
Maintaining Bernoulli Samples over Evolving Multisets

Rainer Gemulla Wolfgang Lehner
Technische Universit -at Dresden

01099 Dresden, Germany
{gemulla,lehner}@inf.tu-dresden.de

Peter J. Haas
IBM Almaden Research Center

San Jose, California, USA
phaas@us.ibm.com

ABSTRACT
Random sampling has become a crucial component of modern data
management systems. Although the literature on database sam-
pling is large, there has been relatively little work on the prob-
lem of maintaining a sample in the presence of arbitrary insertions
and deletions to the underlying dataset. Most existing maintenance
techniques apply either to the insert-only case or to datasets that
do not contain duplicates. In this paper, we provide a scheme that
maintains a Bernoulli sample of an underlying multiset in the pres-
ence of an arbitrary stream of updates, deletions, and insertions.
Importantly, the scheme never needs to access the underlying mul-
tiset. Such Bernoulli samples are easy to manipulate, and are well
suited to parallel processing environments. Our method can be
viewed as an enhancement of the “counting sample” scheme devel-
oped by Gibbons and Matias for estimating the frequency of highly
frequent items. We show how the “tracking counters” used by our
maintenance scheme can be exploited to estimate population fre-
quencies, sums, and averages in an unbiased manner, with lower
variance than the usual estimators based on a Bernoulli sample.
The number of distinct items in the multiset can also be estimated
without bias. Finally, we discuss certain problems of subsampling
and merging that arise in systems with limited memory resources
or distributed processing, respectively.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous; G.3 [Probability
and Statistics]: Probabilistic algorithms

General Terms
Algorithms, theory

Keywords
Bernoulli multiset sampling, incremental sample maintenance

1. INTRODUCTION
Random sampling is an essential component of modern data man-

agement systems, with applications including approximate query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-685-1/07/0006 ...$5.00.

answering, query optimization, summarization of data streams, net-
work monitoring, and data mining. The traditional literature on
sampling from databases—see, for example, [12]—typically views
the database as static, and focuses on the problem of producing and
exploiting a one-time sample in an efficient manner. However, as
discussed in [7], even the best algorithms for materializing a sam-
ple on the fly, in response to a user request, can be too expensive.
An appealing alternative approach is to materialize a sample and
incrementally maintain it as the underlying dataset evolves; thus a
sample is always available when needed.

For this latter approach to be successful, it is important to avoid
accesses to the underlying dataset, and touch only the sample itself,
together with the stream of update, delete, and insert (UDI) trans-
actions to the dataset. The reason for this is that database accesses
are typically much more expensive than accesses to the sample. For
instance, database accesses usually require I/O operations on disks,
whereas samples are often stored in main memory. In distributed
systems, the underlying dataset may reside at a remote location.
Experiments in [7] show that algorithms requiring access to the un-
derlying dataset are not competitive in terms of cost. Moreover,
in many streaming data systems, the underlying dataset may not
be accessible at all. We therefore restrict attention to maintenance
algorithms that do not touch the underlying dataset.

We follow the literature in concentrating on the maintenance of
uniform samples, because such samples are popular, flexible, and
form the basis for more complex sampling schemes. The majority
of known techniques for maintaining uniform samples apply either
to the insert-only case [2, 11, 14] or to datasets that do not con-
tain duplicates [1, 7], i.e., datasets that are true sets, rather than the
multisets that commonly appear in relational and other systems.
In contrast, the work in [10] on “counting samples” handles arbi-
trary UDI transactions on multisets, using subsampling techniques
to ensure that the sample footprint stays within a specified upper
bound. The counting sample is also used to estimate answers to
“hot list” queries, i.e., to estimate frequencies (in the dataset) of
highly frequent items. As shown in [2], the use of subsampling ac-
tually causes the samples to be non-uniform, although the degree
of non-uniformity may be acceptable in practice.

In this paper, we complement the results in [10] by providing an
algorithm for incrementally maintaining a Bernoulli sample over an
evolving multiset (in which a given item may be duplicated one or
more times). The algorithm can handle arbitrary UDI transactions
and does not require any accesses of the underlying data. Although
Bernoulli samples do not have a bounded footprint, they are truly
uniform (see Section 2.1). Moreover, Bernoulli samples are easy to
work with and are well-suited for parallel processing. Specifically,
they can be maintained, independently and in parallel, for each par-
tition of a distributed dataset, and the samples can be merged at any

time to obtain a Bernoulli sample of the entire dataset. Bernoulli
samples can also be easily subsampled, in order to reduce their
space requirements.1

In order to maintain a Bernoulli sample under UDI transactions,
our method augments the sample with “tracking counters,” origi-
nally introduced in [10] for the purpose of estimating the popula-
tion frequencies of “hot” items. We show that these counters not
only facilitate maintenance, but can also exploited to obtain un-
biased estimators of population frequencies, sums, and averages,
where these estimators have lower variance than the usual estima-
tors based on an ordinary Bernoulli sample. We also show how to
estimate the number of distinct items in the multiset in an unbiased
manner. We derive the standard error for each of our estimators,
and provide formulas for estimating these standard errors.

Finally, we examine issues that arise when incrementally main-
taining samples that result from subsampling or merging opera-
tions. We show how to subsample one of our new augmented
samples to obtain a new, smaller augmented sample that can be
incrementally maintained. As a negative result, we show that, in
the general case of non-disjoint parent datasets, it is impossible to
merge augmented samples to obtain a new augmented sample from
the union of the corresponding parent datasets.

2. PRELIMINARIES
We first discuss classical Bernoulli sampling and maintenance

schemes over ordinary sets, and then give a naive maintenance
scheme that handles multisets and UDI transactions. Throughout
the paper, we view an update to a dataset as a deletion followed by
an insertion, and therefore do not discuss updates separately.

We consider a (possibly infinite) set T = {t1,t2, . . .} of unique,
distinguishable items that are inserted into and deleted from a data-
set R over time. For example, T might correspond to a finite set
of IP addresses or social security numbers, or the infinite set of
nonnegative integers (perhaps representing order sizes). Denote
by γ = (γ1,γ2, . . .) an infinite sequence of transactions, where each
transaction γi is either of the form +tk, which corresponds to the
insertion of item tk into R, or of the form −tk, which corresponds
to the deletion of item tk from R. In general, items that are deleted
may be subsequently reinserted. We restrict attention to ”feasible”
sequences such that γi = −tk only if item tk is in the dataset just
prior to the processing of the ith transaction. In principle, when R
is a multiset, m > 1 copies of an item tk may be inserted into R or
deleted from R in the course of a transaction; we include such a
compound transaction within our framework by viewing it as a se-
quence of m simple transactions, each involving a single insertion
or deletion.

We denote by Ri and Si the state of the dataset and sample, re-
spectively, just after processing transaction γi. Without loss of gen-
erality, we assume throughout that the initial state of the dataset and
sample are given by R0 = S0 = /0.

2.1 Bernoulli Sampling on Sets
In classical Bernoulli sampling, the transaction sequence γ con-

sists of insertions only, and there are no duplicates, so that an item
in T is inserted at most once, and R is a ordinary set. For a spec-
ified sampling rate q ∈ [0,1], each inserted item is included in the
sample S with probability q and excluded with probability 1−q, in-
dependent of the other items. We refer to this scheme as BERN(q)
sampling.

1See [2] and the discussion in Section 2.1 for further details on ma-
nipulation of Bernoulli samples and their use in a “synopsis ware-
house” architecture.

This sampling scheme is uniform in that it produces any two
samples of the same size with equal probability. Other uniform
sampling schemes are simple random sampling with and without
replacement. Whereas the size of a simple random sample is fixed,
the size of a Bernoulli sample is random, having a binomial distri-
bution. Specifically, after processing i insertion transactions using
BERN(q) sampling, we have P(|Si|= k) = B(k; i,q) for 0≤ n≤m,
where we use the notation

B(n;m,q) =
(

m
n

)
qn(1−q)m−n

to denote a binomial probability, with B(n;m,q) = 0 when m < n
or n < 0.

Bernoulli samples are easy to manipulate. Because items are
included or excluded independently of each other, it follows im-
mediately that, if S1 and S2 are BERN(q) samples of R1 and R2,
respectively, and if R1 ∩R2 = /0, then S1 ∪ S2 is a BERN(q) sam-
ple of R1 ∪R2. Moreover, if S is a BERN(q) sample of R and S′
is a BERN(q′) sample of S, then S′ is a BERN(q′q) sample of R.
Indeed, an item appears in the subsample S′ if and only if (1) it
appears in the initial sample S and (2) it is retained during sub-
sampling. The probability of these events is q and q′, respectively,
and these events are independent, so that the ultimate probability of
including an item in the subsample is q′q. Items are included or ex-
cluded independently of each other during this two-phase process,
so that the process coincides with BERN(q′q) sampling from R.

It is straightforward to extend Bernoulli sampling on sets to han-
dle deletions. For an insertion transaction γi = +tk, simply set
Si = Si−1 ∪ {tk} with probability q and Si = Si−1 with probabil-
ity 1− q. For a deletion transaction γi = −tk, set Si = Si−1 \ {tk},
i.e., remove item tk from the sample if it is present. Thus the dele-
tion operation “annihilates” item tk; it is as if item tk were never
inserted into R. This scheme is called MBERN(q) sampling in [7].
Observe that this procedure never accesses the underlying dataset
R, so that sampling and sample maintenance trivially coincide.

We can now anticipate why maintaining a Bernoulli sample of
a multiset is harder than maintaining a Bernoulli sample of an or-
dinary set. When processing a deletion transaction γi = −tk, there
may be multiple copies of item tk, both in R and in S, so it is not
immediately clear how to proceed.

2.2 Bernoulli Sampling on Multisets
Now suppose that an item t ∈ T can appear more than once in

the dataset, and hence in the sample. Then both the dataset and the
sample are multisets. Denote by Xi(t) the frequency of item t ∈ T
in the sample Si and by Ni(t) the frequency of item t in the dataset
Ri. Note that Ni(t) is completely determined by the sequence γ ,
whereas Xi(t) is a random variable. In this setting, Si is a BERN(q)
sample of Ri if and only if

P(Xi(t) = kt for t ∈ T) = ∏
t∈T

B(kt ;Ni(t),q)

for any set of nonnegative integers {kt : t ∈ T}. That is, each Xi(t)
is binomially distributed, and the random variables {Xi(t) : t ∈ T}
are mutually independent.

We assume that the sample is physically stored in a compressed
representation [10]. In this representation, each element of the sam-
ple comprises a pair

(
t,Xi(t)

)
when Xi(t) > 1 or a singleton (t)

when Xi(t) = 1. An item t with Xi(t) = 0 does not appear in the
sample.

Notice that, in any Bernoulli sample of a multiset, each item is
maintained independently of the other items. That is, the value of
Xi(t) remains unaffected if an item t′ �= t is inserted or removed.

Without loss of generality, therefore, we henceforth fix an item t
and focus on the maintenance of Xi(t) as the transaction sequence
γ is processed. We therefore assume that γ consists solely of inser-
tions and deletions of item t.2 For brevity, we set Xi = Xi(t) and
Ni = Ni(t). For i = 0, the sample is empty and we have Xi = 0.

With these definitions in hand, we now describe a naive algo-
rithm for maintaining a Bernoulli sample of a multiset in the pres-
ence of UDI transactions. We compute Si+1 from Si and γi+1 as
follows. If γi+1 = +t (an insertion), then

Xi+1 =

{
Xi +1 with probability q

Xi with probability 1−q.
(1)

If γi+1 =−t (a deletion), then

Xi+1 =

{
Xi−1 with probability Xi/Ni

Xi with probability 1− (Xi/Ni)
(2)

The following theorem asserts the correctness of the naive algo-
rithm.

THEOREM 1. For any non-negative integer k ≤ Ni, the naive
algorithm maintains the invariant

P(Xi = k) = B(k;Ni,q). (3)

PROOF. The proof is by induction on i. For i = 0, the equality
in (3) holds trivially. Now suppose that (3) holds for some i. If
γi+1 = +t, then Ni+1 = Ni +1 and, using the induction hypothesis
and some straightforward algebra,

P(Xi+1 = k) = (1−q)P(Xi = k)+qP(Xi = k−1)
= (1−q)B(k;Ni,q)+qB(k−1;Ni,q)
= B(k;Ni+1,q).

Similarly, if γi+1 =−t, then Ni+1 = Ni−1 and

P(Xi+1 = k)

=
k +1

Ni
P(Xi = k +1)+

Ni−k
Ni

P(Xi = k)

=
k +1

Ni
B(k +1;Ni,q)+

Ni−k
Ni

B(k;Ni,q)

= B(k;Ni+1,q).

and the desired result follows. �

A less formal but more intuitive probabilistic argument is as
follows. Conceptually, the naive algorithm uses a “random pair-
ing” approach, in which each deletion transaction is paired with
(and hence annihilates) a previous insertion transaction, chosen
randomly and uniformly from all such (currently non-annihilated)
insertion transactions. If the deletion γi is paired with a previous
insertion γi− j and if transaction γi− j had originally resulted in a
sample inclusion, then the annihilated item is removed from the
sample as well as from the dataset. The probability that a deletion
transaction is paired with an insertion transaction that corresponds
to an item in the sample is Xi/Ni.

Unfortunately, the naive algorithm is unusable, because process-
ing a deletion requires knowledge of the quantity Ni, which has to
be obtained from the underlying dataset Ri. As discussed previ-
ously, Ri is usually expensive, and sometimes impossible, to ac-
cess. One might consider maintaining the counters Ni locally for
each distinct item in the dataset, but this is equivalent to storing the
dataset itself, which is typically infeasible in practice.
2The exception to this convention is Section 7, where we give the
complete pseudocode for our algorithms.

3. A NOVEL APPROACH
As indicated in the previous section, in order to support Bernoulli

sample maintenance in the presence of general UDI transactions
to a multiset, one would like somehow to maintain only the Ni(t)
counters corresponding to items t that are in the sample. Such
maintenance is impossible, because insertions into the dataset of an
item that is not currently in the sample, but will eventually be in the
sample, cannot be properly accounted for. Borrowing an idea from
[10], our new maintenance method rests on the fact that it suffices
to maintain a “tracking counter” Yi(t) for each item t in the sample.
Whenever Xi(t), the frequency of t in the sample, is positive, the
counter Yi(t) records the number of (non-annihilated) insertions of
t into the dataset since the first of the current Xi(t) sample items was
inserted; note that the dataset insertion corresponding to the first of
these Xi(t) sample inclusions is counted as part of Yi(t). We there-
fore modify the general layout of the sample Si as follows: for each
distinct item t ∈ T that occurs in the sample at least once, Si con-
tains the triple (t,Xi(t),Yi(t)). To save space, we store the entry for
t as (t,Xi(t),Yi(t)) if Yi(t) > 1 and simply as (t) if Xi(t) =Yi(t) = 1.
The resulting space savings can be significant when there are many
unique values in the dataset.

3.1 Algorithmic Description
As in previous sections, we focus on the case of a single item t,

and represent the state of Si as (Xi,Yi); i.e., we suppress the depen-
dence on t in our notation. We also set Xi =Yi = 0 whenever t /∈ Si.
For i = 0, the sample is empty and we have Xi = Yi = 0.

The new algorithm works as follows: If γi+1 = +t, then

(Xi+1,Yi+1) =

⎧⎪⎨
⎪⎩

(Xi +1,Yi +1) if Φi+1 = 1

(Xi,Yi +1) if Φi+1 = 0,Xi > 0
(0,0) otherwise,

(4)

where Φi+1 is a 0/1 random variable such that P(Φi+1 = 1) = q. If
γi+1 =−t, then

(Xi+1,Yi+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0,0) if Xi = 0

(0,0) if Xi = Yi = 1
(Xi−1,Yi−1) if Xi ≥ 1,Yi > 1,Ψi+1 = 1

(Xi,Yi−1) otherwise,

(5)

where Ψi+1 is a 0/1 random variable such that

P(Ψi+1 = 1) =
Xi−1
Yi−1

.

Note that item t is removed from the sample if Xi > 0,Xi+1 = 0 and
added to the sample if Xi = 0,Xi+1 > 0. The processing of γi+1 is
solely based on Si and γi+1, that is, access to the dataset R is not
required at any time.

3.2 An Example
Figure 1 depicts a probability tree for our algorithm with γ =

(+t,+t,+t,−t) and q = 0.25. Each node of the tree represents
a possible state of the sample; for example, (1,2) stands for S =
{(t,1,2)}. Edges represent state transitions and are weighted by
the respective transition probability. To determine the probabil-
ity of reaching a given node, multiply the probabilities along the
path from the root to the node. To compute the probability that
the sample is in a specified state after γ has been processed, sum
the probabilities of all leaf nodes that correspond to the state. For
example,

P(S4 = /0) =
(

3
4

)2 1
4

+
(

3
4

)3

.

Figure 1: Example with q = 25%

Summing up all such probabilities, we find that

P(X4 = 0) =
9
16

= (1−q)2

P(X4 = 1) =
6
16

= 2q(1−q)

P(X4 = 2) =
1
16

= q2.

Thus X4 is binomially distributed, and we have a Bernoulli sample
of R4.

3.3 Correctness of the Algorithm
To show that the algorithm of Section 3.1 indeed maintains a

true Bernoulli sample, we first derive the probability distribution
of the tracking counter Yi. Recall that Ni = |Ri| denotes the num-
ber of non-annihilated insertion transactions after processing the
sequence γ1,γ2, . . . ,γi.

LEMMA 1. For i≥ 0 and any integer 0≤ k ≤ Ni,

P(Yi = m) =

{
(1−q)Ni if m = 0
q(1−q)Ni−m otherwise.

(6)

PROOF. Our proof is by induction on i. We have Yi = Ni = 0
when i = 0, and (6) holds trivially. Suppose for induction that (6)
holds for i. If transaction γi+1 is an insertion, then Ni+1 = Ni + 1
and

P(Yi+1 = m) =

⎧⎪⎨
⎪⎩

(1−q)P(Yi = 0) if m = 0

qP(Yi = 0) if m = 1
P(Yi = m−1) otherwise.

If transaction γi+1 is a deletion, then Ni+1 = Ni−1 and

P(Yi+1 = m) =

{
P(Yi = 0)+P(Yi = 1) if m = 0

P(Yi = m+1) otherwise.

The identity in (6) now follows by applying induction hypothesis,
together with some straightforward algebra. �

The assertion of Lemma 1 is particularly easy to understand in
the special case where all transactions are insertions, so that there

are no annihilated transactions and Ni = i. In this scenario, Yi = 0
if all i inserted items are excluded from the sample, which occurs
with probability (1−q)i , and Yi = m > 0 if the first i−m items are
excluded and the next item is included, which occurs with proba-
bility q(1−q)i−m .

We now establish the correctness of our sample-maintenance al-
gorithm.

THEOREM 2. For i ≥ 0 and any integer 0 ≤ k ≤ Ni, the algo-
rithm of Section 3.1 maintains the invariant

P(Xi = k) = B(k;Ni,q). (7)

PROOF. Although we could prove the validity of (7) by enhanc-
ing the inductive proof of Lemma 1, we choose to give an intuitive
probabilistic argument that provides insight into why the algorithm
works. Fix i ≥ 0 and observe that Xi = 0 if and only if Yi = 0, so
that, using (6), we have

P(Xi = 0) = P(Yi = 0) = B(0;Ni,q),

as asserted in (7).
Now consider a scenario in which Xi ≥ 1, and denote by i∗ the

index of the transaction at which the first of the Xi instances of
item t was inserted into the sample. It follows from the definition
of i∗ that, for j = i∗+1, i∗+2, . . . , i, the cumulative number of in-
sertions in the sequence γi∗, j = (γi∗+1,γi∗+2, . . . ,γ j) is at least as
great as the cumulative number of deletions, so that the net number
of insertions is always nonnegative. We can therefore view each
deletion in γi∗,i as annihilating a previous insertion that is also an
element of γi∗,i, and the net effect of processing the transactions
in γi∗,i can be viewed as inserting the set of non-annihilated “new”
items into the dataset Ri∗ . For j = i∗+ 1, i∗+ 2, . . . , i, denote by
R′j and S′j the set of non-annihilated new items in the dataset and
sample, respectively, just after processing transaction γ j , and set
N′j = |R′j| and X ′j = |S′j|. Observe that X ′j = Xj − 1 ≥ 0, since the
sample Sj consists of the single “old” item that was included at
transaction γi∗ , together with the Xj−1 new items in S′j . Also ob-
serve that N′j = Yj − 1, since Yj counts the item inserted into the
dataset at γi∗ together with the non-annihilated new items inserted
into the dataset while processing the transaction sequence γi∗, j .

We claim that X ′i can be viewed as the size of a sample S′i that
is obtained from R′i by processing the transactions in γi∗,i using the
naive algorithm of Section 2.2. Indeed, for j = i∗, i∗+1, . . . , i−1,
suppose that transaction γ j+1 is an insertion. It follows from (4)
that Xj , and hence X ′j, is incremented if and only if the random
variable Φ j+1 equals 1, i.e.,

X ′j+1 =

{
X ′j +1 with probability q

X ′j with probability 1−q.
(8)

If γ j+1 is a deletion, then, by (5),

X ′j+1 =

{
X ′j−1 if Ψi+1 = 1

X ′j otherwise,
(9)

where

P(Ψ j+1 = 1) =
Xj−1
Yj−1

=
X ′j
N′j

.

Our claim follows upon comparison of (8) to (1) and of (9) to (2).
The foregoing claim and Theorem 1 together imply that S′i is a

true Bernoulli sample of R′i. We therefore have

P(Xi = k | Yi = m) = P(X ′i = k−1 | N′i = m−1)
= B(k−1;m−1,q)

(10)

for 1≤ k ≤m≤ Ni. Combining (6) and (10), we find that

P(Xi = k) =
Ni

∑
m=k

P(Xi = k |Yi = m)P(Yi = m)

=
Ni

∑
m=k

B(k−1;m−1,q)q(1−q)Ni−m

= qk(1−q)Ni−k
Ni

∑
m=k

(
m−1
k−1

)

= B(k;Ni,q)

for k ≥ 1, and the desired result follows. �
Thus, the new algorithm works by tracking the net number of in-
sertions into the dataset only after the item is first inserted into
the sample, i.e., from transaction-step i∗ onwards. As mentioned
above, this idea originally appeared as part of the counting-sample
method in [10], although our use of the idea is slightly different.

4. ESTIMATION
In this section, we derive unbiased estimators for item frequen-

cies in R, as well as for sums and averages over R of functions of
the items, and for the number of distinct items in R. We show how
to exploit the tracking counters to obtain a variance reduction.

4.1 Estimating Frequencies
We again assume a single item t. Ignoring the tracking counters

in our augmented Bernoulli sample, the frequency Ni of an item
t can be estimated as N̂Xi = Xi/q. This estimator is the standard
Horvitz-Thompson (HT) estimator for a Bernoulli sample from R;
see [13]. The HT estimator N̂Xi is unbiased and has variance given
by

V [N̂Xi] = (1−q)Ni/q.

To motivate our improved estimator, write

N̂Xi =
Xi−1

q
+

1
q
. (11)

Recall the definitions of i∗ and R′i from the proof of Theorem 2.
As described in the proof of that theorem, Xi− 1 is the size of a
BERN(q) sample from R′i, so that the first term in (11) is simply
the (unbiased) HT estimator of the frequency of t in R′i. From (6),
it follows that the number Li = Ni−Yi of (non-annihilated) items
inserted into R during the processing of γ1,γ2, . . . ,γi∗ has a geomet-
ric distribution:

P(Li = l) = q(1−q)l−1 (12)

for l ≥ 1. The expected number of items is therefore E[Li] = 1/q.
Thus the second term in (11) is an estimator of the number of items
in Ri∗ = Ri \R′i. Since we have maintained an augmented sample
Si = {(Xi,Yi)}, however, we know the value of the number of items
inserted into R′i exactly: this number is simply Yi− 1. Thus, intu-
itively, we can reduce the variance of the estimator N̂Xi by replac-
ing the first term in (11) by the quantity that it is trying to estimate,
yielding the improved estimator Yi− 1 +(1/q). This estimator is
not quite correct, however, because there is a positive probability
that Yi = 0, in which case the above reasoning does not hold. When
Yi = 0, item t is not in the sample, and we have no information at
all about Ni. The simplest choice in this case is to estimate Ni as 0,
just as in the HT estimator; we show below that this choice ensures
unbiasedness. Thus the final form of our improved estimator is

N̂Yi =

{
0 if Yi = 0

Yi−1+(1/q) otherwise

The following result shows that N̂Yi is indeed unbiased.

THEOREM 3. E[N̂Yi] = Ni for i≥ 0.

PROOF. Fixing t and suppressing the subscript i in our notation,
we have

E[N̂Y] = P(Y = 0)E[N̂Y |Y = 0]

+P(Y > 0)E[N̂Y |Y > 0]

= P(Y > 0)E[Y | Y > 0]+P(Y > 0)
1−q

q

(13)

Thus, we have to compute P(Y > 0) and E[Y | Y > 0]. From (6),
the former quantity is given by

P(Y > 0) = 1−P(Y = 0) = 1− (1−q)N . (14)

and the latter quantity by

E[Y | Y > 0] =
N

∑
m=1

mP(Y = m |Y > 0)

=
N

∑
m=1

m
P(Y = m)
P(Y > 0)

=
N

∑
m=1

mq(1−q)N−m

1− (1−q)N

=
Nq− (1−q)

(
1− (1−q)N

)
q
(
1− (1−q)N

)

(15)

The assertion follows after substituting (14) and (15) into (13). �

Calculations similar to the proof of Theorem 3 show that the
variance of N̂Y is given by

V [N̂Y] =
1−q− (1−q)N+1

q2 , (16)

where we continue to suppress i in our notation. Note that V [N̂Y] <
(1− q)/q2, i.e., the variance is bounded from above in N. The
reason for this advantageous behavior is that, as N grows, the value
of the estimator N̂Y becomes increasingly dominated by the value
Y , a quantity that embodies exact knowledge.

THEOREM 4. V [N̂Y]≤V [N̂X], with equality holding only if N =
0 or 1.

PROOF. Starting with the well-known Bernoulli inequality

(1−q)N ≥ 1−Nq, (17)

we find that

N ≥ 1− (1−q)N

q
.

The desired result follows after multiplying both sides of the above
inequality by (1− q)/q, and observing that equality holds in (17)
only when N equals 0 or 1. �

For fixed q, we have V [N̂Y]/V [N̂X] ≈ 1/(qN) as N becomes large,
and the variance reduction can be substantial.

Following standard statistical practice, we can estimate V [N̂Y]
using the (biased) estimator

V̂ [N̂Y] =
1−q− (1−q)N̂Y +1

q2 ,

The bias of the estimator converges to 0 as q→ 1.

4.2 Estimating Sums, Averages, and Ratios
The foregoing results for frequencies lead immediately to un-

biased estimators for sums and averages, as well as estimator for
ratios. In particular, suppose we are given a function g : T �→ ℜ
and we wish to estimate the sum of g(t) over all items t in the data-
set. That is, we wish to estimate α(g) = ∑t∈T g(t)N(t). (Again, we
have suppressed the subscript i in our notation.) The standard HT
estimator of α(g) is

α̂X (g) = ∑
t∈D(S)

g(t)N̂X (t) = ∑
t∈T

g(t)N̂X (t),

where N̂X (t) corresponds to the estimator N̂X described in Sec-
tion 4.1, evaluated with respect to item t, and D(S) denotes the
set of distinct items in the sample. The linearity of the expectation
operator immediately implies that E[α̂X (g)] = α(g), so that α̂X is
unbiased. Because items are sampled independently, the estimators
{N̂X (t) : t ∈ T} are mutually independent, and

V
[
α̂X (g)

]
= ∑

t∈T
g2(t)

(1−q)N(t)
q

.

Similarly, an improved estimator is given by

α̂Y (g) = ∑
t∈D(S)

g(t)N̂Y (t).

It follows from Theorem 3 that α̂Y (g) is unbiased, and, by (16),

V
[
α̂Y (g)

]
= ∑

t∈T
g2(t)

1−q− (1−q)N(t)+1

q2 .

Theorem 4 implies that V
[
α̂Y (g)

] ≤ V
[
α̂X (g)

]
. We can obtain a

natural (biased) estimator of V
[
α̂Y (g)

]
as

V̂
[
α̂Y (g)

]
= ∑

t∈D(S)
g2(t)

1−q− (1−q)N̂Y (t)+1

q2
(
1− (1−q)N̂Y (t)

) .

This estimator is “almost” the HT estimator of V
[
α̂Y (g)

]
, except

that N(t) is replaced by its estimate N̂Y (t) in each term of the sum.
The foregoing results extend in a straightforward way to aver-

ages of the form μ = (1/|R|)∑t∈T g(t)N(t), where |R|= ∑t∈T N(t).
Since |R| is usually known in applications, it can be treated as a de-
terministic constant, adding a multiplicative factor of 1/|R| to the
estimators and a factor of 1/|R|2 to the variances and variance esti-
mators. A less trivial scenario arises when estimating a ratio of the
form

ρ = ∑t∈T g(t)N(t)
∑t∈T h(t)N(t)

=
α(g)
α(h)

,

where g and h are arbitrary real-valued functions on T . As special
case of such an estimator, take h to be a 0/1 function that corre-
sponds to a predicate defined over T , and take g(t) = g∗(t)h(t),
where g∗ is an arbitrary real-valued function on T . Then ρ cor-
responds to the average value of g∗ over those elements of T that
satisfy the predicate corresponding to h. The ratio estimation prob-
lem has been extensively studied [13], and an exhaustive discus-
sion is beyond the scope of the current paper; we content ourselves
here with briefly presenting some of the most pertinent results. The
usual ratio estimator

ρ̂Θ =
α̂Θ(g)
α̂Θ(h)

=
∑t∈D(S) g(t)N̂Θ(t)

∑t∈D(S) h(t)N̂Θ(t)
,

where Θ equals X or Y , is biased, but the bias converges to 0
as q increases. A number of schemes have been proposed to re-
duce the bias when q is very small; see [13]. When q is not too

small, a Taylor-series argument yields an approximate expression
for V [ρ̂Θ]:

V [ρ̂Θ]≈ 1
α2(h)

(
V

[
α̂Θ(g)

]
+ρ2V

[
α̂Θ(h)

]
−2ρC

[
α̂Θ(g), α̂Θ(h)

])
,

where C[W,Z] denotes the covariance of random variables W and
Z. Note that, using the independence of the sampling for different
distinct items, we have

C
[
α̂Θ(g), α̂Θ(h)

]
= ∑

t∈T
g(t)h(t)V

[
N̂Θ(t)

]
which can be estimated by

Ĉ
[
α̂Θ(g), α̂Θ(h)

]
= ∑

t∈T
g(t)h(t)V̂

[
N̂Θ(t)

]
.

The usual method for estimating the variance V [ρ̂Θ] simply re-
places ρ by ρ̂Θ, α(h) by α̂Θ(h), C by Ĉ, and each V by V̂ in the
formula for V [ρ̂Θ]. Of course, we can always obtain standard er-
rors or estimators of standard errors by taking the square root of the
corresponding variances or estimated variances.

4.3 Estimating Distinct-Item Counts
In this section we show that, perhaps surprisingly, an augmented

Bernoulli sample can also be used to estimate the number of dis-
tinct items in R. Database applications of distinct-item estimation
include data integration, query optimization, network monitoring,
and OLAP. Although an augmented Bernoulli sample will proba-
bly not perform as well as synopses that are designed specifically
for this task—see [9] for an overview of specialized methods—the
techniques in this section can be useful when special-purpose syn-
opses are not available.

Given an augmented Bernoulli sample S, define an (ordinary)
random subset S′ ⊆ T by examining each t ∈ D(S) and including t
in S′ with probability p(t), where p(t) = 1 if Y (t) = 1 and p(t) = q
if Y (t) > 1. Denote by D(R) the set of distinct items in R.

THEOREM 5. The random subset S′ is a BERN(q) sample of
D(R).

PROOF. Fix an item t and observe that P(t ∈ S′) = 0 if t is not
in S, and hence if Y (t) = 0. Then, writing Y for Y (t) and using (6),

P(t ∈ S′) = P(Y = 1)+qP(Y > 1)

= P(Y = 1)+q
(
P(Y > 0)−P(Y = 1)

)
= (1−q)P(Y = 1)+qP(Y > 0)

= (1−q)q(1−q)N−1 +q
(
1− (1−q)N)

= q

Since items are included or excluded from S′ independently of each
other, the desired result holds. �

We can therefore obtain an unbiased estimate of D = |D(R)|, the
number of distinct items in R, by using a standard HT estimator,
namely, D̂HT = |S′|/q. The variance of this estimator is (1−q)D/q
and can be estimated by (1−q)D̂HT/q.

We propose a different unbiased estimator here, which estimates
D directly from S and yields lower variance. The idea is to apply
the “conditional Monte Carlo principle,” which asserts that, if W
is an unbiased estimator of some unknown parameter θ and Z is a
random variable that represents “additional information,” then the
random variable W ′ = E[W | Z] is a better estimator than W in that,
by the law of total expectation, E[W ′] = E

[
E[W | Z]

]
= E[W] = θ ,

and, moreover, V [W ′] ≤ V [W]. The variance reduction is a conse-
quence of the well known and easily derived variance decomposi-
tion

V [W] = E
[
V [W | Z]

]
+V [E[W | Z]

]
,

which holds for any two random variables W and Z. To apply this
principle, we take W = D̂HT and Z = S, so that our proposed esti-
mator is D̂Y = E[D̂HT | S]. We can express D̂Y in a more tractable
form, as follows. Denote by I(A) the indicator variable that equals
1 if event A occurs and equals 0 otherwise. Then

D̂Y = E[D̂HT | S] = E
[1

q ∑
t∈D(R)

I(t ∈ S′)
∣∣∣ S

]

=
1
q ∑

t∈D(R)
P(t ∈ S′ | S) =

1
q ∑

t∈D(R)
I
(
t ∈D(S)

)
P
(
t ∈ S′ |Y (t)

)

=
1
q ∑

t∈D(R)
I
(
t ∈D(S)

)
p(t) = ∑

t∈D(S)
p(t)/q.

Intuitively, each distinct item in S is included in S′ with probability
p(t) and the estimator D̂HT estimates D by counting all included
items followed by a division by q. On average, every item con-
tributes a quantity of p(t)/q to the distinct-item count, and D̂Y sim-
ply adds up the expected contributions. As shown above, D̂Y is
unbiased for D. Moreover, the variance of this estimator can be
explicitly computed as

V [D̂Y] = ∑
t∈D(R)

(1−q)N(t)/q≤ ∑
t∈D(R)

(1−q)/q

= (1−q)D/q = V [D̂HT],

where equality holds if and only if D = |R|. In the usual way, the
variance of D̂Y can be estimated by the “almost” HT estimator

V̂ [D̂Y] = ∑
t∈D(S)

(1−q)N̂Y (t)

q
(
1− (1−q)N̂Y (t)

) ,

where N̂Y (t) is the estimator of N(t) given in Section 4.1. Note that
the memory requirement for our technique is unbounded, unlike
the estimator in [8] and other specialized distinct-item estimation
methods as in [9].

5. SUBSAMPLING
The subsampling problem can be described as follows: given

an augmented Bernoulli sample S of a dataset R drawn with sam-
pling rate q, derive an augmented Bernoulli sample S′ from R with
sampling rate q′ ≤ q without accessing R. Subsampling has appli-
cations in practice whenever the sampling process is run on a sys-
tem with bounded processing or space capabilities. In more detail,
whenever some criterion is satisfied, one may reduce the sampling
rate in order to effectively reduce the size of the sample. For exam-
ple, several of the techniques in [2] use Bernoulli subsampling to
enforce an upper bound on the sample footprint.

As indicated in Section 2.1, the subsampling problem is trivial if
we are only trying to produce an ordinary Bernoulli subsample that
does not need to be incrementally maintained. The challenge in
the general setting is to assign an appropriate value to the tracking
counter of the subsample, so that incremental maintenance can be
continued.

We now present a subsampling algorithm. Let Si be the sample
after processing transactions γ1, . . . ,γi with sampling rate q. Again,
we suppress the subscript i and fix an item t, so that Si is given by
S = (X ,Y). Given S, we want to generate S′ = (X ′,Y ′) having the
correct distribution.

The algorithm is as follows: Set q∗ = q′/q. Let Φ be a Bernoul-
li(q∗) random variable, i.e., a 0/1 random variable with P(Φ = 1) =
q∗ and P(Φ = 0) = 1− q∗. Let Ψ be a random variable such that
P(Ψ = k′) = B(k′;X − 1,q∗) for 0 ≤ k′ < X . Observe that Ψ ≡ 0
when X = 1. The random variable Φ has the interpretation that
Φ = 1 if and only if the first of the X items that were inserted into
S is retained in S′; the random variable Ψ is the number of the
remaining X−1 items that are retained. The algorithm sets

X ′ =

{
0 if X = 0

Φ+Ψ otherwise.
(18)

To compute Y ′, let ϒ be another random variable with

P(ϒ = m′) =
X ′

m′
Y−1

∏
i=m′+1

(
1− X ′

i

)

for X ′ ≤ m′ < Y . (By convention, we take an empty product as
equal to 1.) The algorithm sets

Y ′ =

⎧⎪⎨
⎪⎩

0 if X ′ = 0

Y if X ′ > 0 and Φ = 1
ϒ otherwise.

(19)

We now establish the correctness of the subsampling algorithm.

THEOREM 6. The above subsampling algorithm produces an
augmented Bernoulli sample with sampling rate q′.

PROOF. We must show that the random pair (X ′,Y ′) has the
proper distribution, given (X ,Y), after determining what this proper
distribution is. As with Theorem 2, we give a proof that is some-
what informal, but provides insight into the workings of the algo-
rithm. Denote by γ = (γ1, . . . ,γN) a sequence of N insertions of
item t. Since, by Theorem 2, the distribution of X and Y depend
only on N, we can assume without loss of generality that S has been
generated from γ . (I.e., S is based on N non-annihilated insertions.)

First consider the distribution of X ′. Clearly, X ′ must equal 0 if X
equals 0. Otherwise, as outlined in Section 2.1, the correct way to
obtain X ′ from X is to take a BERN(q∗) subsample of the X items in
S. Therefore, the random variable X ′ must have a Binomial(X ,q∗)
distribution, i.e., P(X ′ = k′) = B(k′;X ,q∗). Recall that, in general,
a Binomial(m,q) random variable can be represented as the sum
of m independent and identically distributed (i.i.d.) Bernoulli(q)
random variables. Thus Ψ can be viewed as a sum of X − 1 i.i.d.
Bernoulli(q) random variables, so that Φ+Ψ is distributed as a sum
of X such variables, and hence has a Binomial(X ,q∗) distribution.
Therefore X ′, as defined by (18), indeed has the proper distribution.

To complete the proof, it suffices to show that the conditional
distribution of Y ′ is the proper one, given that we have taken a
BERN(q∗) subsample that resulted in X ′ items being retained. To
determine the proper distribution, first observe that, trivially, Y ′
must equal 0 if X ′ equals 0. To analyze the case where X′ > 0,
let j∗ = N−Y +1 be the index of the transaction corresponding to
the first insertion of an item into S; thus the remaining X−1 items
in S were inserted during transactions γ j∗+1,γ j∗+2, . . . ,γN . Clearly,
Y ′ = Y if and only if the item inserted into S at transaction γ j∗ is
retained in the subsample S′; this event occurs with probability q∗.
With probability 1−q∗, we have Y ′ �= Y . In this case, we can com-
pute the proper distribution of Y ′ as follows. The transactions cor-
responding to the X ′ items in the final subsample represent a sub-
set (of size X ′) of the Y − 1 transactions γ j∗+1,γ j∗+2, . . . ,γN . By
symmetry, all possible transaction-subsets of size X′ are equally
likely. Thus, if we have an urn containing Y − 1 balls, of which

X ′ are black and Y −1−X ′ are white, and if Z is the random vari-
able that represents the number of sequential draws (without re-
placement) required to produce the first black ball, then the first of
the X ′ transactions has an index distributed as j∗ + Z, so that Y ′
must be distributed as N− (j∗+ Z)+ 1 = Y − Z. For Z to equal
l > 1, the first ball must be white, which happens with probability
1−(

X ′/(Y −1)
)
, then the next ball must be white, which happens

with probability 1−(
X ′/(Y −2)

)
(since there is one less white ball

in the urn after the first draw), and so on, up through the (l− 1)st
ball; the lth ball must be black, which happens with probability
X ′/(Y − l). Similarly, Z = 1 with probability X ′/(Y −1). Thus

P(Z = l) =
X ′

Y − l

l−1

∏
i=1

(
1− X ′

Y − i

)

=
X ′

Y − l

Y−1

∏
i=Y−l+1

(
1− X ′

i

)

for l ≥ 1, where the second equality results after a change of index
from i to Y − i in the product. Since Y ′ = Y −Z = m′ if and only if
Z = Y −m′, then we must have

P(Y ′ = m′ |Y ′ �= Y) = P(Z = Y −m′)

=
X ′

m′
Y−1

∏
i=m′+1

(
1− X ′

i

)
.

By inspection, the random variable Y ′ defined via (19) has precisely
the correct distribution. As mentioned previously, Φ has the inter-
pretation that Φ = 1 if and only if Y ′ = Y , i.e., if and only if the
item inserted into S at transaction γ j∗ is retained in S′. �

6. MERGING
We now define the merging problem. Given partitions R1 and R2

of R with R1 ∪R2 = R, along with two corresponding augmented
Bernoulli samples S1 and S2—mutually independent and each with
sampling rate q—derive an augmented Bernoulli sample S from R
with sampling rate q by accessing S1 and S2 only.3 Merging is used
in practice when R is distributed across several nodes; see [2] for an
example. One may then compute a sample of each partition locally
and derive a sample of the complete dataset by merging these local
samples. This approach is often superior, in terms of parallelism
and communication cost, to first reconstructing R and sampling af-
terwards. The merging operation can be used more generally to
obtain a sample of any specified union of the partitions [2].

If S is not subject to further maintenance, simply set X(t) =
X1(t)+X2(t) for all t ∈ S1∪S2, thereby producing a non-augmented
Bernoulli sample; see Section 2.1. Here X1(t) and X2(t) denote the
frequency of item t in the respective subsamples, and X(t) denotes
the frequency of item t in the merged sample. A harder version of
the problem is to derive a merged sample S that includes a tracking
counter, so that maintenance of S can be continued. First suppose
that we know a priori that R1∩R2 = /0. Then it is easy to show that
setting S = S1∪S2 yields the desired augmented Bernoulli sample.
Otherwise, the hard merging problem cannot be solved, as shown
by the following negative result.

THEOREM 7. If R1 ∩R2 �= /0 and 0 < q < 1, then there exists
no algorithm that can compute an augmented Bernoulli sample S
of R = R1∪R2 by accessing S1 and S2 only.

PROOF. The proof is by contradiction, so suppose that there ex-
ists a merging algorithm A and let S be the augmented Bernoulli
3Here, ∪ has multiset semantics, so that it need not be the case that
R1∩R2 = /0.

sample produced by A. Fix an item t in the intersection of R1 and
R2. There is always such an item, since R1∩R2 �= /0. Denote by N,
N1, and N2 the frequency of item t in R, R1, and R2, respectively.
Furthermore, let Y , Y1, and Y2 be the value of the tracking counters
in S, S1, and S2, respectively.

We first show that A cannot ever set Y > Y1 +Y2. From (6), we
must have P(Y1 = N1) = P(Y2 = N2) = q so that, by the indepen-
dence of Y1 and Y2,

P(Y1 = N1,Y2 = N2) = q2. (20)

Suppose that Algorithm A were to set Y > Y1 +Y2 with positive
probability when it observed, say, input values Y1 = k1 and Y2 = k2,
that is, P(Y > k1 + k2 | Y1 = k1,Y2 = k2) > 0. If item t happened
to occur exactly k1 and k2 times in R1 and R2, respectively, so that
N1 = k1 and N2 = k2, then

P(Y > N)
≥ P(Y > k1 +k2,Y1 = k1,Y2 = k2)
= P(Y > k1 +k2 | Y1 = k1,Y2 = k2)P(Y1 = k1,Y2 = k2)

= P(Y > k1 +k2 | Y1 = k1,Y2 = k2)q2 > 0,

where we have used (20). But Y ∈ {0,1, . . . ,N} by definition, so
that Algorithm A cannot ever set Y > Y1 +Y2.

We now show that A must set Y > Y1 +Y2 with positive proba-
bility, a contradiction. Observe that

P(Y = N) = P
(
Y = N,(Y1,Y2) = (N1,N2)

)
+P

(
Y = N,(Y1,Y2) �= (N1,N2)

)
.

(21)

By (6) and (20), we must have

P(Y = N) = q > q2 = P
(
(Y1,Y2) = (N1,N2)

)
≥ P

(
Y = N,(Y1,Y2) = (N1,N2)

)
,

which implies that

P
(
Y = N,(Y1,Y2) �= (N1,N2)

)
> 0 (22)

for the equality in (21) to hold. Since N = N1 + N2 and, by defi-
nition, Y1 ≤ N1 and Y2 ≤ N2, the assertion in (22) is equivalent to
P(Y = N,Y1 +Y2 < N) > 0, so that P(Y > Y1 +Y2) > 0. �

7. IMPLEMENTATION ISSUES
Algorithm 1 gives the pseudocode for our sample maintenance

algorithm. In the algorithm, the function RAND generates a pseu-
dorandom number in the interval [0,1). As observed in [14], one
may significantly reduce the number of calls to RAND in line 7
and 12. The idea is to maintain a counter L for the number of items
which are skipped before the next sample insertion (line 8 and 13).
If L > 0 then the item is rejected and L is decremented. Otherwise,
L = 0, the item is accepted and L is regenerated. By (12), it fol-
lows that L is geometrically distributed. Efficient algorithms for
generating geometric random variables such as L are given in [4, p.
498].

Algorithm 2 gives the pseudocode for our subsampling algo-
rithm. We have displayed simple versions of the functions COM-
PUTEΨ and COMPUTEϒ, which generate samples of the random
variables Ψ and ϒ, respectively. Again, efficient algorithms are
given in [4, p. 521] and [4, p. 619], respectively.

8. RELATED WORK
A variety of sample-maintenance methods have been proposed

that require access to the underlying dataset; see [12] and the “reser-
voir sampling with recomputation” method discussed in [7]. As

Algorithm 1 Bernoulli sampling with deletions
1: q: the sampling rate
2: S: the augmented Bernoulli sample
3:
4: INSERT(t):
5: if S contains t then
6: (X ,Y)← S[t]
7: if RAND() < q then // t ∈ S, insertion accepted
8: X ← X +1
9: end if

10: Y ←Y +1
11: S[t]← (X ,Y)
12: else if RAND() < q then // t /∈ S, insertion accepted
13: S[t]← (1,1) // add t to the sample
14: end if
15:
16: DELETE(t):
17: if S contains t then
18: (X ,Y)← S[t]
19: if Y = 1 then // last seen occurrence of t
20: remove t from S
21: else // more than one occurrence
22: if RAND() < X−1

Y−1 then // deletion accepted
23: X ← X−1
24: end if
25: Y ←Y −1
26: S[t] = (X ,Y)
27: end if
28: end if

discussed previously, these methods tend to be impractically ex-
pensive.

The oldest of those maintenance methods that do not require
dataset access is the classical reservoir sampling algorithm origi-
nally proposed in [5] and streamlined in [14]. These algorithms
maintain bounded uniform samples and handle only insertion trans-
actions. Babcock, et al. [1] provide a maintenance method that can
deal with synchronized insertions and deletions, as encountered in
a fixed-size sliding window over a data stream. If the dataset does
not contain duplicates (i.e., is a real set), then the “random pair-
ing” algorithm introduced in [7] generalizes both the algorithm in
[1] and reservoir sampling to maintain a bounded uniform sam-
ple in the presence of arbitrary UDI transactions. The authors also
provide a resizing algorithm to grow a uniform sample in a con-
trolled manner, to handle situations in which the underlying dataset
is growing; our new maintenance algorithm, which maintains an
unbounded Bernoulli sample, handles such dataset-growth issues
automatically.

The methods closest to ours are the concise-sample and counting-
sample methods introduced in [10]. A concise sample comprises
pairs of the form (t,Xi(t)), where Xi(t) is defined as in Section 2.2.
Concise samples handle only insertion transactions, and are shown
in [10] to yield more precise estimates than a sample with the same
footprint represented in uncompressed form. A counting sample
comprises pairs of the form (t,Yi(t)), where Yi(t) is defined as in
Section 3. The maintenance of a counting sample is similar to the
maintenance of our augmented Bernoulli sample. As discussed in
[10], a concise sample can be extracted from a counting sample via
a coin-flipping step. Our algorithms amortize this subsampling cost
over all transactions, thereby facilitating faster on-demand materi-
alization of the sample, and hence faster production of estimates
based on the sample. Since we maintain the value of Xi directly in-

Algorithm 2 Subsampling
1: q: current sampling rate
2: q′: desired sampling rate, q′ ≤ q
3: S: the augmented Bernoulli sample
4:
5: for all t ∈ S do
6: (X ,Y)← S[t]
7: X ← COMPUTEΨ(X ,q∗)
8: if RAND() < q∗ then // first item included
9: X ← X +1

10: S[t] = (X ,Y)
11: else if X = 0 then // all items excluded
12: remove t from S
13: else // first item excluded
14: Y ← COMPUTEϒ(X ,Y)
15: S[t] = (X ,Y)
16: end if
17: end for
18:
19: COMPUTEΨ(X ,q∗) // simple version
20: Ψ← 0
21: for 1≤ i≤ X−1 do
22: if RAND() < q∗ then
23: Ψ←Ψ+1
24: end if
25: end for
26: return Ψ
27:
28: COMPUTEϒ(X ,Y) // simple version
29: ϒ←Y −1
30: while RAND() < X/ϒ do
31: ϒ← ϒ−1
32: end while
33: return ϒ

stead of randomly generating it every time the sample is accessed,
we expect that estimates derived from our augmented Bernoulli
sample are more stable statistically, especially when they are com-
puted frequently. Counting samples were originally introduced for
estimating the frequencies of “hot” (i.e., frequent) items. The au-
thors provided the estimator Yi(t)−1 +0.418/q for estimating the
frequency of hot item t. As can be seen from Theorem 3, this esti-
mator is biased, has the same variance as N̂Y (t), and therefore has
a higher mean squared error (MSE). We provide unbiased, low-
MSE estimators for the frequencies of all items, not just hot items.
Another key difference between our current results and those in
[10] is that the concise-sample and counting-sample methods use
subsampling to ensure a bounded sample footprint; because such
subsampling has been shown to compromise the uniformity of the
samples [2], we avoid this technique. The current paper shows how
to combine counting samples and concise samples to seamlessly
maintain a true Bernoulli sample under arbitrary UDI transactions,
and how to estimate not just frequencies, but population totals, av-
erages and distinct-item counts in an unbiased manner, with low
variance. Note that the new estimators described in Section 4 can
also be used with counting samples.

An orthogonal approach is taken by the distinct-item (DI) sam-
pling schemes given in [3, 6, 8]. These schemes are primarily de-
signed for estimating quantities such as the number of distinct val-
ues in a dataset [8] or the fraction of distinct items that have a spec-
ified frequency [3]. These algorithms maintain, in effect, a simple
random sample of

(
t,N(t)

)
pairs; the frequency N(t) is either rep-

resented exactly, or via a high-accuracy approximation. The proba-
bility that t appears in the DI sample is independent of its frequency
N(t); low-frequency items are over-represented in the DI sample
relative to Bernoulli samples, whereas high-frequency items are
under-represented. Therefore, such samples are not well suited
to estimating frequencies of individual items, especially highly-
frequent items. DI samples can potentially be used to estimate
sums of the form α(g), as defined in Section 4.2. Note, however,
that such estimates involve a scale-up factor of D(R)/D(S), where
D(R) and D(S) are the numbers of distinct items in R and S. Thus,
unlike for our estimators, D(R) needs to be known or estimated.
Assuming that this issue can be dealt with, a DI estimator can be
advantageous, for example, when g(t) is small for most t ∈ T but
is very large for a particular item t′ having very low frequency,
since this rare anomalous item is more likely to be included into
a DI sample than into a Bernoulli sample. On the other hand, if
the values {g(t) : t ∈ T} are relatively homogeneous but the item
frequencies are highly skewed, then the highly frequent values that
dominate the value of α(g) are more likely to be excluded from
a DI sample than from a Bernoulli sample, leading to estimation
errors. In any case, the potential advantages of DI samples as in
[3, 6] are often offset by the very high space overhead required for
sample maintenance relative to Bernoulli or augmented Bernoulli
samples [7]. I.e., for a given space allocation, we can maintain a
significantly larger Bernoulli sample.

9. SUMMARY
We have provided a scheme for maintaining a Bernoulli sample

of an evolving multiset. Our maintenance algorithm can handle
arbitrary UDI transactions, and avoids ever accessing the under-
lying dataset. We have shown that the tracking counters used for
maintenance can also be exploited to estimate frequencies, pop-
ulation sums, population averages, and distinct-item counts in an
unbiased manner, with variance lower (often much lower) than the
standard estimates based on a Bernoulli sample. We have also in-
dicated how to estimate the variance (and hence the standard error)
for these estimates, and have briefly described how to apply results
from ratio-estimation theory to our new estimators. We have also
described how to obtain an augmented sample from another such
sample using subsampling, and have identified the (rather limited)
conditions under which augmented samples can be merged to ob-
tain an augmented sample of the union of the underlying datasets.
Fortunately, in practice it often suffices to maintain individual aug-
mented samples, occasionally providing (ordinary) merged sam-
ples on demand.

10. REFERENCES
[1] B. Babcock, M. Datar, and R. Motwani. Sampling from a

moving window over streaming data. In Proc. SODA, pages
633–634, 2002.

[2] P. G. Brown and P. J. Haas. Techniques for warehousing of
sample data. In Proc. ICDE, 2006.

[3] G. Cormode, S. Muthukrishnan, and I. Rozenbaum.
Summarizing and Mining Inverse Distributions on Data
Streams via Dynamic Inverse Sampling. In Proc. VLDB,
pages 25–36, 2005.

[4] L. Devroye. Non-Uniform Random Variate Generation.
Springer, New York, 1986.

[5] C. Fan, M. Muller, and I. Rezucha. Development of sampling
plans by using sequential (item by item) techniques and
digital computers. J. Amer. Statist. Assoc., 57:387–402, 1962.

[6] G. Frahling, P. Indyk, and C. Sohler. Sampling in dynamic
data streams and applications. In Proc. 21st Annual Symp.
Comput. Geom., pages 142–149, 2005.

[7] R. Gemulla, W. Lehner, and P. J. Haas. A dip in the reservoir:
maintaining sample synopses of evolving datasets. In Proc.
VLDB, pages 595–606, 2006.

[8] P. B. Gibbons. Distinct sampling for highly-accurate answers
to distinct values queries and event reports. In Proc. VLDB,
pages 541–550, 2001.

[9] P. B. Gibbons. Distinct-values estimation over data streams.
In Data Stream Management: Processing High Speed Data
Streams. Springer, 2007.

[10] P. B. Gibbons and Y. Matias. New sampling-based summary
statistics for improving approximate query answers. In Proc.
ACM SIGMOD, pages 331–342, 1998.

[11] C. Jermaine, A. Pol, and S. Arumugam. Online maintenance
of very large random samples. In Proc. ACM SIGMOD,
pages 299–310, 2004.

[12] F. Olken and D. Rotem. Simple random sampling from
relational databases. In Proc. VLDB, pages 160–169, 1986.

[13] C-E. Särndal, B. Swensson, and J. Wretman. Model Assisted
Survey Sampling. Springer, New York, 1992.

[14] J.S. Vitter. Random Sampling with a Reservoir. ACM Trans.
Math. Software, 11(1):37–57, 1985.

	1 Introduction
	2 Preliminaries
	2.1 Bernoulli Sampling on Sets
	2.2 Bernoulli Sampling on Multisets

	3 A Novel Approach
	3.1 Algorithmic Description
	3.2 An Example
	3.3 Correctness of the Algorithm

	4 Estimation
	4.1 Estimating Frequencies
	4.2 Estimating Sums, Averages, and Ratios
	4.3 Estimating Distinct-Item Counts

	5 Subsampling
	6 Merging
	7 Implementation Issues
	8 Related Work
	9 Summary
	10 References

