曷 }}$		
	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1

L is a similarity matrix between people
R is a similarity matrix between movies

ComputerScience

	$\stackrel{\text { U }}{\substack{\text { O }}}$	$\begin{aligned} & \text { O } \\ & \hline 0 \end{aligned}$	O - - 0	-
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

L is a similarity matrix between people
R is a similarity matrix between movies

Recommendation systems:

1. Compute similarity matrices L and

R from M

$$
\begin{aligned}
L & =M M^{T} \\
R & =M^{T} M
\end{aligned}
$$

2. Apply some algorithm to L and R to obtain recommendation collaborative filtering nearest neighbor algorithm

ComputerScience

Recommendation systems:

1. Compute similarity matrices L and

R from M

$$
\begin{aligned}
L & =M M^{T} \\
R & =M^{T} M
\end{aligned}
$$

2. Apply some algorithm to L and R to obtain recommendation collaborative filtering nearest neighbor algorithm

What do we do if M is hidden?

ComputerScience

	-	-	0 0 0	-
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

What do we do if M is hidden?

Reconstruction problem:
Given L and R reconstruct M.

ComputerScience

Outline

Problem definition

Connection to SVD

Greedy SVD reconstruction
Experiments
Discussion

ComputerScience

 UNIVERSIT
Outline

Problem definition
Connection to SVD

Greedy SVD reconstruction
Experiments
Discussion

ComputerScience

		$\begin{aligned} & \text { O } \\ & \text { O } \end{aligned}$	O - 0	ก
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

	,	近	匋
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

Given the neighborhood information L and R how would you reconstruct M ?

ComputerScience

	$\frac{0}{-\frac{0}{<}}$	응	O - - 0	$\stackrel{\text { ® }}{\text { ® }}$
Alice	2	1	1	1
Bob	1	1	0	0
Cecile	1	0	2	2
Dave	1	0	2	2

	,	物	
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

Given the neighborhood information L and R how would you reconstruct M ?

$$
\begin{aligned}
& L=M M^{T} \\
& R=M^{T} M
\end{aligned}
$$

Reconstruction problem:

Given neighborhood matrices L and R construct binary matrix \hat{M} Such that $F_{L}(\hat{M})+F_{R}(\hat{M})$ is minimized

$$
\begin{aligned}
& F_{L}(\hat{M})=\left\|\hat{M} \hat{M}^{T}-L\right\| \\
& F_{R}(\hat{M})=\left\|\hat{M}^{T} \hat{M}-R\right\|
\end{aligned}
$$

Measures the distance between L, R and the neighborhood matrices of \hat{M}

ComputerScience

Outline

Problem definition
Connection to SVD

Greedy SVD reconstruction
Experiments
Discussion

Connection to SVD

Idea: Reconstruct M by obtaining its SVD decomposition

Connection to SVD

Idea: Reconstruct M by obtaining its SVD decomposition

SVD decomposition of $\mathrm{M}: \quad M=U \Sigma V^{T}$

Connection to SVD

Idea: Reconstruct M by obtaining its SVD decomposition

SVD decomposition of $\mathrm{M}: \quad M=U \Sigma V^{T}$

Eigen decomposition of $\mathrm{L}: \quad L=U \Lambda U^{T} \quad$ Remember: $L=M M^{T}$

Connection to SVD

Idea: Reconstruct M by obtaining its SVD decomposition

SVD decomposition of $\mathrm{M}: \quad M=U \Sigma V^{T}$

Eigen decomposition of $\mathrm{L}: \quad L=U \Lambda U^{T} \quad$ Remember: $L=M M^{T}$
Eigen decomposition of $\mathrm{R}: \quad R=V \Lambda V^{T} \quad R=M^{T} M$

Connection to SVD

Idea: Reconstruct M by obtaining its SVD decomposition

SVD decomposition of $\mathrm{M}: \quad M=U \Sigma V^{T}$

Eigen decomposition of $\mathrm{L}: \quad L=U \Lambda U^{T} \quad$ Remember: $L=M M^{T}$
Eigen decomposition of $\mathrm{R}: \quad R=V \Lambda V^{T}$

$$
R=M^{T} M
$$

Observe $\Lambda=\Sigma^{2}$

Connection to SVD

Eigen decomposition of L and $\mathrm{R}: \quad L=U \Lambda U^{T} \quad R=V \Lambda V^{T} \quad \Lambda=\Sigma^{2}$

As a result we have all components of the SVD representation of M

$$
U, V \text { and } \Sigma=\sqrt{\Lambda}
$$

Connection to SVD

Eigen decomposition of L and $\mathrm{R}: \quad L=U \Lambda U^{T} \quad R=V \Lambda V^{T} \quad \Lambda=\Sigma^{2}$

As a result we have all components of the SVD representation of M

$$
U, V \text { and } \Sigma=\sqrt{\Lambda}
$$

Compute $\quad \hat{M}=U \sqrt{\Lambda} V^{T}$

Connection to SVD

Eigen decomposition of L and $\mathrm{R}: \quad L=U \Lambda U^{T} \quad R=V \Lambda V^{T} \quad \Lambda=\Sigma^{2}$

As a result we have all components of the SVD representation of M

$$
U, V \text { and } \Sigma=\sqrt{\Lambda}
$$

Compute $\quad \hat{M}=U \sqrt{\Lambda} V^{T}$
Done?

Connection to SVD

Eigen decomposition of L and $\mathrm{R}: \quad L=U \Lambda U^{T} \quad R=V \Lambda V^{T} \quad \Lambda=\Sigma^{2}$

As a result we have all components of the SVD representation of M

$$
U, V \text { and } \Sigma=\sqrt{\Lambda}
$$

Compute $\quad \hat{M}=U \sqrt{\Lambda} V^{T}$
Done?

We don't know what sign to pick for the singular values

$$
\hat{\Sigma}_{i}= \pm \sqrt{\Lambda}_{i}
$$

We don't know whether the resulting \hat{M} is binary.

ComputerScience

Outline

Problem definition
Connection to SVD

Greedy SVD reconstruction
Experiments
Discussion

Greedy SVD reconstruction

1. Compute eigenvalue decompositions of L and R to obtain U, V, Λ

$$
\text { Set } \hat{\Sigma}_{i}= \pm \sqrt{\Lambda}_{i}
$$

2. Fix signs of singular values in decreasing order of magnitude

$$
\left|\Sigma_{1}\right| \geq\left|\Sigma_{2}\right| \geq \ldots\left|\Sigma_{n}\right|
$$

Greedy SVD reconstruction

1. Compute eigenvalue decompositions of L and R to obtain U, V, Λ

$$
\text { Set } \hat{\Sigma}_{i}= \pm \sqrt{\Lambda}_{i}
$$

2. Fix signs of singular values in decreasing order of magnitude

$$
\left|\Sigma_{1}\right| \geq\left|\Sigma_{2}\right| \geq \ldots\left|\Sigma_{n}\right|
$$

Iteration i :

$$
\begin{aligned}
& M_{i}^{+}=M_{i-1}+U_{i} \cdot\left|\sum_{i}\right| \cdot V_{i}^{T} \\
& M_{i}^{-}=M_{i-1}-U_{i} \cdot\left|\sum_{i}\right| \cdot V_{i}^{T}
\end{aligned}
$$

Greedy SVD reconstruction

1. Compute eigenvalue decompositions of L and R to obtain U, V, Λ

$$
\text { Set } \quad \hat{\Sigma}_{i}= \pm \sqrt{\Lambda}
$$

2. Fix signs of singular values in decreasing order of magnitude

$$
\left|\Sigma_{1}\right| \geq\left|\Sigma_{2}\right| \geq \ldots\left|\Sigma_{n}\right|
$$

Iteration i :

$$
\begin{array}{rr}
M_{i}^{+}=M_{i-1}+U_{i} \cdot\left|\sum_{i}\right| \cdot V_{i}^{T} & \text { Compute binary matrix by rounding: } \\
M_{i}^{-}=M_{i-1}-U_{i} \cdot\left|\sum_{i}\right| \cdot V_{i}^{T} & B M_{i}^{+}=\left(M_{i}^{+} \geq t\right) \\
B M_{i}^{-}=\left(M_{i}^{-} \geq t\right)
\end{array}
$$

Greedy SVD reconstruction

1. Compute eigenvalue decompositions of L and R to obtain U, V, Λ

$$
\text { Set } \hat{\Sigma}_{i}= \pm \sqrt{\Lambda}_{i}
$$

2. Fix signs of singular values in decreasing order of magnitude

$$
\left|\Sigma_{1}\right| \geq\left|\Sigma_{2}\right| \geq \ldots\left|\Sigma_{n}\right|
$$

Iteration i :

$$
M_{i}^{+}=M_{i-1}+U_{i} \cdot\left|\sum_{i}\right| \cdot V_{i}^{T} \quad \text { Compute binary matrix by rounding: }
$$

$$
M_{i}^{-}=M_{i-1}-U_{i} \cdot\left|\sum_{i}\right| \cdot V_{i}^{T}
$$

$$
B M_{i}^{+}=\left(M_{i}^{+} \geq t\right)
$$

Choose binary matrix that is closest to its real version

$$
B M_{i}^{-}=\left(M_{i}^{-} \geq t\right)
$$

Greedy SVD reconstruction

$t=0.5$ Closest binary matrix
$t=0.1$ Predicts mostly 1 s
$t=0.9$ Predicts mostly 0 s

Iteration i :

$$
M_{i}^{+}=M_{i-1}+U_{i} \cdot\left|\sum_{i}\right| \cdot V_{i}^{T} \quad \text { Compute binary matrix by rounding: }
$$

$$
M_{i}^{-}=M_{i-1}-U_{i} \cdot\left|\sum_{i}\right| \cdot V_{i}^{T}
$$

$$
B M_{i}^{+}=\left(M_{i}^{+} \geq t\right)
$$

Choose binary matrix that is closest to its real

$$
B M_{i}^{-}=\left(M_{i}^{-} \geq t\right)
$$ version

ComputerScience

Outline

Problem definition
Connection to SVD

Greedy SVD reconstruction
Experiments
Discussion

Experiments

Flickr dataset ${ }^{1}$:

2000 users x 1989 groups
Density 5\%
Users exhibit power law degree distribution
Groups have exponential degree distribution

Experiments

Flickr dataset ${ }^{1}$: 2000 users x 1989 groups Density 5\%

Data is very sparse
estimating M to be all 0 would yield very small error

Relative absolute error

1 Zheleva et al. WWW '09

Experiments

Flickr dataset ${ }^{1}$: 2000 users $\times 1989$ groups

 Density 5\%
X axis: number k of highest magnitude singular values
Y axis: relative absolute error (log scale)

1Zheleva et al. WWW'09

Experiments

Flickr dataset ${ }^{1}$: 2000 users x 1989 groups

 Density 5\%

$$
\|B \hat{M}-M\|
$$

X axis: number k of highest magnitude singular values
Y axis: relative absolute error (log scale)

Matrix M has rank 1989, but with only 900 singular values we can achieve almost perfect reconstruction.

ComputerScience

Outline

Problem definition

Connection to SVD

Greedy SVD reconstruction
Experiments
Discussion

ComputerScience

 UNIVERSITY| | $\frac{\otimes}{\stackrel{O}{\mathbb{C}}}$ | $\begin{aligned} & \text { 응 } \\ & \hline 0 \end{aligned}$ | $\stackrel{0}{0}$
 0 | $\stackrel{\text { ® }}{\text { ® }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

	S	4	詈
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

ComputerScience

 UNIVERSITY| | $\stackrel{\text { Q }}{\stackrel{O}{<}}$ | 응 | $\begin{aligned} & \mathbb{0} \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$ | $\stackrel{\text { ® }}{\text { ® }}$ | Alice | (${ }^{\text {a }}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 | | 1 | 0 | 1 |
| Bob | 1 | 1 | 0 | 0 | Bob | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 | Cecile | 0 | 1 | 1 |
| Dave | 1 | 0 | 2 | 2 | Dave | 0 | 1 | 1 |
| L | | | | | M | | | |

ComputerScience

 UNIVERSITY| | $\stackrel{\text { Q }}{\stackrel{O}{⿺}}$ | 응 | $\begin{aligned} & \frac{0}{0} \\ & 0 \\ & \hline \end{aligned}$ | $\stackrel{\text { ® }}{\stackrel{\sim}{\sim}}$ |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

	S	4	詈
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

ComputerScience

 UNIVERSITY| | $\frac{0}{-\frac{0}{<}}$ | -0 | - | $\stackrel{\text { ® }}{\text { ® }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Alice | 2 | 1 | 1 | 1 |
| Bob | 1 | 1 | 0 | 0 |
| Cecile | 1 | 0 | 2 | 2 |
| Dave | 1 | 0 | 2 | 2 |

	S	边	
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

Knowing degrees of nodes carries a lot of extra information

	$\frac{.0}{\frac{0}{<}}$	응	$\stackrel{0}{0}$ 	$\stackrel{\text { ® }}{\text { ® }}$
Alice	0	1	1	1
Bob	1	0	0	0
Cecile	1	0	0	2
Dave	1	0	2	0

	,	近	匋
Alice	1	0	1
Bob	1	0	0
Cecile	0	1	1
Dave	0	1	1
M			

Knowing degrees of nodes carries a lot of extra information

Obtain L' and R' by setting the main diagonals to 0 .
 UNIVERSITY

	$\stackrel{\otimes}{\dot{Z}}$	$\begin{aligned} & \text { O } \\ & \hline 0 \end{aligned}$		$\stackrel{\text { ® }}{\text { ® }}$
Alice	0	1	1	1
Bob	1	0	0	0
Cecile	1	0	0	2
Dave	1	0	2	0

Knowing degrees of nodes carries a lot of extra information

Reconstruction problem:
Given L' and R' reconstruct M.

Conclusions

(Bipartite) graphs can be reconstructed from neighborhood data with quite high accuracy.

Often a smaller than rank (M) number of singular values is sufficient.

Thank You!

