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Given neighborhood matrices L and R construct binary matrix  

Such that                        is minimized 

Reconstruction problem: 

   MFMF RL
ˆˆ 

M̂

LMMMF T

L  ˆˆ)ˆ(

RMMMF T

R  ˆˆ)ˆ(

Measures the distance between L, R and 

the neighborhood matrices of  M̂
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Connection to SVD 

Idea: Reconstruct M by obtaining its SVD decomposition 

TVUM SVD decomposition of M: 

Observe 
2

TUUL Eigen decomposition of L: Remember: 
TMML 

TVVR Eigen decomposition of R: MMR T
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TUUL Eigen decomposition of L and R: 
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As a result we have all components of the SVD representation of        M

VU , and 
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Connection to SVD 

TUUL Eigen decomposition of L and R: 
TVVR 

As a result we have all components of the SVD representation of        M

VU , and 

TVUM ˆCompute 

Done? 

We don’t know what sign to 

pick for the singular values 

 

 

We don’t know whether the 

resulting        is binary. 

 

ii ̂

M̂

2
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Greedy SVD reconstruction 

2. Fix signs of singular values in decreasing order of magnitude 

n 21

1. Compute eigenvalue decompositions of L and R to obtain  ,,VU

Set  ii ̂
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Greedy SVD reconstruction 

2. Fix signs of singular values in decreasing order of magnitude 

n 21

Iteration i: 
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Greedy SVD reconstruction 
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Greedy SVD reconstruction 

Compute binary matrix by rounding: 

 tMBM ii  

 tMBM ii  

5.0t Closest binary matrix 

1.0t Predicts mostly 1s 

9.0t Predicts mostly 0s 

Iteration i: 
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Choose binary matrix that is closest to its real 

version 
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Experiments 

Flickr dataset1: 

2000 users x 1989 groups 

Density 5% 

Users exhibit power law degree distribution 

Groups have exponential degree distribution 

1   Zheleva et al. WWW ‘09 
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Experiments Flickr dataset1: 2000 users x 1989 groups 

Density 5% 

Data is very sparse 

                    estimating M to be all 0 would yield very           

           small error 

M

MMB ˆ

Relative absolute error 

1   Zheleva et al. WWW ‘09 
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Experiments Flickr dataset1: 

M

MMB ˆ

relative absolute error: 

2000 users x 1989 groups 

Density 5% 

X axis: number k of highest magnitude 

singular values  

Y axis: relative absolute error (log 

scale)  

1   Zheleva et al. WWW ‘09 
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Experiments Flickr dataset1: 

M

MMB ˆ

relative absolute error: 

2000 users x 1989 groups 

Density 5% 

X axis: number k of highest magnitude 

singular values  

Y axis: relative absolute error (log 

scale) 

Matrix M has rank 1989, but 

with only 900 singular values 

we can achieve almost 

perfect reconstruction. 

1   Zheleva et al. WWW ‘09 
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Knowing degrees of nodes carries a lot 

of extra information  

Obtain L’ and R’ by setting the main 

diagonals to 0. 
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Conclusions 

(Bipartite) graphs can be reconstructed from neighborhood data with quite 

high accuracy. 

 

Often a smaller than rank(M) number of singular values is sufficient. 
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Thank You! 


