
Large-Scale Matrix Factorization
with Distributed Stochastic Gradient Descent

Rainer Gemulla
Max-Planck-Institut für Informatik
rgemulla@mpi-inf.mpg.de

Peter J. Haas
IBM Almaden Research
peterh@us.ibm.com

Yannis Sismanis
IBM Almaden Research
syannis@us.ibm.com

Christina Teflioudi
Max-Planck-Institut für Informatik
chteflio@mpi-inf.mpg.de

Faraz Makari
Max-Planck-Institut für Informatik
fmakari@mpi-inf.mpg.de

Abstract

We provide a novel algorithm to approximately factor large matrices with millions
of rows, millions of columns, and billions of nonzero elements. Our approach
rests on stochastic gradient descent (SGD), an iterative stochastic optimization
algorithm. Based on a novel “stratified” variant of SGD, we obtain a new matrix-
factorization algorithm, called DSGD, that can be fully distributed and run on
web-scale datasets using, e.g., MapReduce. DSGD can handle a wide variety of
matrix factorizations and has good scalability properties.

1 Introduction

As Web 2.0 and enterprise-cloud applications proliferate, data mining algorithms need to be
(re)designed to handle web-scale datasets. For this reason, low-rank matrix factorization has re-
ceived much attention in recent years; it is fundamental to a variety of mining tasks that are increas-
ingly being applied to massive datasets [1, 2, 3, 4, 5]. Specifically, low-rank matrix factorizations
are effective tools for analyzing “dyadic data” in order to discover and quantify the interactions be-
tween two given entities. Successful applications include topic detection and keyword search (where
the corresponding entities are documents and terms), news personalization (users and stories), and
recommendation systems (users and items). In large applications, these problems can involve ma-
trices with millions of rows (e.g., distinct customers), millions of columns (e.g., distinct items), and
billions of entries (e.g., transactions between customers and items). At such massive scales, paral-
lel [6, 7] and distributed [1, 8, 5, 9, 10] algorithms for matrix factorization are essential to achieving
reasonable performance. In this paper—an extended abstract of [10]—we provide a novel, effective
distributed factorization algorithm based on stochastic gradient descent. Our algorithm is amenable
to MapReduce but is also effective in other distributed programming frameworks.

Given a large m × n matrix V and a small rank r, our goal is to find an m × r matrix W and an
r × n matrix H such that V ≈WH . The quality of such an approximation is described in terms
of an application-dependent loss function L, i.e., we seek to find argminW ,H L(V ,W ,H). For
example, matrix factorizations used in the context of recommender systems are based on the nonzero
squared loss LNZSL =

∑
i,j:V ij 6=0(V ij − [WH]ij)

2 and usually incorporate regularization terms,
user and movie biases, time drifts, and implicit feedback. In the following, we restrict attention to
loss functions that, like LNZSL, can be decomposed into a sum of local losses over (a subset of) the
entries in V ij . I.e., we require that the loss can be written as

L =
∑

(i,j)∈Z

l(V ij ,W i∗,H∗j) (1)

1

for some training set Z ⊆ { 1, 2, . . . ,m } × { 1, 2, . . . , n } and local loss function l, where Ai∗ and
A∗j denote row i and column j of matrix A, respectively. Many loss functions used in practice—
such as squared loss, generalized Kullback-Leibler divergence (GKL), and Lp regularization—can
be decomposed in such a manner [11]. Note that a given loss function L can potentially be decom-
posed in multiple ways. In this paper, we focus primarily on the class of nonzero decompositions, in
which Z = { (i, j) : V ij 6= 0 }. Such decompositions naturally arise when zeros represent missing
data as in the case of recommender systems. Our algorithms can handle other decompositions as
well; see [10, 12].

2 Matrix Factorization with Stochastic Gradient Descent

The goal of SGD is to find the value θ∗ ∈ <k (k ≥ 1) that minimizes a given loss L(θ). The
algorithm makes use of noisy observations L̂′(θ) of L′(θ), the function’s gradient with respect to
θ. Starting with some initial value θ0, SGD refines the parameter value by iterating the stochastic
difference equation θn+1 = θn−εnL̂′(θn),where n denotes the step number and {εn} is a sequence
of decreasing step sizes. Since −L′(θn) is the direction of steepest descent, SGD constitutes a
noisy version of gradient descent. To apply SGD to matrix factorization, we set θ = (W ,H) and
decompose the loss L as in (1) for an appropriate training set Z and local loss function l. Denote by
Lz(θ) = Lij(θ) = l(V ij ,W i∗,H∗j) the local loss at position z = (i, j). Then L′(θ) =

∑
z L
′
z(θ)

by the sum rule for differentiation. We obtain a noisy gradient estimate by scaling up just one of the
local gradients, i.e., L̂′(θ) = NL′z(θ), where N = |Z| and the training point z is chosen randomly
from the training set. Algorithm 1 uses SGD to perform matrix factorization. Note that each step
affects only a single row of W and a single column of H .

Algorithm 1 SGD for Matrix Factorization

Require: A training set Z, initial values W 0 and H0

while not converged do {step}
Select a training point (i, j) ∈ Z uniformly at random.
W ′

i∗ ←W i∗ − εnN ∂
∂W i∗

l(V ij ,W i∗,H∗j)

H∗j ←H∗j − εnN ∂
∂H∗j

l(V ij ,W i∗,H∗j)

W i∗ ←W ′
i∗

end while

3 Distributed Stochastic Gradient Descent

In general, distributing SGD is hard because the individual steps depend on each other: The param-
eter value of θn has to be known before θn+1 can be computed. However, in the case of matrix
factorization, the SGD process has some structure that we can exploit.

Definition 1 Two training points z1, z2 ∈ Z are interchangeable with respect to a loss function L
having summation form (1) if for all θ ∈ H , and ε > 0,

L′z1(θ) = L′z1(θ − εL
′
z2(θ))

and L′z2(θ) = L′z2(θ − εL
′
z1(θ)).

(2)

Two disjoint sets of training points Z1, Z2 ⊂ Z are interchangeable with respect to L if z1 and z2
are interchangeable for every z1 ∈ Z1 and z2 ∈ Z2.

For matrix factorization, two training points z1 = (i1, j1) ∈ Z and z2 = (i2, j2) ∈ Z are in-
terchangeable with respect to any loss function L having form (1) if they share neither row nor
column, i.e., i1 6= i2 and j1 6= j2. It follows that if two blocks of V share neither rows or columns,
then the sets of training points contained in these blocks are interchangeable.

Stratification. The key idea of DSGD is that we can swap the order of consecutive SGD steps
that involve interchangeable training points without affecting the final outcome. This allows us to

2

Z11Z12Z13

Z21Z22Z23

Z31Z32Z33

Z11Z12Z13

Z21Z22Z23

Z31Z32Z33

Z11Z12Z13

Z21Z22Z23

Z31Z32Z33

Z11Z12Z13

Z21Z22Z23

Z31Z32Z33

Z11Z12Z13

Z21Z22Z23

Z31Z32Z33

Z11Z12Z13

Z21Z22Z23

Z31Z32Z33

Z1 Z2 Z3 Z4 Z5 Z6

Figure 1: Strata for a 3× 3 blocking of matrix V

run SGD in parallel on any set of interchangeable sets of training points; see the discussion below.
DSGD thus partitions the training set Z into a set of potentially overlapping “strata” Z1, . . . , Zs,
where each stratum consists of d interchangeable subsets of Z; see Figure 1 for an example. The
strata must cover the training set in that

⋃q
s=1 Zs = Z, but overlapping strata are allowed. The

parallelism parameter d is chosen to be greater than or equal to the number of available processing
tasks.

There are many ways to stratify the training set into interchangeable strata. In our current work,
we perform data-independent blocking; more advanced strategies may improve the speed of con-
vergence further. We first randomly permute the rows and columns of V , and then create d × d
blocks of size (m/d) × (n/d) each; the factor matrices W and H are blocked conformingly. This
procedure ensures that the expected number of training points in each of the blocks is the same,
namely, N/d2. Then, for a permutation j1, j2, . . . , jd of 1, 2, . . . , d, we can define a stratum as
Zs = Z1j1 ∪ Z2j2 ∪ · · · ∪ Zdjd , where the substratum Zij denotes the set of training points that
fall within block V ij . In general, the set S of possible strata contains d! elements, one for each
possible permutation of 1, 2, . . . , d. Note that different strata may overlap when d > 2. Also note
that there is no need to materialize these strata: They are constructed on-the-fly by processing only
the respective blocks of V .

The SSGD algorithm. Given the set of strata, we decompose the loss into a weighted sum of per-
stratum losses: L(W ,H) =

∑q
s=1 wsLs(W ,H), where ws is a weight associated with stratum

Zs. This decomposition underlies our stratified SGD (SSGD) algorithm, a novel variant of SGD
that chooses training points from only a single stratum instead of the entire matrix V . To establish
convergence, SSGD switches strata from time to time so that, in the long run, the “time” spent on
stratum Zs is proportional to the stratum weight ws. Gemulla et al. [10] provide sufficient condi-
tions for convergence, as well as a proof; the conditions in [10] hold for most matrix factorization
problems.

We use per-stratum losses of form Ls(W ,H) = cs
∑

(i,j)∈Zs
Lij(W ,H) where cs is a stratum-

specific constant. When running SGD on a stratum, we use the gradient estimate L̂′s(W ,H) =
NscsL

′
ij(W ,H) of L′s(W ,H) in each step, i.e., we scale up the local loss of an individual training

point by the size Ns = |Zs| of the stratum. For example, from the d! strata described previously,
we can select d disjoint strata Z1, Z2, . . . , Zd such that they cover Z; e.g., strata Z1, Z2, and Z3 in
Fig. 1. Then any given loss function L of form (1) can be represented as a weighted sum over these
strata by choosing ws and cs subject to wscs = 1. Recall that the weight ws can be interpreted as
the fraction of time spent on each stratum in the long run. A natural choice is to set ws = Ns/N ,
i.e., proportional to the stratum size. This particular choice leads to cs = N/Ns and we obtain the
standard SGD gradient estimator L̂′s(W ,H) = NL′ij(W ,H).

The DSGD algorithm. The individual steps in DSGD are grouped into subepochs, each of which
amounts to (1) selecting one of the strata and (2) running SGD (in parallel) on the selected stratum.
In more detail, DSGD makes use of a sequence {(ξk, Tk)}, where ξk denotes the stratum selector
used in the kth subepoch, and Tk the number of steps to run on the selected stratum. The {(ξk, Tk)}
sequence is chosen such that the DSGD factorization algorithm is guaranteed to converge. For the
particular choice of stratification described above, we set Tk = |Nξk |; see [10] for details. Once
a stratum ξk has been selected, we perform Tk SGD steps on Zξk ; this is done in a parallel and
distributed way. DSGD is shown as Algorithm 2, where we define an epoch as a sequence of d
subepochs. An epoch roughly corresponds to processing the entire training set once. Since, by
construction, parallel processing within the kth selected stratum leads to the same update terms as
for the corresponding sequential SGD algorithm onZξk , we have established the connection between
DSGD and SSGD. Thus the convergence of DSGD is implied by the convergence of the underlying
SSGD algorithm.

3

Implementation. When executing DSGD on d nodes in a shared-nothing environment such as
MapReduce, we only distribute the input matrix once. Then the only data that are transmitted
between nodes during subsequent processing are (small) blocks of factor matrices. In our im-
plementation, node i stores blocks W i,V i1,V i2, . . . ,V id for 1 ≤ i ≤ d; thus only matrices
H1,H2, . . . ,Hd need be transmitted. (If the W i matrices are smaller, then we transmit these
instead.)

Algorithm 2 DSGD for Matrix Factorization

Require: V , W 0, H0, cluster size d
Block V / W / H into d× d / d× 1 / 1× d blocks
while not converged do {epoch}

Pick step size ε
for s = 1, . . . , d do {subepoch}

Pick d blocks {V 1j1 , . . . ,V djd} to form a stratum
for b = 1, . . . , d do {in parallel}

Read blocks V bjb , W b and Hjb

Run SGD on the training points in V bjb (step size = ε)
Write blocks W b and Hjb

end for
end for

end while

4 Experimental Results

In Table 1, we report results of the performance of DSGD on the KDDCup 2011 dataset, which
consists of 252M music ratings (1M users, 624k items) along with the time of rating; matrix factor-
ization is used to predict missing ratings. The winning team [13] integrated more than 80 different
matrix factorizations on this dataset. Here we show results for a “biased matrix factorization”,
in which user (ui) and movie (mj) preferences are integrated into the model, with weighted L2-
regularization (see [3]; λW = λH = 1, λu = 2, λm = 0.1). We used rank r = 60 and run 200
epochs. Each node in our cluster is equipped with an Intel Xeon 2.40GHz processor and 48GB of
RAM. We implemented DSGD in C++ and used MPI for communication. Table 1 shows the time
per DSGD epoch (excluding loss computations) as well as the achieved loss after 60 and 30 minutes
of wall-clock time. Note that plain SGD performs slightly better than DSGD in terms of achieved
loss after a fixed number of epochs; this is a result of the differences in training point selection. In
terms of wall-clock time, however, DSGD significantly outperforms SGD. See [10] for experiments
on other datasets, other distributed architectures (including Hadoop), and a comparison to alternative
algorithms.

Table 1: Experimental results on the KDDCup 2011 dataset

Nodes x Method Avg. Time Training loss (×1011) Validation RMSE
Threads per Epoch 200 ep. 60min 30min 200 ep. 60min 30min

1x1 SGD 335.9s 1.417 1.683 1.803 21.89 22.76 23.04
1x7 DSGD 47.2s 1.430 1.461 1.516 22.04 22.43 22.91
2x7 DSGD 22.9s 1.430 1.432 1.468 22.06 22.07 22.53
4x7 DSGD 12.7s 1.427 1.428 1.437 22.08 22.09 22.20

5 Conclusion

We have developed DSGD, a distributed version of the classic SGD algorithm for matrix factoriza-
tion. DSGD can efficiently handle web-scale matrices; our experiments indicate fast convergence
and good scalability.

4

References

[1] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google news person-
alization: scalable online collaborative filtering. In WWW, pages 271–280, 2007.

[2] Thomas Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50–57, 1999.
[3] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-

mender systems. IEEE Computer, 42(8):30–37, 2009.
[4] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–791, 1999.
[5] Chao Liu, Hung-chih Yang, Jinliang Fan, Li-Wei He, and Yi-Min Wang. Distributed nonneg-

ative matrix factorization for web-scale dyadic data analysis on mapreduce. In WWW, pages
681–690, 2010.

[6] Benjamin Recht and Christopher Ré. Parallel stochastic gradient algorithms for large-scale
matrix completion. Optimization Online, 2011.

[7] Feng Niu, Benajami Recht, Christopher Ré, and Stephen J. Wright. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent. In NIPS, 2011.

[8] Sudipto Das, Yannis Sismanis, Kevin S. Beyer, Rainer Gemulla, Peter J. Haas, and John
McPherson. Ricardo: Integrating R and Hadoop. In SIGMOD, pages 987–998, 2010.

[9] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale parallel col-
laborative filtering for the Netflix Prize. In AAIM, pages 337–348, 2008.

[10] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix factor-
ization with distributed stochastic gradient descent. In Proc. of SIGKDD, pages 69–77, 2011.

[11] Ajit P. Singh and Geoffrey J. Gordon. A unified view of matrix factorization models. In ECML
PKDD, pages 358–373, 2008.

[12] Rainer Gemulla, Peter J. Haas, Erik Nijkamp, and Yannis Sismanis. Large-
scale matrix factorization with distributed stochastic gradient descent. Technical Re-
port RJ10481, IBM Almaden Research Center, San Jose, CA, 2011. Available at
www.almaden.ibm.com/cs/people/peterh/dsgdTechRep.pdf.

[13] Po-Lung Chen, Chen-Tse Tsai, Yao-Nan Chen, Ku-Chun Chou, Chun-Liang Li, Cheng-Hao
Tsai, Kuan-Wei Wu, Yu-Cheng Chou, Chung-Yi Li, Wei-Shih Lin, Shu-Hao Yu, Rong-Bing
Chiu, Chieh-Yen Lin, Chien-Chih Wang, Po-Wei Wang, Wei-Lun Su, Chen-Hung Wu, Tsung-
Ting Kuo, Todd G. McKenzie, Ya-Hsuan Chang, Chun-Sung Ferng, Chia-Mau Ni, Hsuan-Tien
Lin, Chih-Jen Lin, and Shou-De Lin. A linear ensemble of individual and blended models for
music rating prediction. In KDDCup 2011 Workshop, 2011.

5

