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ABSTRACT
Random sampling is an appealing approach to build syn-
opses of large data streams because random samples can be
used for a broad spectrum of analytical tasks. Users are
often interested in analyzing only the most recent fraction
of the data stream in order to avoid outdated results. In
this paper, we focus on sampling schemes that sample from
a sliding window over a recent time interval; such windows
are a popular and highly comprehensible method to model
recency. In this setting, the main challenge is to guarantee
an upper bound on the space consumption of the sample
while using the allotted space efficiently at the same time.
The difficulty arises from the fact that the number of items
in the window is unknown in advance and may vary signifi-
cantly over time, so that the sampling fraction has to be ad-
justed dynamically. We consider uniform sampling schemes,
which produce each sample of the same size with equal prob-
ability, and stratified sampling schemes, in which the win-
dow is divided into smaller strata and a uniform sample is
maintained per stratum. For uniform sampling, we prove
that it is impossible to guarantee a minimum sample size in
bounded space. We then introduce a novel sampling scheme
called bounded priority sampling (BPS), which requires only
bounded space. We derive a lower bound on the expected
sample size and show that BPS quickly adapts to changing
data rates. For stratified sampling, we propose a merge-
based stratification scheme (MBS), which maintains strata
of approximately equal size. Compared to naive stratifi-
cation, MBS has the advantage that the sample is evenly
distributed across the window, so that no part of the win-
dow is over- or underrepresented. We conclude the paper
with a feasibility study of our algorithms on large real-world
datasets.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous; G.3
[Probability and Statistics]: Probabilistic algorithms
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1. INTRODUCTION
Random sampling techniques are at the heart of every

data stream management system. In fact, it is often in-
feasible to process and/or store the entire data stream in
high-speed applications like monitoring of sensor data, net-
work traffic, or transaction logs. Random sampling is an
appealing approach to build synopses of large data streams,
since most analytical tasks can be executed on a sample ei-
ther directly or in a slightly modified fashion. For example,
random samples can be used to estimate sums, averages and
quantiles, but they also support complex data mining tasks
such as clustering.

The main challenge in data stream sampling is to main-
tain samples that represent only the part of the data stream
relevant for analysis. Since many analytical tasks focus on
only a recent part of the data stream, it is often unneces-
sary or infeasible to maintain a sample of the data stream
in its entirety [1]. Current research addresses this problem
by maintaining so-called sequence-based (SB) samples. In
an SB sampling scheme, the probability of an item being in-
cluded in the sample depends only on its position in the data
stream. Popular variants are the maintenance of a uniform
sample of the k most recent items [2, 9] or biased sampling
schemes in which the inclusion probability of an item decays
as new items arrive [9, 1]. In general, SB schemes provide
for efficient sample maintenance in bounded space. Their
disadvantage, however, is that they are not well-suited for
time-based analysis. To see this, consider the following sim-
ple CQL query:

SELECT SUM(size) AS num_bytes

FROM packets [Range 60 Minutes]

This query monitors the number of bytes observed in the
packets stream during the last 60 minutes. Suppose that
we want to answer the above query in a continuous fashion
by maintaining an SB sample of the k most recent items.
Since the sample is sequence-based and the query is time-
based, we have to choose k in such a way that the last k items
are guaranteed to completely cover the 60-minute range of
the query. Clearly, such a choice is impossible if no a-priori
knowledge about the data stream is available. But even if we
can come up with an upper bound for the number of items in
the query range, SB schemes may perform poorly in practice.
The reason is that—unless the data stream rate is roughly
constant—the average window size is much smaller than the



upper bound, so that (with high probability) the sample
contains a large fraction of outdated items not relevant for
the query.

The above problems are addressed by time-based (TB)
sampling schemes [2, 9]. In such a scheme, the inclusion
probability of an item depends on its timestamp rather than
on its position in the data stream. In this paper, we focus
on sampling schemes that maintain a random sample of a
time-based sliding window. For example, a random sample
of the packets arrived during the last 60 minutes can directly
be used to approximately answer the query above. In TB
sampling, the main challenge is to realize an upper bound
on the space consumption of the sample while using the al-
lotted space efficiently at the same time. Space bounds are
crucial in data stream management systems with many sam-
ples maintained in parallel, since they greatly simplify the
task of memory management and avoid unexpected mem-
ory shortcomings at runtime. The difficulty of TB sampling
arises from the fact that the number of items in the window
may vary significantly over time. If the sampling fraction
is kept constant at all times, the sample shrinks and grows
with the number of items in the window. The size of the
sample is therefore unstable and unbounded. To avoid such
behavior, the sampling fraction has to be adapted on-the-
fly. Intuitively, we can afford a large sampling fraction at
low stream rates but only a low sampling fraction at high
rates.

Uniform sampling schemes, which produce each sample
of the same size with equal probability, are the most gen-
eral of the available sampling schemes. Uniform samples are
well understood and, in fact, many statistical estimators re-
quire an underlying uniform sample. In the context of data
stream systems, uniform sampling is applied either to the
data sources directly or to the output of some of the oper-
ators in the query graph. It is used to reduce or bound re-
source consumption, to support ad-hoc querying, to analyze
why the system produced a specific output or to optimize
the query graph. Though more efficient techniques exist for
some of these applications, uniformity is a must if knowledge
about the intended use of the sample is not available at the
time the sample is created. This is because uniform samples
are not tailored to a specific set of queries but provide a
versatile synopsis of the underlying data.

In this paper, we are concerned with sampling schemes
that maintain a uniform sample of a time-based sliding
window in bounded space. We show that any such sam-
pling scheme cannot provide hard sample size guarantees.
Thus, any bounded-space uniform scheme produces samples
of variable size, and sample size guarantees are, if avail-
able, probabilistic. We then introduce a novel uniform sam-
pling scheme called bounded priority sampling (BPS). The
scheme is based on priority sampling [2] but requires only
bounded space. To the best of our knowledge, BPS is the
first bounded-space uniform sampling scheme for time-based
sliding windows. We analyze the distribution of the sample
size and show that the algorithm quickly adapts to changing
data rates. By leveraging results from the area of distinct-
value estimation [3], we also show how the number of items
in the window can be estimated from the sample.

For applications where the uniformity requirement is not
crucial, we introduce a more space-efficient stratified sam-
pling scheme [9]. In stratified sampling, the window is parti-
tioned into non-overlapping time intervals called strata. For

each stratum, a uniform sample is maintained. Stratified
samples are easier to maintain than uniform samples, but
estimation becomes more involved. For example, it is not
known how to estimate the number of distinct values of an
attribute from a stratified sample. If stratified samples can
be used, however, estimates may become more precise [9].
In this paper, we discuss the problem of both placing stra-
tum boundaries and maintaining the corresponding samples.
We develop a merge-based stratified scheme (MBS), which
maintains strata of approximately equal size. The algorithm
merges adjacent strata from time to time; the decision of
when to merge and which strata to merge is a major contri-
bution of this paper. In our solution, we treat the problem as
an optimization problem and give a dynamic programming
algorithm to determine the optimum stratum boundaries.

The remainder of the paper is structured as follows. In
Section 2, we review existing techniques from the database
and data stream literature. In Section 3, we discuss the
problem of maintaining a uniform sample of a time-based
sliding window and give the details of the BPS algorithm.
Section 4 introduces merge-based stratification, which is
then used to maintain strata of approximately equal size.
We present the results of our experimental evaluation in Sec-
tion 5 and conclude the paper in Section 6.

2. EXISTING TECHNIQUES
In this section, we review existing sampling techniques

and discuss their applicability for the setting of time-based
sliding windows. Since the focus of this paper is on bounded-
space sampling schemes, we also analyze the sample size and
space consumption of the available schemes.

Database sampling. A variety of sample maintenance
techniques have been proposed in the context of relational
database systems. The most popular database sampling
technique is the reservoir sampling scheme [15]. The scheme
maintains a uniform random sample of size k of an insertion-
only dataset by intercepting insertion requests on their way
to the dataset. The idea is to add the first k inserted items
directly to the sample. Subsequent items are accepted into
the sample with probability k/(N +1), where N is the num-
ber of items processed so far, or ignored otherwise. Accepted
items replace a sample item chosen uniformly at random.
Reservoir sampling has been extended to support updates
and deletions [8, 7], so that one might consider using it for
time-based sliding windows. The idea is to treat each ar-
rival as an insertion into the window and each expiration as
a deletion from the window. This approach does not work,
however, since deletions are explicit in relational databases
but implicit in time-based sliding windows. That means that
the database sampling schemes require to be aware of ev-
ery deletion—whether the deleted item is sampled or not—,
while a window sampling scheme only observes the expira-
tion of sampled items. For this reason, none of the available
database sampling schemes can be applied to sliding win-
dows.

Sequence-based sampling. In a sequence-based sampling
scheme, the probability of an item being included in the sam-
ple depends only on its position in the data stream. Babcock
et al. [2] discuss several sampling schemes that maintain a
uniform random sample of the last N elements of the stream.
In [9], a stratified sampling scheme for the same purpose is
given. The idea is to partition the data stream into a set
of equally-sized strata and to maintain a reservoir sample



of each non-expired stratum. In Section 4, we apply this
idea to time-based sliding windows; the key difference to [9]
is that the determination of stratum boundaries becomes
much harder. An alternative approach to focus attention on
the recent items is to maintain a biased sample [9, 1]. In
these schemes, the probability of an item being sampled de-
cays as new items arrive. Again, this sequence-based notion
of recency does not match the time-based notion of analysis,
so that sequence-based schemes can only be used if a-priori
knowledge about the stream is available.

Bernoulli sampling. In [2], a modified version of Bernoulli
sampling, which maintains a uniform sample of a sequence-
based window, has been proposed. The method can eas-
ily be adapted to the setting of time-based windows. Let
q ∈ (0, 1) be the desired sampling rate. In the adapted
scheme, each item is included into the sample with proba-
bility q—independent of the other items—and excluded with
probability 1− q. Items are removed from the sample if and
only if they expire. Suppose that at some arbitrary point
in time, the sliding window contains N items. Then, the
expected sample size is qN and the actual sample size is
close to qN with high probability. The size of the sample
therefore grows and shrinks with the number of items in
the sliding window. One might hope that it is possible to
decrease (increase) q dynamically whenever the sample size
gets too large (too small). However, it has been shown re-
cently that such a modification of q destroys the uniformity
of the sample [7], so that it is impossible to control the size
of a Bernoulli sample.

Priority sampling. The priority sampling scheme [2] main-
tains a uniform sample of size 1 from a time-based sliding
window. Larger samples can be obtained by running mul-
tiple priority samplers in parallel. The idea is to assign a
random priority between 0 and 1 to each arriving item. At
any time, the algorithm reports the item with highest pri-
ority in the window as the sample item. Since each item
has the same probability of having the highest priority, the
scheme is indeed uniform.1 In order to be able to always
report the highest-priority item, it is both necessary and
sufficient to store the items for which there is no element
with both a larger timestamp and a higher priority. If, as
above, the window contains N items at an arbitrary point in
time, the scheme requires O(log N) space in expectation, the
actual space requirement is also O(log N) with high proba-
bility [2]. Thus, the space consumption of priority sampling
cannot be bounded from above.

To summarize, none of the available sampling schemes can
be used to maintain a random sample from a time-based
sliding window in bounded space. We address this situation
and introduce both a uniform and a stratified bounded-space
sampling scheme.

3. UNIFORM SAMPLING
We model a data stream as an infinite sequence R =

(e1, e2, . . .) of items. Each item ei has the form (ti, di), where
ti ∈ < denotes a timestamp and di ∈ D denotes the data
associated with the item. The data domain D depends on
the application; for example, D might correspond to a finite
set of IP addresses or an infinite set of readings from one
or more sensors. Throughout the paper, we assume that
ti < tj for i < j, that is, the timestamps of the items are

1This concept is also known as min-wise sampling [11].

strictly increasing.2 Denote by R(t) the set of items from
R with a timestamp smaller than or equal to t. Denote by
W∆(t) = R(t) \R(t−∆) a sliding window of length ∆ and
denote by N∆(t) = |W∆(t)| the size of the window at time
t. For brevity, we will supress the subscript ∆ in the follow-
ing. Note that we use the term window length to refer to
the timespan covered by the window (∆, fixed) and the term
window size to refer to the number of items in the window
(N(t), varying).

In this section, we study the problem of maintaining a
uniform random sample from W (t) in bounded space. We
consider sampling schemes that maintain a data structure
from which a uniform random sample S(t) of the items in
W (t) can be extracted at any time. The distinction between
data structure and sample allows to examine the space con-
sumption and the sample size separately. A sampling scheme
is called uniform if for any A1, A2 ⊆ W (t) with |A1| = |A2|
the probability P {S(t) = A1 } that the scheme produces A1

satisfies

P {S(t) = A1 } = P {S(t) = A2 } .

Thus, the probability that a sampling scheme produces A1

depends only on |A1| and not on its composition.

3.1 A Negative Result
One might hope that there is a sampling scheme that is

able to maintain a fixed-size uniform sample in bounded
space. However, such a scheme does not exist.

Theorem 1. Fix some time t and set N = N(t). Then,
any algorithm that maintains a fixed-size uniform random
sample of size k requires at least Ω(k log N) space in expec-
tation.

Proof. Let A be an algorithm that maintains a uniform
size-k sample of a time-based sliding window and denote by
W = { em+1, . . . , em+N } the items in the window at time
t. Furthermore, denote by t−j = tm+j + ∆ the point in

time when item em+j expires, 1 ≤ j < N , and set t−0 = t.
Now, consider the case where no new items arrive in the
stream until all the N items have expired. Then, let Ij be a
0/1-random variable and set Ij = 1 if the sample reported
by A at time t−j contains item em+j . Otherwise, set Ij = 0.
Since A has to store all items it eventually reports, it follows
that—at time t−0 —A stores at least X =

P
Ij items. We

have to show that E [ X ] = Ω(k log N).
Since A is a uniform sampling scheme, item em+1 is re-

ported at time t−0 with probability k/N . At time t−1 , only
N−1 items remain in the window and item em+2 is reported
with probability k/(N − 1). The argument can be repeated
until at time tN−k, all the k remaining items are reported
by A. It follows that

P { Ij = 1 } =

(
k/(N − j) 0 ≤ j < N − k

1 otherwise
(1)

for 0 ≤ j < N . Note that only the marginal probabilities
are given in (1); joint probabilities like P { I1 = 1, I2 = 1 }

2The algorithms in this paper also work when ti ≤ tj for
i < j, but we will use the stronger assumption ti < tj for
expository reasons.



A B B B B F

GFEDC

G
CC
D

C
D
E

C
D
E

C
F

A B
B

F
B

G
B

G

A B H

G
H

t

0.4 0.8 0.6 0.4 0.2 0.5 0.9 0.7

test item

candidate item

sample 

item

replacement

set

a) a) b) a) a) c)

Figure 1: Illustration of PS (above timeline) and BPS (below
timeline)

depend on the internals of A. By the linearity of expected
value, and since E [ Ij ] = P { Ij = 1 }, we find that

E [ X ] =

N−1X
j=0

E [ Ij ] = k(HN −Hk + 1) = Ω(k ln N),

where Hn =
Pn

i=1 1/i = O(ln n) denotes the nth harmonic
number.

It follows directly that it is impossible to maintain a fixed-
size uniform random sample from a time-based sliding win-
dow in bounded space. By Theorem 1, such maintenance re-
quires expected space logarithmic to the window size (which
is unbounded); the worst-case space consumption is at least
as large. It is not possible either to guarantee a minimum
sample size because any algorithm that guarantees a mini-
mum sample size can be used to maintain a sample of size
1. In the light of Theorem 1, we also note that the priority
sampling scheme (see Section 2) is asymptotically optimal
in terms of expected space. However, the algorithm has a
multiplicative overhead of ln N and therefore a low space
efficiency.

3.2 Bounding the Space Consumption
We now develop a bounded-space uniform sampling

scheme based on priority sampling (PS). Recall that in pri-
ority sampling, a random priority pi chosen uniformly at
random from the unity interval is associated with each item
ei ∈ R. The sample S(t) then consists of the item in W (t)
with the largest priority. In addition to the sample item,
the scheme stores a set of replacement items, which replace
the largest-priority item when it expires. This replacement
set consists of all the items for which there is no item with
both a larger timestamp and a higher priority. Figure 1
gives an example of the sampling process. A solid black cir-
cle represents the arrival of an item; its name and priority
are given below and above, respectively. The vertical bars
on the timeline indicate the window length, item expirations
are indicated by white circles, and double-expirations3 are
dotted white circles. Above the timeline, the current sam-
ple item and the set of replacement items are shown. It
can be seen that the number of replacement items stored by
the algorithm varies over time. In fact, the replacement set
is the reason for the unbounded space consumption of the
sampling scheme: it contains between 0 and N(t)− 1 items
and roughly ln N(t) items on average [2].

3An item that arrived at time t double-expires at time t+2∆.

We now describe our bounded-space priority sampling
(BPS) scheme. The scheme also assigns random priorities
to arriving items but stores at most two items in memory:
a candidate item from W (t) and a test item from W (t−∆).
The test item is used to determine whether or not the can-
didate item is reported as a sample item, see the discussion
below. The maintenance of these two items is as follows:

a) Arrival of item ei. If there is currently no candidate
item or if the priority of ei is larger than the priority
of the candidate item, ei becomes the new candidate
item and the old candidate is discarded. Otherwise,
the arriving item is ignored.

b) Expiration of candidate item. The expired candidate
becomes the test item; we only store the timestamp
and the priority of the test item. There is no candidate
item until the next item arrives in the stream.

c) Double-expiration of test item. The test item is dis-
carded.

The above algorithm maintains the following invariant: The
candidate item always equals the highest-priority item that
has arrived in the stream since the expiration of the for-
mer candidate item. This might or might not coincide with
the highest-priority item in the current window and we use
the test item to distinguish between these two cases. Sup-
pose that at some time, the candidate item expires and be-
comes the test item. Then the candidate must have been
the highest-priority item in the window right before its ex-
piration. (If there were an item with a higher priority, this
item would have replaced the candidate.) It follows that
whenever the candidate item has a higher priority than the
current test item, we know that the candidate is the highest-
priority item since the arrival of the test item and therefore
since the start of the current window. Similarly, whenever
there is no test item stored by BPS, there hasn’t been an ex-
piration of a candidate item for at least one window length,
so that the candidate also equals the highest-priority item in
the window. In both cases, we report the candidate as a sam-
ple item. Otherwise, if the candidate item has a lower prior-
ity than the test item, we have no means to detect whether
or not the candidate equals the highest-priority item in the
window and no sample item is reported.

Before we assert the correctness of BPS and analyze its
properties, we give an example of the sampling process in
Figure 1. The current candidate item and test item are
shown below the timeline. If the candidate item is shaded,
it is reported as a sample item; otherwise, no sample item is
reported. The letters below the BPS data structure refer to
cases a), b) and c) above. As long as no expiration occurs,
the candidate stored by BPS equals the highest-priority item
in the window and is therefore reported as a sample item.
The situation changes as B expires. BPS then makes item
B the test item and—because there is no candidate item
anymore—fails to report a sample item. This failure can
be seen as a consequence of Theorem 1: BPS is a bounded-
space sampling scheme and thus cannot guarantee a fixed
sample size. Item F becomes the new candidate item upon
its arrival. However, F is not reported because its priority
is lower than the priority of the test item B. And in fact,
not F but C is the highest-priority item in the window at
this time. Later C expires and F does become the highest-
priority item in the window. However, we still do not report



F since we are not aware of this situation. As G arrives,
however, we report a sample item again because G has a
higher priority than the test item B. Finally, item B is
discarded from the BPS data structure as it double-expires.

3.3 Correctness and Analysis
We now establish the correctness of the BPS algorithm.

Recall that BPS produces either an empty sample or a
single-item sample. Given that BPS does produce a sam-
ple item, we have to show that this item is chosen uniformly
and at random from the items in the current sliding window.

Theorem 2. BPS is a uniform sampling scheme, that is,
for any ej ∈ W (t), we have

P {S(t) = { ej } | |S(t)| = 1 } = 1/N(t).

Proof. Fix some time t and set S = S(t). Denote by
emax the highest-priority item in W (t) and suppose that
emax has priority pmax. Furthermore, denote by e′ ∈ W (t−
∆) the candidate item stored in the BPS data structure at
time t − ∆ (if there is one) and let p′ be the priority of e′.
Note that both emax and e′ are random variables. There are
3 cases.

Case 1: There is no candidate item at time t−∆. Then
at time t, emax is the candidate item and there is no test
item. We have S = { emax }.

Case 2: Item e′ has a smaller priority than emax. Then
emax is the candidate item at time t and—depending on
whether e′ expired before or after the arrival of emax—the
test item is either equal to e′ or empty. In both cases, we
have S = { emax }.

Case 3: Item e′ has a higher priority than emax. Then,
e′ is still the candidate item at the time of its expiration,
since there is no higher-priority item in W (t) that might
have replaced e′. Thus, item e′ becomes the test item upon
its expiration and continues to be the test item up to time
t—it double-expires somewhere in the interval (t, t + ∆). It
follows that no item is reported at time t so that S = ∅,
because the priority of the candidate item (≤ pmax) is lower
than the priority p′ of the test item.

To summarize, we have

S =

8><>:
{ emax } no candidate item at time t−∆

{ emax } pmax > p′

∅ otherwise.

(2)

Uniformity now follows since (2) does not depend on the
values, timestamps or order of the individual items in W (t).
For any ej ∈ W (t), we have

P {S = { ej } | |S| = 1 } = P { ej = emax } = 1/N(t)

and the theorem follows.

We now analyze the sample size of the BPS scheme.
Clearly, the sample size is probabilistic and its exact dis-
tribution depends on the entire history of the data stream.
However, in the light of Theorem 3 below, it becomes ev-
ident that we can still provide a local lower bound on the
probability that the scheme produces a sample item. The
lower bound is local because it changes over time; we cannot
guarantee a global lower bound other than 0 that holds at
any arbitrary time without a-priori knowledge of the data
stream.

Theorem 3. The probability that BPS succeeds in pro-
ducing a sample item at time t is bounded from below by

P { |S(t)| = 1 } ≥ N(t)

N(t−∆) + N(t)
.

Proof. BPS produces a sample item if the highest-
priority item emax ∈ W (t) has a higher priority than the
candidate item e′ stored in the BPS data structure right be-
fore the start of W (t); see (2) above. In the worst case, e′

equals the highest-priority item in W (t−∆). Now suppose
that we order the items in W (t − ∆) ∪ W (t) in descend-
ing order of their priorities. BPS succeeds for sure if the
first of the ordered items is an element of W (t). Since the
priorities are independent and identically distributed, this
event occurs with probability N(t)/(N(t − ∆) + N(t)) and
the assertion of the theorem follows.

If the arrival rate of the items in the data stream is con-
stant so that N(t) = N(t − ∆), BPS succeeds with prob-
ability of at least 50%. If the rate increases or decreases,
the success probability will also increase or decrease, respec-
tively.

3.4 Sampling Multiple Items
The BPS scheme as given above can be used to maintain a

single-item sample. A straightforward way to obtain larger
samples is to run k independent BPS samplers S1, . . . , Sk in
parallel; we refer to this scheme as BPS with replacement
(BPSWR). The sample is then set to S = S1 ∪ · · · ∪ Sk. We
have

E [ |S| ] =

kX
i=1

P { |Si| = 1 } ≥ k
N(t)

N(t−∆) + N(t)

by the linearity of the expected value. However, this ap-
proach has two major drawbacks. First, the sample S is a
with-replacement sample, that is, each item in the window
may be sampled more than once. The net sample size af-
ter duplicate removal might therefore be smaller than |S|.
Second and more importantly, the maintenance of the k in-
dependent samples is expensive. Since a single copy of the
BPS data structure requires constant time per arriving item,
the per-item processing time is O(k) and the total time to
process a window of size N is O(kN). If k is large, the
overhead to maintain the sample can be significant.

We now develop a without-replacement sampling scheme
called BPSWOR. In general, without-replacement samples
are preferable since they contain more information about
the data. The scheme is as follows: we modify BPS so as to
store k candidates and k test items simultaneously. Denote
by Scand the set of candidates and by Stest the set of test
items. The sampling process is similar to BPS: An arriving
item e becomes a candidate when either |Scand| < k or e has
a higher priority than the lowest-priority item in Scand. In
the latter case, the lowest-priority item is discarded in favor
of e. As before, expiring candidates become test items and
double-expiring test items are discarded. The sample S(t)
is then given by

S(t) = top-k
`
Scand(t) ∪ Stest(t)

´
∩ Scand(t),

where top-k(A) determines the items in A with the k highest
priorities. Note that for k = 1, BPSWR and BPSWOR
coincide. S(t) is then a uniform random sample of W (t)
without replacement; the proof is similar to the proof of



Theorem 2. Also, using an argument as in the proof of
Theorem 3, we can show that E [ S(t) ] ≥ kN(t)/(N(t −
∆) + N(t)). Thus, BPSWR and BPSWOR have the same
lower bound on the expected (gross) sample size. The cost of
processing a window of size N is O(kN) if the candidates are
stored in a simple array. A more efficient approach—which
also improves the cost in comparison to BPSWR—is to store
the candidates in a treap, where the items are arranged in
order with respect to the timestamps and in heap-order with
respect to the priorities. The expected cost of BPSWOR
then decreases to O(N + k log k log N) in expectation.4

Note that we can also modify PS to sample without re-
placement. The so-modified PSWOR scheme then reports
the items with the k highest priorities in the window. In
order to maintain these k items incrementally, we store each
item as long as there are fewer than k more recent items with
a higher priority. The space consumption is still O(k log N)
in expectation, but efficient maintenance of the replacement
set becomes challenging. Since the focus of this paper is on
bounded-space sampling schemes, we do not further elabo-
rate on this issue.

3.5 Estimation of Window Size
For some applications, it is important to be able to esti-

mate the window size in order to make effective use of the
sample. For example, the window sum of an attribute is
typically estimated as the sample average of the respective
attribute multiplied by the window size. Thus—in some
applications—knowledge of the window size is important to
determine scale-up factors.

Exact maintenance of the number of items in the window
requires that we store all the timestamps in the window in
order to deal with expirations. Typically, this approach is
infeasible in practice. Approximate data structures [6] do
exist and can be leveraged to support the sampling pro-
cess. If such alternate data structures are unavailable, we
can come up with an estimate of the window size directly
from the sample. Set W2(t) = W (t − ∆) ∪ W (t) and de-
note by p(k) the priority of the item with the kth highest
priority in W2(t). In [3], it has been shown that an unbiased
estimator for N(t) is given by

N̂W (t) =
|W (t) ∩ top-k W2(t)|

k

k − 1

1− p(k)

.

Here, the first factor estimates the fraction of non-expired
items in W2(t) from the top-k items (which can be viewed
as a random sample of W2), while the second factor is an
estimate of |W2(t)| itself. Now, suppose that we maintain
the sample using BPSWOR. Set S2(t) = Scand ∪ Stest and
denote by p′(k) the priority of the item with the kth highest
priority in S2. Consider the estimator

N̂S(t) =
|S(t) ∩ top-k S2(t)|

k

k − 1

1− p′(k)

.

This estimator is similar to N̂W (t) but solely accesses in-
formation available in the sample. Both estimators coincide
if and only if top-k S2(t) = top-k W2(t). This happens if

4Following an argument as in [3], at most O(k log N) items
of the window are accepted into the candidate set in ex-
pectation and each accepted item incurs an expected cost
of O(log k) [13]. At most k items (double-)expire while
processing a window, so that the expected cost to process
(double-)expirations is O(k log k).

at least |W (t−∆) ∩ top-k W2(t)| items have been reported
as the sample at time t − ∆. Otherwise, the first factor
in N̂S(t) will overestimate the first factor in N̂W (t), while
the second factor will underestimate the respective factor
in N̂W (t). In our experiments, we found that the estimator

N̂S has negligible bias and low variance. Thus, both over-
and underestimation seem to balance smoothly, though we
do not make any formal claims here.

4. STRATIFIED SAMPLING
We now consider the problem of maintaining a stratified

sample of a time-based sliding window. The general idea is
to partition the window into disjoint strata and to maintain
a uniform sample of each stratum [9]. Stratified sampling
is often superior to uniform sampling because a stratified
scheme exploits correlations between time and the quantity
of interest. As will become evident later on, stratification
also allows us to maintain larger samples than with BPS in
the same space. The main drawback of stratified sampling
is its limited applicability; for some problems, it is difficult
or even impossible to compute a global solution from the
different subsamples. For example, it is not known how the
number of distinct values can be estimated from a stratified
sample, while the problem has been studied extensively for
uniform samples [5]. If, however, the desired analytical tasks
can be performed on a stratified sample, stratification is
often the method of choice.

We consider stratified sampling schemes, which partition
the window into l > 1 strata and maintain a uniform sam-
ple Si of each stratum, 1 ≤ i ≤ l. Each sample has a fixed
size of n items. In addition to the sample, we also store
the stratum size Ni and the timestamp ti of the upper stra-
tum boundary; these two quantities are required for sample
maintenance. The main challenge in stratified sampling is
the placement of stratum boundaries because they have a
significant impact on the quality of the sample.5 In the
simplest version, the stream is divided into strata of equal
width (time intervals); we refer to this strategy as equi-width
stratification. An alternative strategy is equi-depth stratifi-
cation, where the window is partitioned into strata of equal
size (number of items). Equi-depth stratification outper-
forms equi-width stratification when the arrival rate of the
data stream varies inside a window, but the strata are much
more difficult to maintain. In fact, perfect equi-depth strat-
ification is impossible (see below), so that approximate solu-
tions are needed. In this section, we develop a merge-based
stratification strategy, which approximates equi-depth strat-
ification to the best possible extent.

Figure 2 illustrates equi-width stratification with parame-
ters l = 4 and n = 1; sampled items are represented by solid
black circles. The figure displays a snapshot of the sample
at 3 different points in time, which are arranged vertically
and termed a), b) and c). Note that the rightmost stratum
ends at the right window boundary and grows as new items
arrive, while the leftmost stratum exceeds the window and
may contain expired items. The maintenance of the strati-
fied sample is significantly simpler than the maintenance of
a uniform sample because arrivals and expirations are not

5To see this, consider the simple case where all items in
the window fall into only one of the l strata. In this case,
a fraction of 100(l − 1)/l% of the available space remains
unused.
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Figure 2: Equi-width stratification

intermixed within strata. Arriving items are added to the
rightmost stratum and—since no expirations can occur—we
can use reservoir sampling to maintain the sample incre-
mentally (see Section 2). On the contrary, expirations only
affect the leftmost stratum. We remove expired items from
the respective sample; the remaining sample still represents
a uniform sample of the non-expired part of the stratum [8].

4.1 Effect of Stratum Sizes
The main advantage of equi-width stratification is its sim-

plicity, the main disadvantage is that the sampling fraction
may vary widely across the strata. In the example of Fig-
ure 2c), the sampling fractions of the first, second and third
stratum are given by 50%, 100% and 16%, respectively. In
general, dense regions of the stream are underrepresented
by an equi-width sample, while sparse regions are overrep-
resented. Thus, we want to stratify the data stream in such a
way that each stratum has approximately the same size and
therefore the same sampling fraction; we refer to this ap-
proach as equi-depth stratification. Unfortunately, perfect
equi-depth stratification is not realizable in practice because
the data stream is unknown in advance and we cannot move
stratum boundaries arbitrarily. Before we introduce our ap-
proximate merge-based algorithm, we discuss the relation-
ship of stratum sizes and accuracy with the help of a simple
example.

Suppose that we want to estimate the window average
µ of some attribute of the stream from a stratified sample
and assume for simplicity that the respective attribute is
normally distributed with mean µ and variance σ2. Further
suppose that at some time the window contains N items and
is divided into l strata of sizes N1, . . . , Nl with

P
Ni = N .

Then, the standard Horvitz-Thompson estimator µ̂ of µ is
a weighted average of the per-stratum sample averages [12],

that is µ̂ = 1
N

Pl
i=1 Niµ̂i, where µ̂i is the sample average of

the ith stratum. The estimator has variance

Var [ µ̂ ] =
1

N2

lX
i=1

N2
i Var [ µ̂i ] =

σ2

nN2

lX
i=1

N2
i ,

where we used Var [ µ̂i ] = σ2/n. Thus, the variance of the
estimator is proportional to the sum of the squares of the
stratum sizes, or similarly, the variance of the stratum sizes:

Var [ N1, . . . , Nl ] =

lX
i=1

„
Ni −

N

l

«2

=

P
N2

i

l
−
„

N

l

«2

(3)

The variance is minimized if all strata have the same size
(best case) and maximized if one stratum contains all the
items in the window (worst case).

The above example is extremely simplified because we de-
signed the stream in such a way that the variance Var [ µ̂i ] of
the estimate is equal in all strata. In general, stratification is
the more efficient the higher the correlation of the attribute
of interest with time gets (because time is the stratification
variable). In this paper, however, we assume that no infor-
mation about the intended use of the sample is available;
in this case, our best guess is to assume equal variance in
each stratum. Thus, the variance of the stratum sizes as
given in (3) can be used to quantify the quality of a given
stratification.

4.2 Merge-Based Stratification
Perfect equi-depth stratification is impossible, since we

cannot reposition stratum boundaries arbitrarily. To see
this, consider the state of the sample as given in Figure 2c).
To achieve equi-depth stratification, we would have to (1) re-
move the stratum boundary between items D and E, and (2)
introduce a new stratum boundary between H and I. Here,
(1) represents a merge of the first and second stratum. In [4],
Brown et al. have shown that such a merge is possible, that
is, a sample of the merged stratum can be computed from
the samples of the individual strata. In the example, the
merged sample would contain item C with probability 2/3
and item E with probability 1/3. In contrast, (2) represents
a split of the third stratum into two new strata, one contain-
ing items F -H and one containing items I-K. In the case of
a split, it is neither possible to compute the samples of the
two new strata nor to determine the stratum sizes. In the
example, prior to the split, the third stratum has size 6 and
the sample contains item I. Based on this information, it is
impossible to come up with a sample of stratum F -H; we
cannot even determine that stratum F -H contains 3 items.

Our merge-based stratified sampling scheme (MBS) ap-
proximates equi-depth stratification to the extent possible.
The main idea is to merge two adjacent strata from time to
time. Such a merge reduces the information stored about the
two strata but creates free space at the end of the sample,
which can be used for future items. In Figure 3, we illustrate
MBS on the example data stream. We start as before with
the 4 strata given in a). Right after the arrival of item H,
we merge stratum C-D with stratum E to obtain stratum
C-E. The decision of when and which strata to merge is
the major challenge of the algorithm. After a merge, we use
the freed space to start a new, initially empty stratum. The
state of the sample after the creation of the new stratum
is shown in b). Subsequent arrivals are added to the new
stratum (items I, J and K). Finally, stratum A-B expires
and, again, a fresh stratum is created; see c). Note that the
sample is much more balanced than with equi-width strati-
fication (Figure 2).

Before we discuss when to merge, we briefly describe how
to merge. Suppose that we want to merge two adjacent
strata R1 and R2 with |R1|, |R2| ≥ n. Denote by Si, Ni, ti

the uniform sample (of size n), the stratum size and the up-
per boundary of stratum Ri, i ∈ { 1, 2 }. Then, the merged
stratum R = R1 ∪R2 has size N1 +N2 and upper boundary
t2. In [4], Brown et al. have shown how to merge S1 and
S2 to obtain a uniform sample S of R1 ∪ R2 with |S| = n.
Let X be a random variable for the number of items from
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Figure 3: Merge-based stratification

R1 in a size-n uniform sample drawn directly from R. X is
hypergeometrically distributed with

P {X = x } =

 
N1

x

! 
N2

n− x

!‹ N1 + N2

n

!
for 0 ≤ k ≤ n. Since all the distribution parameters are
known, we can obtain a realization x of X by throwing a
dice. Then, we compute uniform subsamples S′1 and S′2 from
S1 and S2, respectively, with |S′1| = x and |S′2| = n − x.
The subsamples can be computed using reservoir sampling,
though more efficient sampling schemes exist for this pur-
pose [14]. The final sample S is then set to the union of S′1
and S′2; see [4] for a proof of the uniformity of S.

4.3 When To Merge Which Strata
The decision of when and which strata to merge is cru-

cial for merge-based stratification. Suppose that at some
time t, the window is divided into l strata R1, . . . , Rl of size
N1, . . . , Nl, respectively. During the subsequent sampling
process, a new stratum is created when either (1) stratum
R1 expires or (2) two adjacent strata are merged. Observe
that we have no influence on (1), but we can apply (2) as
needed. We now treat the problem of when and which strata
to merge as an optimization problem, where the optimiza-
tion goal is to minimize the variance of the stratum sizes
at the time of the expiration of R1. Therefore—whenever
the first stratum expires—the sample looks as much like an
equi-depth sample as possible.

Denote by R+ = { e1, . . . , eN+ } the set of items that ar-
rive until the expiration of stratum R1 (but have not yet
arrived) and set N+ = |R+|.6 At the time of R1’s expira-
tion and before the creation of the new stratum, the window
is divided into l− 1 strata so that there are l− 2 inner stra-
tum boundaries. The positions of the stratum boundaries
depend on both the number and point in time of any merges
we perform. Our algorithm rests on the observation that for
any way of putting l−2 stratum boundaries in the sequence

R2, R3, . . . , Rl, e1, e2, . . . , eN+,

there is at least one corresponding sequence of merges that
results in the respective stratification. For example, the
stratification

R2 | R3 | · · · | Rl, e1, . . . , eN+

is achieved if no merge is performed (vertical bars denote
boundaries), while

R2 | · · · | Ri, Ri+1 | · · · | Rl, e1, . . . , ej | ej+1, . . . , eN+
6In practice, N+ is not known in advance; we address this
issue in Section 4.4.

is achieved if stratum Ri and Ri+1 are merged after the ar-
rival of item ej and before the arrival of item ej+1. In gen-
eral, for every stratum boundary in between Rl, e1, . . . , eN+ ,
we drop a stratum boundary in between R2, . . . , Rl by per-
forming a merge operation at the respective point in time.

We can now reformulate the optimization problem: Find
the partitioning of the integers

N2, . . . , Nl, 1, . . . , 1| {z }
N+ times

into l − 1 consecutive and non-empty partitions so that the
variance (or sum of squares) of the intra-partition sums is
minimized. The problem can be solved using dynamic pro-
gramming in O(l(l+N+)2) time [10]. In our specific instance
of the problem, however, the last N+ values of the sequence
of integers are all equal to 1. As shown below, we can lever-
age this fact to construct a dynamic programming algorithm
that obtains an optimum solution in only O(l3) time. Since
N+ is typically large, the improvement in performance can
be significant.

The algorithm is as follows. Let opt(k, i) be the minimum
sum of squares when k of the l − 2 boundaries are placed
between N2, . . . , Nl and the last one of these k boundaries
is placed right after Ni; 0 ≤ k ≤ l − 2 and k < i < l. Then,
opt(k, i) can be decomposed into two functions

opt(k, i) = f(k, i) + g(k, i),

where f(k, i) is the minimum sum of squares for the k par-
titions left of and including Ni and g(k, i) is the minimum
sum of squares for the l − k − 1 partitions right of Ni. The
decomposition significantly reduces the complexity because
the computation of g does not involve any optimization. To
define g(k, i), observe that by definition, there are no bound-
aries in between Ni+1, . . . , Nl, so that these values fall into
a single partition and we can sum them up. The resulting
part of the integer sequence is then

Ni+1,l, 1, . . . , 1,

where Na,b =
Pb

j=a Nj .
7 In fact, g is minimized if all the

l−k−1 partitions have the same size, that is, size
Ni+1,l+N+

l−k−1
.

If Ni+1,l is larger than this average size, the minimum value
of g cannot be obtained. In this case, the best choice is to
put Ni+1,l in one stratum for its own; the remaining l−k−2

partitions then all have size N+

l−k−2
. Thus, the function g is

given by

g(k, i)

=

8<:(l − k − 1)
“

Ni+1,l+N+

l−k−1

”2

Ni+1,l <
Ni+1,l+N+

l−k−1

N2
i+1,l + (l − k − 2)

“
N+

l−k−2

”2

otherwise.

The function f can be defined recursively with

f(0, i) = N2
2,i

f(k, i) = min
k≤j<i

˘
f(k − 1, j) + N2

j+1,i

¯
.

and the optimum solution is given by

min
0≤k≤l−2

min
k<i<l

opt(k, i).

7Na,b can be computed in constant time with the help of an
array containing the prefix sums N2,2, . . . , N2,l [10].



To compute the optimum solution, we iterate over k in in-
creasing order and memoize the values of f(k, ·); these val-
ues will be reused for the computation of f(k + 1, ·). The
global solution and the corresponding stratum boundaries
are tracked during the process. Since each of the loop vari-
ables k, i and j take at most l different values, the total time
complexity is O(l3). The algorithm requires O(l) space.

4.4 Estimation of Arriving-Item Count
The decision of when to merge is dependent on the number

N+ of items that arrive until the expiration of the first stra-
tum. In practice, N+ is unknown and has to be estimated.
In this section, we propose a simple and fast-to-compute
estimator for N+. Especially for bursty data streams, esti-
mation errors can occur; we therefore discuss how to make
MBS robust against estimation errors.

As before, suppose that—at some time t—the sample con-
sists of l strata of sizes N1, . . . , Nl and denote by ti the upper
boundary of the ith stratum, 1 ≤ i ≤ l. Furthermore, de-
note by ∆− = t1 + ∆− t the time span until the expiration
of the first stratum. We want to predict the number of items
that arrive until time t+∆−. Denote by j the stratum index
such that t− tj > ∆− and t− tj+1 ≤ ∆−. An estimate N̂+

of N+ is then given by

N̂+ = ∆−
Pl

i=j+1 Ni

t− tj
.

The estimate roughly equals the amount of items that ar-
rived in the last ∆− time units. The intuition behind this
estimator is that the amount of history we use for estima-
tion depends on how far we want to extrapolate into the
future. In conjunction with the robustness techniques dis-
cussed below, this approach showed a good performance in
our experiments.

Whenever a stratum expires, we compute the estimate
N̂+ and—based on this estimate—determine the optimum
sequence of merges using the algorithm given in Section 4.3.
Denote by m̂ ≥ 0 the total number of merges in the re-
sulting sequence and by N̂+

1 the number of items that arrive

before the first merge. In general, we now wait for N̂+
1 items

to arrive in the stream and then perform a merge operation.
Note that the value of m̂ (N̂+

1 ) is a monotonically increasing

(decreasing) function of N̂+; we perform the more merges
the more items arrive before the expiration of the first stra-
tum. Thus, underestimation may lead to too few merges
and overestimation may lead to too many merges. To make
MBS robust against estimation errors, we recompute the se-
quence of merges whenever we observe that the data stream
behaves differently than predicted. There are two cases:

• m̂ = 0: We recompute m̂ and N̂+
1 only if more than

N̂+ items arrive in the stream, so that a merge may
become profitable. This strategy is optimal if N̂+ ≥
N+ but might otherwise lead to a tardy merge.

• m̂ > 0: Denote by t̂ =
N̂+

1
N̂+ ∆− the estimated time span

until the arrival of the N̂+
1 -th item. We recompute the

estimates if the N̂+
1 -th item does not arrive close to

time t+t̂. For concreteness, recomputation is triggered
if either the N̂+

1 -th item arrives before time t+(1− ε)t̂

or when fewer than N̂+
1 items arrived at time t+(1+ε)t̂,

where 0 < ε < 1 determines the validity interval of the
estimate and is usually set to a small value, say 5%.

In our experiments, the variance of the stratum sizes
achieved by MBS without a-priori knowledge of N+ was
almost as low as the one achieved by MBS with a-priori
knowledge of N+.

5. EXPERIMENTS
We implemented bounded-space priority sampling with

and without replacement (BPSWR/BPSWOR), priority
sampling without replacement (PSWOR), Bernoulli sam-
pling and the stratified sampling schemes in Java 1.6. The
experiments have been run on a workstation PC with a 3
GHz Intel Pentium 4 processor and 2.5 GB main memory.

Almost all of the experiments have been run on real-world
datasets because we felt that synthetic datasets cannot cap-
ture the complex distribution of real-world arrival rates. We
used two real datasets, which reflect two different types of
data streams frequently found in practice. The NETWORK
dataset, which contains network traffic data, has a very
bursty arrival rate with high short-term peaks. In contrast,
the SEARCH dataset contains usage statistics of a search
engine and the arrival rate changes slowly; it basically de-
pends on the time of day. These two datasets allowed us
to study the influence of the evolution of the arrival rates
on the sampling process. The NETWORK dataset has been
collected by monitoring one of our web servers for a period of
1 month. The dataset contains 8, 430, 904 items, where each
item represents a TCP packet and consists of a timestamp
(8 bytes), a source IP and port (4 + 2 bytes), a destination
IP and port (4 + 2 bytes) and the size of the user data (2
bytes). The SEARCH dataset has been collected in a pe-
riod of 3 months and contains 36, 389, 565 items. Each item
consists of a timestamp (8 bytes) and a user id (4 bytes).

For most of our experiments, we do not report the esti-
mation error of a specific estimate derived from the sample
but rather give the key characteristics that influence the
estimation error of any potential estimate. This way, our
results are independent of the actual values associated with
the items in our datasets. In the case of uniform sampling,
the key characteristic is the sample size. Two uniform sam-
ples of the same size are identical in distribution, no mat-
ter which scheme has been used to compute them. Larger
samples inevitably lead to a smaller estimation error. For
stratified sampling, the key characteristic is the variance of
the stratum sizes. This variance is a direct measure of how
close stratification is to equi-depth stratification. A smaller
variance typically results in less estimation error.

5.1 Summary of Experimental Results
For uniform sampling, we found that:

• BPSWOR is the method of choice when the available
memory is limited and the data stream rate is varying.
It then produces larger samples than Bernoulli sam-
pling or PSWOR. Also, BPSWOR is the only scheme
that does not require a-priori information about the
data stream and guarantees an upper bound on the
memory consumption.

• The window size ratio of the current window to both
the current and previous window has a significant im-
pact on the sample size of BPSWOR. A small ratio
leads to smaller samples, while a large ratio results in
larger samples. For a given ratio, the sample size has
low variance and is skewed towards larger samples.



• BPSWOR is superior to BPSWR because it is signifi-
cantly faster and samples without replacement.

• The window size estimate discussed in Section 3.5 has
low relative error. The relative error decreases with an
increasing sample size.

For stratified sampling, we found that:

• Merge-based stratification leads to significantly lower
stratum size variances than equi-width stratification
when the data stream is bursty. Both schemes have
comparable performance when the data stream rate
changes slowly.

• Merge-based stratification seems to be robust to errors
in the arrival rate estimate. Results with estimated
arrival rates are close to the theoretical optimum.

• When the number of strata is not too large (≤ 32), the
overhead of merge-based stratification is low.

5.2 Uniform Sampling, Synthetic Data
In a first experiment, we compared Bernoulli sampling,

PSWOR and BPSWOR. Neither Bernoulli sampling nor
PSWOR can guarantee an upper bound on the space con-
sumption and—without a-priori knowledge of the stream—
it is not possible to parametrize them to only infrequently
exceed the space bound. The goal of this experiment is to
compare the sample size and space consumption of the three
schemes under the assumption that such a parametrization
is possible. For this purpose, we generated a synthetic data
stream, where each item of the data stream consists of an
8-byte timestamp and 32 bytes of dummy data. To generate
the timestamps, we modeled the arrival rate of the stream
using a sine curve with a 24h-period, which takes values be-
tween 3, 000 and 5, 000 items per hour. We superimposed
the probability density function (PDF) of a normal distri-
bution with mean 24 and variance 0.5 on the sine curve; the
PDF has been scaled so that it takes a maximum of 30, 000
items per hour. This models real-world scenarios where the
peak arrival rate (scaled PDF) is much higher than the av-
erage arrival rate (sine curve).

We used the three sampling schemes to maintain a sam-
ple from a sliding window of 1 hour length; the window
size over time is given in Figure 4a. We used a space bud-
get of 32 kbytes; at most 819 items can be stored in 32
kbytes space. For the sampling schemes, we used param-
eters kBPSWOR = 585 (number of candidate/test items),
kPSWOR = 113 (sample size) and qBernoulli = 0.0276 (sam-
pling rate). The latter two parameters have been chosen so
that the expected space consumption at the peak arrival rate
equals 32 kbytes—as discussed above, this parametrization
is only possible because we know the behavior of the stream
in advance. During the sampling process, we monitored both
sample size and space consumption; the results are given in
Figure 4b and 4c, respectively.

Bernoulli sampling. The size of the Bernoulli sample fol-
lows the size of the window: It fluctuates around ≈ 110
items in the average case but stays close to the 819 items
at peak times. The space consumption of the sample is pro-
portional to the sample size; a large fraction of the available
space remains unused in the average case.

Priority sampling. PSWOR produces a constant sample
size of 113 items. The space consumption has a logarithmic

dependence of the size of the window because—in addition
to the sample items—PSWOR also stores the replacement
set and the priority of each item.

Bounded priority sampling. BPSWOR produces a sample
size of ≈ 300 items in the average case and therefore has a
much better space utilization than Bernoulli sampling and
PSWOR. When the peak arrives, the sample size first grows
above, then falls below the 300-item average. Afterwards it
stabilizes again. By Theorem 3, the sample size depends on
the ratio of the number of items in the current window to the
number of items in both the current and previous window to-
gether. This fraction is roughly constant in the average case
but varies with the arrival of the peak load. Interestingly,
the scheme almost always uses the entire available memory
to store the candidate items and the test items. The space
consumption slightly decreases when the peak arrives. In
this case, we store fewer than k test items because—due to
the increased arrival rate—candidate items are replaced by
new items before their expiration and so do not become test
items.

To summarize, each of the three schemes has a distinc-
tive advantage: Bernoulli sampling does not have any mem-
ory overhead, PSWOR guarantees a fixed sample size and
BPSWOR samples in bounded space. If the available mem-
ory is limited, BPSWOR is the method of choice because
it produces larger sample sizes than Bernoulli sampling or
PSWOR and does not require any a-priori knowledge about
the data stream. For these reasons, we do not consider
Bernoulli sampling and PSWOR for our real-world exper-
iments.

5.3 Uniform Sampling, Real Data
Next, we ran BPSWR and BPSWOR on our real-world

datasets with a window size of one hour. We monitored the
sample size, elapsed time and the window-size estimate dur-
ing the sampling process and recorded the respective values
at every full hour. We did not record more frequently so as
to minimize the correlation between the measurements. The
experiment was repeated with space budgets ranging from 1
kbyte to 32 kbytes. For each space budget, the experiment
was repeated 32 times.

Sample size. In Figure 4d, we report the distribution of
the BPSWOR sample size for the NETWORK dataset; sim-
ilar results were observed with BPSWR. We used a space
budget of 32 kbytes, which corresponds to a value of k = 862.
The figure shows a histogram of the relative frequencies for
varying sample sizes. As can be seen, the sample size con-
centrates around the average of 448 items and varies in the
range from 11 to 862 items. The standard deviation of the
sample size is 173 and in 95% of the cases, the sample size
was larger than 176 items. By Theorem 3, the sample size
depends on the ratio of the size of the current window to the
size of both the prior and the current window, or the window
size ratio for short. In Figure 4e, we give a histogram of the
window size ratios in the NETWORK dataset. As can be
seen, the distribution of the window size ratio has a striking
similarity to the distribution of the sample size. To further
investigate this issue, we give a box-and-whisker plot of the
sample size for varying ranges of window size ratios in Fig-
ure 4f. In a box-and-whisker plot, a box ranging from the
first quartile to the third quartile of the distribution is drawn
around the median value. From the box, whiskers extend to
the minimum and maximum values as long as these values lie



within 1.5 times the interquartile distance (=height of the
box); the remaining values are treated as outliers and are
directly added to the plot. From the figure, it becomes ev-
ident that the window size ratio has a significant influence
on the sample size. Also, for each window size ratio, the
sample size has low variance and is skewed towards larger
samples. The skew results from the fact that the worst-case
assumption of Theorem 3 does not always hold in practice;
if it does not hold, the sample size is larger.

In Figures 4g, 4h and 4i, we give the corresponding results
for the SEARCH dataset. Since the items in the SEARCH
dataset require less space than the NETWORK items, a
larger value of k = 1170 was chosen. As can be seen in the
figure, the sample size distribution is much tighter because
the arrival rate in the dataset does not vary as rapidly. The
sample size ranges from 0 items to 1170 items, where a value
of 0 has only been observed when the window was actually
empty. The samples size averages to 579 items and is larger
than 447 items in 95% of the cases.

Performance. In Figure 4j, we compare the performance
of BPSWR and BPSWOR for various space budgets on the
NETWORK dataset. The figure shows the average time
in milliseconds required to process a single item. It has
logarithmic axes. For both algorithms, the per-item pro-
cessing time increases with an increasing space budget, but
BPSWOR is significantly more efficient than BPSWR. The
results verify the theoretical analysis in Section 3.4. Since
BPSWOR additionally samples without replacement, it is
clearly superior to BPSWR.

Estimation of window size. In a final experiment with
uniform sampling, we evaluated the accuracy and precision
of the window size estimator given in Section 3.5 in terms of
its relative error; the relative error of an estimate N̂ of N is
defined as |N̂−N |/N . Figure 4k and 4l display the distribu-
tion of the relative error for the NETWORK and SEARCH
dataset, respectively, in a kernel-density plot. The relative
error is given for memory budgets of 32 kbytes, 64 kbytes
and 128 kbytes for the entire sample; only the priorities are
actually used for window size estimation. For both datasets
and all sample sizes, the relative error almost always lies
below 10% and often is much lower. As the memory bud-
get and thus the value of k increases, the estimation error
decreases; see [3] for a detailed discussion of this behavior.
We conclude that our window size estimator produces low-
error estimates and can be used when synopses specialized
on window size estimation are unavailable.

5.4 Stratified Sampling
In the next set of experiments, we compared equi-width

stratification with merge-based stratification (MBS). Recall
that during the sampling process, MBS occasionally requires
an estimate of the number of items that arrive until the expi-
ration of the first stratum. To quantify the impact of estima-
tion, we considered two versions of MBS in our experiments.
MBS-N makes use of an “oracle”: Whenever an estimate of
the number of arriving items is required, we determine the
exact number directly from the dataset so that no estimation
error occurs. MBS-N can therefore be seen as the theoretical
optimum of merge-based stratification. In contrast, MBS-N̂
uses the estimation technique and robustness modifications
as described in Section 4.4. The experimental setup is iden-
tical to the one used for uniform sampling, that is, we sample
from the real-world datasets over a sliding window of 1 hour

length. Unless stated otherwise, we used a space budget of
32 kbytes and l = 32 strata.

Variance of stratum sizes. We first compared the vari-
ance of the stratum sizes. In order to facilitate a meaningful
variance comparison for windows of varying size, we report
the coefficient of variation (CV) instead of the stratum size
variance directly. The CV is defined as the standard de-
viation (square root of variance) normalized by the mean
stratum size; a value less than 1 indicates a low-variance
distribution, whereas a value larger than 1 is often consid-
ered high variance. Figure 4m displays the distribution of
the CV for the NETWORK dataset using a kernel-density
plot. As can be seen, equi-width stratification leads to high
values of the CV, while merge-based stratification produces
significantly better results. Also, MBS-N and MBS-N̂ per-
form similarly, with MBS-N being slightly superior. The
difference between equi-width stratification and the MBS
schemes is contributed to the burstiness of the NETWORK
stream in which the arrival rates vary significantly during a
window length. In contrast, Figure 4n shows the distribu-
tion of the CV for the SEARCH dataset. Since the arrival
rates change only slowly, equi-width stratification already
produces very good results and the merge-based schemes es-
sentially never decide to merge two adjacent strata. The
three schemes produce almost identical results. Therefore,
merge-based stratification is the more beneficial the more
bursty the data stream is.

Accuracy of estimate (example). In a next experiment,
we used the stratified sampling schemes to estimate the
throughput of the NETWORK data from the sample. Here,
we defined the throughput as the sum of the user-data size
attribute over the entire window (see the CQL query given in
the introduction). Figure 4o gives the distribution of the rel-
ative error of the estimate. The estimates derived from the
merge-based schemes have a significantly lower estimation
error than the estimates achieved with equi-width stratifi-
cation. Thus, intelligent stratification indeed improves the
quality of the sample. Note that for the SEARCH dataset,
the distribution of the relative error would be almost indis-
tinguishable for the three schemes because for this dataset,
merge-based stratification does not improve upon equi-width
stratification.

Number of strata (Example). The number l of strata can
have a significant influence on the quality of the estimates.
In Table 1, we give the average of the relative error (ARE) of
the NETWORK throughput estimate for a varying number
of strata. With an increasing number of strata, the ARE
increases for equi-width stratification but decreases for the
merge-based schemes. On the one hand, the sample size per
stratum decreases as l increases and it becomes more and
more important to distribute the strata evenly across the
window. In fact, when the number of strata was high, equi-
width stratification frequently produced empty strata and
thereby wasted some of the available space. On the other
hand, a large number of strata better exploits the correla-
tions between time and the attribute of interest. Thus, the
estimation error often decreases with an increasing value of
l. In our experiment, the correlation of the user-data size
attribute and time is low, so that the decrease in estimation
error is also relatively low.

Performance. In a final experiment, we measured the av-
erage per-item processing time for the three schemes and a
varying number of strata. The results for the NETWORK



ARE 4 8 16 32 64
Equi-width 2.31% 2.73% 3.44% 4.42% 5.90%

MBS-N 2.00% 1.83% 1.74% 1.70% 1.72%

MBS-N̂ 2.04% 1.88% 1.82% 1.76% 1.79%

Time (µs) 4 8 16 32 64
Equi-width 2.27 2.25 2.24 2.22 2.21

MBS-N 2.33 2.36 2.41 3.17 9.68

MBS-N̂ 2.35 2.38 2.67 4.75 18.44

Table 1: Influence of the number of strata (NETWORK)

data are given in Table 1. Clearly, equi-width stratification
is the most efficient technique and the processing time does
not depend upon the number of strata. The MBS schemes
are slower because they occasionally have to 1) estimate the
number of arriving items, 2) determine the optimum strat-
ification and 3) merge adjacent strata. The computational
effort increases as the number of strata increases. MBS-N is
slightly faster than MBS-N̂ because MBS-N̂ reevaluates 2)
if the stream behaves differently than predicted. In compar-
ison to equi-width stratification, MBS leads to a significant
performance overhead if the number of strata is large. How-
ever, when the number of strata is not too large (l ≤ 32), the
overhead is low but the quality of the resulting stratification
might increase significantly.

6. CONCLUSION
We have studied bounded-space techniques for maintain-

ing uniform and stratified samples over a time-based sliding
window of a data stream. For uniform sampling, we have
shown that any bounded-space sampling scheme that guar-
antees a lower bound on the sample size requires expected
space logarithmic to the number of items in the window; the
worst-case space consumption is at least as large. Our prov-
ably correct BPS scheme is the first bounded-space sampling
scheme for time-based sliding windows. We have shown how
BPS can be extended to efficiently sample without replace-
ment and developed a low-variance estimator for the number
of items in the window. The sample size produced by BPS is
stable in general, but quick changes of the arrival rate might
lead to temporarily smaller or larger samples.

For stratified sampling, we have shown how the sample
can be distributed evenly across the window by merging ad-
jacent strata from time to time. The decision of when and
which strata to merge is based on a dynamic programming
algorithm, which uses an estimate of the arrival rate to de-
termine the best achievable stratum boundaries. MBS is
robust against estimation errors and produces significantly
more balanced samples than equi-width stratification. We
found that the overhead of MBS is small as long as the
number of strata is not too large. Especially for bursty
data streams, the increased precision of the estimates de-
rived from the sample compensates for the overhead in com-
putational cost.

Repeatability Assessment Result
All the results in this paper were verified by the SIGMOD
repeatability committee. Code and/or data used in the pa-
per are available at http://www.sigmod.org/codearchive/
sigmod2008/.
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Figure 4: Experimental results (see subheadings on the left hand side)
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