
Sampling Algorithms for Evolving Datasets

Kurzfassung der Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Rainer Gemulla

geboren am 28. April 1980 in Sondershausen

Dresden im August 2008

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik, Institut für Systemarchitektur
Lehrstuhl für Datenbanken
01062 Dresden

Dr. Peter J. Haas
IBM Almaden Research Center, K55/B1
650 Harry Road, San Jose, CA 95120-6099
USA

Prof. Dr.-Ing. Dr. h.c. Theo Härder
Technische Universität Kaiserslautern
Fachbereich Informatik
AG Datenbanken und Informationssysteme
67653 Kaiserslautern

ii

Sampling Algorithms for Evolving Datasets
(Extended Abstract)

Rainer Gemulla

August 27, 2008

Perhaps the most flexible synopsis of a database is a uniform random
sample of the data; such samples are widely used to speed up processing of
analytic queries and data-mining tasks, enhance query optimization, and
facilitate information integration. Most of the existing work on database
sampling focuses on how to create or exploit a random sample of a
static database, that is, a database that does not change over time. The
assumption of a static database severely limits the applicability of these
techniques in practice, where data is often not static but continuously
evolving. In the thesis,1 we study methods for incrementally maintaining
a uniform random sample of the items in a dataset in the presence of an
arbitrary sequence of insertions, updates, and deletions. We also discuss
algorithms for resizing random samples upwards and downwards, derive
novel estimators for certain population parameters, and provide methods
for combining two or more random samples into a sample of the combined
datasets. Our algorithms can potentially be leveraged to extend the
applicability of many previous database sampling techniques to the class
of evolving datasets.

1 Introduction

Recent studies conducted by IDC have revealed that the 2007 “digital universe“
comprises about 45 gigabytes of data per person on the planet [38, 39]. Looking only at
the data stored in large-scale data warehouses, current estimates indicate that the size
of the world’s largest warehouse triples about every two years, thereby even exceeding
Moore’s law [52]. To analyze this enormous amount of data, random sampling
techniques have proven to be an invaluable tool. They have numerous applications
in the context of data management, including query optimization [20, 22, 35, 45, 46],
load balancing [16, 17], approximate query processing [1–3, 8, 11–13, 23, 34, 37, 41–
43, 48, 53], statistics estimation [9, 10, 31, 49], data mining [5–7, 14, 29, 32, 40, 44],

1This paper is an overview of Ph.D. thesis [24]. For brevity, we refer to [24] as “the thesis”.

1

and data stream processing [3, 33]. In these applications, random sampling techniques
are exploited in two fundamentally different ways: (i) they help compute an exact
query result efficiently and (ii) they provide means to approximate the query result. In
both cases, the use of sampling may significantly reduce the cost of query processing.

For an example of (i), consider the problem of deriving an “execution plan” for a
query expressed in a declarative language such as SQL. There usually exist several
alternative plans that all produce the same result, but they can differ in their efficiency
by several orders of magnitude; we clearly want to pick the plan that is most efficient.
In the case of SQL, finding the optimal plan includes (but is not limited to) decisions
on the indexes to use, on the order in which to apply predicates, on the order in
which to process joins, and on the type of sort/join/group-by algorithm to use. Query
optimizers make this decision based on estimates of the size of intermediate results.
Virtually all major database vendors—including IBM, Microsoft, Oracle, Sybase,
and Teradata—use random sampling to compute online and/or precompute offline
statistics that can be leveraged for query size estimation. This is because a small
random sample of the data often provides sufficient information to separate efficient
and inefficient plans.

Perhaps the most prevalent example of (ii) is approximate query processing. The
main idea behind this processing model is that the computational cost of query
processing can be reduced when the underlying application does not require exact
results but only a highly-accurate estimate thereof. For instance, query results
visualized in a pie chart may not be required to be exact up to the last digit. Likewise,
exploratory “data browsing”—carried out in order to find out which parts of a
dataset contain interesting information—greatly benefits from fast approximate query
answers. It is not surprising that random sampling is one of the major techniques in
approximate query processing. There exists a large body of work on how to compute
and exploit random samples; results obtained from a random sample can be enriched
with information about their precision and, if desired, progressively refined; and
sampling scales well with the size of the underlying data. Recognizing the importance
of random sampling for approximate query processing, the SQL standardization
committee included basic sampling clauses into the SQL/Foundation:2003 standard;
these clauses are already implemented in most commercial database systems.

Throughout the thesis, we focus entirely on uniform random sampling, in which all
samples of the same size are equally likely. Uniform sampling is the most basic of the
available sampling designs; it is ubiquitous in applications. In fact, most statistical
estimators—as well as the confidence-bound formulas for these estimators—assume
an underlying uniform sample. Moreover, uniformity is a must if it is unknown in
advance how the sample will be used; this situation occurs frequently in database
sampling. Uniform sampling is also a building block for more complex sampling
schemes, such as stratified sampling. Methods for producing uniform samples are
therefore key to modern database systems.

In general, there are two alternative approaches to sample computation. First,
query sampling schemes obtain the sample on the fly as needed. In the setting
of commercial RDBMS, Haas and König [34] have shown that there is a trade-off

2

between the uniformity of a query sampling scheme and the cost of obtaining the
sample. Even if some degree of non-uniformity is acceptable, query sampling can
still be too expensive. In contrast, materialized sampling schemes—which initially
materialize a sample from the underlying dataset and then incrementally maintain it
over time—amortize the cost of obtaining the sample over its subsequent usages. We
can “invest” in sophisticated sampling designs well-suited for our specific application,
even if such a sample were too costly to obtain at query time. Another distinctive
advantage of materialized sampling is that access to the underlying data is not
required in the estimation process. The more expensive the access to the actual
data, the more important this property gets. In fact, base data accesses may even
be infeasible in applications in which, for instance, the underlying dataset is not
materialized or resides at a remote location.

The main deficiency of existing techniques for maintaining a materialized sample
is that they either are restricted to the class of append-only datasets, in which data
once inserted is never changed or removed, and/or they require expensive base-data
accesses. The thesis contributes novel maintenance algorithms for the general class
of evolving datasets, in which the data is subject to insertion, update and deletion
transactions. Our algorithms are truly incremental in that they maintain the sample
based solely on the stream of transactions and without ever accessing the underlying
dataset. We also show how our samples can be exploited to derive novel estimators
for counts, sums, averages, and the number of distinct items in the underlying dataset.
In addition to sample maintenance, we discuss methods that greatly improve the
flexibility of random sampling from a system’s point of view. More specifically, we
initiate the study of algorithms that resize a random sample upwards or downwards.
Our resizing algorithms can be exploited to dynamically control the size of the
sample when the dataset grows or shrinks; they facilitate resource management and
help avoid under- or oversized samples. Furthermore, in large-scale databases with
data being distributed across several remote locations, it is usually infeasible to
reconstruct the entire dataset for the purpose of sampling. To address this problem,
we provide efficient algorithms that directly combine the local samples maintained at
each location into a sample of the global dataset. We also consider a more general
problem, where the global dataset is defined as an arbitrary set or multiset expression
involving the local datasets, and provide efficient solutions based on hashing.

The remainder of this paper is structured as follows: In section 2, we review the
basic techniques that underlie all database sampling schemes and discuss different
areas of database sampling. Sections 3–6 highlight our contributions to each of those
areas. Section 7 concludes this paper.

2 Uniform Sampling

In this section, we describe the sampling problem more precisely and give an overview
of the basic sampling schemes that underlie all of the available database sampling
schemes. We call a sampling scheme uniform if the probability pR(S) that the scheme

3

produces sample S when applied to dataset R satisfies pR(S) = pR(S′) whenever
|S| = |S′|. That is, all samples of the same size are equally likely to be produced. We
say that S “is a uniform sample from R” if S is produced from R using a uniform
sampling scheme. We restrict our attention to sampling without replacement; in
general, a without-replacement sample contains more statistical information about
the dataset than a with-replacement sample of the same size [50].

2.1 Notation

We model the base dataset R as a finite subset of a (possibly infinite) set R =
{ r1, r2, . . . } of unique, distinguishable items, and the sample S is, in turn, a subset
of R. For example, R might correspond to a finite set of IP addresses, an infinite
sequence of unique text or XML documents, or perhaps a set of relational tuples.
Without loss of generality, we assume throughout that the dataset R is initially empty,
and evolves over time as items are inserted and deleted. Items can be inserted more
than once so that R is a multiset, and items that are deleted may be subsequently
re-inserted. Thus, we consider an infinite sequence of transactions γ = (γ1, γ2, . . .),
where each transaction γi is either of the form +rk, which corresponds to the insertion
of (a single copy of) item rk into R, or of the form −rk, which corresponds to the
deletion of (a single copy of) item rk from R. We restrict attention to “feasible”
sequences such that γi = −rk only if item rk is in the dataset just prior to the
processing of the ith transaction.2 Our goal is to ensure that, after each transaction
is processed, S is a uniform sample from R. As is usual in practice, we assume
throughout that the sequence γ of insertions and deletions to the data is oblivious to
the behavior of the sampling algorithm.

2.2 Survey Sampling Methods

We first discuss three classic sampling schemes: Bernoulli sampling, reservoir sampling,
and min-wise sampling. Each of these schemes has its roots in computer-assisted
survey sampling and supports only insertion transactions. The applicability of
the schemes to database sampling under general transactions is discussed in the
subsequent sections, where we also outline the contributions of the thesis in more
detail.

Bernoulli sampling, BERN(q) In the Bernoulli sampling scheme with sampling rate
q, each inserted item is included in the sample with probability q and excluded with
probability 1− q, independent of the other items. For a dataset R, the sample size
follows the binomial(|R|, q) distribution, so that Pr [|S| = k] =

(|R|
k

)
qk(1 − q)|R|−k

for k = 0, 1, . . . , |R| and E[|S|] = q|R|. Although the sample size is random, samples
of the same size are equally likely, and the scheme is indeed uniform, as defined
previously. The main advantages of Bernoulli sampling are simplicity and ease of

2We focus on insertion and deletion transactions; updates can be modeled by a deletion followed
by an insertion.

4

parallelization. The sample size is unbounded, though sharply concentrated around
the expected value of q|R|.

Reservoir sampling, RS(M) This uniform scheme maintains a random sample of
fixed size M , given a sequence of insertions. The procedure, as described in [47], is
as follows: Include the first M items into the sample. For each successive insertion
into the dataset, include the inserted item into the sample with probability M/|R|,
where |R| is the size of the dataset just after the insertion; an included item replaces
a randomly selected item in the sample. The main advantage of reservoir sampling is
its fixed sample size, which facilitates memory management and bounds the runtime
cost of exploiting the sample.

Min-wise sampling, MIN(M) In min-wise sampling, a random “tag” drawn in-
dependently from the uniform(0, 1) distribution is associated with each arriving
item. The sample consists of the items with the M smallest tags seen thus far.
Uniformity follows by symmetry: every size-M subset of R has the same chance
of having the smallest tags. Compared to reservoir sampling, min-wise sampling
has the disadvantage that its sample footprint is larger because additional space is
required to store the tags. It also has a higher CPU cost. Min-wise sampling has the
advantage, however, that the number of items in R does not have to be known when
executing a sampling step.

2.3 Database Sampling Methods

As mentioned previously, one of the main challenges in database sampling is that the
datasets of interest are evolving; they are subject to insertion, update and deletion
transactions. Survey sampling methods cannot be used directly because they support
neither update nor deletion transactions. There has been a significant amount of
research on maintaining database samples [3, 8, 13, 14, 18, 19, 29–31, 33, 36, 48, 51],
and many of the existing methods are based upon the survey sampling methods
described above. Database sampling methods can be roughly classified based on the
type of the underlying dataset and the type of the desired sample:

• Set sampling (section 3). At any time, dataset R is a real set, that is, R does
not contain duplicates. This is a common scenario for sampling from relational
tables, where primary key constraints prevent the insertion of duplicates.

• Multiset sampling (section 4). Dataset R is a multiset, that is, R may contain
duplicates. As a consequence, sample S is also a multiset. This is common for
sampling from a view over several relational tables, where the primary keys
are omitted.

• Distinct-item sampling (section 5). Dataset R is a multiset but the sample is
drawn from the distinct items in R. Sample S is a set. This scenario occurs
when sampling from a view with duplicate-eliminating projections; it also arises
in various network sampling problems.

5

Table 1: Existing sampling schemes (X) and novel sampling schemes (name)

From Size/Space Insertions Updates Deletions

Sets Bernoulli X X X
bounded X X RP(M)

Multisets Bernoulli X ABERN(q) ABERN(q)
bounded X ? ?

Distinct items Bernoulli X X X, ABERND(q)
bounded X X X, AMIND(M)

Time-based Bernoulli X n/a n/a
windows bounded BPS(M), MBS n/a n/a

• Data stream sampling (section 6). Dataset R is defined as a sliding window
over a data stream. There are no updates or deletions, but items expire after a
certain amount of time has passed since their arrival. Data stream sampling
methods are used to sample from the recent items in the stream, when older
items are considered outdated and irrelevant for analysis.

The derivation of efficient methods for each of the four scenarios requires unique
innovation. Note that, in general, multiset sampling schemes and distinct-item
sampling schemes can be used to implement set sampling, although this approach is
usually less efficient than native set sampling.

An overview of the sampling schemes proposed in the thesis is given in table 1.
The first two columns refer to the type of sampling and the sample size distribution.
The remaining columns refer to the different types of transactions. A check mark
(X) indicates that there are previously known schemes that can maintain a sample
incrementally under the respective transaction type. Novel schemes presented in the
thesis are indicated by their abbreviated names; each listed scheme also supports
the transactions corresponding to the columns to the left of it. A question mark (?)
means that no known algorithms exist and “n/a” means not applicable.

In table 1, we distinguish bounded sampling schemes, in which the sample size is
bounded from above, and Bernoulli sampling schemes, in which the sample size is
binomially distributed. Bounded sampling schemes are the method of choice for stable
datasets, whose size (but not necessarily composition) remains roughly constant over
time. The main challenge is to maximize sampling efficiency, i.e., to keep the sample
size as close to the upper bound as possible. In contrast, Bernoulli sampling methods
are well-suited for growing datasets, in which insertions occur more frequently than
deletions over the long run. The expected sample size is proportional to the dataset
size so that the sample grows and shrinks with the dataset. Additional control over
the sample size distribution is provided by appropriate resizing methods that increase
or decrease the size of the sample; we provide such methods for all our schemes.

6

In the rest of this paper, we outline the contribution of the thesis to the four
areas of database sampling mentioned above. Each of the subsequent sections is
structured into the 4 parts: existing techniques, novel techniques, resizing techniques,
and merging techniques.

3 Set Sampling

Existing techniques It is straightforward to modify BERN(q) sampling on sets to
handle deletions. The algorithm remains unchanged for insertions; items deleted
from R are also removed from the sample, if present. Thus a deletion operation of
the form −r “annihilates” item r; it is as if item r were never inserted into R. This
modified Bernoulli sampling scheme, denoted MBERN(q), has zero overhead, does
not require access to the base data and is simple to implement. In applications where
the sample size variability and unboundedness of Bernoulli sampling are acceptable,
the scheme is clearly the method of choice.

Many different techniques have been proposed in order to extend reservoir sampling
with support for deletion transactions. The basic problem is that the deletion of an
item that is present in the sample leads to a reduction of the sample size and thus to
a reduction of the sampling efficiency. We cannot simply continue sampling with the
smaller sampling size because, when doing so, the sample size would systematically
converge to 0. To overcome this problem, [31] proposes to recompute the sample
from scratch whenever its size has fallen below a prespecified lower bound. Similarly,
[48] proposes to replace deleted items by random items drawn uniformly from the
underlying dataset. Both approaches are expensive because they rely on frequent
accesses to the underlying dataset. A different approach is taken in [51], where
deletion transactions are essentially treated as “updates that tag an item as deleted.”
The scheme works well when deletions are infrequent but the sample size converges to
0 for stable datasets so that recomputation is required from time to time. Thus, all
known methods require expensive base data access to deal with deletion transactions;
they differ with respect to the number of these accesses and the sample-size stability.

Novel techniques An ideal bounded-size scheme for stable datasets would not
require any base data accesses while at the same time providing a fixed sample size.
Unfortunately, such a scheme does not exist: every sample deletion either leads to a
decrease of the sample size or, if immediately compensated, to a base data access. In
the thesis, we introduce a novel bounded-size scheme for stable datasets that comes
close to the ideal scheme. Our scheme is called random pairing [26, 28] and denoted
as RP(M). The key idea of random pairing is to make use of newly inserted items
to compensate for prior deletions. Conceptually, the scheme pairs each incoming
insertion transaction with a previous deletion transaction, the “partner” deletion,
and then compensates the partner. Thus, each deletion is compensated by precisely
one insertion. We show in the thesis that in order to execute the pairing step, it
suffices to maintain two counters: one for the number of “bad” uncompensated

7

deletions, which have been in the sample at the time of their deletion, and one for
the number of “good” uncompensated deletions, which have not been in the sample.
Furthermore, we prove the correctness of the algorithm and analyze its statistical
properties. In contrast to all previously known schemes, random pairing does not
require access to the base data, even if the transaction sequence contains deletions.
Our experiments indicate that, when the fluctuations of the dataset size are not
too extreme, random pairing is the algorithm of choice with respect to speed and
sample-size stability.

Resizing techniques We initiate the study of algorithms for periodically “resizing”
a bounded-size random sample upwards, proving that any such algorithm cannot
avoid accessing the base data. Such methods are of interest for growing datasets
because they can be exploited to grow the sample in a controlled manner, whenever
needed. Prior to our current work, the only proposed approach to the resizing problem
was to naively recompute the sample from scratch. We provide a novel resizing
algorithm called RPRES that partially enlarges the sample using the base data,
and subsequently completes the resizing using only the stream of insertion, update
and deletion transactions. Especially when access to the base data is expensive and
transactions are frequent, the resizing cost can be significantly reduced relative to
the naive approach. We also give a subsampling algorithm termed RPSUB that can
be used to reduce the size of the sample; the algorithm is useful to handle potential
memory bottlenecks and to undo prior sample enlargements.

Merging techniques Finally, we discuss algorithms for merging two or more uniform
samples. Merging algorithms are particularly useful when the dataset is partitioned
over several nodes. In this case, sample merging can be used to obtain a sample of
the complete dataset from local samples maintained at each node, thereby facilitating
efficient parallel sampling. Our new RPMERGE algorithm extends the MERGE
algorithm of [8]—which was developed for an insertion-only environment—to effec-
tively deal with deletions. We show analytically that RPMERGE produces larger
sample sizes than MERGE in expectation; the merged sample thus contains more
information about the complete dataset. Additionally, when RPMERGE is used, the
merged sample can be maintained incrementally using our random pairing algorithm.

4 Multiset Sampling

Existing techniques Relatively little is known about sampling from evolving mul-
tisets. The survey sampling schemes BERN(q), RS(M), and MIN(M) can all be
used to maintain a sample of an insertion-only multiset. This is because the inclu-
sion/exclusion decisions are independent of the value of the inserted item. To derive
the multiset versions of the algorithms, simply treat the sample S as a multiset.
When the transaction sequence contains updates or deletions, however, maintenance
becomes much harder because both the dataset R and the sample S may contain

8

multiple copies of the updated or deleted item. Since update and deletion transactions
refer to only a single one of these copies, it is not immediately clear how to proceed.

We subsequently assume that the sample is stored in compressed form, as proposed
in [29]. In the compressed representation, each element of the sample comprises
a pair (r, fr), where fr > 0 denotes the frequency of item r in the sample. The
only previously known scheme that supports deletions is a multiset version of the
MBERN(q) scheme outlined above [27]. The scheme processes an insertion transaction
+r as before but takes care of sample compression: in case an item r is accepted
into the sample, the counter fr is increased by one or, when r has not been sampled
previously, a pair (r, 1) is added to the sample. A deletion of the form −r is ignored
when r /∈ S. Otherwise, the scheme decreases the counter fr with probability fr/Nr,
where Nr is the frequency of r in the base dataset R. Laxly speaking, when fr of the
Nr copies of item r are present in the sample, the “deleted copy” is one of the copies
in the sample with probability fr/Nr. Unfortunately, the scheme is not incremental
because it requires knowledge of the quantity Nr, which has to be obtained from the
underlying data.

Novel techniques We propose a sampling scheme called augmented Bernoulli
sampling, ABERN(q), that is able to maintain a Bernoulli sample of an evolving
multiset without ever accessing base data [27]. Our method augments each distinct
sample item with a “tracking counter,” originally introduced in Gibbons and Matias
[29] for the purpose of estimating the population frequencies of “hot” items. These
counters “track” the net number of insertions of each sample item since its initial
acceptance into the sample. Thus, the value of the tracking counter of a sample
item r is at least fr and at most Nr; it can be anything in between. We show that
knowledge of the tracking counters is sufficient to maintain the sample incrementally.
In contrast to previous schemes, neither base data accesses nor knowledge of Nr are
required. The tracking counters not only facilitate incremental maintenance, but they
can also be exploited to obtain unbiased estimators of population frequencies, sums,
and averages, where these estimators have lower variance than the usual estimators
based on an ordinary Bernoulli sample. Furthermore, we show how to estimate the
number of distinct items in the multiset in an unbiased manner. Our distinct-item
estimator is based on the observation that a distinct-item Bernoulli sample can be
extracted from our ABERN(q) sample; this is not possible with ordinary Bernoulli
samples. We derive the standard error for each of our estimators, and provide
formulas for estimating these standard errors.

Resizing techniques As for set sampling, we discuss the problem of dynamically
changing the sampling rate q of our augmented samples. We argue that increasing the
value of q so as to enlarge the sample size requires a scan of almost the entire dataset.
Fortunately, this situation occurs rarely in practice because ABERN(q) samples
already grow linearly with the dataset size. A more interesting problem is to reduce
the value of q in order to reduce the sample size and to avoid oversized samples. We
give a subsampling algorithm that performs such a reduction of q without accessing

9

the base data; the resulting sample can be incrementally maintained. Note that
subsampling cannot be used to enforce strict bounds on the sample size because such
an approach would lead to non-uniform samples; see the thesis for details. However,
we show how subsampling can be used to provide tight probabilistic bounds, which
may suffice in practice.

Merging techniques As a negative result for merging operations, we show that, in
the general case of non-disjoint parent datasets, it is impossible to merge augmented
samples to obtain a new augmented sample from the union of the corresponding
parent datasets. However, the augmented samples can still be used to obtain a plain,
non-maintainable Bernoulli sample from this union.

5 Distinct-Item Sampling

Existing techniques Distinct-item sampling schemes sample uniformly from D(R),
the set of distinct items in R. All previously known schemes are based on hashing,
that is, they make use of a set of hash functions h1, . . . , hk for some k ≥ 1. The
sampling schemes are deterministic in the sense that they produce the same result
when run repeatedly on the same transaction sequence using the same set of hash
functions. The “randomness” of the sample thus depends only on the degree of
randomness in the hash functions. In the following, we assume that the hash functions
being used are truly random in the real (0, 1) interval; see the thesis for a discussion
of the suitability of available hash functions.

The BERN(q) scheme can be adapted to sample uniformly from the distinct items
of an insertion-only dataset [15, 18, 19, 30, 36]. The idea is simple: the decision of
whether or not to include an item is based on its hash value: an arriving item is
accepted into the sample if and only if h(r) < q, that is, its hash value is less than
q. Since h(r) is uniform in (0, 1), we have Pr [h(r) < q] = q as desired. The scheme
treats the sample as a set. Since repeated insertions of the same item lead to the
same random hash value, each item is either accepted at its first insertion or it is
never going to be accepted at all. It follows directly that the probability that an
item is sampled does not depend on its frequency in R. In order to support deletion
transactions, it is necessary to store the frequency Nr of each sampled item together
with the sample. In contrast to multiset sampling, we are able to maintain Nr for
the items in the sample, so that the scheme is fully incremental.

The same trick cannot be used with reservoir sampling, but it is possible to apply
it to min-wise sampling. The idea is to run min-wise sampling as before but to
replace the random tags by the hash value of the arriving item. For this reason,
the algorithm is referred to as min-hash sampling [5]; it supports only insertion
transactions. Another bounded-size scheme called dynamic inverse sampling is given
in [13, 21]. The scheme is incremental but has significant time and space overhead.

Novel techniques As mentioned previously, we propose a distinct-item scheme
based on our ABERN(q) algorithm for sampling multisets. The new scheme is called

10

ABERND(q); it constitutes the only distinct-item scheme that does not make use of
hashing. However, the size of the underlying ABERN(q) sample—from which the
ABERND(q) sample is extracted—depends on the size of the entire dataset instead
of just the number of distinct items in it. When the dataset contains many frequent
items and a multiset sample is not required, the distinct-item Bernoulli sampling
algorithm described above is usually a better choice.

In addition to ABERND(q), we propose a simple extension to min-hash sampling
that augments the sample with frequency counters. Our extension is called augmented
min-hash sampling, denoted as AMIND(M), and adds support for a limited number
of updates and deletions. AMIND(M) is similar to the “reservoir sampling with
tagging scheme” in [51], that is, deleted items are occasionally retained (but not
reported) in the sample in order to ensure uniformity. In our analysis, we show that
only deletions of the last copy of a distinct item may have a negative impact on
the sample size, and that the sample stays reasonably large when the fraction of
last-copy deletions is not too high. We also consider the problem of estimating the
number of distinct items in the dataset from plain MIND(M) and our AMIND(M)
samples [4].3 We present several estimators for this problem and analyze their
theoretical properties. It turns out that our estimators are unbiased and have low
variance; they can even be used to estimate the number of distinct items that satisfy
a given predicate.

Resizing techniques Unfortunately, it appears that every algorithm that resizes
an AMIND(M) sample upwards must scan almost the entire base data. We give a
slightly more efficient algorithm than naive recomputation from scratch. Reducing
the sample size is significantly easier and can be done without accessing base data;
the resulting sample can be incrementally maintained.

Merging techniques and other combinations One of the most interesting prop-
erties of AMIND(M) samples is that they can be combined to obtain samples of
arbitrary unions, intersections and differences of their underlying datasets. In fact,
we show that AMIND(M) samples are closed under these operations. Therefore,
AMIND(M) samples are much more powerful in this respect than the set and multi-
set sampling schemes discussed earlier, which support only merging operations. As
might be expected, the size of the resulting sample depends on the selectivity of the
expression used to combine the samples, so that our techniques can only be used
when the result of the expression is not too small.

6 Data Stream Sampling

For data stream sampling, we consider algorithms that sample from a time-based
sliding window defined over a data stream. Such a window consists of all the items
that arrived in the last ∆ time units and is frequently used to restrict analysis to a

3Maintenance of the exact number of distinct items requires space linear to |D(R)|, which is
infeasible in practice.

11

recent time horizon. Note that the window length ∆ is a fixed parameter specified
in advance, while the window size—i.e., the number of items in the window—varies
over time and is generally unbounded. Data stream algorithms usually work under
hard time and space constraints; we assume that it is infeasible to store and process
the entire window so that sampling methods are needed.

Existing techniques The modified Bernoulli sampling scheme of section 3 can
directly be used on sliding windows [33]. For bounded-size sampling, [3] proposes a
scheme called priority sampling, denoted as PS(M), which makes use of an idea similar
to min-wise sampling. The basic scheme, denoted PS(1), maintains a single-item
sample; larger with-replacement samples are obtained by running M independent
PS(1) samplers in parallel. The PS(1) scheme assigns a random “priority” chosen
uniformly from the unit interval (0, 1) to each arriving item. The idea is to report
at any time the item with the highest priority in the window as the sample item.
Uniformity then follows because each item has the same probability of having the
highest priority. To maintain the highest-priority item incrementally, PS(1) makes
use of a chain of “replacement items” that replace the current sample item when it
expires. It can be shown that the length of the chain averages to O(logN), where
N is the window size. Since the sample size is 1, the scheme has a multiplicative
space overhead of O(logN). Since N cannot be bounded, neither can the space
consumption of PS(1).

Novel techniques We prove as a negative result that no bounded-space uniform
sampling scheme over a time-based sliding window can guarantee a minimum sample
size. As a byproduct, we infer that PS(M) is optimal for fixed-size sampling in
terms of space consumption. Nevertheless, in spite of being optimal, PS(M) has
a high space overhead that leads to low space efficiency. To sample in bounded
space, we develop a related scheme called bounded priority sampling, BPS(M), which
can be seen as a modification of priority sampling, although the underlying idea
is different [25]. BPS(M) cannot provide strict sample size guarantees but it is
able to provide strong probabilistic ones. In fact, our experiments indicate that—in
addition to enforcing space bounds—BPS(M) has higher space efficiency than PS(M).
Moreover, we show how to sample without replacement and how to estimate the
window size directly from the sample by leveraging our estimation techniques for
distinct-item sampling.

We also propose a stratified sampling scheme for time-based sliding windows. In
stratified sampling, the dataset is divided into a set of disjoint strata and a sample
is taken from each of these strata (e.g., using one of the schemes proposed in the
thesis). Usually, stratified sampling is used to improve the quality of the estimates
derived from the sample. The situation is different for data stream sampling because
we can exploit stratification to facilitate efficient sample maintenance. In fact, our
merge-based stratification algorithm divides the window into strata of approximately
equal size; it then maintains a uniform sample of each stratum. The algorithm
merges adjacent strata from time to time; the main challenge is to decide when and

12

which strata to merge. In our solution, we treat the problem as an optimization
problem and give a dynamic programming algorithm to determine the optimum
stratum boundaries. The resulting algorithm, termed MBS, has even higher space
efficiency than BPS(M). The downside is that stratified samples cannot be used
with all applications so that the advantages of MBS cannot always be exploited.

7 Conclusion

Due to its wide range of applications, random sampling has been and continues to be
an important research area in data management. A quick look at the bibliography
of the thesis reveals that roughly 80 sampling-related papers appeared in the last
decade, counting only major database conferences and journals, and roughly 35 of
them appeared in the last 4 years. Many of the sampling techniques proposed in these
papers have been developed for static datasets, in which a sample once computed
remains valid for all times. In practice, however, datasets evolve and any changes to
the data have to be appropriately reflected in the sample to maintain its statistical
validity. In the thesis, we address this problem and provide efficient methods for
sample maintenance. Our algorithms can potentially be leveraged to extend the
applicability of many previous techniques to the class of evolving datasets.

More specifically, we consider the problem of maintaining a uniform random sample
of an evolving dataset; such samples are a building block of more sophisticated
techniques. We propose novel maintenance algorithms including random pairing (for
sets), augmented Bernoulli sampling (for multisets), augmented min-hash sampling
(for distinct items), bounded priority sampling (for data streams), and merge-based
stratified sampling (also for data streams). The key property of all our algorithms is
that they are incremental, that is, they completely avoid any expensive accesses to
the underlying dataset. Instead, sampling decisions are based solely on the stream of
insertion, update, and deletion transactions applied to the data. We propose novel
estimators for counts, averages, sums, ratios, and the number of distinct items. Our
estimators exploit the maintenance information stored along with the samples and
they have lower estimation errors than known estimators, which do not exploit this
information. In addition to our maintenance schemes, we present algorithms for
resizing a random sample and for combining several samples into a single one. These
techniques enhance the flexibility of random sampling from a system’s point of view.

References

[1] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridha Ra-
maswamy. Join synopses for approximate query answering. In Proc. of the 1999
ACM SIGMOD Intl. Conf. on Management of Data, pages 275–286, 1999.

[2] Swarup Acharya, Phillip B. Gibbons, and Viswanath Poosala. Congressional
samples for approximate answering of group-by queries. In Proc. of the 2000

13

ACM SIGMOD Intl. Conf. on Management of Data, pages 487–498, 2000. URL
http://citeseer.nj.nec.com/acharya99congressional.html.

[3] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a moving
window over streaming data. In Proc. of the 2002 Annual ACM-SIAM Symp.
on Discrete Algorithms, pages 633–634, 2002.

[4] Kevin Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer
Gemulla. On synopses for distinct-value estimation under multiset operations.
In Proc. of the 2007 ACM SIGMOD Intl. Conf. on Management of Data, pages
199–210, 2007.

[5] Andrei Z. Broder. On the resemblance and containment of documents. In Proc.
of the 1997 Compression and Complexity of Sequences, pages 21–29, 1997.

[6] Hervé Brönnimann, Bin Chen, Manoranjan Dash, Peter Haas, Yi Qiao, and
Peter Scheuermann. Efficient data-reduction methods for on-line association rule
discovery. In Krishnamoorthy Sivakumar Hillol Kargupta, Anupam Joshi and
Yelena Yesha, editors, Data Mining: Next Generation Challenges and Future
Directions. AAAI Press, 2004.

[7] Paul Brown and Peter J. Haas. Bhunt: Automatic discovery of fuzzy algebraic
constraints in relational data. In Proc. of the 2003 Intl. Conf. on Very Large
Data Bases, pages 668–679, 2003.

[8] Paul G. Brown and Peter J. Haas. Techniques for warehousing of sample data.
In Proc. of the 2006 Intl. Conf. on Data Engineering, page 6, 2006.

[9] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for histogram
construction: how much is enough? In Proc. of the 1998 ACM SIGMOD Intl.
Conf. on Management of Data, pages 436–447, 1998.

[10] S. Chaudhuri, G. Das, and U. Srivastava. Effective use of block-level sampling
in statistics estimation. In Proc. of the 2004 ACM SIGMOD Intl. Conf. on
Management of Data, pages 287–298, 2004.

[11] Surajit Chaudhuri, Gautam Das, Mayur Datar, and Rajeev Motwaniand Vivek R.
Narasayya. Overcoming limitations of sampling for aggregation queries. In Proc.
of the 2001 Intl. Conf. on Data Engineering, pages 534–544, 2001.

[12] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. Optimized stratified
sampling for approximate query processing. ACM Transactions on Database
Systems, 32(2):9, 2007. ISSN 0362-5915.

[13] Graham Cormode, S. Muthukrishnan, and Irina Rozenbaum. Summarizing and
mining inverse distributions on data streams via dynamic inverse sampling. In
Proc. of the 2005 Intl. Conf. on Very Large Data Bases, pages 25–36, 2005.

14

http://citeseer.nj.nec.com/acharya99congressional.html

[14] Mayur Datar and S. Muthukrishnan. Estimating rarity and similarity over data
stream windows. In Proc. of the 2002 Annual European Symp. on Algorithms,
pages 323–334. Springer-Verlag, 2002.

[15] Dorothy E. Denning. Secure statistical databases with random sample queries.
ACM Transactions on Database Systems, 5(3):291–315, 1980. ISSN 0362-5915.

[16] David J. DeWitt, Jeffrey F. Naughton, and Donovan A. Schneider. Parallel
sorting on a shared-nothing architecture using probabilistic splitting. In Proc.
of the 1991 Intl. Conf. Parallel and Distributed Information Systems, pages
280–291, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

[17] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri.
Practical skew handling in parallel joins. In Proc. of the 1992 Intl. Conf. on
Very Large Data Bases, pages 27–40, 1992.

[18] N. G. Duffield and Matthias Grossglauser. Trajectory sampling for direct traffic
observation. IEEE/ACM Transactions on Networking, 9(3):280–292, 2001. ISSN
1063-6692.

[19] Nick Duffield, Carsten Lund, and Mikkel Thorup. Charging from sampled
network usage. In Proc. of the 2001 ACM SIGCOMM Workshop on Internet
Measurement, pages 245–256, New York, NY, USA, 2001. ACM.

[20] Cristian Estan and Jeffrey F. Naughton. End-biased samples for join cardinality
estimation. In Proc. of the 2006 Intl. Conf. on Data Engineering, page 20, 2006.

[21] Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic
data streams and applications. In Proc. of the 2005 Annual ACM Symp. on
Computational Geometry, pages 142–149, 2005.

[22] Sumit Ganguly, Phillip B. Gibbons, Yossi Matias, and Abraham Silberschatz.
Bifocal sampling for skew-resistant join size estimation. In Proc. of the 1996
ACM SIGMOD Intl. Conf. on Management of Data, pages 271–281, 1996.

[23] Venkatesh Ganti, Mong-Li Lee, and Raghu Ramakrishnan. ICICLES: Self-tuning
samples for approximate query answering. In Proc. of the 2000 Intl. Conf. on
Very Large Data Bases, pages 176–187, 2000.

[24] Rainer Gemulla. Sampling Algorithms for Evolving Datasets. PhD thesis,
Technische Universität Dresden, 2008.

[25] Rainer Gemulla and Wolfgang Lehner. Sampling time-based sliding windows in
bounded space. In Proc. of the 2008 ACM SIGMOD Intl. Conf. on Management
of Data, pages 379–392, 2008.

[26] Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. A dip in the reservoir:
maintaining sample synopses of evolving datasets. In Proc. of the 2006 Intl.
Conf. on Very Large Data Bases, pages 595–606, 2006.

15

[27] Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. Maintaining bernoulli
samples over evolving multisets. In Proc. of the 2007 ACM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Systems, pages 93–102, 2007.

[28] Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. Maintaining bounded-size
sample synopses of evolving datasets. The VLDB Journal, 17(2):173–201, 2008.

[29] Phillip B. Gibbons and Yossi Matias. New sampling-based summary statistics
for improving approximate query answers. In Proc. of the 1998 ACM SIGMOD
Intl. Conf. on Management of Data, pages 331–342, 1998.

[30] Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on
the union of data streams. In Proc. of the 2001 Annual ACM Symp. on Parallel
Algorithms and Architectures, pages 281–291, 2001.

[31] Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental
maintenance of approximate histograms. In Proc. of the 1997 Intl. Conf. on
Very Large Data Bases, pages 466–475, 1997.

[32] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clustering aggre-
gation. ACM Transactions on Knowledge Discovery from Data, 1(1):4, 2007.
ISSN 1556-4681.

[33] Peter J. Haas. Data stream sampling: Basic techniques and results. In Mi-
nos Garofalakis, Johannes Gehrke, and Rajeev Rastogi, editors, Data Stream
Management: Processing High Speed Data Streams. Springer, 2008.

[34] Peter J. Haas and C. König. A bi-level bernoulli scheme for database sampling.
In Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of Data, pages
275–286, 2004.

[35] Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Arun N. Swami. Selectivity
and cost estimation for joins based on random sampling. Journal of Computer
and System Sciences, 52(3):550–569, 1996.

[36] M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava. Selectivity estimation
of set similarity selection queries. In Proc. of the 2008 Intl. Conf. on Very Large
Data Bases, 2008. (to appear).

[37] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation.
In Proc. of the 1997 ACM SIGMOD Intl. Conf. on Management of Data, pages
171–182, 1997.

[38] The Expanding Digital Universe. IDC, 2007. http://www.emc.com/digital_
universe.

[39] The Diverse and Exploding Digital Universe. IDC, 2008. http://www.emc.com/
digital_universe.

16

http://www.emc.com/digital_universe
http://www.emc.com/digital_universe
http://www.emc.com/digital_universe
http://www.emc.com/digital_universe

[40] Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, and Ashraf Aboulnaga.
CORDS: automatic discovery of correlations and soft functional dependencies.
In Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of Data, pages
647–658, 2004.

[41] Christopher Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra.
Scalable approximate query processing with the dbo engine. In Proc. of the
2007 ACM SIGMOD Intl. Conf. on Management of Data, pages 725–736, 2007.

[42] Ruoming Jin, Leo Glimcher, Chris Jermaine, and Gagan Agrawal. New sampling-
based estimators for olap queries. In Proc. of the 2006 Intl. Conf. on Data
Engineering, page 18, 2006.

[43] Shantanu Joshi and Christopher Jermaine. Sampling-based estimators for
subset-based queries. The VLDB Journal, 2008. (to appear).

[44] Najmeh Joze-Hkajavi and Kenneth Salem. Two-phase clustering of large
datasets. Technical Report CS-98-27, Department of Computer Science, Uni-
versity of Waterloo, 1998. http://www.cs.uwaterloo.ca/research/tr/1998/
27/CS-98-27.pdf.

[45] Raghav Kaushik, Jeffrey F. Naughton, Raghu Ramakrishnan, and Venkatesan T.
Chakravarthy. Synopses for query optimization: A space-complexity perspective.
ACM Transactions on Database Systems, 30(4):1102–1127, 2005. ISSN 0362-
5915.

[46] Per-Åke Larson, Wolfgang Lehner, Jingren Zhou, and Peter Zabback. Cardinality
estimation using sample views with quality assurance. In Proc. of the 2007
ACM SIGMOD Intl. Conf. on Management of Data, pages 175–186, 2007.

[47] A.I. McLeod and D.R. Bellhouse. A convenient algorithm for drawing a simple
random sample. Applied Statistics, 32(2):182–184, 1983.

[48] Frank Olken. Random Sampling from Databases. PhD thesis, Lawrence Berkeley
Laboratory, 1993. LBL-32883.

[49] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita.
Improved histograms for selectivity estimation of range predicates. In Proc. of
the 1996 ACM SIGMOD Intl. Conf. on Management of Data, pages 294–305,
1996.

[50] Carl-Erik Särndal, Bengt Swensson, and Jan Wretman. Model Assisted Survey
Sampling. Springer Series in Statistics. Springer Verlag, 1991.

[51] Yufei Tao, Xiang Lian, Dimitris Papadias, and Marios Hadjieleftheriou. Random
sampling for continuous streams with arbitrary updates. IEEE Transactions on
Knowledge and Data Engineering, 19(1):96–110, 2007. ISSN 1041-4347.

17

http://www.cs.uwaterloo.ca/research/tr/1998/27/CS-98-27.pdf
http://www.cs.uwaterloo.ca/research/tr/1998/27/CS-98-27.pdf

[52] Richard Winter. Why are data warehouses growing so fast? Beye Business
Intelligence Network, 2008. http://www.b-eye-network.com/view/7188.

[53] Fei Xu, Chris Jermaine, and Alin Dobra. Confidence bounds for sampling-based
group by estimates. ACM Transactions on Database Systems, 2008. (to appear).

18

http://www.b-eye-network.com/view/7188

	1 Introduction
	2 Uniform Sampling
	2.1 Notation
	2.2 Survey Sampling Methods
	2.3 Database Sampling Methods

	3 Set Sampling
	4 Multiset Sampling
	5 Distinct-Item Sampling
	6 Data Stream Sampling
	7 Conclusion

