
Large-Scale Matrix Factorization
with Distributed Stochastic Gradient Descent

Rainer Gemulla1 Peter J. Haas2 Erik Nijkamp2 Yannis Sismanis2

1Max-Planck-Institut für Informatik 2IBM Almaden Research Center
Saarbrücken, Germany San Jose, CA, USA

rgemulla@mpi-inf.mpg.de {phaas, enijkam, syannis}@us.ibm.com

ABSTRACT
We provide a novel algorithm to approximately factor large matrices
with millions of rows, millions of columns, and billions of nonzero
elements. Our approach rests on stochastic gradient descent (SGD),
an iterative stochastic optimization algorithm. We first develop a
novel “stratified” SGD variant (SSGD) that applies to general loss-
minimization problems in which the loss function can be expressed
as a weighted sum of “stratum losses.” We establish sufficient
conditions for convergence of SSGD using results from stochastic
approximation theory and regenerative process theory. We then
specialize SSGD to obtain a new matrix-factorization algorithm,
called DSGD, that can be fully distributed and run on web-scale
datasets using, e.g., MapReduce. DSGD can handle a wide variety
of matrix factorizations. We describe the practical techniques used to
optimize performance in our DSGD implementation. Experiments
suggest that DSGD converges significantly faster and has better
scalability properties than alternative algorithms.

Categories and Subject Descriptors
G.4 [Mathematics of Computing]: Mathematical Software—Par-
allel and vector implementations

General Terms
Algorithms, Experimentation, Performance

Keywords
distributed matrix factorization, stochastic gradient descent, MapRe-
duce, recommendation system

1. INTRODUCTION
As Web 2.0 and enterprise-cloud applications proliferate, data

mining algorithms need to be (re)designed to handle web-scale
datasets. For this reason, low-rank matrix factorization has received
much attention in recent years, since it is fundamental to a vari-
ety of mining tasks that are increasingly being applied to massive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD 2011 August 21-24, 2011, San Diego, CA.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

datasets [8, 12, 13, 15, 16]. Specifically, low-rank matrix factor-
izations are effective tools for analyzing “dyadic data” in order to
discover and quantify the interactions between two given entities.
Successful applications include topic detection and keyword search
(where the corresponding entities are documents and terms), news
personalization (users and stories), and recommendation systems
(users and items). In large applications (see Sec. 2), these problems
can involve matrices with millions of rows (e.g., distinct customers),
millions of columns (e.g., distinct items), and billions of entries
(e.g., transactions between customers and items). At such massive
scales, distributed algorithms for matrix factorization are essential
to achieving reasonable performance [8, 9, 16, 20]. In this paper, we
provide a novel, effective distributed factorization algorithm based
on stochastic gradient descent.

In practice, exact factorization is generally neither possible nor
desired, so virtually all “matrix factorization” algorithms actually
produce low-rank approximations, attempting to minimize a “loss
function” that measures the discrepancy between the original input
matrix and product of the factors returned by the algorithm; we
use the term “matrix factorization” throughout to refer to such an
approximation.

With the recent advent of programmer-friendly parallel processing
frameworks such as MapReduce, web-scale matrix factorizations
have become practicable and are of increasing interest to web com-
panies, as well as other companies and enterprises that deal with
massive data. To facilitate distributed processing, prior approaches
would pick an embarrassingly parallel matrix factorization algorithm
and implement it on a MapReduce cluster; the choice of algorithm
was driven by the ease with which it could be distributed. In this
paper, we take a different approach and start with an algorithm that
is known to have good performance in non-parallel environments.
Specifically, we start with stochastic gradient descent (SGD), an
iterative optimization algorithm that has been shown, in a sequential
setting, to be very effective for matrix factorization [13]. Although
the generic SGD algorithm (Sec. 3) is not embarrassingly parallel
and hence cannot directly scale to very large data, we can exploit the
special structure of the factorization problem to obtain a version of
SGD that is fully distributed and scales to extremely large matrices.

The key idea is to first develop (Sec. 4) a “stratified” variant of
SGD, called SSGD, that is applicable to general loss-minimization
problems in which the loss function L(θ) can be expressed as a
weighted sum of “stratum losses,” so that L(θ) = w1L1(θ) + · · ·+
wqLq(θ). At each iteration, the algorithm takes a downhill step
with respect to one of the stratum losses Ls, i.e., approximately in
the direction of the negative gradient −L′s(θ). Although each such
direction is “wrong” with respect to minimization of the overall loss
L, we prove that, under appropriate regularity conditions, SSGD

will converge to a good solution for L if the sequence of strata is
chosen carefully. Our proof rests on stochastic approximation theory
and regenerative process theory.

We then specialize SSGD to obtain a novel distributed matrix-
factorization algorithm, called DSGD (Sec. 5). Specifically, we
express the input matrix as a union of (possibly overlapping) pieces,
called “strata.” For each stratum, the stratum loss is defined as
the loss computed over only the data points in the stratum (and
appropriately scaled). The strata are carefully chosen so that each
stratum has “d-monomial” structure, which allows SGD to be run on
the stratum in a distributed manner. The DSGD algorithm repeatedly
selects a stratum according to the general SSGD procedure and
processes the stratum in a distributed fashion. Importantly, both
matrix and factors are fully distributed, so that DSGD has low
memory requirements and scales to matrices with millions of rows,
millions of columns, and billions of nonzero elements. When DSGD
is implemented in MapReduce (Sec. 6) and compared to state-of-the-
art distributed algorithms for matrix factorization, our experiments
(Sec. 7) suggest that DSGD converges significantly faster, and has
better scalability.

Unlike many prior algorithms, DSGD is a generic algorithm
in that it can be used for a variety of different loss functions. In
this paper, we focus primarily on the class of factorizations that
minimize a “nonzero loss.” This class of loss functions is important
for applications in which a zero represents missing data and hence
should be ignored when computing loss. A typical motivation for
factorization in this setting is to estimate the missing values, e.g.,
the rating that a customer would likely give to a previously unseen
movie. See [10] for a treatment of other loss functions.

2. EXAMPLE AND PRIOR WORK
To gain understanding about applications of matrix factorizations,

consider the “Netflix problem” [3] of recommending movies to
customers. Netflix is a company that offers tens of thousands of
movies for rental. The company has more than 15M customers,
each of whom can provide feedback about their personal taste by
rating movies with 1 to 5 stars. The feedback can be represented in
a feedback matrix such as

0@
Avatar The Matrix Up

Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3

1A.

Each entry may contain additional data, e.g., the date of rating or
other forms of feedback such as click history. The goal of the factor-
ization is to predict missing entries (denoted by “?”); entries with
a high predicted rating are then recommended to users for view-
ing. This matrix-factorization approach to recommender systems
has been successfully applied in practice; see [13] for an excellent
discussion of the underlying intuition.

The traditional matrix factorization problem can be stated as
follows. Given anm×nmatrix V and a rank r, find anm×r matrix
W and an r × n matrix H such that V = WH . As discussed
previously, our actual goal is to obtain a low-rank approximation
V ≈WH , where the quality of the approximation is described by
an application-dependent loss function L. We seek to find

argmin
W ,H

L(V ,W ,H),

i.e., the choice of W and H that give rise to the smallest loss. For
example, assuming that missing ratings are coded with the value
0, loss functions for recommender systems are often based on the
nonzero squared loss LNZSL =

P
i,j:V ij 6=0(V ij − [WH]ij)

2 and

usually incorporate regularization terms, user and movie biases, time
drifts, and implicit feedback.

In the following, we restrict attention to loss functions that, like
LNZSL, can be decomposed into a sum of local losses over (a subset
of) the entries in V ij . I.e., we require that the loss can be written as

L =
X

(i,j)∈Z

l(V ij ,W i∗,H∗j) (1)

for some training set Z ⊆ { 1, 2, . . . ,m } × { 1, 2, . . . , n } and lo-
cal loss function l, where Ai∗ and A∗j denote row i and column j of
matrix A, respectively. Many loss functions used in practice—such
as squared loss, generalized Kullback-Leibler divergence (GKL),
and Lp regularization—can be decomposed in such a manner [19].
Note that a given loss function L can potentially be decomposed
in multiple ways. In this paper, we focus primarily on the class of
nonzero decompositions, in which Z = { (i, j) : V ij 6= 0 }. As
mentioned above, such decompositions naturally arise when zeros
represent missing data. Our algorithms can handle other decomposi-
tions as well; see [10].

To compute W and H on MapReduce, all known algorithms start
with some initial factors W 0 and H0 and iteratively improve them.
The m×n input matrix V is partitioned into d1×d2 blocks, which
are distributed in the MapReduce cluster. Both row and column
factors are blocked conformingly:

0BBB@
H1 H2 · · · Hd2

W 1 V 11 V 12 · · · V 1d2

W 2 V 21 V 22 · · · V 2d2

...
...

...
. . .

...
W d1 V d11 V d12 · · · V d1d2

1CCCA,
where we use superscripts to refer to individual blocks. The al-
gorithms are designed such that each block V ij can be processed
independently in the map phase, taking only the corresponding
blocks of factors W i and Hj as input. Some algorithms directly
update the factors in the map phase (then either d1 = m or d2 = n
to avoid overlap), whereas others aggregate the factor updates in a
reduce phase.

Existing algorithms can be classified as specialized algorithms,
which are designed for a particular loss, and generic algorithms,
which work for a wide variety of loss functions. Specialized algo-
rithms currently exist for only a small class of loss functions. For
GKL loss, Das et al. [8] provide an EM-based algorithm, and Liu et
al. [16] provide a multiplicative-update method. In [16], the latter
MULT approach is also applied to squared loss and to nonnegative
matrix factorization with an “exponential” loss function. Each of
these algorithms in essence takes an embarrassingly parallel matrix
factorization algorithm developed previously and directly distributes
it across the MapReduce cluster. Zhou et al. [20] show how to dis-
tribute the well-known alternating least squares (ALS) algorithm to
handle factorization problems with a nonzero squared loss function
and an optional weighted L2 regularization term. Their approach
requires a double-partitioning of V : once by row and once by col-
umn. Moreover, ALS requires that each of the factor matrices W
and H can (alternately) fit in main memory. See [10] for details on
the foregoing algorithms.

Generic algorithms are able to handle all differentiable loss func-
tions that decompose into summation form. A simple approach is
distributed gradient descent (DGD) [9, 11, 17], which distributes
gradient computation across a compute cluster, and then performs
centralized parameter updates using, for example, quasi-Newton
methods such as L-BFGS-B [6]. Partitioned SGD approaches make
use of a similar idea: SGD is run independently and in parallel on

partitions of the dataset, and parameters are averaged after each pass
over the data (PSGD [11, 18]) or once at the end (ISGD [17, 18,
21]). These approaches have not been applied to matrix factoriza-
tion before. Similarly to L-BFGS-B, they exhibit slow convergence
in practice (see Sec. 7) and need to store the full factor matrices
in memory. This latter limitation can be a serious drawback: for
large factorization problems, it is crucial that both matrix and factors
be distributed. Our present work on DSGD is a first step towards
such a fully distributed generic algorithm with good convergence
properties.

3. STOCHASTIC GRADIENT DESCENT
In this section, we discuss how to factorize a given matrix via

standard SGD. We also establish basic properties of this stochastic
procedure.

3.1 Preliminaries
The goal of SGD is to find the value θ∗ ∈ <k (k ≥ 1) that

minimizes a given loss L(θ). The algorithm makes use of noisy
observations L̂′(θ) of L′(θ), the function’s gradient with respect to
θ. Starting with some initial value θ0, SGD refines the parameter
value by iterating the stochastic difference equation

θn+1 = θn − εnL̂′(θn), (2)

where n denotes the step number and {εn} is a sequence of decreas-
ing step sizes. Since −L′(θn) is the direction of steepest descent,
(2) constitutes a noisy version of gradient descent.

Stochastic approximation theory can be used to show that, under
certain regularity conditions [14], the noise in the gradient estimates
“averages out” and SGD converges to the set of stationary points
satisfying L′(θ) = 0. Of course, these stationary points can be
minima, maxima, or saddle points. One may argue that convergence
to a maximum or saddle point is unlikely because the noise in the
gradient estimates reduces the likelihood of getting stuck at such a
point. Thus {θn} typically converges to a (local) minimum of L. A
variety of methods can be used to increase the likelihood of finding
a global minimum, e.g., running SGD multiple times, starting from
a variety of initial solutions.

In practice, one often makes use of an additional projection ΠH

that keeps the iterate in a given constraint set H . For example, there
is considerable interest in nonnegative matrix factorizations [15],
which corresponds to setting H = { θ : θ ≥ 0 }. The projected
algorithm takes the form

θn+1 = ΠH

ˆ
θn − εnL̂′(θn)

˜
. (3)

In addition to the set of stationary points, the projected process
may converge to the set of “chain recurrent” points [14], which are
influenced by the boundary of the constraint set H .

3.2 SGD for Matrix Factorization
To apply SGD to matrix factorization, we set θ = (W ,H)

and decompose the loss L as in (1) for an appropriate training
set Z and local loss function l. Denote by Lz(θ) = Lij(θ) =
l(V ij ,W i∗,H∗j) the local loss at position z = (i, j). Then
L′(θ) =

P
z L
′
z(θ) by the sum rule for differentiation. DGD

methods (see Sec. 2) exploit the summation form of L′(θ) at each
iteration by computing the local gradients L′z(θ) in parallel and
summing them. In contrast to this exact computation of the overall
gradient, SGD obtains noisy gradient estimates by scaling up just
one of the local gradients, i.e., L̂′(θ) = NL′z(θ), where N = |Z|
and the training point z is chosen randomly from the training set.
Algorithm 1 uses SGD to perform matrix factorization.

Algorithm 1 SGD for Matrix Factorization
Require: A training set Z, initial values W 0 and H0

while not converged do /* step */
Select a training point (i, j) ∈ Z uniformly at random.
W ′

i∗ ←W i∗ − εnN ∂
∂W i∗

l(V ij ,W i∗,H∗j)

H∗j ←H∗j − εnN ∂
∂H∗j

l(V ij ,W i∗,H∗j)

W i∗ ←W ′
i∗

end while

Note that, after selecting a random training point (i, j) ∈ Z,
we need to update only W i∗ and H∗j , and do not need to update
factors of the form W i′∗ for i′ 6= i or H∗j′ for j′ 6= j. This
computational savings follows from our representation of the global
loss as a sum of local losses. Specifically, we have used the fact that

∂

∂W i′k
Lij(W ,H) =

(
0 if i 6= i′

∂
∂W ik

l(V ij ,W i∗,H∗j) otherwise
(4)

and

∂

∂Hkj′
Lij(W ,H) =

(
0 if j 6= j′

∂
∂Hkj

l(V ij ,W i∗,H∗j) otherwise

(5)

for 1 ≤ k ≤ r. SGD is sometimes referred to as online learning or
sequential gradient descent [4]. Batched versions, in which multiple
local losses are averaged, are also feasible but often have inferior
performance in practice.

One might wonder why replacing exact gradients (GD) by noisy
estimates (SGD) can be beneficial. The main reason is that exact
gradient computation is costly, whereas noisy estimates are quick
and easy to obtain. In a given amount of time, we can perform many
quick-and-dirty SGD updates instead of a few, carefully planned
GD steps. The noisy process also helps in escaping local minima
(especially those with a small basin of attraction and more so in the
beginning, when the step sizes are large). Moreover, SGD is able to
exploit repetition within the data. Parameter updates based on data
from a certain row or column will also decrease the loss in similar
rows and columns. Thus the more similarity there is, the better SGD
performs. Ultimately, the hope is that the increased number of steps
leads to faster convergence. This behavior can be proven for some
problems [5], and it has been observed in the case of large-scale
matrix factorization [13].

4. STRATIFIED SGD
In this section we develop a general stratified stochastic gradi-

ent descent (SSGD) algorithm, and give sufficient conditions for
convergence. In Sec. 5 we specialize SSGD to obtain an efficient
distributed algorithm (DSGD) for matrix factorization.

4.1 The SSGD Algorithm
In SSGD, the loss function L(θ) is decomposed into a weighted

sum of q (> 1) “local” loss functions:

L(θ) = w1L1(θ) + w2L2(θ) + . . .+ wqLq(θ), (6)

where we assume without loss of generality that 0 < ws ≤ 1 andP
ws = 1. We refer to index s as a stratum, Ls as the stratum

loss for stratum s, and ws as the weight of stratum s. In practice, a
stratum often corresponds to a part or partition of some underlying
dataset. In this case, one can think of Ls as the loss incurred on the
respective partition; the overall loss is obtained by summing up the

per-partition losses. In general, however, the decomposition ofL can
be arbitrary; there may or may not be an underlying data partitioning.
Also note that there is some freedom in the choice of the ws; they
may be altered to arbitrary values (subject to the constraints above)
by appropriately rescaling the stratum loss functions. This freedom
gives room for optimization.

SSGD runs standard stochastic gradient descent on a single stra-
tum at a time, but switches strata in a way that guarantees correct-
ness. The algorithm can be described as follows. Suppose that there
is a (potentially random) stratum sequence {γn}, where each γn
takes values in { 1, . . . , q } and determines the stratum to use in the
nth iteration. Using a noisy observation L̂′γn

of the gradient L′γn
,

we obtain the update rule θn+1 = ΠH

ˆ
θn − εnL̂

′
γn

(θn)
˜
. The

sequence {γn} has to be chosen carefully to establish convergence
to the stationary (or chain-recurrent) points of L. Indeed, because
each step of the algorithm proceeds approximately in the “wrong”
direction, i.e., −L′γn

(θn) rather than −L′(θn), it is not obvious
that the algorithm will converge at all. We show in Sec. 4.2 and
4.3, however, that SSGD will indeed converge under appropriate
regularity conditions provided that, in essence, the “time” spent on
each stratum is proportional to its weight.

4.2 Convergence of SSGD
Appropriate sufficient conditions for the convergence of SSGD

can be obtained from general results on stochastic approximation in
Kushner and Yin [14, Sec. 5.6]. We distinguish step-size conditions,
loss conditions, stratification conditions, and stratum-sequence con-
ditions. Step-size conditions involve the sequence {εn}: It has to
approach 0 at the “right speed” in that εn → 0,

Pn
i=1 εi →∞, andPn

i=0 ε
2
i <∞ as n→∞. I.e., εn approaches 0 slowly enough so

that the algorithm does not get stuck far away from the optimum,
but fast enough to ensure convergence. The simplest valid choice
is εn = 1/n. A sufficient set of loss conditions is that the con-
straint set H in which L is defined is a hyperrectangle and that L is
bounded and twice continuously differentiable on H .1 Regarding
stratification, we require that the estimates L̂′s(θ) of the gradient
L′s(θ) of stratum s are unbiased, have bounded second moment for
θ ∈ H , and do not depend on the past. See [10] for a more precise
statement of these conditions, which are satisfied in most matrix
factorization problems. Finally, we give a sufficient condition on
the stratum sequence.

CONDITION 1. The step sizes satisfy (εn − εn+1)/εn = O(εn)
and the γn are chosen such that the directions “average out correctly”
in the sense that, for any θ ∈ H ,

lim
n→∞

εn

n−1X
i=0

ˆ
L′γi

(θ)− L′(θ)
˜

= 0

almost surely.

For example, if εn were equal to 1/n, then the n-th term would
represent the empirical average deviation from the true gradient over
the first n steps.

If all conditions hold, then the sequence {θn} converges almost
surely to the set of limit points of the “projected ODE”

θ̇ = −L′(θ) + z

in H , taken over all initial conditions. Here, z is the minimum force
to keep the solution in H [14, Sec. 4.3]. As shown in [14], the limit
1Points at which the loss is non-differentiable may arise in matrix
factorization, e.g., when l1-regularization is used. SSGD can handle
with this phenomenon using “subgradients” [14, Sec. 5.6].

points consist of the set of stationary points of L in H (z = 0), as
well as a set of chain-recurrent points on the boundary ofH (z 6= 0).
In our setting, the limit point to which SSGD converges is typically
a good local minimum of the loss function (Sec. 7), and the crux of
showing that SSGD converges is showing that Condition 1 holds.
We address this issue next.

4.3 Conditions for Stratum Selection
The following result gives sufficient conditions on L(θ), the

step sizes {εn}, and the stratum sequence {γn} such that Cond-
ition 1 holds. Our key assumption is that the sequence {γn}
is regenerative [2, Ch. VI], in that there exists an increasing se-
quence of almost-surely finite random indices 0 = β(0) < β(1) <
β(2) < · · · that serves to decompose {γn} into consecutive, in-
dependent and identically distributed (i.i.d.) cycles {Ck},2 with
Ck = { γβ(k−1), γβ(k−1)+1, . . . , γβ(k)−1 } for k ≥ 1. I.e., at each
β(i), the stratum is selected according to a probability distribution
that is independent of past selections, and the future sequence of
selections after step β(i) looks probabilistically identical to the se-
quence of selections after step β(0). The length τk of the kth cycle
is given by τk = β(k)− β(k − 1). Letting Iγn=s be the indicator
variable for the event that stratum s is chosen in the nth step, set
Xk(s) =

Pβ(k)−1

n=β(k−1)(Iγn=s − ws) for 1 ≤ s ≤ q. It follows
from the regenerative property that the pairs {

`
Xk(s), τk

´
} are i.i.d.

for each s. The following theorem asserts that, under regularity
conditions, we may pick any regenerative sequence γn such that
E [X1(s)] = 0 for all strata.

THEOREM 1. Suppose that L(θ) is differentiable on H and
supθ∈H |L′s(θ)| < ∞ for 1 ≤ s ≤ q and θ ∈ H . Also sup-
pose that εn = O(n−α) for some α ∈ (0.5, 1] and that (εn −
εn+1)/εn = O(εn). Finally, suppose that {γn} is regenerative
with E [τ

1/α
1] < ∞ and E [X1(s)] = 0 for 1 ≤ s ≤ q. Then

Condition 1 holds.

The condition E [X1(s)] = 0 essentially requires that, for each
stratum s, the expected fraction of visits to s in a cycle equals ws.
By the strong law of large numbers for regenerative processes [2,
Sec. VI.3], this condition—in the presence of the finite-moment con-
dition on τ1—is equivalent to requiring that the long-term fraction
of visits to s equals ws. The finite-moment condition is typically
satisfied whenever the number of successive steps taken within a
stratum is bounded with probability 1.

PROOF. Fix θ ∈ H and observe that

εn

n−1X
i=0

`
L′γi

(θ)− L′(θ)
´

= εn

n−1X
i=0

qX
s=1

`
L′s(θ)Iγi=s − L

′
s(θ)ws

´
=

qX
s=1

L′s(θ)εn

n−1X
i=0

`
Iγi=s − ws

´
.

Since |L′s(θ)| < ∞ for each s, it suffices to show that
n−α

Pn−1
i=0

`
Iγi=s − ws

´ a.s.−→ 0 for 1 ≤ s ≤ q. To this end, fix s
and denote by c(n) the (random) number of complete cycles up to
step n. We have

Pn
i=0(Iγi=s−ws) =

Pc(n)
k=1 Xk(s)+R1,n, where

R1,n =
Pn
i=β(c(n))(Iγi=s − ws). I.e., the sum can be broken up

into sums over complete cycles plus a remainder term corresponding
to a sum over a partially completed cycle. Similar calculations let
us write n =

Pc(n)
k=1 τk + R2,n, where R2,n = n − β

`
c(n)

´
+ 1.

2The cycles need not directly correspond to strata. Indeed, we make
use of strategies in which a cycle comprises multiple strata.

Thus Pn
i=0(Iγi=s − ws)

nα
=

Pc(n)
k=1 Xk(s) +R1,n“Pc(n)
k=1 τk +R2,n

”α
=

Pc(n)
k=1 Xk(s)

c(n)α

 Pc(n)
k=1 τk
c(n)

+
R2,n

c(n)

!−α
+

R1,n/c(n)α“Pc(n)
k=1 τk/c(n) +R2,n/c(n)

”α .
(7)

By assumption, the random variables {Xk(s)} are i.i.d. with com-
mon mean 0. Moreover, |Xk(s)| ≤ (1 +ws)τk, which implies that
E [|X1(s)|1/α] ≤ (1 + ws)

1/α E [τ
1/α
1] < ∞. It then follows

from the Marcinkiewicz-Zygmund strong law of large numbers [7,
Th. 5.2.2] that n−α

Pn
k=1Xk(s)

a.s.−→ 0. Because each regeneration
point, and hence each cycle length, is assumed to be almost surely fi-
nite, it follows that c(n)

a.s.−→∞, so that
Pc(n)
k=1 Xk(s)/c(n)α

a.s.−→ 0
as n→∞. Similarly, an application of the ordinary strong law of
large numbers shows that

Pc(n)
k=1 τk/c(n)

a.s.−→ E [τ1] > 0. Next,
note that |R1,n| ≤ (1 + ws)τc(n)+1, so that R1,n/c(n)α

a.s.−→ 0

provided that τk/kα
a.s.−→ 0. This latter limit result follows from a

Borel-Cantelli argument; see [10] for details. A similar argument
shows that R2,n/c(n)

a.s.−→ 0, and the desired result follows after
letting n→∞ in the rightmost expression in (7).

The conditions on {εn} in Theorem 1 are often satisfied in prac-
tice, e.g., when εn = 1/n or when εn = 1/dn/ke for some k > 1
with dxe denoting the smallest integer greater than or equal to x (so
that the step size remains constant for some fixed number of steps, as
in Algorithm 2 below). Similarly, a wide variety of strata-selection
schemes satisfy the conditions of Theorem 1. Examples include
(1) running precisely cws steps on stratum s in every “chunk” of c
steps, and (2) repeatedly picking a stratum according to some fixed
distribution { ps > 0 } and running cws/ps steps on the selected
stratum s. Certain schemes in which the number of steps per stratum
is random are also covered by Theorem 1; see [10]. In Sec. 6, we
discuss variants on these schemes that are particularly suitable for
practical implementation in the context of DSGD.

5. THE DSGD ALGORITHM
Classic, sequential SGD as in Sec. 3 cannot be used directly

for rank-r factorization of web-scale matrices. We can, however,
exploit the structure of the matrix factorization problem to derive
a scalable distributed SGD algorithm. The idea is to specialize
the SSGD algorithm, choosing the strata such that SGD can be
run on each stratum in a distributed manner. We first discuss the
“interchangeability” structure that we will exploit for distributed
processing within a stratum.

5.1 Interchangeability
In general, distributing SGD is hard because the individual steps

depend on each other: from (3), we see that θn has to be known
before θn+1 can be computed. However, in the case of matrix fac-
torization, the SGD process has some structure that we can exploit.
We focus throughout on loss-minimization problems of the form
minimizeθ∈H L(θ) where the loss function L has summation form:
L(θ) =

P
z∈Z Lz(θ).

DEFINITION 1. Two training points z1, z2 ∈ Z are interchange-
able with respect to a loss function L having summation form if for

all θ ∈ H , and ε > 0,

L′z1(θ) = L′z1(θ − εL′z2(θ))

and L′z2(θ) = L′z2(θ − εL′z1(θ)).
(8)

Two disjoint sets of training points Z1, Z2 ⊂ Z are interchangeable
with respect to L if z1 and z2 are interchangeable for every z1 ∈ Z1

and z2 ∈ Z2.

As described in Sec. 5.2 below, we can swap the order of consec-
utive SGD steps that involve interchangeable training points without
affecting the final outcome.

Now we return to the setting of matrix factorization, where the
loss function has the form L(W ,H) =

P
(i,j)∈Z Lij(W ,H)

with Lij(W ,H) = l(V ij ,W i∗,H∗j). The following theorem
gives a simple criterion for interchangeability, and follows directly
from (4) and (5); see [10] for more details.

THEOREM 2. Two training points z1 = (i1, j1) ∈ Z and z2 =
(i2, j2) ∈ Z are interchangeable with respect to any loss function
L having summation form if they share neither row nor column, i.e.,
i1 6= i2 and j1 6= j2.

It follows that if two blocks of V share neither rows or columns,
then the sets of training points contained in these blocks are inter-
changeable.

5.2 A Simple Case
We introduce the DSGD algorithm by considering a simple case

that essentially corresponds to running DSGD using a single “d-
monomial” stratum (see Sec. 5.3). The goal is to highlight the
technique by which DSGD runs the SGD algorithm in a distributed
manner within a stratum. For a given training set Z, denote by Z
the corresponding training matrix, which is obtained by zeroing
out the elements in V that are not in Z; these elements usually
represent missing data or held-out data for validation. In our simple
scenario, Z corresponds to our single stratum of interest, and the
corresponding training matrix Z is block-diagonal:

0BBBB@
H1 H2 · · · Hd

W 1 Z1 0 · · · 0

W 2 0 Z2 · · ·
...

...
...

...
. . . 0

W d 0 · · · 0 Zd

1CCCCA, (9)

where W and H are blocked conformingly. Denote by Zb the set
of training points in block Zb. We exploit the key property that,
by Th. 2, sets Zi and Zj are interchangeable for i 6= j. For some
T ∈ [1,∞), suppose that we run T steps of SGD on Z, starting
from some initial point θ0 = (W 0,H0) and using a fixed step size
ε. We can describe an instance of the SGD process by a training
sequence ω = (z0, z1, . . . , zT−1) of T training points. Define
θ0(ω) = θ0 and θn+1(ω) = θn(ω) + εYn(ω), where the update
term Yn(ω) = −NL′ωn

(θn(ω)) is the scaled negative gradient
estimate as in standard SGD. We can write

θT (ω) = θ0 + ε

T−1X
n=0

Yn(ω). (10)

To see how to exploit the interchangeability structure, consider
the subsequence σb(ω) = ω ∩ Zb of training points from block
Zb; the subsequence has length Tb(ω) = |σb(ω)|. The following
theorem asserts that we can run SGD on each block independently,
and then sum up the results.

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z1 Z2 Z3 Z4 Z5 Z6

Figure 1: Strata for a 3× 3 blocking of training matrix Z

THEOREM 3. Using the definitions above,

θT (ω) = θ0 + ε

dX
b=1

Tb(ω)−1X
k=0

Yk(σb(ω)). (11)

See [10] for a complete proof. The idea is to repeatedly invoke
Th. 2 and Def. 1 to show that, if the mth training point in the com-
bined sequence corresponds to the kth training point from block Zb,
then the update terms coincide: Ym(ω) = Yk(σb(ω)). Applying
this result to all of the blocks establishes a one-to-one correspon-
dence between the update terms in (10) and in (11).

We now describe how to exploit Theorem 3 for distributed pro-
cessing on MapReduce. We block W and H conformingly to
Z—as in (9)—and divide processing into d independent map tasks
Γ1, . . . ,Γd as follows. Task Γb is responsible for subsequence
σb(ω): It takes Zb, W b, and Hb as input, performs the block-
local updates σb(ω), and outputs updated3 factor matrices W b

new
and Hb

new. By Theorem 3, we have W ′ = (W 1
new · · ·W d

new)T and
H ′ = (H1

new · · ·Hd
new), where W ′ and H ′ are the matrices that

one would obtain by running sequential SGD on ω. Since each task
accesses different parts of both training data and factor matrices, the
data can be distributed across multiple nodes and the tasks can run
simultaneously.

In the foregoing development, we used the fact that Z is block-
diagonal only to establish interchangeability between blocks. This
means that Theorem 3 and the resulting distributed SGD scheme also
applies when the matrix is not block-diagonal, but can be divided
into a set of interchangeable submatrices in some other way. We
now exploit this fact to obtain the overall DSGD algorithm.

5.3 The General Case
We now present the complete DSGD matrix-factorization algo-

rithm. The key idea is to stratify the training set Z into a set
S = {Z1, . . . , Zq } of q strata so that each individual stratum
Zs ⊆ Z can be processed in a distributed fashion. We do this by
ensuring that each stratum is “d-monomial” as defined below. The
d-monomial property generalizes the block-diagonal structure of
the example in Sec. 5.2, while still permitting the techniques of that
section to be applied. The strata must cover the training set in thatSq
s=1 Zs = Z, but overlapping strata are allowed. The parallelism

parameter d is chosen to be greater than or equal to the number of
available processing tasks.

DEFINITION 2. A stratum Zs is d-monomial if it can be parti-
tioned into d nonempty subsets Z1

s , Z
2
s , . . . , Z

d
s such that i 6= i′

and j 6= j′ whenever (i, j) ∈ Zb1s and (i′, j′) ∈ Zb2s with b1 6= b2.
A training matrix Zs is d-monomial if it is constructed from a
d-monomial stratum Zs.

There are many ways to stratify the training set according to
Def. 2. In our current work, we perform data-independent block-
ing; more advanced strategies may improve the speed of conver-
gence further. We first randomly permute the rows and columns
3Since training data is sparse, a block Zb may contain no training
points; in this case we cannot execute SGD on the block, so the
corresponding factors simply remain at their initial values.

of Z, and then create d × d blocks of size (m/d) × (n/d) each;
the factor matrices W and H are blocked conformingly. This
procedure ensures that the expected number of training points in
each of the blocks is the same, namely, N/d2. Then, for a per-
mutation j1, j2, . . . , jd of 1, 2, . . . , d, we can define a stratum as
Zs = Z1j1 ∪Z2j2 ∪ · · · ∪Zdjd , where the substratum Zij denotes
the set of training points that fall within block Zij . Thus a stratum
corresponds to a set of blocks; Fig. 1 shows the set of possible strata
when d = 3. In general, the set S of possible strata contains d!
elements, one for each possible permutation of 1, 2, . . . , d. Note
that different strata may overlap when d > 2. Also note that there is
no need to materialize these strata: They are constructed on-the-fly
by processing only the respective blocks of Z.

Given a set of strata and associated weights {ws}, we decom-
pose the loss into a weighted sum of per-stratum losses as in (6):
L(W ,H) =

Pq
s=1 wsLs(W ,H). (As in Sec. 3.2, we suppress

the fixed matrix V in our notation for loss functions.) We use
per-stratum losses of form

Ls(W ,H) = cs
X

(i,j)∈Zs

Lij(W ,H), (12)

where cs is a stratum-specific constant; see the discussion below.
When running SGD on a stratum, we use the gradient estimate

L̂′s(W ,H) = NscsL
′
ij(W ,H) (13)

of L′s(W ,H) in each step, i.e., we scale up the local loss of an
individual training point by the size Ns = |Zs| of the stratum. For
example, from the d! strata described previously, we can select d
disjoint strata Z1, Z2, . . . , Zd such that they cover Z; e.g., strata Z1,
Z2, and Z3 in Fig. 1. Then any given loss function L of the form (1)
can be represented as a weighted sum over these strata by choosing
ws and cs subject to wscs = 1. Recall that ws can be interpreted as
the “time” spent on each stratum in the long run. A natural choice
is to set ws = Ns/N , i.e., proportional to the stratum size. This
particular choice leads to cs = N/Ns and we obtain the standard
SGD gradient estimator L̂′s(W ,H) = NL′ij(W ,H). As another
example, we can represent L as a weighted sum in terms of all d!
strata; in light of the fact that each substratum Zij lies in exactly
(d− 1)! of these strata, we choose ws = Ns/

`
(d− 1)!N

´
and use

the value of cs = N/Ns as before.
The individual steps in DSGD are grouped into subepochs, each

of which amounts to processing one of the strata. In more detail,
DSGD makes use of a sequence {(ξk, Tk)}, where ξk denotes the
stratum selector used in the kth subepoch, and Tk the number of
steps to run on the selected stratum. Note that this sequence of
pairs uniquely determines an SSGD stratum sequence as in Sec. 4.1:
γ1 = · · · = γT1 = ξ1, γT1+1 = · · · = γT1+T2 = ξ2, and so
forth. The {(ξk, Tk)} sequence is chosen such that the underlying
SSGD algorithm, and hence the DSGD factorization algorithm, is
guaranteed to converge; see Sec. 4.3. Once a stratum ξk has been
selected, we perform Tk SGD steps on Zξk ; this is done in a parallel
and distributed way using the technique of Sec. 5.2. DSGD is
shown as Algorithm 2, where we define an epoch as a sequence of
d subepochs. As will become evident in Sec. 6 below, an epoch
roughly corresponds to processing the entire training set once.

When executing DSGD on d nodes in a shared-nothing environ-
ment such as MapReduce, we only distribute the input matrix once.
Then the only data that are transmitted between nodes during sub-
sequent processing are (small) blocks of factor matrices. In our
implementation, node i stores blocks W i,Zi1,Zi2, . . . ,Zid for
1 ≤ i ≤ d; thus only matrices H1,H2, . . . ,Hd need be trans-
mitted. (If the W i matrices are smaller, then we transmit these
instead.)

Algorithm 2 DSGD for Matrix Factorization
Require: Z, W 0, H0, cluster size d

W ←W 0 and H ←H0

Block Z / W / H into d× d / d× 1 / 1× d blocks
while not converged do /* epoch */

Pick step size ε
for s = 1, . . . , d do /* subepoch */

Pick d blocks {Z1j1 , . . . ,Zdjd} to form a stratum
for b = 1, . . . , d do /* in parallel */

Run SGD on the training points in Zbjb (step size = ε)
end for

end for
end while

Since, by construction, parallel processing within the kth selected
stratum leads to the same update terms as for the corresponding
sequential SGD algorithm on Zξk , we have established the connec-
tion between DSGD and SSGD. Thus the convergence of DSGD is
implied by the convergence of the underlying SSGD algorithm.

6. DSGD IMPLEMENTATION
In this section, we discuss practical methods for choosing the

training sequence for the parallel SGD step, selecting strata, and
picking the step size ε. As above, a “subepoch” corresponds to
processing a stratum and an “epoch”—roughly equivalent to a com-
plete pass through the training data—corresponds to processing a
sequence of d strata.

Training sequence. When processing a subepoch (i.e., a stra-
tum), we do not generate a global training sequence and then dis-
tribute it among blocks. Instead, each task generates a local training
sequence directly for its corresponding block. This reduces commu-
nication cost and avoids the bottleneck of centralized computation.
Practical experience suggests that good results are achieved when
(1) the local training sequence covers a large part of the local block,
and (2) the training sequence is randomized. To process a block Zij ,
we randomly select training points from Zij such that each point
is selected precisely once. This approach ensures that many differ-
ent training points are selected while at the same time maximizing
randomness; see [10] for further discussion. Note that Theorem 1
implicitly assumes sampling with replacement, but can be extended
to cover the foregoing strategy as well. (In brief, redefine a stratum
to consist of a single training point and redefine the stratum weights
ws accordingly.)

Update terms. When processing a training point (i, j) during
an SGD step on stratum s, we use the gradient estimate L̂′s(θ) =
NL′ij(θ) as in standard SGD; thus cs = N/Ns in (13). For (i, j)
picked uniformly and at random from Zs, the estimate is unbiased
for the gradient of the stratum loss Ls(θ) given in (12).

Stratum selection. Recall that the stratum sequence (ξk, Tk)
determines which stratum is chosen in each subepoch and how
many steps are run on the stratum. We choose training sequences
such that Tk = Nξk = |Zξk |; i.e., we make use of all the training
points in each selected stratum. Moreover, we pick a sequence of d
strata to visit during an epoch such that the strata jointly cover the
entire training set; the sequence is picked uniformly and at random
from all such sequences of d strata. This strategy is analogous to that
for intra-block training-point selection. Taking the scaling constant
cs in (12) as N/Ns, it can be seen that this strategy is covered by
Theorem 1, where each epoch corresponds to a regenerative cycle.
We argue informally as follows. Recall that if Theorem 1 is to apply,
then ws must correspond to the long-term fraction of steps run on

stratum Zs. This means that all but d of the weights are zero, and
the remaining weights satisfy ws = Ns/N . The question is then
whether this choice of ws leads to a legitimate representation of L
as in (6). One can show that {ws} satisfies (6) for all Z and L of
form (1) if and only if

P
s:Zs⊇Zij wscs = 1 for each substratum

Zij . This equality holds for the above choices of ws and cs.
Step sizes. The stochastic approximation literature often works

with step size sequences roughly of form εn = 1/nα with α ∈
(0.5, 1]; Theorem 1 guarantees asymptotic convergence for such
choices. To achieve faster convergence over the finite number of
steps that are actually executed, we use an adaptive method for
choosing the step size sequence. We exploit the fact that—in con-
trast to SGD in general—we can determine the current loss after
every epoch, and thus can check whether the loss has decreased
or increased from the previous epoch. We then employ a heuristic
called bold driver, which is often used for gradient descent. Starting
from an initial step size ε0, we (1) increase the step size by a small
percentage (say, 5%) whenever the loss decreases over an epoch,
and (2) drastically decrease the step size (say, by 50%) if the loss
increases. Within each epoch, the step size remains fixed. Given a
reasonable choice of ε0, the bold driver method worked extremely
well in our experiments. To pick ε0, we leverage the fact that many
compute nodes are available, replicating a small sample of Z (say,
0.1%) to each node and trying different step sizes in parallel. Specif-
ically, we try step sizes 1, 1/2, 1/4, . . . , 1/2d−1; the step size that
gives the best result is selected as ε0. As long as the loss decreases,
we repeat a variation of this process after every epoch, trying step
sizes within a factor of [1/2, 2] of the current step size. Eventually,
the step size will become too large and the loss will increase. Intu-
itively, this happens when the iterate has moved closer to the global
solution than to the local solution. At this point, we switch to the
bold-driver method for the rest of the process.

7. EXPERIMENTS
We compared various factorization algorithms with respect to

convergence, runtime efficiency, and scalability. Overall, the conver-
gence speed and result quality of DSGD was on par or better than
alternative methods, even when these methods are specialized to
the loss function. Due to space limitations we report on only a few
representative experiments; see [10] for detailed results.

7.1 Setup
We implemented DSGD on top of MapReduce, along with the

best-of-breed PSGD, DGD, and ALS methods; see Sec. 2. The DGD
algorithm uses the L-BFGS quasi-Newton method as in [9]. DSGD,
PSGD, and L-BFGS are generic methods that work with a wide
variety of loss functions, whereas ALS is restricted to quadratic loss.
We used two different implementations and compute clusters: one
for in-memory experiments and one for large scaling experiments
on very large datasets using Hadoop.

The in-memory implementation is based on R and C, and uses R’s
snowfall package to implement MapReduce. It targets datasets
that are small enough to fit in aggregate memory, i.e., with up to a
few billion nonzero entries. We block and distribute the input matrix
across the cluster before running each experiment (as described at
the end of Sec. 5.3). The factor matrices are communicated via
a centralized file system. The R cluster consists of 8 nodes, each
running two Intel Xeon E5530 processors with 4 cores at 2.4GHz
each. Every node has 48GB of memory.

The second implementation is based on Hadoop [1], an open-
source MapReduce implementation. The Hadoop cluster is equipped
with 40 nodes, each with two Intel Xeon E5440 processors and 4

0.0 0.5 1.0 1.5 2.0

40
60

80
10

0
14

0

Wall clock time (hours)

L
os

s
(m

ill
io

ns
)

l

l

l
ll
l
lll

lllll
llllllll

lll

DSGD
ALS
DGD
PSGD

l

(a) Netflix data (NZSL, R cluster @ 64)
Wall clock time (hours)

L
os

s
(b

ill
io

ns
)

0 5 10 15 20

1
10

10
0

10
00

l
llll

l

l

l

l

l

l

l

l

l
l
l
l
l
l
l
l
llllllllllllllllllll

ll

DSGD
ALS
PSGD

l

(b) Synth. data (L2, λ = 0.1, R cluster @ 64)

1.6B @ 5
 (36GB)

6.4B @ 20
 (143GB)

25.6B @ 80
 (572GB)

Data size @ concurrent map tasks

W
al

l c
lo

ck
 t

im
e

pe
r

ep
oc

h
(s

ec
on

ds
)

0
20

0
40

0
60

0
80

0
10

00

1x 1x

1.3xDSGD

(c) Scalability (Hadoop cluster)

Figure 2: Experimental results

cores at 2.8GHz and 32GB of memory. We employ a couple of
Hadoop-specific optimizations; see [10].

For our experiments with PSGD and DSGD, we used adaptive
step-size computation based on a sample of roughly 1M data points,
eventually switching to the bold driver. The time for step-size
selection is included in all performance plots.

We used the Netflix competition dataset [3] for our experiments on
real data. This dataset contains a small subset of movie ratings given
by Netflix users, specifically, 100M anonymized, time-stamped rat-
ings from roughly 480k customers on roughly 18k movies. For
larger-scale performance experiments, we used a much larger syn-
thetic dataset with 10M rows, 1M columns, and 1B nonzero entries.
We first generated matrices W ∗ and H∗ by repeatedly sampling
values from the N(0, 10) distribution. We then sampled 1B entries
from the product W ∗H∗ and added N(0, 1) noise to each sample,
ensuring that there existed a reasonable low-rank factorization. We
always centered the input matrix around its mean. The starting
points W 0 and H0 were chosen by sampling entries uniformly and
at random from [−0.5, 0.5]; we used the same starting point for
each algorithm to ensure fair comparison. Finally, for our scalability
experiments, we used the Netflix competition dataset and scaled
up the data in a way that keeps the sparsity of the matrix constant.
Specifically, at each successive scale-up step, we duplicated the
number of customers and movies while quadrupling the number
of ratings (nonzero entries). We repeat this procedure to obtain
matrices between 36GB and 572GB in size. Unless stated otherwise,
we use rank r = 50.

We focus here on two common loss functions: plain nonzero
squared loss LNZSL =

P
(i,j)∈Z(V ij − [WH]ij)

2 and nonzero
squared loss with L2 regularization LL2 = LNZSL + λ

`
‖W ‖2F +

‖H‖2F
´
. For our experiment on synthetic data and LL2, we use a

“principled” value of λ = 0.1; this choice of λ is “natural” in that
the resulting minimum-loss factors correspond to the “maximum a
posteriori” Bayesian estimator of W and H under the Gaussian-
based procedure used to generate the synthetic data. Results for
other loss functions (including GKL loss) are given in [10].

All of our reported experiments focus on training loss, i.e., the
loss over the training data, since our emphasis is on how to compute
a high quality factorization of a given input matrix as efficiently as
possible. The test loss, i.e., how well the resulting factorized matrix
predicts user ratings of unseen movies, is an orthogonal issue that
depends upon, e.g., the choice of loss function and regularization
term. In this regard, we re-emphasize that the DSGD algorithm can
handle a wide variety of loss functions and regularization schemes.
(In fact, we found experimentally that the loss performance of DSGD
relative to other factorization algorithms looked similar for test loss
and training loss.)

7.2 Relative Performance
We evaluated the relative performance of the matrix factoriza-

tion algorithms. For various loss functions and datasets, we ran
100 epochs—i.e, scans of the data matrix—with each algorithm
and measured the elapsed wall-clock time, as well as the value of
the training loss after every epoch. We used 64-way distributed
processing on 8 nodes (with 8 concurrent map tasks per node).

Representative results are given in Figs. 2a and 2b. In all our
experiments, DSGD converges about as fast as—and, in most cases,
faster than–alternative methods. After DSGD, the fastest-converging
algorithms are ALS, then DGD, then PSGD. Note that each algo-
rithm has a different cost per epoch: DSGD ran 43 epochs, ALS
ran 10 epochs, DGD ran 61 epochs, and PSGD ran 30 epochs in the
first hour of the Netflix experiment. These differences in runtime
are explained by different computational costs (highest for ALS,
which has to solve m + n least-squares problems per epoch) and
synchronization costs (highest for PSGD, which has to average all
parameters in each epoch). We omit results for DGD in Fig. 2b
because its centralized parameter-update step ran out of memory.

Besides the rate of convergence, the ultimate training-loss value
achieved is also of interest. DGD will converge to a good lo-
cal minimum, similarly to DSGD, but the convergence is slow;
e.g., in Fig. 2a, DGD was still a long way from convergence after
several hours. With respect to PSGD, we note that the matrix-
factorization problem is “non-identifiable” in that the loss function
has many global minima that correspond to widely different values
of (W ,H). Averages of good partition-local factors as computed
by PSGD do not correspond to good global factors, which explains
why the algorithm converged to suboptimal solutions in the experi-
ments. Finally, ALS, which is a specialized method, is outperformed
by DSGD in the experiments shown here, but came close in perfor-
mance to DSGD in some of our other experiments [10]. Unlike the
other algorithms, we are unaware of any theoretical guarantees of
convergence for ALS when it is applied to nonconvex optimization
problems such as matrix factorization. This lack of theoretical sup-
port is perhaps related to ALS’s erratic behavior. In summary, the
overall performance of DSGD was consistently more stable than
that of the other two algorithms, and the speed of convergence was
comparable or faster.

We also assessed the impact of communication overheads on
DSGD by comparing its performance with standard, sequential
SGD. Note that we could not perform such a comparison on massive
data, because SGD simply does not scale to very large datasets, e.g.,
our 572GB synthetic dataset. Indeed, even if SGD were run without
any data shuffling, so that data could be read sequentially, merely
reading the data once from disk would take hours. We therefore
compared SGD to 64-way DSGD on the smaller Netflix dataset.

8 16 32 64

Concurrent map tasks

W
al

l c
lo

ck
 t

im
e

pe
r

ep
oc

h
(s

ec
on

ds
)

0
50

0
10

00
15

00
20

00

1x

0.48x

0.25x 0.28x

DSGD

Figure 3: Speed-up experiment (Hadoop cluster, 143GB data)

Here, SGD required slightly fewer epochs than DSGD to converge.
This discrepancy is a consequence of different randomizations of the
training sequence: SGD shuffles the entire dataset, whereas DSGD
shuffles only strata and blocks. The situation was reversed with
respect to wall-clock time, and DSGD converged slightly faster than
SGD. Most of DSGD’s processing time was spent on communica-
tion of intermediate results over the (slow) centralized file system.
Recent distributed processing platforms have the potential to reduce
this latency and improve performance for moderately-sized data; we
are currently experimenting with such platforms.

7.3 Scalability of DSGD
We next studied the scalability of DSGD in our Hadoop envi-

ronment, which allowed us to process much larger matrices than
on the in-memory R cluster. In general, we found that DSGD has
good scalability properties on Hadoop, provided that the amount of
data processed per map task does not become so small that system
overheads start to dominate.

Figure 2c shows the wall-clock time per DSGD epoch for different
dataset sizes (measured in number of nonzero entries of V) and
appropriately scaled numbers of concurrent map tasks (after @-
sign). The processing time initially remains constant as the dataset
size and number of concurrent tasks are each scaled up by a factor
of 4. As we scale to very large datasets (572GB) on large clusters
(80 parallel tasks), the overall runtime increases by a modest 30%.
This latter overhead can potentially be ameliorated by improving
Hadoop’s scheduling mechanism, which was a major bottleneck.

A similar observation is made in Figure 3, where we depict the
speedup performance when the number of ratings (nonzero entries)
is fixed at 6.4B (143GB) and the number of concurrent map tasks is
repeatedly doubled. DSGD initially achieves roughly linear speed-
up up to 32 concurrent tasks. After this point, speed-up performance
starts to degrade. The reason for this behavior is that, when the
number of map tasks becomes large, the amount of data processed
per task becomes small—e.g., 64-way DSGD uses 642 blocks so
that the amount of data per block is only ≈ 35MB. The actual time
to execute DSGD on the data is swamped by Hadoop overheads,
especially the time required to spawn tasks.

8. CONCLUSION
We have developed a stratified version of the classic SGD al-

gorithm and then refined this SSGD algorithm to obtain DSGD, a
distributed matrix-factorization algorithm that can efficiently handle
web-scale matrices. Experiments indicate its superior performance.
In future work, we plan to investigate alternative loss functions,
such as GKL, as well as alternative regularizations. We also plan
to investigate both alternative stratification schemes and emerging
distributed-processing platforms. We will also extend our techniques
to other applications, such as computing Kohonen maps.

9. REFERENCES
[1] Apache Hadoop. https://hadoop.apache.org.
[2] S. Asmussen. Applied Probability and Queues. Springer, 2nd

edition, 2003.
[3] J. Bennett and S. Lanning. The Netflix prize. In KDD Cup and

Workshop, 2007.
[4] C. M. Bishop. Pattern Recognition and Machine Learning.

Information Science and Statistics. Springer, 2007.
[5] L. Bottou and O. Bousquet. The tradeoffs of large scale

learning. In NIPS, volume 20, pages 161–168. 2008.
[6] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory

algorithm for bound constrained optimization. SIAM J. Sci.
Comput., 16(5):1190–1208, 1995.

[7] Y. S. Chow and H. Teicher. Probability Theory: Independence,
Interchangeability, Martingales. Springer, 2nd edition, 1988.

[8] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: scalable online collaborative filtering. In
WWW, pages 271–280, 2007.

[9] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and
J. McPherson. Ricardo: Integrating R and Hadoop. In
SIGMOD, pages 987–998, 2010.

[10] R. Gemulla, P. J. Haas, E. Nijkamp, and Y. Sismanis.
Large-scale matrix factorization with distributed stochastic
gradient descent. Technical Report RJ10481, IBM Almaden
Research Center, San Jose, CA, 2011. Available at
www.almaden.ibm.com/cs/people/peterh/dsgdTechRep.pdf.

[11] K. B. Hall, S. Gilpin, and G. Mann. MapReduce/Bigtable for
distributed optimization. In NIPS LCCC Workshop, 2010.

[12] T. Hofmann. Probabilistic latent semantic indexing. In SIGIR,
pages 50–57, 1999.

[13] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. IEEE Computer,
42(8):30–37, 2009.

[14] H. J. Kushner and G. Yin. Stochastic Approximation and
Recursive Algorithms and Applications. Springer, 2nd edition,
2003.

[15] D. D. Lee and H. S. Seung. Learning the parts of objects by
non-negative matrix factorization. Nature,
401(6755):788–791, 1999.

[16] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang.
Distributed nonnegative matrix factorization for web-scale
dyadic data analysis on mapreduce. In WWW, pages 681–690,
2010.

[17] G. Mann, R. McDonald, M. Mohri, N. Silberman, and
D. Walker. Efficient large-scale distributed training of
conditional maximum entropy models. In NIPC, pages
1231–1239. 2009.

[18] R. McDonald, K. Hall, and G. Mann. Distributed training
strategies for the structured perceptron. In HLT, pages
456–464, 2010.

[19] A. P. Singh and G. J. Gordon. A unified view of matrix
factorization models. In ECML PKDD, pages 358–373, 2008.

[20] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale
parallel collaborative filtering for the Netflix Prize. In AAIM,
pages 337–348, 2008.

[21] M. A. Zinkevich, M. Weimer, A. J. Smola, and L. Li.
Parallelized stochastic gradient descent. In NIPS, pages
2595–2603, 2010.

