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Abstract A variety of schemes have been proposed in

the literature to speed up query processing and analyt-

ics by incrementally maintaining a bounded-size uni-

form sample from a dataset in the presence of a se-

quence of insertion, deletion, and update transactions.

These algorithms vary according to whether the dataset

is an ordinary set or a multiset and whether the trans-

action sequence consists only of insertions or can in-

clude deletions and updates. We report on subtle non-

uniformity issues that we found in a number of these

prior bounded-size sampling schemes, including some of

our own. We provide workarounds that can avoid the

non-uniformity problem; these workarounds are easy to

implement and incur negligible additional cost. We also

consider the impact of non-uniformity in practice and

describe simple statistical tests that can help detect

non-uniformity in new algorithms.

Keywords Database sampling · Reservoir sampling ·
Bernoulli sampling · Sample maintenance

1 Introduction

Use of random samples can speed up database query-

ing and analytics by orders of magnitude. Because such

samples are usually too expensive to compute on de-

mand, there has been growing interest in algorithms for
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incrementally maintaining a random sample as the un-

derlying dataset evolves due to a transaction sequence

of insertions, deletions, or updates of data items; see [4,

10,12,13,15] and references therein. To keep costs low,

these algorithms avoid expensive accesses to the dataset

itself, and touch only the sample and the transaction

sequence. Most of the algorithms maintain a uniform

random sample (defined below), because such samples

are extremely flexible in applications and are the focus

of a large body of statistical estimation theory.1 Main-

taining bounded-size samples is also desirable, because

such samples simplify memory management and allow

control of the computational costs for algorithms that

use the samples. In this note, we describe some rather

subtle non-uniformity issues that we found in earlier al-

gorithms (including ours) for incrementally maintaining

bounded-size uniform samples. Departures from unifor-

mity in a sample-maintenance scheme can lead to errors

in sample-based statistical procedures, such as point or

interval estimation, model fitting, or hypothesis testing.

Denote by R a dataset of interest and let S ⊆ R be

a sample of R. We focus on the case where R is not a

static dataset but evolves over time. That is, dataset R

is subject to a sequence of update, deletion, and inser-

tion (UDI) transactions—in the following, we focus on

insertions and deletions, since an update can be viewed

as a deletion followed by an insertion. The job of a

sample-maintenance algorithm is to keep the sample S

“in sync” with the evolving dataset. In our setting, this

means that S should constitute a truly uniform random

sample of R after each transaction has been processed.

We consider sample-maintenance algorithms that are

1 There is also a body of literature devoted to efficient mainte-

nance of various kinds of deliberately non-uniform samples, usu-
ally with some particular analysis task in mind. See [5] for a

recent example, aimed at estimating “subset sums.”
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designed for the case in which R is subject only to inser-

tions, and for the case in which R is subject to a general

UDI sequence. (In the insertion-only setting, our setup

also models the task of computing, in a single scan, a

sample of a dataset of unknown size.)

Uniformity of samples is meant to capture the in-

tuitive notion of randomness, and its precise defini-

tion depends on the type of sampling involved. Specif-

ically, sample-maintenance algorithms can be classified

according to whether the dataset R and the sample S

are sets or multisets. In the context of set sampling,

both R and S are sets, and S is said to be uniform if

Pr [S = A ] = Pr [S = B ] for all pairs A,B ⊆ R satisfy-

ing |A| = |B|, where |U | denotes the number of elements

in set U . Subsets of equal size are therefore produced

by the sampling algorithm with equal probability. The

uniformity condition can be restated concisely as

Pr [S = A ] = Pr [ |S| = |A| ]
(
|R|
|A|

)−1
for all A ⊆ R. In multiset sampling, both R and S

are multisets, so that duplicate values are allowed, and

items having the same value are indistinguishable. For

a multiset A, denote by |A| the size of A (including

duplicates), by D(A) the set of distinct values in A,

and by |A(r)| the frequency of r in A for r ∈ D(A).

We use the usual multiset semantics and write S ⊆ R if

and only if |S(r)| ≤ |R(r)| for r ∈ D(S). Suppose that

R = { 3, 3, 7 } and consider a size-1 sample S of R. Since

the value 3 occurs twice as often as the value 7 in R,

we want Pr [S = { 3 } ] = 2 Pr [S = { 7 } ]. In general, a

multiset sample S of is uniform if

Pr [S = A ] = Pr [ |S| = |A| ]
(
|R|
|A|

)−1 ∏
r∈D(A)

(
|R(r)|
|A(r)|

)
(1)

for all A ⊆ R. In distinct-item sampling, R is a multiset

and S is a subset of D(R), so that S is an ordinary set.

A multiset sample S of size n is uniform if

Pr [S = A ] = Pr [ |S| = |A| ]
(
|D(R)|
|A|

)−1
for all A ⊆ D(R).

There are two basic sampling schemes that underlie

sample maintenance in both set sampling and multi-

set sampling scenarios: Bernoulli sampling and reser-

voir sampling; see Sec. 2.1 below for details. Bernoulli

samples are easy to implement and parallelize, but offer

only probabilistic bounds on the sample size. (The ex-

pected sample size is proportional to the dataset size.)

Reservoir samples are more involved to implement and

parallelize but provide a bounded sample size. Both

schemes were originally developed for insertion-only

transaction sequences, but have been extended to deal

with deletion transactions; see Sec. 3. Several strategies

have been proposed to try and profit from both the ease

of Bernoulli sampling and the above-mentioned bene-

fits of maintaining strict bounds on the sample size.

One approach, used for “growing” datasets in which the

long-run average rate of insertions exceeds the long-run

average rate of deletions, is to start with a Bernoulli

sample and switch over to reservoir sampling as soon

as the sample size hits a specified upper bound. Ex-

amples of this approach include “hybrid Bernoulli sam-

pling” [4] and “Bernoulli resizing” [12]. The goal of the

former method is to use the Bernoulli scheme as long

as possible to facilitate parallel sampling, and the goal

of the latter method is to use Bernoulli sampling for as

short a period as possible to dynamically increase the

sample-size bound in the presence of a growing dataset.

A related approach that we call “Bernoulli sampling

with purging” (see [13]) uses Bernoulli subsampling to

reduce the sample size—or sample footprint in the case

of multisets—whenever it exceeds a specified bound. In

the setting of distinct-item sampling, the “dynamic in-

verse sampling” method [6] proceeds rather differently

than the above methods and makes use of a set of

pairwise-independent hash functions.

In Secs. 2–7 we show, perhaps surprisingly, that

all of these methods, as well as some “intuitive” ad-

ditional methods, can produce non-uniform samples. A

few of these results have appeared in the literature [4,

12] and we summarize them for completeness, but most

of the analyses are new. These non-uniformity issues of-

ten arise in rather subtle ways. For example, bounded-

size Bernoulli samples do not constitute true Bernoulli

samples, and switch-over or subsampling procedures

that rely on characteristics of true Bernoulli samples

lead to non-uniformity. We provide alternatives to each

of the incorrect algorithms, using novel ideas such as

randomizing switch-over times, invoking subsampling

based on the dataset size rather than the sample size,

and replacing Bernoulli sampling with a “random pair-

ing” scheme during sample resizing. In some cases,

these workarounds eliminate the non-uniformity prob-

lems while still providing strict sample-size bounds; in

other cases, one must settle for probabilistic sample-size

bounds, though the exceedance probabilities for these

bounds are tightly controlled.

Table 1 summarizes our results. In the table, we

classify sampling scenarios as set sampling, multiset

sampling, and distinct-item sampling. Within each of

these categories, we distinguish between insertion-only

transaction sequences (“I-only”) and UDI sequences.
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Table 1 Overview of bounded-size sampling schemes. U = uniform, NU = non-uniform, and ∗ indicates a new workaround algorithm.
Note that a scheme that is uniform for UDI transactions is also uniform for insertion-only transactions; a scheme that is non-uniform

for insertion-only transactions is also non-uniform for UDI transactions.

Name Abbr. Section Sample size

Set Sampling

I-Only

U
Reservoir sampling [7] RS(M) 2 Bounded
Bernoulli sampling with purging [13]a BSP(q0,M) 2.2 Bounded

Hybrid Bernoulli sampling with randomized switch-over∗ HBSR(q,M) 2.4 Bounded

NU
Hybrid Bernoulli sampling [4] HBS(q,M) 2.1 Bounded
Adapted reservoir sampling [15] ARS(M) 3.1 Bounded

Adapted counting sampling [15] ABSP(M) 3.4 Bounded

UDI

U
Bernoulli sampling with probabilistic bounds∗ PBS(M, δ) 2.3, 3.5 Prob. bounded
Random pairing [12] RP(M) 3.2 Bounded

Random pairing resizing∗ RPR 7.2 Dyn. bounded

NU

Bernoulli sampling with purging [13] BSP(q0,M) 2.2 Bounded

Hybrid Bernoulli sampling with randomized switch-over HBSR(q,M) 3.3 Bounded

Bernoulli resizing [12] BR 7.1 Dyn. Bounded

Multiset Sampling

I-Only
U Any insertion-only, boundedb set-sampling method 4 Bounded
NU Bernoulli sampling with purging (bounded footprint) [13] BSP(q0, F ) 3.4 Bounded footprint

UDI U Augmented Bernoulli sampling with probabilistic bounds∗ PABS(F, δ) 4.2 Prob. bounded footprint

Distinct-Item Sampling

I-Only U Min-wise hashing [2] MIN(M) 5.3 Bounded

UDI U

Distinct-item Bernoulli sampling with. prob. bounds∗ DPBS(F, δ) 5.2 Prob. bounded footprint

Distinct-item subsampling for PABS(F, δ) [11] PABSD(F, δ) 5.4 Prob. bounded footprint

Augmented Min-wise hashing [1] AKMV(F ) 5.3 Bounded footprint
Dynamic inverse sampling, indep. hashing∗ DIS∞(F ) 5.1 Bounded footprint

NU Dynamic inverse sampling, pairwise-indep. hashing [6] DIS2(F ) 5.1 Bounded footprint

aCorrectness is conjectured but not proved. bBounded means bounded sample size, not bounded footprint.

A sampling scheme is classified as “Bounded” if it

produces strictly bounded samples (i.e., samples that

are bounded with probability 1), as “probabilistically

bounded (“Prob. bounded”) if the bound may be ex-

ceeded, but the exceedance probability is small and

tightly controlled, and as dynamically bounded (“Dyn.

bounded”) if the samples are strictly bounded at any

point in time, but the sample-size bound can be in-

creased over time as the dataset grows. Some of these

results are of primarily of theoretical interest; in Sec. 9,

we give practical guidelines on which methods to use in

various scenarios.

In Sec. 8, we discuss several practical issues perti-

nent to our results. Given the number of incorrect meth-

ods that have appeared in the literature, we first de-

scribe in Sec. 8.1 a simple statistical procedure that we

have found useful in identifying departures from unifor-

mity in purportedly uniform sampling procedures. We

then turn to the practical impact of non-uniformity. It

is difficult in general to theoretically quantify the mag-

nitude of departures from uniformity, and even harder

to quantify the practical effects of non-uniformity on

analytic or statistical procedures that assume truly uni-

form samples. To develop intuition, we provide a numer-

ical case study (Sec. 8.2) of the non-uniformity effects

arising from the use of hybrid Bernoulli samples. Our

results indicate that the degree of non-uniformity be-

comes small as the sample size increases. Although a

simple example shows that the absolute estimation er-

ror for a given degree of non-uniformity is unbounded,

the relative error tends to be small. We believe that it

would be a mistake, however, to take these results to

mean that non-uniformity issues can simply be ignored.

As is well known in the context of uniform pseudo-

random number generation, even small, subtle depar-

tures from uniformity can result in highly anomalous

statistical results; see, e.g., [9]. There is every reason

to fear that similar problems will arise from the non-

uniformity of “uniform” samples over the wide range

of applications for which such samples are used. Since

the workarounds described here typically are as easy to

implement as the incorrect versions and incur no sig-

nificant additional overheads, there is no reason to use

incorrect non-uniform sampling methods.
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2 Set Sampling for Insertion-Only Sequences

In this section, we assume that the sequence of trans-

actions consists of only insertions and that R is a set.

We discuss deletions in Sec. 3, multisets in Secs. 4 and

5, merging problems in Sec. 6, and resizing problems in

Sec. 7.

To set the stage for our discussion of bounded-

size set-sampling algorithms, we briefly describe both

Bernoulli sampling and reservoir sampling in the

insertion-only setting. Both schemes start with an ini-

tially empty sample. In Bernoulli sampling with sam-

pling rate q, abbreviated Bern(q), each arriving item

is accepted into the sample with probability q and re-

jected with probability 1−q, independently of the other

items. In reservoir sampling with sample size parameter

M , abbreviated RS(M), the first M items are directly

added to the sample. Subsequent items are accepted

with probability M/i and rejected otherwise, where i is

the number of items already processed (including the

new item). In case of acceptance, the new item replaces

a randomly and uniformly selected sample item. Note

that the sample size of RS(M) equals M after pro-

cessing i ≥ M items. In contrast, the sample size of

a Bern(q) sample follows a Binomial(i, q) distribution;

the sample has mean size iq and thus grows with the

dataset.

As shown in the following sections, a hybrid scheme

that naively switches from Bernoulli to reservoir sam-

pling when the sample size hits an upper bound leads to

non-uniformity. A couple of workarounds use Bernoulli

sampling only, but with occasional “purges,” that is,

subsampling steps, to control the sample size. A dif-

ferent workaround retains the switch-over strategy, but

randomizes the switch-over time. It is important to note

that these workarounds provide random-sized samples

that are truly uniform (equal-size samples have equal

probability of being produced) but, if the sample size

is bounded, then the sample cannot be a true Bernoulli

sample even during the “Bernoulli sampling” phase of

an algorithm. That is, the sample-size distribution is

not binomial as with Bernoulli samples, but is usually

rather complex.

2.1 Incorrect: Hybrid Bernoulli sampling

Consider a switch-over algorithm as in [4,12]–denoted

HBS(q,M)—that initially uses Bernoulli sampling with

rate q and then switches to reservoir sampling as soon

as the sample size reaches an upper bound M > 0.

Suppose that q = 1/2 and M = 2, and that we pro-

cess the sequence +r1,+r2,+r3 of three insertions into

an initially empty dataset. Denote by Ri and Si the

dataset and sample after processing of the first i items,

respectively. Since the algorithm starts with Bernoulli

sampling, we have

Pr [S1 = ∅ ] = Pr [S1 = {r1} ] = 1/2

and

Pr [S2 = ∅ ] = Pr [S2 = {r1} ] = Pr [S2 = {r2} ]

= Pr [S2 = {r1, r2} ] = 1/4,

so that both S1 and S2 are uniform. There are two

cases: (i) |S2| < M and (ii) |S2| = M ; these cases occur

with respective probabilities 3/4 and 1/4. In case (i),

Bernoulli sampling is continued when processing r3 and

we have, e.g.,

Pr [S3 = ∅, |S2| < M ] = Pr [S3 = ∅, S2 = ∅ ]

=
1

2
· 1

4
=

1

8
,

so that

Pr
[
S3 = ∅

∣∣ |S2| < M
]

= Pr
[
S3 = ∅, |S2| < M

]
/Pr [ |S2| < M ]

=
1

8
÷ 3

4
=

1

6
.

Similar calculations show that

Pr
[
S3 = {r1}

∣∣ |S2| < M
]

= Pr
[
S3 = {r2}

∣∣ |S2| < M
]

= Pr
[
S3 = {r3}

∣∣ |S2| < M
]

= Pr
[
S3 = {r1, r3}

∣∣ |S2| < M
]

= Pr
[
S3 = {r2, r3}

∣∣ |S2| < M
]

= 1/6.

Observe that, conditionally on |S2| < M (so that the

switch-over has not yet occurred), the sample S3 is not

uniform, because sample {r1, r2} is chosen with proba-

bility 0 whereas samples {r1, r3} and {r2, r3} are each

chosen with probability 1/6 > 0. For case (ii), where

|S2| = M = 2 (specifically, S2 = {r1, r2}), reservoir

sampling commences, so that

Pr
[
S3 = {r1, r2}

∣∣ |S2| = M
]

= Pr
[
S3 = {r1, r3}

∣∣ |S2| = M
]

= Pr
[
S3 = {r2, r3}

∣∣ |S2| = M
]

= 1/3.

We can now uncondition on |S2| to obtain

Pr [S3 = {r1, r2} ]

= Pr [S3 = {r1, r2} | |S2| < M ] · Pr [ |S2| < M ]

+ Pr [S3 = {r1, r2} | |S2| = M ] · Pr [ |S2| = M ]

= 0 · 3

4
+

1

3
· 1

4
= 1/12
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and, by similar calculations,

Pr [S3 = {r1, r3} ] = Pr [S3 = {r2, r3} ] = 5/24.

Since these two probabilities differ, S3 does not consti-

tute a uniform random sample of R. Note that, even

when conditioned on the event |S3| = M , i.e., on the

event that the switch-over has occurred, the sample S3

is not uniform.

The reason for the non-uniformity can be explained

as follows. For m ≥ 1, denote by T (m) the first sam-

pling step such that the sample size is equal to m:

T (m) = inf{ i ≥ 1: |Si| = m }. If we are process-

ing a stream of insertions using Bernoulli sampling,

then S1, S2, . . . , is certainly a sequence of Bernoulli,

hence uniform, samples. However, the randomly se-

lected sample ST (M) is not uniform: specifically, since

the sample size has just increased from M − 1 to

M , it follows that Pr
[
rT (M) ∈ ST (M)

]
= 1. If we

then apply reservoir sampling to produce the sequence

ST (M)+1, ST (M)+2, . . ., then the samples in this se-

quence will be non-uniform since we are applying an

algorithm that assumes initial uniformity when this ini-

tial condition fails to hold.

2.2 Alternative: Bernoulli sampling with purging

The problem above can be avoided by avoiding the

switch-over to reservoir sampling: The “Bernoulli sam-

pling with purging” scheme—denoted BSP(q0,M)—

is based on Bernoulli sampling only; the key idea is

to incrementally reduce the sampling rate q to main-

tain the upper bound M . In the context of set sam-

pling, BSP(M) is equivalent to the “concise sampling”

scheme of [13]. In more detail, BSP(q0,M) initially runs

Bernoulli sampling with sampling rate q = q0. When-

ever the sample size exceeds M , BSP(q0,M) performs a

purge step: It reduces the overall sampling rate to some

value q′ < q (e.g., q′ = 0.8q); each item in the sam-

ple is retained with probability q′/q and rejected with

probability 1− q′/q, independently of the other sample

items. If the sample size is less than or equal to M after

the purging step, BSP(q0,M) will recommence using

Bern(q′) sampling; otherwise, another purging step is

run. BSP(q0,M) appears to produce uniform samples

under the insertion-only regime, although correctness

has not been established formally. In any case, the sam-

pling scheme given in Sec. 2.4 improves on BSP(q0,M)

by combining Bernoulli sampling with reservoir sam-

pling, which leads to improved sample size stability and

provably uniform samples. As shown in Sec. 3.4, the

BSP(q0,M) scheme does not yield uniform samples in

the presence of deletions.

2.3 Alternative: Bernoulli sampling with probabilistic

sample size bounds

A different, correct approach to avoiding non-

uniformity in HBS(q,M)—denoted PBS(M, δ)—is to

settle for providing probabilistic bounds, rather than

absolute bounds, on the sample size. Such bounds are

not guaranteed to hold all the time but the probabil-

ity of failure is small and tightly controlled. The trick

is to make the sampling rate q dependent on the size

of the dataset, and not of the sample. In the simplest

setting, the dataset size N = |R| is known beforehand.

The key idea is then to set the sampling rate q slightly

lower than M/N so that the sample size exceeds M

with probability no more than a specified failure prob-

ability δ. As shown in [4], an approximate formula for

the required sampling rate is

q ≈
N(2M + z2δ )− zδ

√
N(Nz2δ + 4NM − 4M2)

2N(N + z2δ )
, (2)

where zδ is the (1− δ)-quantile of the standard normal

distribution. Small values of δ can be chosen without

incurring too much space overhead. For example, sup-

pose that N = 10,000,000, M = 10,000 and δ = 0.01.

The value of q is then given by 0.00095 and the ex-

pected sample size is 9,500 items, which is close to M .

Our choice of q ensures that, with a probability of ap-

proximately 99%, the actual sample size will not exceed

M .

When the dataset size is not known in advance, the

value of q cannot be predetermined. We can still pro-

vide probabilistic bounds as follows. We start with a

high value of q, typically 1, and gradually reduce the

sampling rate q as the dataset grows [10]. Subsampling

is used to reduce q, but in contrast to BSP(q0,M),

subsampling is initiated whenever the dataset size ex-

ceeds certain values. For example, the sampling fraction

might be readjusted when the dataset size has grown by

a specified amount (10,000 insertions, 1%, and so on)

after the last readjustment. In general, we can choose

any non-increasing function f whose range is [0, 1] and

set qi = f(|Ri|); we execute a subsampling operation

whenever qi decreases. For practical schemes, we want

to choose the value of q conservatively at each subsam-

pling step. That is, the value of N used in its derivation

is set to the dataset size at which the next subsampling

step is going to be initiated. This way, the success prob-

ability 1 − δ of staying within the current sample-size

bound can be guaranteed at all times.
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2.4 Alternative: Hybrid Bernoulli sampling with

randomized switch-over

An alternative approach for the insertion-only setting

explicitly avoids the problem discussed in Sec. 2.1 by

modifying the switch-over procedure as follows; the

resulting algorithm is denoted HBSR(q,M). Starting

with an empty sample, perform Bern(q) sampling until

the sample size is M+1; this will occur at random time

T (M+1). (To simplify notation, we write T = T (M+1)

in the sequel.) By our prior discussion, we know that

the sample ST is of the form { rT } ∪ ST−1, where rT
is the item that has just been inserted into the sam-

ple. Moreover, ST−1 is a sample of size M from RT−1,

and symmetry considerations (which can be formalized)

show that ST−1 is in fact a uniform sample from RT−1.

Thus we can switch to reservoir sampling, starting with

item rT , and uniformity will be preserved.

Thus, we avoid the non-uniformity problem of the

naive switch-over approach by further randomizing the

time at which reservoir sampling starts. In the naive ap-

proach, we start reservoir sampling at T (M), whereas in

the modified approach, we wait for an additional, ran-

dom number T (M + 1)− T (M) of sampling steps. The

key properties of this “randomized switching” scheme

are given by the following result, whose proof is in the

Appendix.

Theorem 1 Suppose that R1, R2, . . . are the succes-

sive states of a database R that result from a stream

of insertion-only transactions, and that S1, S2, . . . are

the successive states of a sample S of R that is main-

tained using an HBSR(q,M) scheme with q ∈ (0, 1) and

M ≥ 1. Then

1. Pr [Sk = A | T ≤ k] =
(
k
M

)−1
for any k ≥ 1 and

A ⊆ Rk with |A| = M .

2. Pr [Sk = A | T > k] = q|A|(1 − q)k−|A|/
∑
l>k πl for

any k ≥ 1 and A ⊆ Rk with |A| < M .

3. For all k ≥ 1, the set Sk is a uniform sample from

Rk.

Here T is the random switch-over time and πl =

Pr [T = l] =
(
l−1
M

)
qM+1(1− q)l−1−M for l ≥M + 1.

To illustrate the first assertion of the theorem using

our previous example, assume that T = 3 and denote by

S′3 the sample right before running the reservoir step.

Observe that Pr
[
S′3 = {r1, r2, r3}

∣∣ T = 3
]

= 1 so that

Pr
[
S2 = {r1, r2}

∣∣ T = 3
]

= 1. We obtain S3 from S2

by processing r3 with a standard reservoir step so that

Pr
[
S3 = {r1, r2}

∣∣ T = 3
]

= Pr
[
S3 = {r1, r3}

∣∣ T = 3
]

= Pr
[
S3 = {r2, r3}

∣∣ T = 3
]

=
1

3
.

Thus S3 is a uniform sample, given that T = 3. By the

correctness of reservoir sampling [14], it follows that,

conditional on T = 3, each of S4, S5, . . . is a uniform

sample of size M . Here Si is obtained from Si−1 via a

reservoir sampling step.

The second assertion of the theorem implies that,

before the switch-over time T , the sample is not a true

Bernoulli sample (even though we are using a “cor-

rected” switch-over time). Indeed, the conditional prob-

ability that Sk = A equals the “pure” Bernoulli prob-

ability q|A|(1 − q)k−|A| divided by the factor
∑
l>k πl.

The probability depends on A only through |A|, how-

ever, and so Sk is conditionally a uniform sample. The

final assertion of the theorem is that uniformity actu-

ally holds unconditionally.

One key issue not addressed so far is how to choose

the Bernoulli sampling rate q so as to extend Bernoulli

sampling as long as possible while avoiding an under-

full sample. This issue, however, is analogous to the

problem of how to choose q when imposing probabilistic

bounds on the sample size, and the discussion in Sec. 2.3

applies.

3 Deletions

We now discuss bounded-size set-sampling methods

in the setting of general UDI transaction sequences.

Reservoir sampling can be adapted to deal with dele-

tions using a “random pairing” technique. On the other

hand, techniques such as hybrid Bernoulli sampling

with randomized switch-over and Bernoulli sampling

with purging—both of which yield correct results in the

insertion-only setting—fail in the general UDI scenario.

3.1 Incorrect: Adapted reservoir sampling

Tao et al. [15] propose an “adapted” reservoir sam-

pling algorithm, denoted by ARS(M), that tries to han-

dle deletions. This algorithm maintains an array RS

of length M , in which elements tagged as “valid” cor-

respond to items in the sample. Whenever an item is

deleted from the dataset, the item is also removed from

the sample, if present, by tagging the corresponding el-

ement in RS as “invalid.” When an item is inserted into

the dataset, it is assigned a random integer J uniformly

distributed in [1, nI ], where nI is the total number of

insertions so far (including the newly inserted record).

If J > M , then the record is ignored. Otherwise, the

algorithm adds the item to the sample by writing it to

position J in RS, overwriting any prior contents at this

position, and then tagging RS[J ] as “valid.” Depending

on the prior contents of RS[J ], such an insertion might
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correspond either to simple addition of the item in the

sample or to replacement by the item of a previous sam-

ple element.

Unfortunately, this algorithm does not yield uniform

samples even for insertion-only transaction sequences.

For example, suppose that M = 2 and the transaction

sequence is γ = (+r1,+r2,+r3). A straightforward cal-

culation shows that

Pr [S3 = { r1 } ] = 0

Pr [S3 = { r2 } ] = 1/6

Pr [S3 = { r3 } ] = 1/6

Pr [S3 = { r1, r2 } ] = 1/6

Pr [S3 = { r1, r3 } ] = 1/6

Pr [S3 = { r2, r3 } ] = 1/3,

which is clearly non-uniform. In this particular coun-

terexample, the first item r1 is written into position 1

with probability 1. Item r2 then either overwrites r1
or is written into position 2; in either case, the sample

no longer contains r1 on its own. In contrast, there is

a positive probability that r2 appears on its own—if

it overwrites r1 and then r3 is not accepted into the

sample—and similarly for r3.

A corrected variant of this algorithm is given in [10,

Sec. 3.5.1F]. Experiments in [10] show, however, that

this variant is dominated by the random pairing algo-

rithm described below, which is both less expensive and

yields a larger average sample size. We therefore do not

consider the ARS(M) approach further.

3.2 Alternative: Random pairing

The foregoing problems can be avoided by using an al-

gorithm called random pairing [12], denoted RP(M),

briefly described here. As before, the deletion of an item

is handled by removing the item from the sample, if

present. As a consequence, the sample size may drop

to a value less than the desired size M . To avoid un-

dersized samples, RP makes use of future insertions to

“compensate” for deletions. In more detail, RP keeps

track of the number d of deletions that have not yet

been compensated. Insertions are processed as follows.

If d = 0, so that there are no uncompensated dele-

tions, then RP executes a standard reservoir sampling

step. If d > 0, the decision of whether or not to in-

clude the inserted item into the sample is randomized.

The inclusion probability p is carefully chosen so that

the uniformity of the sample is maintained; specifically,

p =
(

min(M, |R| + d) − |S|
)
/d. After the insertion has

been processed, one deletion has been compensated and

d is decremented by one.

RP maintains the following invariant [12]: At any

time, the sample size follows a hypergeometric distri-

bution with parameters depending only on the values

of |R|, d, and M :

Pr [ |S| = k ] =

(
|R|
k

)(
d

M − k

)/(|R|+ d

M

)
. (3)

Since the values of |R| and d are completely determined

by the sequence of transactions, so is the sample size

distribution. In particular, whenever d = 0, the sample

size equals M with probability 1.

3.3 Incorrect: Hybrid Bernoulli sampling with

randomized switch-over and deletions

Pure Bernoulli sampling can handle UDI transactions,

but the hybrid Bernoulli sampling scheme, even with

randomized switch-over times and with reservoir sam-

pling being replaced by random pairing, cannot. Specif-

ically, suppose that we try to apply the HBSR(q,M)

algorithm to a UDI stream, and at first we see only in-

sertions. Then, as above, the switch-over will occur at

some random time T . Now suppose at some time j > T

we see a deletion transaction −ri with i < T . This se-

quence γ of transactions is equivalent to a sequence γ′

in which element ri was never inserted into the sample

at all. But for γ′, the switch-over happens at some time

T ′ that is greater than T .2 In general, the bookkeep-

ing required to roll back the sample from j to T ′ and

“correct” the subsequent processing requires expensive

accesses to the dataset, and appears to be impractical.

(We do not give an explicit counterexample here since

HBSR(q,M) has not been proposed in prior literature.)

3.4 Incorrect: Bernoulli sampling with purging and

deletions

In the following, we show that the BSP(q0,M) scheme

produces non-uniform samples in the presence of dele-

tions. In the context of set sampling, BSP(q0,M) essen-

tially coincides with the concise-sampling and counting-

sampling schemes of [13], which therefore also yield non-

uniform samples for UDI transaction sequences. To sim-

plify the discussion, we assume that q′ = pq for a fixed

constant p ∈ (0, 1); similar arguments apply when q′/q

can vary over the subsampling steps.

The purge operation is executed whenever the sam-

ple size increases to M+1, due to an accepted insertion

2 More precisely, T ′ is “stochastically larger” than T in that

Pr [T ′ > n ] > Pr [T > n ] for all n ≥ 0.
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Figure 1 Counterexample for counting sampling on sets
(BSP(1, 1))

transaction. Each purge involves L Bernoulli subsam-

pling steps with sampling rate p, where L is a geomet-

rically distributed random variable with

Pr [L = k ] = p′(1− p′)k−1

for k ≥ 1. Here, p′ = 1− pM+1 denotes the probability

that at least one of the M sample items is rejected so

that the purge operation terminates. Denoting by S′

the subsample that results from executing the purge

operation on S, we have for any A ⊂ S

Pr [S′ = A ] = Pr [ all r ∈ A retained, all r ∈ S \A
purged | ≥ 1 item purged ]

=
p|A|(1− p)M+1−|A|

p′
. (4)

After the purge operation has terminated, the sampling

process proceeds with the new sampling rate qpL.

We now give a simple example where BSP(q0,M)

does not produce a uniform sample; an illustra-

tion is given in Fig. 1. Consider the sequence γ =

(+r1,+r2,−r1,+r3) and set q0 = 1, M = 1. Denote

by Ri the dataset, by Si the sample and by Qi the

(random) sampling rate after processing the ith trans-

action, starting with R0 = S0 = ∅ and Q0 = 1. The first

insertion +r1 is directly included into the sample; the

sampling rate remains unmodified, Q1 = 1. The inser-

tion of r2 triggers a purge operation and, using (4) with

A = { r1 }, we find that r2 is selected as the sample item

with probability p1 = p(1−p)/(1−p2). The same holds

for r1, and the sample becomes empty with probability

1− 2p1. Also, the sampling rate is adjusted depending

on the number L of purges so that Q2 = pL. Trans-

action −r1 simply removes r1 if present in the sample;

Q3 = Q2. Transaction +r3 is accepted with probabil-

ity Q3 = pL and rejected otherwise. In the case of a

rejection, the sample remains unmodified. Otherwise,

if r3 is accepted, it is included into the sample and,

when additionally S3 = { r2 }, another purge operation

is triggered. By multiplying the probabilities along the

paths in Fig. 1, summing up and replacing Q3 by pL,

we obtain

Pr [S4 = { r2 } | L ] = p1(1−Q3) + p1Q3p1

= pL(p21 − p1) + p1,

and

Pr [S4 = { r3 } | L ] = (1− 2p1)Q3 + p1Q3 + p1Q3p1

= pL(p21 − p1 + 1).

We can now uncondition on L and simplify:

Pr [S4 = { r3 } ] =

∞∑
k=1

Pr [L = k ] Pr [S4 = { r3 } | L = k ]

=

∞∑
k=1

(1− p2)(p2)k−1pk(p21 − p1 + 1)

=
1− p2

p2
(p21 − p1 + 1)

∞∑
k=1

(p3)k

=
p

p+ 1
.

Similarly,

Pr [S4 = { r2 } ] =

∞∑
k=1

Pr [L = k ]
(
pk(p21 − p1) + p1

)
=

p

p+ 1

p2 + 1

p2 + p+ 1
.

It follows that

Pr [S4 = { r2 } ] < Pr [S4 = { r3 } ]

for p > 0, so that BSP(q0,M) biases the sample toward

recent items. For example, a common choice is p = 0.8;

the two probabilities are then given by ≈ 0.30 and ≈
0.44, respectively. The purge operation thus introduces

some subtle dependencies among the sample items, and

these dependencies lead to non-uniform samples when

the transaction sequence contains deletions.

As a final note, Tao et al. [15] proposed an ex-

tension of BSP(q0,M)—called adapted counting sam-

pling, ABSP(M)—that attempts to avoid the cost of
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executing purging steps by continually adjusting the

sampling rate. This can be shown to produce non-

uniform samples even in the insertion-only setting. A

simple counterexample is provided by the sequence

γ = (+r1,+r2,+r3) with M = 1, which can be shown

to yield

Pr [S3 = { r1 } ] = 3/8

Pr [S3 = { r2 } ] = 3/8

Pr [S3 = { r3 } ] = 1/4,

a clearly non-uniform result.

3.5 Alternative: Bernoulli Sampling with probabilistic

sample size bounds

The PBS(M) scheme with probabilistic bounds given

in Sec. 2.3 extends to the case of deletions. The idea

is to choose a non-increasing function f whose range is

[0, 1], set qi = f(maxj≤i|Ri|), and execute a subsam-

pling operation whenever qi decreases. This extension

is the only Bernoulli-based scheme that supports arbi-

trary UDI transactions. As before, the sequence {qi} is a

deterministic decreasing sequence, given the sequence of

transactions, and at any point in time, the current sam-

ple is true Bern(qi) sample. Because Bernoulli sampling

supports deletion transactions, the sample remains uni-

form under such deletions. Note however, that we can-

not increase q when the dataset shrinks due to deletions.

4 Multiset Sampling Methods

In the foregoing discussion, we have assumed that, after

every transaction, the dataset R and sample S are both

true sets, i.e., containing no duplicate items. We now fo-

cus on the case in which R and S are multisets, so that

they can contain duplicates, and items having the same

value are indistinguishable. In this setting, we can save

space by storing the sample in a compressed format.

The compressed sample H of S contains a pair (r, nr)

for every distinct r ∈ S, where nr = |S(r)| is the multi-

plicity of r in S. Thus we store (item, frequency)-pairs

in H, instead of repeatedly storing duplicate items.3

In what follows, we refer to |S| as the sample size (in-

cluding duplicates) and |H| = |D(S)| as the sample

footprint (excluding duplicates); note that |H| ≤ |S|.
Importantly, for an insertion-only transaction se-

quence, we can apply any of the uniform set-sampling

algorithms that work in this scenario, regardless of the

3 Even more space can be saved by representing a singleton
value (r, 1) simply as (r); see [13]. For simplicity, we ignore this

refinement here.

format in which we store the sample—whether we in-

sert an accepted sample value into a sample array or

increment a counter for the value is immaterial. This

approach does not work in the UDI setting, however.

Suppose, for example, that a transaction of the form −4

arrives. We clearly need to decrement by 1 the number

of 4’s in the dataset. It is not clear, however, whether

or not to decrease the number of 4’s in the sample.

Multiset sampling methods deal with this question in a

manner that guarantees uniformity. Some multiset sam-

pling methods attempt to provide strict bounds directly

on the sample footprint. As shown in the following sec-

tions, such strict bounds always lead to non-uniformity,

and only probabilistic bounds are available. To avoid

confusion between bounded-size and bounded-footprint

methods, we consistently denote sample-size bounds by

M (including duplicates) and sample-footprint bounds

by F (excluding duplicates).

4.1 Incorrect: Bernoulli sampling with purging and

bounded footprint

Denote by BSP(q0, F ) the variant of Bernoulli sam-

pling with purging in which subsampling is triggered

when a specified sample footprint is exceeded. Brown

and Haas [4] observed that BSP(q0, F ), and indeed any

algorithm that attempts to strictly bound the sam-

ple footprint, must yield non-uniform samples, even for

an insertion-only sequence. To see this, suppose that

the dataset is empty initially and consider a trans-

action sequence γ = (+r1,+r1,+r2). Suppose that

F = 1, so that only one (item, frequency)-pair can

be stored in the sample, and consider the samples

S1 = { r1, r1 } and S2 = { r1, r2 }. The corresponding

compressed samples are given by H1 = { (r1, 2) } and

H2 = { (r1, 1), (r2, 1) }. If BSP were uniform, we would

have Pr [S2 ] = 2 Pr [S1 ] > 0 or Pr [S2 ] = 2 Pr [S1 ] =

0. By inspection, we can see thatH1 has a positive prob-

ability of being produced, whereas H2 is never produced

since it exceeds the footprint F = 1. This argument

applies to any multiset sampling scheme that strictly

bounds the footprint.

The concise-sampling and counting-sampling

schemes in [13] enforce strict bounds on the sample

footprint, and hence yield non-uniform samples in the

multiset context, even for insertion-only sequences. In

the set-sampling scenario, the footprint coincides with

the sample size, so these algorithms will yield uniform

samples for an insertion-only transaction sequence.

(Recall from Sec. 3.4 that these algorithms fail to

produce uniform samples in the presence of deletions.)
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4.2 Alternative: Augmented Bernoulli sampling with

probabilistic sample size bounds

In the UDI setting, we can obtain a uniform sam-

pling algorithm with a probabilistically bounded sam-

ple size and compressed sample format based on the

augmented Bernoulli sampling ABS(q) scheme given

in [11]. The ABS(q) algorithm borrows an idea from

[13] and maintains for each item r in the sample both

Xi(r) = |Si(r)|, the frequency of r in the sample, and

a “tracking counter” Yi(r). Whenever Xi(r) is positive,

the counter Yi(r) records the number of net insertions

of r into the dataset that have occurred since the in-

sertion of the first of the current Xi(r) sample items;

the dataset insertion corresponding to the first of these

Xi(r) sample inclusions is counted as part of Yi(r).

The general layout of the sample Si is as follows:

for each distinct item r ∈ R that occurs in the sam-

ple at least once, Si contains the triple (r,Xi(r), Yi(r));

the sample is therefore “augmented” with tracking

counters. To save space, the entry for r is stored as

(r,Xi(r), Yi(r)) if Yi(r) > 1 and simply as (r) if Xi(r) =

Yi(r) = 1.

Recall that, in Bernoulli sampling, each item is sam-

pled independently from all the other items. Without

loss of generality, therefore, fix an item r and focus on

the maintenance of Xi(r) and Yi(r) as a transaction

sequence γ is processed—assume that γ consists solely

of insertions and deletions of item r. We represent the

state of Si as (Xi, Yi), that is, we suppress the depen-

dence on r in our notation. We have Xi = Yi = 0 when-

ever r /∈ Si. As before, we assume that both the dataset

and the sample are initially empty so that X0 = Y0 = 0.

The algorithm works as follows: For an insertion

transaction γi+1 = +r, set

(Xi+1, Yi+1)←


(Xi + 1, Yi + 1) if Φi+1 = 1

(Xi, Yi + 1) if Φi+1 = 0, Xi > 0

(0, 0) otherwise,

where Φi+1 is a 0/1 random variable such that

Pr [Φi+1 = 1 ] = q. For a deletion γi+1 = −r, set

(Xi+1, Yi+1)←
(0, 0) if Xi = 0

(0, 0) if Xi = Yi = 1

(Xi − 1, Yi − 1) if Xi ≥ 1, Yi > 1, Ψi+1 = 1

(Xi, Yi − 1) otherwise,

where Ψi+1 is a 0/1 random variable such that

Pr [Ψi+1 = 1 ] =
Xi − 1

Yi − 1
.

Note that Pr [Ψi+1 = 1 ] = 0 whenever Xi = 1; we have

Xi+1 ≥ 1 whenever Yi > 1. As before, item r is removed

from the sample if Xi > 0, Xi+1 = 0 and added to the

sample if Xi = 0, Xi+1 > 0.

Although this algorithm does not provide any

bounds on the sample size, we can proceed as in Sec. 2.3,

initially setting q = 1 and then periodically reducing q

and purging the sample when the dataset size (includ-

ing duplicates) exceeds specified bounds. We refer to

this variant of ABS(q) as PABS(F, δ). Here parame-

ter F bounds the footprint of the sample probabilisti-

cally, with exceedance probability δ. The sample size∑
r∈S Xi(r) is also bounded probabilistically by F , but

the number of net insertions
∑
r∈S Yi(r) is not.

5 Distinct-Item Sampling

Recall that the goal of distinct-item sampling is to ob-

tain a uniform sample of D(R), the set of distinct items

in the dataset. Most (but not all) of the existing sam-

pling techniques in this setting make use of a random

hash function as source of randomness.

Denote by H =
{
h1, . . . , h|H |

}
a class of hash

functions with domain D and range B. Following [16],

we say that H is k-wise independent if for any k

distinct elements a1, . . . , ak ∈ D and k not necessar-

ily distinct elements b1, . . . , bk ∈ B, there are exactly

|H |/|B|k functions h ∈ H such that h(ai) = bi
for 1 ≤ i ≤ k. For example, let p be an arbitrary

prime number and denote by Zp the finite field over

{ 0, 1, . . . , p− 1 } with integer addition and multiplica-

tion modulo p. Then

Hp = {h(x) = (ax+ b) mod p : a, b ∈ { 0, . . . , p− 1 } }
(5)

is pairwise independent (i.e., k = 2) with D = B =

{ 0, 1, . . . , p− 1 }. Finally, say that H is fully indepen-

dent if it is k-wise independent for all values of k; only

the set of all functions from D to B is fully indepen-

dent.

In what follows, we assume that D(R) ⊆ D at all

times, that B = { 0, . . . , |B| − 1 }, and that h is picked

uniformly and at random from H . When using hashing

for distinct-item sampling, we will need to store hash

function h in addition to the sample. If H is pairwise

independent, it suffices to store the integers a and b of

Eq. (5). If H is fully independent, we essentially have

to store the hash value of every item r ∈ D(R), which

is prohibitive. In practice, however, cryptographic hash

functions (e.g., based on AES) often “look” fully inde-

pendent and may be used to approximate fully inde-
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pendent hashing [10] for practical purposes, although

no theoretical guarantees are provided.

Most of the sampling techniques discussed below

have rather strong independence requirements on the

class of hash functions. As outlined above, the higher

the requirements on independence, the more cost is in-

curred for storing and, in many cases, applying the hash

function. It is thus of practical interest to make use of k-

wise independent hash functions for some small value of

k. The only known sampling scheme that uses pairwise-

independent hashing is the dynamic inverse sampling

scheme of [6]; we show below that this scheme is not uni-

form. We also briefly outline a number of other distinct-

item sampling techniques proposed in the literature; in

particular, the PABSD(F, δ) scheme is the only sam-

pling scheme that does not make use of hashing.

5.1 Incorrect: Dynamic Inverse Sampling with

pairwise-independent hashing

Cormode et al. [6] proposed a strictly bounded-size

scheme for distinct-item sampling. The scheme—called

dynamic inverse sampling and denoted DIS2(F )—can

handle arbitrary insertions and deletions. It makes use

of F data structures and F pairwise-independent hash

functions, one per data structure. Each data structure

maintains—with some success probability p > 0—a sin-

gle item chosen uniformly and at random from the set

D(R) of distinct items in R. The sample size is thus

random in [0, F ] and sampling is with replacement.

Each data structure consists of O(log|D |) buck-

ets. Each inserted or deleted item affects exactly one
of the buckets in a data structure; the hash function

associated with the data structure ensures that each

item maps to the same bucket whenever it occurs in

the transaction sequence. In more detail, an item is

hashed to bucket i with probability (1−α)αi−1, where

0 < α < 1 is a parameter of the algorithm.4 Each

bucket consists of the sum of the items (treated as

integers) inserted into it, a counter of the number of

inserted items, and a data structure for collision detec-

tion. Adding an item to (resp., deleting an item from) a

bucket simply involves incrementing (resp., decrement-

ing) the counter by 1, incrementing (resp., decrement-

ing) the sum by the item value and updating the colli-

sion detection structure accordingly. If there is a bucket

in the data structure that contains exactly one distinct

item, then the data structure “succeeds,” and this item

is returned as a random sample of size 1; otherwise,

the data structure fails. Note that the lower-numbered

4 The bucket number of item r is given by dlog1/α(|B|/[h(r)+

1])e.

Table 2 Frequencies of each possible sample for DIS2(1) after
N database insertions

N = 2 N = 3

S = ∅ 6,776,653 3,388,337

S = { 0 } 30,157,914 23,029,192

S = { 1 } 30,157,914 17,645,760
S = { 2 } 23,029,192

Uniform? X -

buckets are more likely to succeed when the dataset

size is small; the higher-numbered buckets handle large

datasets. The point is that the stored items do not need

to be maintained individually; in the important case

where a bucket contains only a single distinct item (as

indicated by the collision-detection data structure), the

value of the sum is equal to the value of the counter

times the value of the item; the item can thus be ex-

tracted. [6] have shown that, for an appropriate choice

of α, the success probability p is at least 14.2%.

Because a DIS2(F ) data structure is successful if

there exists a bucket comprising a single distinct item,

and because this event depends on the hash values of all

items in R, one might suspect that the use of pairwise-

independent hash functions leads to non-uniform sam-

ples. A simple setup can be used to show that DIS2(F )

is indeed non-uniform: Pick a pairwise-independent

class of hash functions, run DIS2(F ) on some dataset

R for all h ∈ H , and test whether every sample of

the same size is produced by exactly the same number

of hash functions. Table 2 shows results for DIS2(1),

H = H8191, R2 = { 0, 1 }, and R3 = { 0, 1, 2 }.5 As

can be seen, DIS2(F ) is uniform for R2, but it is non-

uniform for R3.

A simple fix to DIS2(F ) would be to make use of

fully independent hash functions, and we denote by

DIS∞(F ) the resulting sampling scheme. It may be pos-

sible, however, to make use of a weaker class of hash

functions. Specifically, it seems plausible that some vari-

ant of min-wise independent permutations [3] is suffi-

cient to ensure the uniformity of DIS, in light of the

discussion on min-wise hashing in Sec. 5.3 below and

the fact that a succeeding DIS data structure outputs

the item with the largest hash value.

5.2 Alternative: Distinct-item Bernoulli sampling with

probabilistic bounds

Set h′(x) = h(x)/|B| for h ∈ H , and consider the fol-

lowing hash-based variant of Bernoulli sampling with

5 We used α =
√

2/3 and the greedy version of DIS2(1). Other

values of α as well as the basic version led to similar results.
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sampling rate q: When processing an insertion +r, ac-

cept the item into the sample if h′(r) < q; otherwise

ignore the item. When processing deletion −r, remove

one occurrence of r from the sample, if present. As be-

fore, we store the sample in compressed form. It is easy

to see that if R is produced by a sequence of inser-

tions and transactions, and S is obtained by running

the sampling algorithm above on the same sequence,

we have

|S(r)| =

{
|R(r)| if h′(r) < q

0 otherwise.

If H is fully independent and q = k/|B| for some in-

teger 0 ≤ k ≤ |B|, then

Pr [D(S) = A ] = q|A|(1− q)|D(R)|−|A|;

thus D(S) has the same distribution as a Bern(q) sam-

ple of D(R) and uniformity follows.

To obtain a bounded-footprint sampling scheme, we

can now employ probabilistic bounds as before, i.e., we

start with a high value of q and gradually reduce the

sampling rate as the dataset grows. We denote the re-

sulting scheme by DPBS(F, δ). To reduce q to q′ < q,

we retain items r ∈ S with h′(r) < q′ and remove items

with h′(r) ≥ q′. Note that DPBS(F, δ) does not guaran-

tee a bounded sample size; for example, if R = { r0 }N

and h′(r0) = 0, then |S| = N for all q > 0. DPBS(F, δ)

does, however, provide bounds on the sample footprint

|D(S)|. In particular, if we choose q as in Eq. (2) (using

M = F ), then |D(S)| ≤ F with high probability. This

bound is somewhat unsatisfactory though: Duplicates

do not affect the sample footprint, but q is selected

based on |R| (i.e., including duplicates) and can thus

be unnecessarily small. An alternative approach is to

select q based on |D(R)|—i.e., taking N = |D(R)| in

Eq. (2)—or an estimate of |D(R)|; if the estimate is

not based on the sample, uniformity is retained.

5.3 Alternative: Min-wise hashing

We now briefly discuss some alternative schemes that

have been proposed in the literature. In min-wise hash-

ing [2], denoted MIN(M), the sample S consists of the

distinct items in R having the M smallest hash val-

ues. The sample S can be maintained incrementally in

the insertion-only setting, as follows. Insert the first M

distinct items directly into the sample. Then, when-

ever an item r+ is inserted into R and r+ /∈ S, check

whether h(r+) < h(r−), where r− = argmaxr∈S h(r). If

so, add r+ to the sample and remove r−. The MIN(M)

scheme produces uniform samples if H is a family of

M -minwise independent permutations [3].

Deletions can be handled by augmenting the sam-

ple with frequency counters as in DPBS(F, δ); the re-

sulting scheme is due to Beyer et al. [1] and denoted

AKMV(F ) (for “augmented k-minimum values”). The

frequency counters record the exact frequency in R of

each sampled element, and AKMV(F ) retains sample

elements whose frequency has dropped to 0 to ensure

uniformity; all frequency-0 items are ignored for esti-

mation purposes.

5.4 Alternative: Distinct-item subsampling for

PABS(F, δ)

PABS(F, δ) samples can also be used to obtain a

distinct-item sample of R under UDI transactions [11];

denote by PABSD(F, δ) the resulting scheme. In par-

ticular, let S be a PABS(F, δ) sample of R and denote

by q its current sampling rate. To obtain distinct-item

sample S′, include r ∈ D(S) into S′ with probability

p(r) =

{
1 if Y (r) = 1

q if Y (r) > 1.

Then S′ is a Bern(q) sample of D(R). PABSD(F, δ)

is the only distinct-item scheme that does not make

use of hashing. Note, however, that PABS(F, δ) gen-

erally has a larger footprint that DPBS(F, δ) (though

both footprints are probabilistically bounded by F ). To

see this, fix some sampling rate q and item r ∈ R.

We have r ∈ D(S) with probability 1 − (1 − q)|R(r)|

for PABS(F, δ), and r ∈ D(S) with probability q for

DPBS(F, δ). Since both samplers produce a Bern(q)

sample of D(R), and since 1 − (1 − q)|R(r)| ≥ q, the

expected sample footprint of PABS is larger than or

equal to the one of DPBS.

6 Merging

One factor in choosing between sampling methods is

whether samples can easily be merged, and so we briefly

summarize some results on this topic. Merging is of par-

ticular interest when a dataset R is partitioned across

several nodes; see [4] for an example. In this case, it may

be desirable to independently maintain a local sample

of each partition and compute a global sample of the

complete dataset (or, in general, of any desired union

of the partitions) by merging these local samples. This

approach is often superior, in terms of parallelism and

communication cost, to first reconstructing R and sam-

pling afterward.
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The easiest case is when S1 and S2 are Bernoulli

samples of partitions R1 and R2 with respective sam-

pling rates q1 and q2 [4]. Simply purge one of the sam-

ples so that both samples are Bernoulli with common

rate q = min(q1, q2), and then set S = S1 ∪ S2. This

procedure exploits the fact that the items in the dataset

are accepted into or rejected from the sample in a mu-

tually independent fashion. The ease of parallelization

of Bernoulli sampling was one of the motivations for de-

veloping hybrid sampling schemes such as BSP(q0,M)

and HBSR(q,M). Since hybrid schemes do not main-

tain true Bernoulli samples, however, the above merg-

ing technique cannot be used, and the parallelization

advantages of Bernoulli sampling thus vanish. A no-

table exception is PBS(M, δ), which provides proba-

bilistic sample size bounds; here the sample constitutes

a true Bernoulli sample at any time.

Brown and Haas [4] provide an algorithm, called

MERGE, that is designed to merge uniform samples

S1 and S2 into a sample S in the insertion-only envi-

ronment; the algorithm makes no assumptions about

the method used to create the uniform samples S1

and S2. The MERGE algorithm as described by [4] ac-

cesses S1 and S2 to create a uniform sample S of size

m = min(|S1|, |S2|). The basic idea is to select X1 ran-

dom items from S1 and X2 = m − X1 items from S2

to include in S, with X1 being hypergeometrically dis-

tributed:

Pr [X1 = k ] =

(
|R1|
k

)(
|R2|
m− k

)/(|R1|+ |R2|
m

)
. (6)

Indeed, the right side of (6) is the probability that ex-

actly k out of m random items from R1 ∪ R2 belong

to R1. The resulting sample is therefore statistically

equivalent to a size-m uniform sample from R1 ∪ R2

so that MERGE is indeed correct. MERGE can also

be used in the deletion setting but has the disadvan-

tage that the size of the merged sample is limited by

the size of the smallest constituent sample, and hence

is sensitive to skew in the local sample sizes caused by

uncompensated deletions [12].

To address this problem when S1 and S2 are both

created using the RP algorithm, Gemulla, et al. [12]

provide an extension of MERGE, called RPMERGE,

that yields larger merged samples and is resistant to

skew; moreover, the sample is accompanied by sufficient

information so that incremental maintenance can be

continued.

The merging problem is more complicated for mul-

tiset sampling. In an insertion-only setting, we can

use set sampling methods (see Sec. 4) and the fore-

going discussion applies. In the presence of deletions,

however, the PABS(F, δ) algorithm is the only avail-

able sample-maintenance method. It would be desir-

able to be able to merge two PABS samples into a

combined PABS sample, so that incremental mainte-

nance of this latter sample can be continued. Unfortu-

nately, as shown in [11], if multiset partitions R1 and R2

share any common values, then such merging is impossi-

ble without accessing the underlying dataset. The best

that one can do is compute a one-time Bernoulli sam-

ple S by discarding the tracking counters and setting

|S(r)| = |S1(r)| + |S2(r)| for each r ∈ D(S1 ∪ S2); the

combined sample S cannot be maintained further by a

bounded uniform sampling technique (strict or proba-

bilistic).

Similar reasoning applies to PABSD(F, δ) for

distinct-item sampling: We cannot merge samples if

partitions share any common values. In contrast, all

other distinct-item schemes support both merging and

subsequent incremental maintenance when the same

hash function is used to construct S1 and S2. For

MIN and AKMV, Beyer et al. [1] propose merging

schemes that can obtain MIN(M) and AKMV(F ) sam-

ples of R1 ∪ R2, where M = min(M1,M2) and F =

min(F1, F2); here Mi and Fi denote the parameters

of Si for i ∈ { 1, 2 }. For DPBS(F, δ), we proceed

similarly to Bernoulli sampling, first purging to q =

min(q1, q2) and then taking the multiset union. Finally,

for DIS∞(F ) and F = F1 = F2, we sum up the coun-

ters and collision detection data structures of the cor-

responding buckets in S1 and S2.

7 Resizing

In this section we focus on maintaining a bounded uni-

form sample S in the presence of a “growing” dataset

R in which insertions occur more frequently than dele-

tions over the long run. A key challenge in this setting

is that the relative sample size M = |S| may eventually

become too small relative to |R|, leading to an unac-

ceptable loss of precision when using the sample. Re-

sizing schemes aim to increase the sample-size bound

from M to a specified value M ′ > M in a controlled

manner, while preserving uniformity. Such resizing op-

erations can be performed periodically as R continues

to grow.

7.1 Incorrect: Bernoulli Resizing

As mentioned previously, the Bernoulli resizing (BR) al-

gorithm in [12] first converts the initial reservoir sample

to a Bernoulli sample, then performs Bernoulli sampling

(with deletions) until the sample size has reached the

new upper bound, and finally switches back to reservoir
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sampling. For example, suppose that the initial sample-

size bound is M = 2 and that a sequence of insertions

produces both the dataset R = { 1, 2, . . . , 10 } and a

reservoir sample S = { 2, 3 }. To obtain a new sam-

ple of size M ′ = 4, the BR algorithm converts S to

a Bernoulli sample by first generating a sample size U

according to a Bernoulli(N, q) distribution, where q is

a parameter of the algorithm. Supposing for our ex-

ample that U = 3, the algorithm then creates the ini-

tial sample by augmenting S with a randomly-selected

element from the set { 1, 4, 5, . . . , 10 }, say 7, so that

S = { 2, 3, 7 }. Bernoulli sampling is now performed un-

til |S| = 4, at which point reservoir sampling recom-

mences. When U ≤ M , the initial Bernoulli sample is

obtained by uniformly subsampling S; when U > M ′,

then S is augmented with a uniform sample of size

M ′ − M from R \ S. As can be seen, the BR algo-

rithm may incur an expensive access to the underlying

dataset R; it is shown in [12] that such accesses are

unavoidable in any resizing scheme. The parameter q

is chosen to optimally balance the time for accessing

R and the time to subsequently grow the sample size

up to M ′; the goal is to incur substantially less time

than would be required to recompute the sample from

scratch.

By the arguments of Sec. 2.1, the scheme does not

produce uniform samples. Indeed, attempting to en-

force uniformity can be viewed as even more challenging

in the current setting than in that of previous sections.

First, since deletions are allowed, the modified switch-

over scheme HBSR(q,M) of Sec. 2.4 cannot help. Sec-

ond, even for an insertion-only transaction sequence,

there is an additional problem unique to Bernoulli re-

sizing. Specifically, the “conversion” to a “Bernoulli”

sample is not quite correct: while executing Bernoulli

sampling steps during the resizing phase, we know that

the sample size must be less than M ′. Hence the sample

cannot be a true Bernoulli sample, since such a sample

has a size exceeding M ′ with non-zero probability. Since

the sample is not Bernoulli, application of Bernoulli

“coin flips” to this sample yields erroneous results.

7.2 Alternative: Random Pairing Resizing

Our workaround for resizing is to not rely on Bernoulli

sampling at all. The key idea of the corrected resizing

algorithm is to first convert the initial sample to a ran-

dom pairing sample for some value of d, and then run

the random pairing algorithm until d becomes 0. At

that time, resizing is completed. Note that, in contrast

to Bernoulli resizing, the number of steps in the second

phase—i.e., after the conversion of the sample—is com-

pletely determined by the transaction sequence and the

initial value of d. This guarantees the correctness of the

algorithm. We also provide guidance into the choice of

parameter d; here we use the same cost model as in [12],

but found that parameter choice is simplified somewhat

in RPR.

Suppose that the initial sample size is |S| = M and

the target sample size is M ′ > M , where M,M ′ < |R|.
We say that a sample S is an RP(M ′, d) sample of R if

it is produced by running RP with sample-size param-

eter M ′ on a sequence that produces R and contains

d uncompensated deletions. Such a sequence exists for

any value of d; for example, the sequence may consist

of |R| insertions, one for each item in R, followed by

the insertion of d “transient” items, which are subse-

quently deleted. As mentioned above, the key idea of

random pairing resizing (RPR) is to convert sample S

to an RP(M ′, d) sample, where d is treated as a pa-

rameter of the conversion process. The conversion may

require access to the base data, but—as we discuss in

the following section—the probability and number of

such accesses depend on d. After conversion, subsequent

transactions are processed using RP so that, after a

sufficiently large number of insertions, the sample size

reaches its target value M ′. When base data accesses

are expensive and insertions occur frequently, this ap-

proach can be much faster than recomputing the sample

from scratch.

We now describe the algorithm in more detail. In

phase 1 (conversion), RPR generates a realization of a

random variable U , which is distributed as in (3) and

represents the initial RP(M ′, d) sample size. From stan-

dard properties of the hypergeometric distribution, we

obtain that E [U ] = M ′|R|/(|R| + d). For d = 0, we

have U = M ′ with probability 1; for larger values of

d, the (expected) value of U decreases. The algorithm

now uses as many items from S as possible to make up

the RP(M ′, d) sample. Base data is only accessed when

U > M , in which case we add U −M random items

from R \ S to S to form the initial sample. In phase 2

(growth), the algorithm increases the sample to the de-

sired size by running the RP algorithm on subsequent

transactions. Since the dataset is growing, the sample

size will eventually reach its target value M ′. The phase

ends as soon as the number of uncompensated deletions

reaches 0, in which case the sample size is guaranteed

to equal M ′.

We assume that the dataset is “locked” during

phase 1, so that the process of incoming transactions is

temporarily suspended. For ease of exposition, we as-

sume that the sample of R \S is obtained using “draw-

sequential” sampling techniques. These techniques ob-

tain a single random item from R \ S by first extract-

ing a random item from the dataset R and accepting
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the item if it is not already in the sample (which is

the usual case); otherwise, the item is rejected and the

process starts over. As discussed in [12], more sophisti-

cated and efficient data-access methods may be avail-

able, depending upon the specific system architecture

and data layout. Our goal, given cost models for a spec-

ified base-data access mechanism and the sequence of

transactions, is to optimally balance the amount of time

required to access the base data in phase 1, and the

amount of time required to finish growing the sample

(using new insertions) in phase 2.

The value of the parameter d determines the relative

time required for phases 1 and 2. Intuitively, when base

data accesses are expensive but new insertions occur

frequently, we might want to choose a large value of

d so as to resample as few items as possible and shift

most of the work to phase 2. In contrast, when base

data accesses are fast with respect to the arrival rate of

new insertions, a small value of d might be preferable

to minimize the complete resizing time.

The next section addresses the key problem of

choosing the parameter d in the corrected resizing algo-

rithm; our discussion parallels that in [12]. For a given

choice of d, the resizing cost—i.e., the time required

for resizing—is random. Indeed, the time required for

phase 1 depends on the value of the hypergeometric

random variable U , and the time required for phase 2

depends on both d and the transaction sequence. Our

goal is therefore to develop a probabilistic model of the

resizing process, and choose d to minimize the expected

resizing cost.

We develop perhaps the simplest possible model,

based on the dataset-access paradigm described pre-

viously and a very simple model of the transaction
stream. A discussion of more complex cost models and

their implications on the resizing cost can be found

in [12]. Given a cost model, numerical methods can be

used to determine d∗, the optimal value of d. Since nu-

merical optimization can be too expensive at run time,

we also consider an approximate model of the cost func-

tion that can be minimized analytically. Our experi-

ments (see Sec. 7.4) indicate that both the approxi-

mate model of expected cost and the resulting choice

of d closely agree with the results obtained via numer-

ical methods, thereby justifying the use of the quick

approximate analytical method.

7.3 Modeling the resizing process

We first consider the cost of phase 1. During this phase,

the algorithm obtains N(U) items from R \ S, where

N(u) = max(u−M, 0)

for 0 ≤ u ≤ M ′. As discussed above, we assume that

these items are obtained using repeated simple random

sampling from R with replacement, with an acceptance-

rejection step to ensure that each newly sampled item

is not an element of S and is distinct from all of the

items sampled so far. Using a result from [12], we find

that a good approximation of the expected number of

base data accesses when U = u is given by

g(u) = |R| ln
(

|R| −M
|R| −M −N(u)

)
. (7)

Supposing that each base-data access takes ta time

units, the expected phase 1 cost is

T1(d) = ta Ed [ g(U) ],

where we use the subscript d to emphasize the fact that

the expected value depends on the value of d.

We now consider the cost of phase 2. In this phase,

the resizing algorithm executes L steps of the random

pairing algorithm, where L depends on the transaction

sequence. To make further progress, we need a model

of the insertion and deletion process. The simplest

model, which we will use here, is to assume that, during

phase 2, a sampling step occurs every tb time units. The

quantity tb primarily reflects the time between succes-

sive transactions. With probability p, the transaction is

an insertion, and with probability q = (1−p) the trans-

action is a deletion. We assume that p > 1/2, since the

dataset is growing. The parameters tb and p can easily

be estimated from observations of the arrival process.

The distribution of the number L of transactions in

phase 2 can be obtained by an analogy to a ruin prob-

lem, see for example [8]. In the classical ruin problem,

a gambler wins or loses a dollar with probability p and

q = 1 − p, respectively. The gambler is given initial

capital z and the game ends when the gambler’s capi-

tal reduces to zero (=ruin) or reaches value a (=win).

We are interested in the expected number of steps until

the gambler either wins or is ruined. In our setting, we

have z = |R| and a=|R|+ d. The expected value of the

duration of the ruin problem is given by [8, p. 348]

Ed [L ] =
|R|
q − p

− |R|+ d

q − p
1− (q/p)|R|

1− (q/p)|R|+d
. (8)

The expected cost of phase 2 can now be written as

T2(d) = tb Ed [L ],

and the total resizing cost can be written as

T (d) = T1(d) + T2(d) = Ed [ tag(U) + tbL ].
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7.3.1 Finding an Optimum Parameterization

We can now apply numerical methods to find the op-

timum value d∗ for d so that T (d) is minimized. The

expected cost of phase 1 can be computed numerically,

based on the formula

Ed [ g(U) ] =

M ′∑
u=l

g(u) Pr [U = u ] (9)

where Pr [U = u ] is given by (3) and l = max(M ′−d, 0)

denotes the minimum value of U under our assump-

tion that M ′ < |R|. The above sum can be evalu-

ated quite efficiently because only a small number of

terms contribute significantly to the sum. The expected

cost of phase 2 can be computed using (8). Given both

formulas, we can use standard numerical optimization

algorithms to compute d∗. Under more complex cost

models—e.g., when the goal is to minimize the prob-

ability that the resizing time exceeds a specified value

or when a more sophisticated model of disk access is

used—or under more complex stochastic models of the

transaction stream, stochastic optimization techniques

as described in [12, App. B] can be used to compute d∗.

We now explore a closed-form approximation to

the function T (d) that is highly accurate and agrees

closely with our numerical results. This approximation

immediately leads to an effective approximation of d∗.

The first step in the approximation is to assume that

U = E [U ] = M ′|R|/(|R|+d) with probability 1. Anal-

ogously to [12], our motivation is that the coefficient of

variation

CV[U ] =

√
Var [U ]

E2 [U ]
=

√
d(|R|+ d−M ′)
M ′|R|(|R|+ d− 1)

is of order O(|R|−1/2), and |R| is typically very large.

Thus, U will be close to its expected value with high

probability.

Under the above assumption, the approximate ex-

pected phase 1 cost is

T̂ 1(d) = g(E [U ]) = g

(
M ′

|R|
|R|+ d

)

= ta|R| ln

 |R| −M

|R| −M −N
(
M ′ |R||R|+d

)
 .

Making use of the fact that N(u) = 0 for u ≤ M , and

since

M ′
|R|
|R|+ d

≤M for d ≥ |R|M
′ −M
M

,

we find that

T̂ 1(d) =

ta|R| ln

[
(|R| −M)(|R|+ d)

|R|(|R|+ d−M ′)

]
d < θ

0 d ≥ θ,

Where θ = |R|(M ′ − M)/M . The function T̂ 1(d) is

monotonically decreasing, convex, and differentiable on

the interval [0, θ).

To approximate the expected phase 2 cost T2(d), we

follow [12] and observe that the expected change of the

dataset size after each transaction is p·1+(1−p)·(−1) =

2p−1, so that the expected number of steps to increase

the dataset size by 1 is roughly equal to 1/(2p − 1).

Thus, roughly d/(2p−1) steps are required, on average,

to increase the dataset size by d and therefore to finish

phase 2. This leads to an approximate expected phase 2

cost of

T̂2(d) = tb
d

2p− 1
.

The above equation is precisely the limit of (8) as

|R| → ∞; in practice, the approximation is accurate

when |R| is not too small. The expected total time

required to resize a sample is approximately equal to

T̂ (d) = T̂ 1(d) + T̂ 2(d).

We now choose d = d̂∗, where d̂∗ minimizes the

function T̂ . Note that our search for d̂∗ can be restricted

to the interval [0, θ], because T̂ 2(d) is increasing and

T̂ 1(d) = 0 for d ≥ θ. Thus, to compute d̂∗, first set

d0 =
M ′

2
− |R|+

√
(M ′)2

4
+
ta
tb
|R|M ′(2p− 1). (10)

If d0 ∈ [0, θ), then d0 satisfies T̂ ′(d0) = 0, and we take

d̂∗ = d0. Otherwise, we take d̂∗ to be either 0 or θ,

depending upon which of the quantities T̂ (0) or T̂ (θ) is

smaller.

7.4 Example

We conducted a small experimental study to evaluate

the performance of the RPR algorithm and provide ad-

ditional insight into the effect of parameter d. The setup

is the same as that for evaluating BR in [12]; we obtain

very similar results, i.e., RPR is as efficient as BR but,

in contrast, provides uniform samples.

Throughout, unless specified otherwise, we used ini-

tial and final sample sizes of M = 100,000, M ′ =

200,000, respectively, and also set |R| = 1,000,000. In

addition, we set p = 0.6 and tb = 1ms; recall that p

represents the probability that a transaction is an in-

sertion, and tb is the expected time between arrivals
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Figure 2 Expected resizing cost T (d)

during phase 2. The experimental results for various

other choices of parameters were qualitatively similar.

Fig. 2 displays the expected resizing cost T (d) for

various values of d, when the base-data access cost ta
equals 20, 50, and 90 milliseconds.6 There are three

possible behaviors of the T function in the search in-

terval: increasing, decreasing, and internal minimum

point. Our choices of ta illustrate these three possible

behaviors. For each scenario, the approximate cost T̂

is represented as a solid curve. Superimposed on this

curve are points that represent the exact (expected)

cost T for various values of d. As expected, when the

base-data access cost ta is relatively small, the cost

function achieves its minimum value at d = 0, and the

optimal strategy is to increase the sample size to M ′

during phase 1, and not execute phase 2. When ta is

relatively large, the cost function achieves its minimum

value at d = 1,000,000, and the optimal strategy is to

not sample the base data at all, and increase the sample

size to M ′ exclusively during phase 2. For an interme-

diate value of ta, the optimal value of d falls in between

0 and 1,000,000—here, d∗ ≈ 517,745 for ta = 50ms—

so that the resizing work is allocated between the two

phases. Note that, in this example, the expected costs

corresponding to the best and worst choices of d can

vary by a factor of two. Moreover, the approximate and

exact costs are extremely close to each other. This high

degree of consistency, which was observed for all pa-

rameter values that we investigated, increases our con-

fidence in the quick approximate cost model.

The high accuracy of the cost approximation leads

us to expect that our numerical and approximate meth-

ods will also yield similar estimates for d∗. This ex-

pectation is fulfilled, as shown in Figs. 3 and 4. Fig. 3

6 A complete recomputation of the sample from scratch there-

fore takes 4,000s, 10,000s and 18,000s, respectively.
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Figure 4 Optimal expected resizing cost T (d∗)

shows the optimal value d∗ for various values of ta, while

Fig. 4 shows the (exact) expected resizing cost for the

numeric and approximate value of d∗. As before, the

solid line represents values computed via the quick ap-

proximate method and the circular points represent the

numerical solutions. The approximate method seems to

slightly underestimate the exact value of d∗. However,

even when the value of d∗ produced by the numerical

method differs slightly from the result of the approx-

imate closed-form model, the resulting resizing costs

do not differ perceptibly. The reason is that the cost

curve—as shown in Fig. 2—is flat around the optimum

value of d∗.

To evaluate the stability of RPR with respect to its

performance, we run as a final experiment 100 indepen-

dent repetitions of a Java implementation of RPR. We

used the three scenarios ta = 20, ta = 50 and ta = 90

and set d to its respective optimum value. Within each

run, we monitored the number of base data accesses

and the total number of arriving transactions until the

resizing process ended. The results are given in Fig. 5,
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Figure 5 Actual resizing cost at optimum parameterization

where we print a symbol for each individual run. As can

be seen, the running times are very stable, with little

variation across multiple runs. We conclude that the ac-

tual running time of the RPR algorithm stays close to

its expected value with high probability, so that RPR

exhibits a stable performance.

8 Practical considerations

In this section, we provide a simple technique for test-

ing an implementation of a sampling scheme for unifor-

mity. We also discuss the impact of non-uniformity in

practice.

8.1 Testing “uniform” sampling schemes

We propose a simple statistical test for detecting

whether a given sampling scheme A is non-uniform. In

brief, we first run A many times on some small trans-

action sequence γ, and then run a chi-squared test on

the expected and observed frequencies of all possible

samples. If A fails the test, it is very likely to be non-

uniform. If A passes, no conclusion can be drawn. We

found, however, that most of the non-uniform schemes

discussed in this article do not pass our statistical test.

In more detail, denote by γ denote a (small) se-

quence of insertions and transactions and denote by

R the corresponding dataset. We now perform many

independent runs of A on γ to obtain a multiset

S = {S1, . . . , Sl } of samples. For every sample size

n in { 0, . . . , |R| }, denote by Sn = {Sn,1, . . . , Sn,ln }
the multiset of samples in S of size exactly n. Finally,

denote by Rn the set of all size-n subsets of R (us-

ing multiset semantics). For each A ∈ Rn, denote by

pn(A) = ln Pr [S = A | |S| = n ] the expected frequency

of A; from Eq. (1), we obtain

pn(A) = ln

(
|R|
n

)−1 ∏
r∈D(A)

(
|R(r)|
|A(r)|

)
.

Finally, denote by fn(A) the observed frequency of A

in Sn.

Our test is as follows: If D(Sn) \Rn 6= ∅, then A
is clearly non-uniform: it produces a size-n “sample”

that is not a size-n subset of R. Otherwise, set pn =

(pn(A) : A ∈ Rn) and fn = (fn(A) : A ∈ Rn). We now

run a chi-squared test with the null hypothesis that A
is uniform for size-n samples, i.e., fn is consistent with

pn. If the test fails for some n, then A is likely to be

non-uniform. For convenience, a Python implementa-

tion of our test is provided at http://www.mpi-inf.

mpg.de/~rgemulla/code/uniformity-testing.tgz.

8.2 Impact of non-uniformity

To shed some light on the degree of non-uniformity in

practice, we investigated the non-uniformity introduced

by HBS(q,M). In particular, we created a sequence

of insertions γN = (+r1,+r2, . . . ,+rN ) and computed

the exact marginal inclusion probability Pr [ r ∈ SN ]

of each r ∈ { r1, . . . , rN } in an HBS(q,M) sample. If

HBS(q,M) were truly uniform, the marginal inclusion

probabilities would be identical for all items (the oppo-

site does not hold).

For 1 ≤ N ≤ 50, Fig. 6 plots the inclusion proba-

bilities of each item as obtained by HBS(0.5, 10) con-

ditioned on a switch-over point of T (M) = 20, i.e.,

conditioned on the event that we switch to reservoir

sampling after exactly 20 insertions. The x-axis in the

figure corresponds to the number N of insertions. Each

line corresponds to one item and is printed transpar-

ently (darker regions thus indicate that many items

have the same marginal inclusion probability); the line

starts when the item is inserted. First, observe that af-

ter 20 insertions, item r20 is present in the sample with

probability 1 (the top-most line); this is because we con-

ditioned on the event T (M) = 20 and rT (M) ∈ ST (M).

After all insertions have been processed, r20 has the

highest inclusion probability (overrepresented), items

r1, . . . , r19 have lowest inclusion probability (underrep-

resented), and items r21, . . . , r50 have intermediate in-

clusion probability (correctly represented).

Fig. 7 shows the unconditional marginal inclusion

probabilities of HBS(0.5, 10). As can be seen, there is

still a wide spread of inclusion probabilities. Again,

early items are underrepresented, items around the ex-

pected switch-over time are overrepresented, and the

http://www.mpi-inf.mpg.de/~rgemulla/code/uniformity-testing.tgz
http://www.mpi-inf.mpg.de/~rgemulla/code/uniformity-testing.tgz
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Figure 6 Marginal inclusion probabilities of HBS(0.5, 10) sam-

pling conditioned on switch-over point T (M) = 20 (50 insertions)
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Figure 7 Marginal inclusion probabilities of HBS(0.5, 10) sam-

pling (50 insertions)

marginal inclusion probabilities of late items converge

to the correct value (as N →∞). In Fig. 8, we show a

similar plot for a larger sample size, i.e., HBS(0.5, 100)

(only every 10th item is shown). As can be seen, the

spread of inclusion probabilities decreased significantly:

When the sample size is large, the non-uniformity of the

HBS switch-over is spread over more items so that the

impact per item is smaller. Thus thus the larger the

sample size, the lower the effect of non-uniformity.

Even though the degree of non-uniformity in terms

of marginal inclusion probabilities appears to vanish

as the sample size grows, the workaround HBSR(q,M)

has virtually the same costs as HBS(q,M) but always

guarantees uniformity. Thus HBSR(q,M) is manifestly

preferable to HBS(q,M). Similar arguments hold for

most of the workarounds proposed in this article.
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Figure 8 Marginal inclusion probabilities of HBS(0.5, 100) sam-

ple (500 insertions)

9 Summary and Guidelines

We have shown that a number of previously pro-

posed “uniform” bounded sampling schemes actually

fail to be uniform, often in subtle ways. Errors creep

in when switching from a Bernoulli-sampling scheme to

a reservoir-sampling scheme, and when treating a non-

Bernoulli sample as if it were Bernoulli. Attempts to di-

rectly bound the sample footprint can also lead to prob-

lems, as can the use of hash functions that are not fully

independent. Although the effects of non-uniformity are

often small, they are unpredictable. Moreover, they can

be easily detected by using simple statistical tests, and

can be easily avoided by using a variety of workarounds

such as randomized switching, relaxation to tightly con-

trolled probabilistic bounds, and use of independent
hash functions.

A key question facing the practitioner is which sam-

pling methods to use in different scenarios. Our results

lead to the following guidelines.

Set sampling: RP suffices for most applications,

since it enforces a strict sample-size bound, and sup-

ports both insertion-only and general UDI transaction

sequences. Moreover, samples can be merged using RP-

MERGE to facilitate distributed sampling, and can be

resized using the RPR algorithm. In insertion-only en-

vironments, the BSP(q0,M) algorithm is dominated by

the HBSR(q,M) algorithm, which maintains more sta-

ble sample sizes. Given the superior properties of RP,

however, both of these algorithms are of more theoret-

ical than practical interest. The PBS(M, δ) algorithm

may be useful in distributed sampling settings, since it

maintains Bernoulli samples that can be easily merged

(and incrementally maintained, if desired). The down-

side of this latter algorithm is that only probabilistic

bounds, and not strict bounds, are enforced.
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Multiset sampling: In insertion-only settings, the

RP algorithm (which reduces to reservoir sampling) is

superior for the reasons outlined above. In the pres-

ence of deletions, the PABS(F, δ) algorithm is the only

known option, and hence only probabilistic sample-size

bounds seem possible.

Distinct-item sampling: In insertion-only settings,

the MIN(M) algorithm is superior to the UDI algo-

rithms since it provides a stable sample size, a stable

footprint, and has low computational costs. In the UDI

setting, AKMV(F ) appears to be the method of choice;

it provides a strict sample size and footprint bound and

is almost as computationally efficient as MIN(M). Since

AKMV(F ) samples can also be merged efficiently, the

scheme is superior to DPBS(F, δ) (only probabilistic

bounds) and DIS∞(F ) (large memory consumption and

runtime costs). All of the above methods make use of

an F -wise independent or fully independent hash func-

tion, which may be too expensive to use in practice. An

alternative might be to use cryptographic hash func-

tions instead; experiments in [10] suggest that the sam-

ples obtained in this manner still pass statistical tests

for uniformity, but correctness is not guaranteed. These

problems are avoided by PABSD(F, δ), which does not

make use of hashing; disadvantages of PABSD(F, δ) are,

however, that it provides only probabilistic bounds on

the sample footprint, and that the obtained distinct-

item sample is generally smaller than that of AKMV(F )

and DPBS(F ). When a multiset sample needs to be

maintained in addition to the distinct-item sample,

PABSD(F, δ) is attractive: The PABSD(F, δ) sample

can be obtained for free from a PABS(F, δ) multiset

sample.
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Appendix: Proof of Theorem 1

First note that, in the first two assertions of the the-
orem, A ⊆ Rk implies that |A| ≤ k, so that expres-

sions such as k− |A| are always non-negative. Next ob-

serve that T = l if and only if exactly M items are

accepted into the sample during the first l − 1 steps

of Bernoulli sampling and then an item is accepted at

the lth step. The probability of the first event is bi-

nomial:
(
l−1
M

)
qM (1 − q)l−1−M . The probability of the

second event is q. Because successive steps of Bernoulli

sampling are independent, the joint probability of the

two events is simply the product of the individual prob-

abilities, which yields the definition of πk given in the

theorem.

To prove the first assertion of the theorem, fix k ≥
M + 1 and A ⊆ Rk with |A| = M , and observe that

Pr [Sk = A, T ≤ k] =

k∑
l=M+1

Pr [Sk = A, T = l]

=

k∑
l=M+1

Pr [Sk = A | T = l]πl.

http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1224861856184-11644
http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1224861856184-11644
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Straightforward generalization of the reasoning given in

the example after the statement of the theorem shows

that Pr [Sk = A | T = l] =
(
k
|A|
)−1

=
(
k
M

)−1
for each

value of l, so that

Pr [Sk = A, T ≤ k] =

(
k

M

)−1 k∑
l=M+1

πl

=

(
k

M

)−1
Pr [T ≤ k] .

Dividing through by Pr [T ≤ k] yields the desired result.

To prove the second assertion, first assume that

|A| < M . Denote by B1, B2, . . . , the sequence of

samples obtained by applying pure Bernoulli sam-

pling to the transaction stream. Observe that the

event {Sk = A} implies the event {T > k}, so that

Pr [Sk = A, T > k] = Pr [Bk = A]. It follows that

Pr [Sk = A, T > k] = q|A|(1− q)k−|A|. (11)

Now assume that |A| = M . It is no longer true that

Sk = A implies T > k, but it is still true that the

event {Sk = A, T > k } occurs if and only if RS is still

in Bernoulli sampling mode at the kth step and Sk =

A, so that (11) holds for this case also. Dividing both

sides of (11) by Pr [T > k] =
∑
l>k πl yields the desired

result.

Combining these results, we have, for any k ≥ 1 and

A ⊆ Rk,

Pr [Sk = A] = Pr [Sk = A, T ≤ k] + Pr [Sk = A, T > k]

=

{
q|A|(1− q)k−|A| if |A| < M(
k
|A|
)−1∑k

l=M+1 πl + q|A|(1− q)k−|A| if |A| = M.

Because the right side depends on A only through |A|,
the third assertion of the theorem follows.
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