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Collaborative Filtering

I Problem
I Set of users
I Set of items (movies, books, jokes, products, stories, ...)
I Feedback (ratings, purchase, click-through, tags, ...)

I Predict additional items a user may like
I Assumption: Similar feedback =⇒ Similar taste

I Example

I Netflix competition: 500k users, 20k movies, 100M movie
ratings, 3M question marks
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Semantic Factors (Koren et al., 2009)cover FE ATURE

computer	44

vector q
i
 ∈  f, and each user u is associ-

ated with a vector p
u
 ∈  f. For a given item 

i, the elements of q
i
 measure the extent to 

which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of p

u
 measure the extent of 

interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
q

i
T p

u
, captures the interaction between user 

u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
r

ui
, leading to the estimate 
 
r̂ui  

= q
i
T p

u
.	 (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
q

i
, p

u
 ∈  f. After the recommender system 

completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (p

u
 and q

i
), the system 

minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i ∈

∑
κ

(r
ui
 - q

i
Tp

u
)2 + λ(|| q

i
 ||2 + || p

u
 ||2) 	 (2) 

Here, κ is the set of the (u,i) pairs for which r
ui
 is known 

(the training set). 
The system learns the model by fitting the previously 

observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant λ controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 
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I Discover latent factors (r = 1)

Avatar The Matrix Up
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Bob 3 2
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I Minimum loss
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Generalized Matrix Factorization
I A general machine learning problem

I Recommender systems, text indexing, face recognition, . . .

I Training data
I V: m × n input matrix (e.g., rating matrix)
I Z : training set of indexes in V (e.g., subset of known ratings)

I Parameter space
I W: row factors (e.g., m × r latent customer factors)
I H: column factors (e.g., r × n latent movie factors)

I Model
I Lij(Wi∗,H∗j): loss at element (i , j)
I Includes prediction error, regularization,

auxiliary information, . . .
I Constraints (e.g., non-negativity)

I Find best model

argmin
W,H

∑
(i ,j)∈Z

Lij(Wi∗,H∗j)
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Successful Applications

I Movie recommendation (Netflix, competition papers)
I >12M users, >20k movies, 2.4B ratings (projected)
I 36GB data, 9.2GB model (projected)
I Latent factor model

I Website recommendation (Microsoft, WWW10)
I 51M users, 15M URLs, 1.2B clicks
I 17.8GB data, 161GB metadata, 49GB model
I Gaussian non-negative matrix factorization

I News personalization (Google, WWW07)
I Millions of users, millions of stories, ? clicks
I Probabilistic latent semantic indexing

Distributed processing is necessary!

I Big data

I Large models

I Expensive computations
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Stochastic Gradient Descent

I Find minimum θ∗ of function L

I Pick a starting point θ0
I Approximate gradient L̂′(θ0)

I Jump “approximately” downhill

I Stochastic difference equation

θn+1 = θn − εnL̂′(θn)

I Under certain conditions,
asymptotically approximates
(continuous) gradient descent
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Stochastic Gradient Descent for Matrix Factorization

I Set θ = (W,H) and use

L(θ) =
∑

(i,j)∈Z

Lij(Wi∗,H∗j)

L′(θ) =
∑

(i,j)∈Z

L′ij(Wi∗,H∗j)

L̂′(θ, z) = NL′iz jz (Wiz∗,H∗jz ),

where N = |Z |

I SGD epoch

1. Pick a random entry z ∈ Z
2. Compute approximate gradient L̂′(θ, z)
3. Update parameters

θn+1 = θn − εnL̂′(θn, z)

4. Repeat N times
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Stochastic Gradient Descent on Netflix Data
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Comparison

I Per epoch, assuming O(r) gradient computation per element

GD SGD

Algorithm Deterministic Randomized
Gradient computations 1 N
Gradient types Exact Approximate
Parameter updates 1 N
Time O(rN) O(rN)
Space O((m + n)r) O((m + n)r)

I Why stochastic?
I Fast convergence to vicinity of optimum
I Randomization may help escape local minima
I Exploitation of “repeated structure”
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Averaging Techniques

I SGD steps depend on each other

θn+1 = θn − εnL̂′(θn)

How to distribute?

I Parameter mixing (ISGD)
I Map: Run independent instances of SGD on subsets of the

data (until convergence)
I Reduce: Average results
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Averaging Techniques

I SGD steps depend on each other

θn+1 = θn − εnL̂′(θn)

How to distribute?

I Parameter mixing (ISGD)
I Map: Run independent instances of SGD on subsets of the

data (until convergence)
I Reduce: Average results
I Does not converge to correct solution!

I Iterative Parameter mixing (PSGD)
I Map: Run independent instances of SGD on subsets of the

data (for some time)
I Reduce: Average results
I Repeat
I Converges slowly!
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Problem Structure

I SGD steps depend on each other

θn+1 = θn − εnL̂′(θn)

I An SGD step on example z ∈ Z . . .
1. Reads Wiz∗ and H∗jz
2. Performs gradient computation L′ij(Wiz∗,H∗jz )
3. Updates Wiz∗ and H∗jz

I Not all steps are dependent

V

W

H

znWi∗

H∗j
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Interchangeability

I Two elements z1, z2 ∈ Z are interchangeable if they share
neither row nor column

V

W

H

znWi∗

H∗j

zn+1

I When zn and zn+1 are interchangeable, the SGD steps

θn+1 = θn − εL̂′(θn, zn)
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I When zn and zn+1 are interchangeable, the SGD steps

θn+2 = θn − εL̂′(θn, zn)− εL̂′(θn+1, zn+1)

= θn − εL̂′(θn, zn)− εL̂′(θn, zn+1),

become parallelizable!
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Exploitation

I Block and distribute the input matrix V

I High-level approach (Map only)

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next “diagonal”

I Steps 1–3 form a cycle

I Step 2:
Simulate sequential SGD

I Interchangeable blocks
I Throw dice of how

many iterations per block
I Throw dice of which

step sizes per block

I Instance of “stratified SGD”

I Provably correct
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How does it work?
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DSGD scales well (Netflix, NZSL+L2)
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DSGD is fast (8x8, Netflix, NZSL)
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DSGD is fast (8x8, synth., NZSL+L2)
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DSGD runs on Hadoop
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Summary

I Matrix factorization
I Widely applicable via customized loss functions
I Large instances (millions × millions with billions of entries)

I Distributed Stochastic Gradient Descent
I Simple and versatile
I Avoids averaging via novel “stratified SGD” variant
I Achieves

I Fully distributed data/model
I Fully distributed processing
I Same or better loss
I Faster
I Good scalability

I Future Directions
I More decompositions (e.g., losses at 0)
I Tensors
I Stratified SGD for other models
I ...
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Thank you!
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