Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent

Rainer Gemulla

August 23, 2011

Peter J. Haas Yannis Sismanis Erik Nijkamp

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

Collaborative Filtering

- Problem
- Set of users
- Set of items (movies, books, jokes, products, stories, ...)
- Feedback (ratings, purchase, click-through, tags, ...)

Collaborative Filtering

- Problem
- Set of users
- Set of items (movies, books, jokes, products, stories, ...)
- Feedback (ratings, purchase, click-through, tags, ...)
- Predict additional items a user may like
- Assumption: Similar feedback \Longrightarrow Similar taste

Collaborative Filtering

- Problem
- Set of users
- Set of items (movies, books, jokes, products, stories, ...)
- Feedback (ratings, purchase, click-through, tags, ...)
- Predict additional items a user may like
- Assumption: Similar feedback \Longrightarrow Similar taste
- Example
Avatar
Alice

The Matrix

Bob
Charlie

$\left(\begin{array}{cc}3 & 4\end{array}\right.$
3
5

Collaborative Filtering

- Problem
- Set of users
- Set of items (movies, books, jokes, products, stories, ...)
- Feedback (ratings, purchase, click-through, tags, ...)
- Predict additional items a user may like
- Assumption: Similar feedback \Longrightarrow Similar taste
- Example
Avatar
Alice
Bob
Charlie Matrix $\left(\begin{array}{ccc}? & 4 & 2 \\ 3 & 2 & ? \\ 5 & ? & 3\end{array}\right)$

Collaborative Filtering

- Problem
- Set of users
- Set of items (movies, books, jokes, products, stories, ...)
- Feedback (ratings, purchase, click-through, tags, ...)
- Predict additional items a user may like
- Assumption: Similar feedback \Longrightarrow Similar taste
- Example
$\left.\begin{array}{l}\text { Avatar } \\ \text { Alice } \\ \text { Bob } \\ \text { Charlie Matrix }\end{array} \begin{array}{ccc}? & \text { Up } \\ 3 & 4 & 2 \\ 5 & 2 & ? \\ 3 & ? & 3\end{array}\right)$
- Netflix competition: 500k users, 20k movies, 100M movie ratings, 3 M question marks

Semantic Factors (Koren et al., 2009)

Latent Factor Models

- Discover latent factors ($r=1$)

	Avatar	The Matrix	Up
Alice		4	2
Bob	3	2	
Charlie	5		3

Latent Factor Models

- Discover latent factors ($r=1$)

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice (1.98)		$\mathbf{4}$	$\mathbf{2}$
Bob (1.21)	$\mathbf{3}$	$\mathbf{2}$	
Charlie (2.30)	$\mathbf{5}$		$\mathbf{3}$

Latent Factor Models

- Discover latent factors ($r=1$)

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice		$\mathbf{4}$	$\mathbf{2}$
(1.98)		(3.8)	(2.3)
Bob	$\mathbf{3}$	$\mathbf{2}$	
(1.21)	(2.7)	(2.3)	
Charlie	$\mathbf{5}$		$\mathbf{3}$
(2.30)	(5.2)		(2.7)

- Minimum loss

$$
\min _{\mathbf{W}, \mathbf{H}} \sum_{(i, j) \in Z}\left(\mathbf{V}_{i j}-[\mathbf{W H}]_{i j}\right)^{2}
$$

Latent Factor Models

- Discover latent factors $(r=1)$

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice	$?$	$\mathbf{4}$	$\mathbf{2}$
(1.98)	(4.4)	(3.8)	(2.3)
Bob	$\mathbf{3}$	$\mathbf{2}$	$?$
(1.21)	(2.7)	(2.3)	(1.4)
Charlie	$\mathbf{5}$	$?$	$\mathbf{3}$
(2.30)	(5.2)	(4.4)	(2.7)

- Minimum loss

$$
\min _{\mathbf{W}, \mathbf{H}} \sum_{(i, j) \in Z}\left(\mathbf{V}_{i j}-[\mathbf{W} \mathbf{H}]_{i j}\right)^{2}
$$

Latent Factor Models

- Discover latent factors $(r=1)$

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice	$?$	$\mathbf{4}$	$\mathbf{2}$
(1.98)	(4.4)	(3.8)	(2.3)
Bob	$\mathbf{3}$	$\mathbf{2}$	$?$
(1.21)	(2.7)	(2.3)	(1.4)
Charlie	$\mathbf{5}$	$?$	$\mathbf{3}$
(2.30)	(5.2)	(4.4)	(2.7)

- Minimum loss

$$
\min _{\mathbf{W}, \mathbf{H}, \mathbf{u}, \mathbf{m}} \sum_{(i, j) \in Z}\left(\mathbf{V}_{i j}-\mu-\mathbf{u}_{i}-\mathbf{m}_{j}-[\mathbf{W} \mathbf{H}]_{i j}\right)^{2}
$$

- Bias

Latent Factor Models

- Discover latent factors ($r=1$)

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice	$?$	$\mathbf{4}$	$\mathbf{2}$
(1.98)	(4.4)	(3.8)	(2.3)
Bob	$\mathbf{3}$	$\mathbf{2}$	$?$
(1.21)	(2.7)	(2.3)	(1.4)
Charlie	$\mathbf{5}$	$?$	$\mathbf{3}$
(2.30)	(5.2)	(4.4)	(2.7)

- Minimum loss

$$
\begin{array}{r}
\min _{\mathbf{W}, \mathbf{H}, \mathbf{u}, \mathbf{m}} \sum_{(i, j) \in Z}\left(\mathbf{V}_{i j}-\mu-\mathbf{u}_{i}-\mathbf{m}_{j}-[\mathbf{W} \mathbf{H}]_{i j}\right)^{2} \\
+\lambda(\|\mathbf{W}\|+\|\mathbf{H}\|+\|\mathbf{u}\|+\|\mathbf{m}\|)
\end{array}
$$

- Bias, regularization

Latent Factor Models

- Discover latent factors ($r=1$)

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice	$?$	$\mathbf{4}$	$\mathbf{2}$
(1.98)	(4.4)	(3.8)	(2.3)
Bob	$\mathbf{3}$	$\mathbf{2}$	$?$
(1.21)	(2.7)	(2.3)	(1.4)
Charlie	$\mathbf{5}$	$?$	$\mathbf{3}$
(2.30)	(5.2)	(4.4)	(2.7)

- Minimum loss

$$
\begin{array}{r}
\min _{\mathbf{w}, \mathbf{H}, \mathbf{u}, \mathbf{m}} \sum_{(i, j, j) \in Z_{t}}\left(\mathbf{V}_{i j}-\mu-\mathbf{u}_{i}(t)-\mathbf{m}_{j}(t)-[\mathbf{W}(t) \mathbf{H}]_{i j}\right)^{2} \\
+\lambda(\|\mathbf{W}(t)\|+\|\mathbf{H}\|+\|\mathbf{u}(t)\|+\|\mathbf{m}(t)\|)
\end{array}
$$

- Bias, regularization, time

Generalized Matrix Factorization

- A general machine learning problem
- Recommender systems, text indexing, face recognition, ...

Generalized Matrix Factorization

- A general machine learning problem
- Recommender systems, text indexing, face recognition, ...
- Training data
- V: $m \times n$ input matrix (e.g., rating matrix)
- Z: training set of indexes in \mathbf{V} (e.g., subset of known ratings)

Generalized Matrix Factorization

- A general machine learning problem
- Recommender systems, text indexing, face recognition, ...
- Training data
- V: $m \times n$ input matrix (e.g., rating matrix)
- Z: training set of indexes in \mathbf{V} (e.g., subset of known ratings)
- Parameter space
- W: row factors (e.g., $m \times r$ latent customer factors)
- H: column factors (e.g., $r \times n$ latent movie factors)

Generalized Matrix Factorization

- A general machine learning problem
- Recommender systems, text indexing, face recognition, ...
- Training data
- V: $m \times n$ input matrix (e.g., rating matrix)
- Z: training set of indexes in \mathbf{V} (e.g., subset of known ratings)
- Parameter space
- W: row factors (e.g., $m \times r$ latent customer factors)
- H: column factors (e.g., $r \times n$ latent movie factors)
- Model
- $L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right)$: loss at element (i, j)
- Includes prediction error, regularization, auxiliary information, ...
- Constraints (e.g., non-negativity)

Generalized Matrix Factorization

- A general machine learning problem
- Recommender systems, text indexing, face recognition, ...
- Training data
- V: $m \times n$ input matrix (e.g., rating matrix)
- Z: training set of indexes in \mathbf{V} (e.g., subset of known ratings)
- Parameter space
- W: row factors (e.g., $m \times r$ latent customer factors)
- H: column factors (e.g., $r \times n$ latent movie factors)
- Model
- $L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right)$: loss at element (i, j)
- Includes prediction error, regularization, auxiliary information, ...
- Constraints (e.g., non-negativity)
- Find best model

$$
\underset{\mathbf{W}, \mathbf{H}}{\operatorname{argmin}} \sum_{(i, j) \in Z} L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right)
$$

Successful Applications

- Movie recommendation (Netflix, competition papers)
- $>12 \mathrm{M}$ users, $>20 \mathrm{k}$ movies, 2.4 B ratings (projected)
- 36 GB data, 9.2 GB model (projected)
- Latent factor model
- Website recommendation (Microsoft, WWW10)
- 51 M users, 15 M URLs, 1.2 B clicks
- 17.8 GB data, 161 GB metadata, 49 GB model
- Gaussian non-negative matrix factorization
- News personalization (Google, WWW07)
- Millions of users, millions of stories, ? clicks
- Probabilistic latent semantic indexing

Successful Applications

- Movie recommendation (Netflix, competition papers)
- $>12 \mathrm{M}$ users, $>20 \mathrm{k}$ movies, 2.4 B ratings (projected)
- 36 GB data, 9.2 GB model (projected)
- Latent factor model
- Website recommendation (Microsoft, WWW10)
- 51 M users, 15 M URLs, 1.2 B clicks
- 17.8 GB data, 161 GB metadata, 49 GB model
- Gaussian non-negative matrix factorization
- News personalization (Google, WWW07)
- Millions of users, millions of stories, ? clicks
- Probabilistic latent semantic indexing

Distributed processing is necessary!

- Big data
- Large models
- Expensive computations

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

Stochastic Gradient Descent

- Find minimum θ^{*} of function L

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}
- Approximate gradient $\hat{L}^{\prime}\left(\theta_{0}\right)$

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}
- Approximate gradient $\hat{L}^{\prime}\left(\theta_{0}\right)$
- Jump "approximately" downhill

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}
- Approximate gradient $\hat{L}^{\prime}\left(\theta_{0}\right)$
- Jump "approximately" downhill
- Stochastic difference equation

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}
- Approximate gradient $\hat{L}^{\prime}\left(\theta_{0}\right)$
- Jump "approximately" downhill
- Stochastic difference equation

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

- Under certain conditions, asymptotically approximates (continuous) gradient descent

Stochastic Gradient Descent for Matrix Factorization

- Set $\theta=(\mathbf{W}, \mathbf{H})$ and use

$$
L(\theta)=\sum_{(i, j) \in Z} L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right)
$$

Stochastic Gradient Descent for Matrix Factorization

- Set $\theta=(\mathbf{W}, \mathbf{H})$ and use

$$
\begin{aligned}
L(\theta) & =\sum_{(i, j) \in Z} L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
L^{\prime}(\theta) & =\sum_{(i, j) \in Z} L_{i j}^{\prime}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right)
\end{aligned}
$$

Stochastic Gradient Descent for Matrix Factorization

- Set $\theta=(\mathbf{W}, \mathbf{H})$ and use

$$
\begin{aligned}
L(\theta) & =\sum_{(i, j) \in Z} L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
L^{\prime}(\theta) & =\sum_{(i, j) \in Z} L_{i j}^{\prime}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
\hat{L}^{\prime}(\theta, z) & =N L_{i_{z} j_{z}}^{\prime}\left(\mathbf{W}_{i_{z} *}, \mathbf{H}_{* j_{z}}\right),
\end{aligned}
$$

where $N=|Z|$

Stochastic Gradient Descent for Matrix Factorization

- Set $\theta=(\mathbf{W}, \mathbf{H})$ and use

$$
\begin{aligned}
L(\theta) & =\sum_{(i, j) \in Z} L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
L^{\prime}(\theta) & =\sum_{(i, j) \in Z} L_{i j}^{\prime}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
\hat{L}^{\prime}(\theta, z) & =N L_{i_{z} j_{z}}^{\prime}\left(\mathbf{W}_{i_{z} *}, \mathbf{H}_{* j_{z}}\right),
\end{aligned}
$$

where $N=|Z|$

- SGD epoch

1. Pick a random entry $z \in Z$
2. Compute approximate gradient $\hat{L^{\prime}}(\theta, z)$
3. Update parameters

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L^{\prime}}\left(\theta_{n}, z\right)
$$

4. Repeat N times

Stochastic Gradient Descent on Netflix Data

Comparison

- Per epoch, assuming $O(r)$ gradient computation per element

	GD	SGD
Algorithm	Deterministic	Randomized
Gradient computations	1	N
Gradient types	Exact	Approximate
Parameter updates	1	N
Time	$O(r N)$	$O(r N)$
Space	$O((m+n) r)$	$O((m+n) r)$

- Why stochastic?
- Fast convergence to vicinity of optimum
- Randomization may help escape local minima
- Exploitation of "repeated structure"

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

Averaging Techniques

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

How to distribute?

Averaging Techniques

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

How to distribute?

- Parameter mixing (ISGD)
- Map: Run independent instances of SGD on subsets of the data (until convergence)
- Reduce: Average results

Averaging Techniques

Averaging Techniques

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

How to distribute?

- Parameter mixing (ISGD)
- Map: Run independent instances of SGD on subsets of the data (until convergence)
- Reduce: Average results
- Does not converge to correct solution!

Averaging Techniques

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

How to distribute?

- Parameter mixing (ISGD)
- Map: Run independent instances of SGD on subsets of the data (until convergence)
- Reduce: Average results
- Does not converge to correct solution!
- Iterative Parameter mixing (PSGD)
- Map: Run independent instances of SGD on subsets of the data (for some time)
- Reduce: Average results
- Repeat

Averaging Techniques

Averaging Techniques

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

How to distribute?

- Parameter mixing (ISGD)
- Map: Run independent instances of SGD on subsets of the data (until convergence)
- Reduce: Average results
- Does not converge to correct solution!
- Iterative Parameter mixing (PSGD)
- Map: Run independent instances of SGD on subsets of the data (for some time)
- Reduce: Average results
- Repeat
- Converges slowly!

Problem Structure

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

- An SGD step on example $z \in Z \ldots$

1. Reads $W_{i_{z} *}$ and $H_{* j_{z}}$
2. Performs gradient computation $L_{i j}^{\prime}\left(W_{i z *}, H_{* j_{z}}\right)$
3. Updates $W_{i_{2} *}$ and $H_{* j_{2}}$

Problem Structure

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

- An SGD step on example $z \in Z \ldots$

1. Reads $W_{i_{z} *}$ and $H_{* j_{z}}$
2. Performs gradient computation $L_{i j}^{\prime}\left(W_{i z *}, H_{* j_{z}}\right)$
3. Updates $W_{i_{2} *}$ and $H_{* j_{2}}$

Problem Structure

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

- An SGD step on example $z \in Z \ldots$

1. Reads $W_{i_{z} *}$ and $H_{* j_{z}}$
2. Performs gradient computation $L_{i j}^{\prime}\left(W_{i z *}, H_{* j_{z}}\right)$
3. Updates $W_{i_{2} *}$ and $H_{* j_{2}}$

Problem Structure

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

- An SGD step on example $z \in Z \ldots$

1. Reads $W_{i_{z} *}$ and $H_{* j_{z}}$
2. Performs gradient computation $L_{i j}^{\prime}\left(W_{i z *}, H_{* j_{z}}\right)$
3. Updates $W_{i z *}$ and $H_{* j_{z}}$

- Not all steps are dependent

Interchangeability

- Two elements $z_{1}, z_{2} \in Z$ are interchangeable if they share neither row nor column

- When z_{n} and z_{n+1} are interchangeable, the SGD steps

$$
\theta_{n+1}=\theta_{n}-\epsilon \hat{L}^{\prime}\left(\theta_{n}, z_{n}\right)
$$

Interchangeability

- Two elements $z_{1}, z_{2} \in Z$ are interchangeable if they share neither row nor column

- When z_{n} and z_{n+1} are interchangeable, the SGD steps

$$
\theta_{n+2}=\theta_{n}-\epsilon \hat{L}^{\prime}\left(\theta_{n}, z_{n}\right)-\epsilon \hat{L}^{\prime}\left(\theta_{n+1}, z_{n+1}\right)
$$

Interchangeability

- Two elements $z_{1}, z_{2} \in Z$ are interchangeable if they share neither row nor column

- When z_{n} and z_{n+1} are interchangeable, the SGD steps

$$
\begin{aligned}
\theta_{n+2} & =\theta_{n}-\epsilon \hat{L}^{\prime}\left(\theta_{n}, z_{n}\right)-\epsilon \hat{L}^{\prime}\left(\theta_{n+1}, z_{n+1}\right) \\
& =\theta_{n}-\epsilon \hat{L}^{\prime}\left(\theta_{n}, z_{n}\right)-\epsilon \hat{L}^{\prime}\left(\theta_{n}, z_{n+1}\right)
\end{aligned}
$$

Interchangeability

- Two elements $z_{1}, z_{2} \in Z$ are interchangeable if they share neither row nor column

- When z_{n} and z_{n+1} are interchangeable, the SGD steps

$$
\begin{aligned}
\theta_{n+2} & =\theta_{n}-\epsilon \hat{L}^{\prime}\left(\theta_{n}, z_{n}\right)-\epsilon \hat{L}^{\prime}\left(\theta_{n+1}, z_{n+1}\right) \\
& =\theta_{n}-\epsilon \hat{L}^{\prime}\left(\theta_{n}, z_{n}\right)-\epsilon \hat{L}^{\prime}\left(\theta_{n}, z_{n+1}\right),
\end{aligned}
$$

become parallelizable!

Exploitation

- Block and distribute the input matrix \mathbf{V}

Exploitation

- Block and distribute the input matrix V
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle

Exploitation

- Block and distribute the input matrix V
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle

Exploitation

- Block and distribute the input matrix V
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle
- Step 2:

Simulate sequential SGD

- Interchangeable blocks
- Throw dice of how many iterations per block
- Throw dice of which step sizes per block

Node 1

Node 2

Node 3

Exploitation

- Block and distribute the input matrix V
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle
- Step 2:

Simulate sequential SGD

- Interchangeable blocks
- Throw dice of how many iterations per block
- Throw dice of which step sizes per block

Node 1

Node 2

Node 3

Exploitation

- Block and distribute the input matrix V
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle
- Step 2:

Simulate sequential SGD

- Interchangeable blocks
- Throw dice of how many iterations per block
- Throw dice of which step sizes per block

Node 1

Node 2

Node 3

Exploitation

- Block and distribute the input matrix V
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle
- Step 2:

Simulate sequential SGD

- Interchangeable blocks
- Throw dice of how many iterations per block
- Throw dice of which step sizes per block
- Instance of "stratified SGD"
- Provably correct

Node 1

Node 2

Node 3

How does it work?

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

DSGD scales well (Netflix, NZSL+L2)

DSGD scales well (Netflix, NZSL+L2)

DSGD is fast ($8 x 8$, Netflix, NZSL)

DSGD is fast $(8 \times 8$, Netflix, NZSL+L2)

DSGD is fast (8×8, synth., NZSL+L2)

DSGD runs on Hadoop

(25.6B entries $>1 / 2 \mathrm{~TB}$ of data)

Outline

Matrix Factorization

Stochastic Gradient Descent
\section*{Distributed SGD with MapReduce}
Experiments

Summary

Summary

- Matrix factorization
- Widely applicable via customized loss functions
- Large instances (millions \times millions with billions of entries)
- Distributed Stochastic Gradient Descent
- Simple and versatile
- Avoids averaging via novel "stratified SGD" variant
- Achieves
- Fully distributed data/model
- Fully distributed processing
- Same or better loss
- Faster
- Good scalability
- Future Directions
- More decompositions (e.g., losses at 0)
- Tensors
- Stratified SGD for other models
- ...

Thank you!

