Parallel Training of Knowledge Graph Embedding Models:
A Comparison of Techniques

Adrian Kochsiek
University of Mannheim
Mannheim, Germany
adrian@informatik.uni-mannheim.de

ABSTRACT

Knowledge graph embedding (KGE) models represent the entities
and relations of a knowledge graph (KG) using dense continuous
representations called embeddings. KGE methods have recently
gained traction for tasks such as knowledge graph completion and
reasoning as well as to provide suitable entity representations for
downstream learning tasks. While a large part of the available liter-
ature focuses on small KGs, a number of frameworks that are able
to train KGE models for large-scale KGs by parallelization across
multiple GPUs or machines have recently been proposed. So far, the
benefits and drawbacks of the various parallelization techniques
have not been studied comprehensively. In this paper, we report on
an experimental study in which we presented, re-implemented in a
common computational framework, investigated, and improved the
available techniques. We found that the evaluation methodologies
used in prior work are often not comparable and can be misleading,
and that most of currently implemented training methods tend
to have a negative impact on embedding quality. We propose a
simple but effective variation of the stratification technique used
by PyTorch BigGraph for mitigation. Moreover, basic random par-
titioning can be an effective or even the best-performing choice
when combined with suitable sampling techniques. Ultimately, we
found that efficient and effective parallel training of large-scale
KGE models is indeed achievable but requires a careful choice of
techniques.

PVLDB Reference Format:

Adrian Kochsiek and Rainer Gemulla. Parallel Training of Knowledge
Graph Embedding Models: A Comparison of Techniques. PVLDB, 15(3):
633 - 645, 2022.

doi:10.14778/3494124.3494144

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/uma-pi1/dist-kge.

1 INTRODUCTION

Knowledge graph embedding (KGE) models [4, 5, 15, 23, 27, 28, 30,
35] represent the entities and relations of a knowledge graph (KG)
in a low-dimensional continuous space; the resulting representa-
tions are referred to as embeddings. KGE models are used to reason

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494144

Rainer Gemulla
University of Mannheim
Mannheim, Germany
rgemulla@uni-mannheim.de

about the KG and provide suitable representations for downstream
learning tasks. In particular, KGE models have been explored for
knowledge graph completion tasks [22], visual relationship detec-
tion [3], drug discovery in biomedical KGs [20], and recommender
systems [31]. A large part of the available literature focuses on small
KGs. Recently, a number of frameworks that are able to train KGE
models for large-scale KGs by parallelization across multiple GPUs
or machines have been proposed, namely PyTorch BigGraph [19],
GraphVite [37], and DGL-KE [36]. Each of these frameworks pro-
posed a number of different parallelization techniques. In this paper,
we report on an independent investigation of the efficiency and
effectiveness of these techniques within a common framework.

A knowledge graph (KG) consists of facts about a set of enti-
ties, where each fact is a (subject, relation, object)-triple such as
(Hrrcucock, DIRECTED, PsycHO). A KG can be viewed as a graph
in which vertices correspond to entities, edges to triples, and edge
labels to relations. KGE models represent each entity and each rela-
tion of the KG by an embedding (e.g., a 200-dimensional real vector);
the embeddings are subsequently used to reason about the plausibil-
ity of unseen facts. Large-scale knowledge graphs contain millions
of entities, which makes training of KGE models challenging. The
Freebase! KG, for example, contains more than 80M entities; even
relatively low-dimensional KGE models may exceed the memory
of GPUs. Moreover, Freebase contains 100s of millions of triples,
which leads to long training times. While parallel training methods
can handle KGs of such scale and provide reasonable training times,
their use may also impact model quality negatively.

The key problem in parallelizing KGE training is that the entity
and relation embeddings need to be synchronized across workers.
Accesses to these embeddings are required both when processing
a triple from the KG but also in a step called negative sampling
that is essential for training. Each access potentially involves com-
munication between workers, which is costly. To reduce this cost,
parallel training methods [19, 36, 37] try to keep embedding ac-
cesses local to each worker; this is done by carefully partitioning
the KG across workers and by employing customized negative
sampling techniques. The available techniques include relation par-
titioning [36], graph-cut partitioning [36], stratification [19, 21, 37],
shared sampling [19, 36], local sampling [19, 36, 37], and batch sam-
pling [19, 36]. A comprehensive study of the benefits and drawbacks
of these techniques has not been conducted so far.

In this paper, we report on an extensive experimental study
in which we investigated the efficiency and effectiveness of the
available parallelization methods. To ensure a fair comparison, we
re-implemented all techniques on top of the LibKGE framework [6].
We found that the evaluation methodologies used in prior work are

!https://developers.google.com/freebase/, last accessed on Nov. 15th 2021

https://doi.org/10.14778/3494124.3494144
https://github.com/uma-pi1/dist-kge
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3494124.3494144
https://developers.google.com/freebase/

often not comparable and can be misleading in that degradations in
model quality due to parallel training may remain undetected. Our
results suggest that current (combinations of) training methods
tend to have a negative impact on embedding quality and/or do not
provide substantial speedups. We propose a simple but effective vari-
ation of the stratification technique used in PyTorch BigGraph that
mitigates these problems. We also found that on some datasets (and
when combined with suitable sampling techniques) the random-
partitioning baseline outperformed more sophisticated methods.
Ultimately, we found that efficient and effective parallel training of
large-scale KGE models is indeed achievable but requires a careful
choice of techniques; the best choice is dataset-dependent. For ex-
ample, training a large-scale KGE model for Freebase on 8 GPUs is
possible with 8x speedup and a model quality that is competitive
to sequential methods and exceeds prior results.

2 PRELIMINARIES

2.1 Background

Notation. We model a knowledge graph K € € X R X £ as a
collection of N = |K| subject-predicate-object (SPO) triples, where
& denotes the set of entities and R the set of relations. KGE models
associate an embedding with each entity and each relation; the
embeddings are taken from a vector space specific to the respective
KGE model. For example, in the well-known ComplEx model [30],
each embedding constitutes a d-dimensional complex vector, where
dimensionality d is a hyperparameter (e.g., 256). The plausibility
of an SPO triple is modeled via a scoring function f(s, p, 0), which
uses the embeddings of subject (s), predicate (p), and object (o) of
the triple as inputs. Generally, high scores indicate that the triple
is likely to be correct according to the model, low scores indicate
incorrect triples. For ComplEx, the scoring function has the form

f(s,p.0) =Re(s" diag(p)o), 1

where Re(x) refers to the real part of x € C and x to the element-
wise complex conjugate of x € C4.

Models and frameworks. Many KGE models—e.g., RESCAL [23],
TransE [5], DistMult [33] ComplEx [30], RotatE [28], SimplE [15],
RGCN [27], QuatE [35], TuckER [4] and HittER [7]-have been pro-
posed in the literature; a key difference between these models is
the form of the scoring function. Frameworks such as OpenKE [13],
Ampligraph [8], PyKeen [2] or LibKGE [6] provide implementa-
tions of various KGE models as well as training algorithms and
evaluation methods. Different KGE models are compared in [1, 26].

Negative sampling. In general, KGE models aim to assign high
scores to positive (i.e., correct) triples and low scores to negative
(incorrect) triples. The knowledge graph K generally provides only
positive triples but no negative triples. For this reason, KGE train-
ing methods make use of pseudo-negative triples, i.e., triples that
are likely but not guaranteed to be actual negatives. A common
and effective method to obtain informative pseudo-negative triples
is to corrupt the subject or object (and sometimes also the rela-
tion) of known positive triples. For example, the positive triple
(HrrcuCcock, DIRECTED, PsycHO) can be corrupted by replacing the
object by some other entity obtaining, say, the pseudo-negative
triple (HITcHCOCK, DIRECTED, AVATAR). Pseudo-negatives are com-
monly generated using negative sampling, in which the replacement

//,/4'*4[Master

Machine 1

—

Machine N

I S —
i (Local \| i Local
| para- [d-HM para-

, T e 8

il meters Ji il meters J! | meters)i il meters)i}
(AL B WL o LA L NN L S gLy

\,
\ process process

process process

Figure 1: General architecture for parallel KGE training. A
master process coordinates the distribution of data to work-
ers. Parameters are distributed across workers using a pa-
rameter server. Training is performed on each worker in par-
allel using a GPU (marked in gray).

entity is sampled randomly from the set of all entities. Each positive
triple is used to generate multiple pseudo-negative samples in this
way; the number of such samples is a hyperparameter. Note that
an alternative approach is to use all entities from £ for corruption.
Although this “1vsAll” method [9] can be very effective on smaller
KGs, we do not consider it further because it does not scale to large
KGs with millions of entities.

Training. KGE models are trained using gradient-based op-
timization. The cost function is composed of the mean loss
(e.g., binary cross entropy) taken over each positive triple
t € K and its associated pseudo-negative triples S~ (t)—i.e,
K| 3 ex loss(t, S™(t))—and regularization terms. We denote
throughout by Ny (N;) the number of pseudo-negative triples
obtained by corrupting the subject (object) slot of a positive triple
and set N~ = N; + N . Processing is performed in mini-batches
of batch size B (e.g., 1024); each batch thus consists of B positive
and BN~ pseudo-negative triples. Batches are processed in paral-
lel (on a GPU). This involves computing the batch loss (forward
pass), its gradient (backward pass) and updating model parameters
using an optimizer such as Adagrad [10] or Adam [16]. For large
models, Lerer et al. [19] propose to use “row-wise” optimizers that
significantly reduce the storage overhead of Adagrad or Adam by
maintaining an optimizer state per embedding (instead of per com-
ponent of each embedding). This reduces the space consumption
of the optimizer from O(d(|E| + |R|)) with Adagrad to O(|E| + |R|)
with Row-Adagrad.

2.2 Parallel Training

The key insight that is used by existing parallel training techniques
is that when processing a batch, only the parameters relevant for the
batch need to be accessed and are updated. Here and subsequently,
parameters refers to both model parameters (such as embeddings
or other entity-/relation-specific parameters) as well as their asso-
ciated optimizer states. In particular, the parameters of the entities
and relations of the batch’s triples (positives and pseudo-negatives)
are relevant, whereas the parameters of all other entities and rela-
tions are not. This insight is exploited to reduce the overhead of
parallel processing to the extent possible.

Algorithm 1 Framework for parallel KGE training

Input: A knowledge graph (set of positive triples)
Output: KGE model parameters (entity and relation embeddings)

1: MASTER():

2: Partition knowledge graph

3: Initialize model parameters (parallel)

4: for each epoch do

5 Repartition data > optional

6 Distribute partitions to workers

7 Wait for all workers to complete

8: end for

9: return model parameters
10:
11: WORKER():

12: while true do

13: Retrieve partition from master > latency
14: Relocate parameters (async) > optional
15: for each batch do > constructed from current partition
16: Sample negative examples > work
17: Pull batch parameters > latency
18: Process batch on GPU > work, latency
19: Push batch parameter updates > latency
20: end for
21: Signal completion to master

22: end while

To facilitate our goal of investigating various techniques to scale
KGE training, we make use of a simple architecture (Fig. 1) and com-
putational framework (Alg. 1) that generalizes prior multi-GPU and
multi-machine KGE training methods and allows to mix and match
multiple techniques. We first summarize this general framework
and subsequently use it to describe the different parallelization
methods proposed in the literature.

General architecture. We assume a setup in which multiple
workers are coordinated by a master process as in Fig. 1. The work-
ers may be situated on a single machine (e.g., for multi-GPU training)
or distributed across multiple machines. Each worker stores a subset
of the parameters of the KGE model. A worker may communicate
with other workers (either in shared memory or via network) to
synchronize or exchange parameters. We denote the number of
workers by W.

Master. The general computational framework is described in
lines 1-9 of Alg. 1. We start by partitioning the knowledge graph
K into multiple partitions Ky, ..., Kp (line 2) and initialize the
model parameters stored at each worker (line 3). The partitioning
technique, the number P of partitions as well as the initial location
of each parameter depends on the method being used. Training is
then performed in multiple epochs until some convergence criterion
is met. In each epoch, the master process distributes partitions to
workers (after optionally repartitioning the data and potentially in
a dynamic fashion or in multiple rounds) and waits until all workers
have processed their partitions. Note that the cost of distributing
partitions to workers is generally not a bottleneck: it is done at most
once per epoch and communication cost can be further reduced
when workers have access to the entire knowledge graph.

Parameter management. We make use of a co-located param-
eter server (PS) to exchange and synchronize parameters between
workers. The parameters are partitioned across the individual work-
ers and stored in their main memory; the architecture is similar to
the key-value store of [36]. Each worker may pull (i.e., read) or push
(i.e, update) any parameter. The pull operation first retrieves the cur-
rent value of a parameter from its current location and stores them
in GPU memory; likewise, the push operation copies parameter
updates from the GPU back to their storage location. If a parameter
is stored locally at a worker, this process is fast, otherwise latency
and communication overheads occur (none if in that worker’s GPU
memory, some if in that worker’s main memory, more if on some
other worker). Workers may request to relocate a parameter from
its current location at a remote worker to themselves in order to
minimize these overheads.? Such relocation allows for efficient im-
plementation of the parameter management schemes used in [36]
and [19] within a common framework. Unless stated otherwise,
parameters are relocated only into the worker’s main memory. In
some cases (which we will point out explicitly), relocated parame-
ters are subsequently copied to GPU memory; in this case, the pull
and push operations are omitted.?

Workers. Each worker repeatedly processes a partition as de-
scribed in lines 11-22 of Alg. 1. After retrieving a partition from
the master (line 13), each worker may initiate an (asynchronous)
relocation of all parameters relevant for the partition to itself, i.e.,
the parameters of the entities or relations that actually occur in
the partition. The partition is then divided into mini-batches of
size B, which are processed in sequence. For each mini-batch, the
worker first samples pseudo-negative triples using negative sam-
pling (line 16), then obtains the values of all parameters relevant
for the batch (line 17), processes the batch on a GPU (line 18), and
(asynchronously) writes back the values of updated parameters
(line 19). After the entire partition has been processed, the worker
signals completion to the master.

Concurrent parameter accesses. During training, some pa-
rameters may be concurrently accessed by multiple workers, lead-
ing to conflicts. Due to the sparsity of KGs, the number of con-
flicts is low for most parameters [34], but they may arise more
frequently for relation parameters and highly-connected entities.
Some partitioning techniques (Sec. 3) specifically minimize these
access conflicts, but they generally cannot be completely avoided.
In such cases, access to stale parameter versions may occur. Our PS
ensures sequential consistency, however. Moreover, lost updates
do not occur because the push operation forwards deltas instead of
actual values, and deltas are applied sequentially.

Discussion. In Alg. 1, we marked each step of the worker with
whether (i) actual work is performed and (ii) latency due to data
movement may arise. Note that only negative sampling (line 16) and
batch processing (line 18) of our framework correspond to “training
work”; the rest of the framework constitutes coordination and com-
munication overhead. Key to effective parallel training is to reduce

%In our implementation, we use the Lapse parameter server [24], which supports
transparent parameter relocation (see Sec. 5.2).

3Parameters are relocated to a GPU only if (i) there is sufficient memory on the GPU
and (ii) it can be ensured that no other worker accesses these parameters. In this case,
the updated parameters are copied back from the GPU to the worker’s main memory
once the entire partition has been processed (line 21 in Alg. 1).

Table 1: Summary of techniques for parallel KGE training.
1 refers to single-machine multi-GPU setup, D means multi-
ple machines.

PBG DGL-KE GraphVite This

[19] [36] [37] paper

1 D 1 D 1 D 1 D
% Random NA Vv
'§ Relation v NA V
£ Graph-Cut v NA VY
E Stratification v/ v NA V V
&, Uniform NA Vv V/
£ Shared VRV VIV, NA v
oo Local v v v NA V V
Z Batch v v NA VY

this overhead to the extent possible (most notably, in lines 17-19),
e.g., by reducing the amount of data that is communicated between
workers and between main memory and GPU memory as well as
by minimizing the impact of communication latency.
Techniques. Pytorch BigGraph (PBG [19]), GraphVite [37], and
DGL-KE [36] provide methods for scalable training of KGE mod-
els. The main goals of these methods are (i) low communication
overhead, (ii) fast epoch times, and (iii) high embedding quality.
Generally, careful partitioning and parameter relocation as well
as customized negative sampling strategies are required to obtain
effective methods, and the frameworks differ mainly w.r.t. how this
is done. We discuss partitioning in Sec. 3 and negative sampling in
Sec. 4. An overview of the various techniques is given in Tab. 1.

3 PARTITIONING

We are now ready to describe and compare various approaches
to partition the knowledge graph across workers (lines 2 and 5 of
Alg. 1). The most basic partitioning scheme, which serves as a base-
line for our study, is random partitioning. We also describe relation
partitioning, graph-cut partitioning, and finally stratification and
discuss their influence on the performance of parallel training. An
overview of which framework proposed or used which partitioning
method is given in Tab. 1.

3.1 Desiderata for Partitioning Techniques

The choice of the partitioning method influences all three goals of
parallel training mentioned above: low communication cost, fast
epoch times, and high quality. We discuss each goal in turn; see
Tab. 2 for a coarse overview of the influence of each partitioning
scheme on these three criteria.

First, the choice of partitioning scheme influences communica-
tion cost because it determines which data is processed at which
worker and consequently which parameters are accessed at which
workers. If the partitioning of the parameters across workers is
well-coordinated with the partitioning of the knowledge graph,
latency can be largely avoided and overall communication cost
reduced. Generally, this is done by allocating parameters to the
workers that access them frequently (line 14 of Alg. 1).

Table 2: Influence of partition approaches on balancing of
partition sizes, variety and communication cost.

Load balancing Variety Comm. cost

Random + + -
Relation ° + °
Graph-cut - - +
Stratification (plain) ° -

Stratification (CARL) ° ° +

Next, assuming that communication latency has been addressed
and is not a bottleneck, the wall-clock time taken for an epoch
is mainly driven by load balancing: if each worker has a similar
amount of work, all workers can operate in parallel. Otherwise,
overloaded workers may stall progress and become a bottleneck
(e.g., line 7 in Alg. 1). To assess whether a partitioning scheme bal-
ances computation, we use partition sizes as a proxy: We generally
prefer partitionings in which partition sizes are balanced over par-
titionings in which they are not. Another factor is the number P of
partitions: many small partitions (P > W) may induce higher cost
than few larger partitions (e.g., P = W), mainly due to overheads
incurred when switching partitions at a worker.

Finally, and perhaps less obviously, the partitioning scheme also
influences the quality of the resulting embeddings. On the one hand,
this is because some partitioning schemes limit “variety” in that
some triples (or entities) cannot co-occur in a partition or a batch.
On the other hand, and perhaps more importantly, the partitioning
schemes also influence the impact on quality of the parallel negative
sampling techniques that will be discussed in Sec. 4.

3.2 Random Partitioning

In random partitioning, the knowledge graph K is randomly di-
vided into P equally-sized partitions Ky, ..., Kp, where typically
P equals the the number of workers W. Likewise, all parameters
are partitioned randomly across workers. To avoid confusion, we
subsequently refer to the former as triple partitions and the latter
as entity or relation partitions.

Discussion. Random partitioning ensures perfect load balancing
and high variety of the triples within each triple partition. Its main
problem is communication cost. Since the partitioning ignores the
structure of the knowledge graph, most parameter accesses (pull
and push in Alg. 1) will be non-local and incur communication and
latency: each individual parameter access is local with a probability
of only 1/W. The resulting cost of remote parameter accesses may
exceed potential parallelization benefits.

3.3 Relation Partitioning

The random partitioning scheme can be improved by making use
of the following observation. In most large knowledge graphs, the
number of entities (say, multiple millions) exceeds by far the number
of relations (say, a few thousands). Since processing of each SPO
triple in a batch requires access to its corresponding entity and
relation parameters, a substantial fraction of the parameter accesses
are to relation parameters. In addition to being responsible for a
substantial amount of communication in random partitioning, there

(a) Relation partitioning: Triple partition (b) Graph-cut partitioning: Triple partition (c) Stratification partitioning: Triple partition
membership is determined by each triples membership is determined by each triples membership is determined by each triple’s sub-

relation (here: r; and ry).

subject entity. Entities are partitioned via a ject and object entity. Entities are partitioned ran-
graph cut (indicated by vertex color).

domly (indicated by vertex color).

Figure 2: Illustration of partitioning approaches for W = 2 workers. Colors indicate triple partition membership.

are generally more conflicts between these accesses in that multiple
workers may access given relation parameters simultaneously (just
because there are few relations).

Both problems can be avoided by relation partitioning [36]. Here
the set R of relations is partitioned into P subsets Rq, ..., Rp,
where as before P = W. The knowledge graph is then partitioned
accordingly: triple partition kC) consists of the triples with a relation
inRyp,ie, Kp =KNEXR,XE. An example of relation partitioning
with P =2, R ={ry,ry } and Rp = {rp } is shown in Fig. 2a.

Discussion. In general, relation partitioning aims to provide
balanced triple partition sizes. Finding such a partition is a multiway
number partitioning problem [12] (where the numbers correspond
to relation sizes) and greedy approximation methods* empirically
tend to work well as long as there are no overly large relations.
However, such relations do arise in practice. In such cases, triple
partitions either become unbalanced (impacting load balancing)
or the relation partitioning is “softened” by splitting the triples of
large relations across workers (impacting communication cost).

Since in (hard) relation partitioning each relation occurs only at a
single worker, relation parameters do not need to be communicated
across workers and can, in fact, be stored in each worker’s GPU
memory during the relocation step (line 14 in Alg. 1); no subsequent
costs arise for pulling or pushing these parameters. If a soft relation
partitioning is used, this benefit vanishes for frequent relations.
There is also no benefit for accessing entity parameters so that
substantial communication costs may still arise. These costs may
be slightly reduced by relocating each entity to the worker that
accesses it most often; this is especially beneficial if certain entities
only arise in a single relation.

Finally, relation partitioning reduces variety when compared to
random partitioning. Whether two triples may co-occur in a triple
partition (and consequently a batch) depends on the relations of
these triples.

3.4 Graph-Cut Partitioning

An alternative to partitioning the relations is to partition the set
& of entities into P entity partitions &1, ..., Ep, which are dis-
tributed across the workers. The knowledge graph K is partitioned

#We use the popular heuristic of sorting the relations in a descending order first, before
applying greedy-number-partitioning.

accordingly in that each triple is assigned to a triple partition that
corresponds to the entity partition of its subject entity: We have
Kp=Kn& xR xEfor1l < p < P. Triple partition K, is pro-
cessed by the worker at which &, is located. The idea of graph-cut
partitioning [36] is to partition the entities in such a way that (i)
partition sizes |K| are balanced and (ii) most triples are local to
their partition. A triple (s,r,0) € K; is local if 5,0 € &p: in this
case, no communication is required to access the corresponding
entity parameters during training. Zheng et al. [36] use METIS [14]
to create such a balanced graph cut; see Fig. 2b for an example.

Discussion. Entity partitions influence the communication cost
between workers and triple partitions the computational cost at
each worker. There is generally a trade-off between balancing the
sizes of entity and triple partitions and the fraction of local triples.
The communication overhead for relation parameters is not re-
duced. Most knowledge graphs admit a good balanced cut in terms
of entity partitions, but these cuts result in unevenly-sized triple
partitions (c.f. Tab. 11). As the effectiveness in terms of training
times reduction is heavily dependent on this balancing, graph-cut
partitioning is beneficial for datasets for which there is a good
graph cut with balanced entity partitions and balanced triple par-
titions. In general, many entities occur in multiple partitions so
that data movement across workers as well as between main mem-
ory and GPU memory cannot be avoided. Finally, entity partitions
tend to contain highly-interconnected entities (communities), which
substantially reduces variety across partitions. This is especially
problematic in conjunction with some of the sampling techniques
discussed in Sec. 4.

3.5 Stratification Partitioning

Stratification partitioning was originally introduced in the context
of matrix factorization [11] and subsequently adapted to training
KGEs [19, 37]. The idea behind stratification is to create triple
partitions (termed buckets in [19]) that access pairwise disjoint sets
of entities. A set of S such triple partitions is called a stratum [11].
The key insight behind stratification is that we can process the triple
partitions within a stratum in parallel across S workers without
any need to synchronize entity parameters in between as they are

Object entity Object entity

&1
[=]
=]
=]
[=]

&1
-]
[-]
=]

&2
-
-
'
-
&2
-
-
' D

Subject entity

Subject entity
&3

-

n

-

(b) Stratification with combined
mirror triple partitions

(a) Plain stratification

Figure 3: Possible schedule for W = 2 workers with stratifica-
tion using M = 4 entity partitions. Triple partitions marked
in the same color form a stratum and are processed in par-
allel; the number inside the triple partition indicates the
worker number.

pairwise disjoint.> Strata can be obtained in the following way: first
partition the set £ of entities randomly into M entity partitions &£,
..., Eum (where generally M = ©(W)) and subsequently partition
the triples based on their subject and object entities. For example, a
triple with a subject of entity partition p; and an object of entity
partition py is assigned to the triple partition Cp, ,,. We obtain
P = M? triple partitions of form Ky p, = K N (Ep, X R X Ep,) for
1 < ps, po < M. Such a partitioning is visualized in Fig. 2c for M = 2.
The resulting triple partitions are then scheduled across workers
such that at any point of time, the set of currently processed triple
partitions forms a stratum (see below). An example schedule for
M = 4 and W = 2 is shown in Fig. 3a, where each color indicates a
stratum. Before processing a triple partition, workers relocate their
entity parameters to themselves (line 14 of Alg. 1) so that accesses
to these entities are local.®

Partitioning and scheduling. The number M of entity parti-
tions must be carefully chosen. Generally, any two triple partitions
Kpsp, and Ky within a stratum must be guaranteed to contain
disjoint entities, i.e., we require { ps, po } N { p% pj, } = 0. A natural
choice is to set M = W; however, such a choice does not ensure that
all strata contain W triple partitions and thus saturate all workers.
In Fig. 2c, where M = 2, it is only possible to build the non-trivial
stratum { /C11, ICy2 }; all other pairs of triple partitions do not form
a stratum and thus cannot be processed in parallel. During training,
this means that K13 and KCy1 are processed sequentially and one
worker remains idle. We call such a schedule blocking.

To increase worker saturation, Lerer et al. [19] proposed to set
M > W;in particular M = 2W (less does not suffice). The resulting
P = (2W)? partitions can be grouped into 4W strata, each of size
exactly W. An example of such a non-blocking schedule is shown
in Fig. 3a for W = 2 and consequently M = 4. Scheduling must
be done carefully. A best-effort scheduler such as the one used in
PBG [19] does not always produce a non-blocking schedule.

Note that synchronization may be required to process negative samples. We come
back to this point in Sec. 4.

©Relocation is to main memory in general to allow across-partition negative sampling.
When local sampling is used (see Sec. 4.4), relocation to GPU is possible.

Processing order. Processing a triple partition only leads to
updates in its corresponding entity partitions. For this reason, the
embedding spaces of each entity partition may not be aligned in
the first epochs when trained with a single worker. This problem
can be mitigated by a carefully-chosen processing order [19]. In
our setting, this issue vanishes as concurrent updates of relation
parameters by multiple workers automatically lead to aligned em-
bedding spaces. In fact, a random ordering of strata performed best
in our experiments.

Discussion. Since entities are partitioned randomly, all KG parti-
tions have the same size in expectation (= N/P = N/M?). Partition
sizes may still vary somewhat; the variance depends on the data
distribution. A key problem with stratification is that the num-
ber of partitions scales quadratically with the number of workers
(since M = ©(W)). This is problematic especially when the KG
is small relative to the number of workers. The main advantage
of stratification is that (i) overall communication cost is reduced
and (ii) no access latency arises during batch processing for the
embeddings of the partition’s entities. Assuming a non-blocking
schedule and ignoring negative sampling, each entity parameter
is relocated at most P/W times (e.g., 4W times for the choice of
M = 2W). In practice, roughly half of the relocations can be avoided
by scheduling partitions to workers that already have its subject or
object entities localized. Finally, stratification does reduce variety
between partitions, but it does so in a less systematic way than
graph-cut partitioning.

3.6 Improved Stratification Partitioning (CAR)

Stratification partitioning is a promising technique but, as discussed
above, may suffer from (i) small partitions, (ii) many relocations,
and (iii) reduced variety. We propose three simple techniques that
mitigate these problems: (i) combining mirror partitions (C), (ii)
relocating only active entities (A), and (iii) repartitioning between
epochs (R). We refer to the resulting variant of stratification as CAR
stratification and study its impact in the experimental section.

Combining mirror partitions (C) is a technique that halves
the number of partitions required to create a non-blocking schedule.
It consequently reduces communication cost and leads to more
variety within partitions. The approach works as follows: First
compute partitions as in plain stratification and subsequently merge
each pair of mirror partitions into a single partition. The mirror
partition of Ky p, is Kp,p, when ps # po. When ps = p, = p, the
mirror partition is KC (11 (p+1) forodd pand K1) (p-1) forevenp.
An example is shown in Fig. 3b; here, mirror partitions are indicated
by the same color and the same worker number. One can show
that when M = 2W, mirror partitions also admit a non-blocking
schedule such as the one shown in Fig. 3b. Roughly speaking, when
some worker w processes Ky, , plain stratification ensures that
no other worker processes mirror partition ICPO Ds concurrently. We
can thus merge each partition with its mirror.

Active entities (A). In plain stratification, the entity parameters
of the combined entity partitions £, U &, are relocated to the
worker before processing triple partition Ky, p,. However, only
a fraction of these entities may actually occur either as subject
or object of a triple in K p . We denote those entities as active
and propose a simple variant that relocates only the parameters

Table 3: Number of unique entities per batch (upper bound)
by sampling technique. Corresponding entity parameters
need to be communicated and copied to GPU memory.

Technique Unique entities per batch

Uniform sampling 2B+ BN~
Shared sampling 2B+ N~
Batch sampling 2B

of active entities instead. This approach reduces communication
cost significantly when partitions are sparse (as is often the case in
large KGs). Furthermore, this affects the pool for the local sampling
technique discussed in Sec. 4.4.

Repartitioning (R). The entity partitioning and hence the triple
partitioning in plain stratification is static, i.e., it does not change
between epochs. To increase variety, one may repartition both enti-
ties (randomly) and triples between epochs. This repartitioning can
be performed in background and only incurs minor communication
costs when each worker has access to the complete knowledge
graph. Note that repartitioning is also possible for random parti-
tioning, but generally not for graph-cut and relation partitioning.

Discussion. All of the above modifications are simple. Our ex-
perimental study suggests that they are effective or even instru-
mental for the efficient use of stratification.

4 NEGATIVE SAMPLING

The partitioning techniques discussed in the previous section aim
to make access to (the parameters of) positive triples from K more
efficient. We now turn attention to pseudo-negative triples. Recall
that these triples are constructed by negative sampling, i.e., for each
positive triple in a batch, we create N~ pseudo-negative triples by
corrupting either its subject or its object with a randomly sampled
entity. All parameters of the so-sampled entities needed to be pulled
to the worker as well, which induces communication overhead. If
N~ is large, this overhead is substantial and may by far outweigh
the communication overhead required to process positive triples.

The communication overhead is mainly driven by (i) the number
of unique entities sampled for a batch’ and (ii) the location of the
corresponding entity parameters. Both factors can be influenced
by biasing the sampling distribution used for corruption. The key
techniques are shared sampling [19, 36], batch sampling [19, 36], and
local sampling [19, 36, 37]. An overview of the techniques used in
various frameworks is given in Tab. 1. In the following, we describe
the techniques and analyze them in terms of the number of unique
entities being used (Tab. 3).

4.1 Uniform Sampling

Uniform sampling is the basic technique used in sequential methods
for training KGE embeddings; we use it as a baseline. Each negative
sample is obtained by sampling the corrupted entity uniformly and
independently from the set £ of all entities. This leads to a large
number of unique entities per batch: with a batch size of B, up to
2B unique entities occur in the positive triples (subject and object

7If an entity occurs multiple times in a batch, its parameters need to be pulled/pushed
only once.

entity) and up to BN~ additional unique entities in the pseudo-
negative triples (corrupted entity). Consequently, even for small
choices of N7, most entities relevant for a batch arise from negative
sampling. In expectation, only a fraction of 1/W of these entities is
local to the worker so that communication costs are high.

4.2 Shared Sampling

The idea of shared sampling [19, 36] is to use the same corrupted
entities for triples in a batch. In more detail, N~ triples are sampled
uniformly and independently from the set of all entities and then
shared across positive triples.® This substantially reduces the num-
ber of unique corrupted entities from BN~ to N~ and consequently
leads to a significant reduction of communication costs and epoch
time. For many KGE models, computational cost can also be reduced
because it facilitates the scoring of all negative triples in a batch on
the GPU via matrix multiplication. This approach is used in PBG
and DGL-KE. A key drawback of shared sampling is that variety is
reduced, which can have a negative impact on embedding quality.
In fact, our experimental study (Sec. 5.5) suggests that (i) this issue
can be mitigated by increasing the number of negatives drastically,
and (ii) even with the higher number of negative samples, shared
sampling is far more efficient than uniform sampling.

4.3 Batch Sampling

To avoid transferring additional parameters for the entities of neg-
ative triples (both to worker and to GPU memory), batch sampling
(termed degree-based sampling in [36]) does not sample from the
set £ of all entities but from the set of entities that already occur in a
positive triple of the batch. The number of unique entities per batch
reduces to 2B and in particular, does not depend on the number
N~ of negative samples anymore. The size of the sampling pool for
the negative samples is heavily reduced and their distribution is
data-dependent (more frequent entities are more likely to occur in
a batch and thus to occur as a negative). Zheng et al. [36] combine
batch sampling with uniform sampling to increase variance. Our
experimental study suggests that the benefits of batch sampling de-
pend on both dataset and partitioning technique. On most datasets,
batch sampling heavily deteriorated embedding quality, but it was
highly beneficial in terms of both embedding quality and commu-
nication overhead on the Freebase dataset. Here, uniform negatives
may lead to “easy” negative samples [17], whereas batch samples
may contain harder negatives.

4.4 Local Sampling

Another approach to bias the sampling distribution is local sampling,
where corrupted entities are drawn from the set of entities whose
parameters are located at the worker (in the parameter server). This
ensures that pull operations for negatives do not incur communica-
tion with other workers. Local sampling is used by DGL-KE, PBG
and GraphVite and can be combined with shared sampling.

Since local sampling biases the sampling distribution, it has an
impact on embedding quality. This impact is mainly determined
by the allocation of entity parameters across workers, which in

8Shared sampling can also be applied to a subset of the batch as done in [36]. However,
we did not see any benefits of this approach.

turn is driven by the partitioning scheme being used. For exam-
ple, if graph-cut partitioning is used, the allocation is static: for all
triples of partition XCp, negative samples are taken from &,. Like-
wise, when processing partition /Cp_ p, in stratification partitioning,
negative samples are taken from the set £y, U Ep, of entities (or the
subset of active entities in CAR stratification). Consequently, local
sampling may degrade quality in all these cases; we investigate this
degradation empirically in our experimental study.

One counter-measure to avoid degradation effects is to repar-
tition the data between epochs as in CAR stratification. Such an
approach is not possible for graph-cut partitioning (since partitions
are deterministic), however, and it is very restricted in relation
partitioning. An alternative approach that ensures a dynamic local-
sampling pool is to reshuffle the entity partitions (but not the triple
partitions) randomly between epochs. This approach—denoted (r)—
can be used with random and relation partitioning since these
methods use a random entity allocation.

Note that when local sampling is combined with stratification
partitioning, it is guaranteed that (i) all entity parameter accesses
(positive and negative) of a worker are local and (ii) no other worker
accesses these parameters concurrently. For this reason, the param-
eters can be stored directly in GPU memory and the pull/push
operations (lines 17 and 19 of Alg. 1) can be omitted.

5 EXPERIMENTAL STUDY

We conducted an experimental study in which we investigated
the various partitioning and negative sampling techniques in a
common framework. Our main goal was to provide insight into
(i) the efficiency of the techniques in terms of runtime as well as,
(ii) their effectiveness in terms of embedding quality, and ultimately
(iii) whether and to what extent parallelization is beneficial to train
KGE models. We consider both single-machine multi-GPU scenarios
as well as multi-machine multi-GPU training.

5.1 Key Findings
Before describing the experimental setup and results of our study
in detail, we briefly summarize our key findings.

General findings.

(1) The right choice of partitioning and negative sampling tech-
nique was crucial. With such a choice, both multi-GPU and
multi-machine parallelization were effective and efficient, espe-
cially for larger knowledge graphs (Sec. 5.3).

(2) The right choice is dataset-dependent.

(3) The sampled MRR metric used in prior work to evaluate KGE
model quality on large KGEs is misleading and should not be
used (Sec 5.4).

(4) Row-based optimizers such as Row-Adagrad reduced commu-
nication overhead while preserving a high embedding quality
(online repository).

Partitioning techniques (Sec. 5.3).

(5) CARL stratification was most efficient and effective on most
datasets. It also outperformed plain stratification.

(6) Random partitioning consistently led to high-quality embed-
dings. On Freebase, it was the overall method of choice.

(7) Graph-cut partitioning was least effective due to unbalanced
triple partition sizes (Sec. 5.7).

Table 4: Dataset statistics

Dataset Entities Relations Triples (total)
FB15k 14,951 1,345 592,213
Yago3-10 123,182 37 1,089,040
Wikidata5m 4,594,485 822 20,624,575
Freebase 86,054,151 14,824 338,586,276

(8) Relation partitioning led to time improvements but had a nega-
tive influence on embedding quality on some datasets.

Sampling techniques (Sec. 5.5, 5.6).
(9) Shared sampling was instrumental for efficiency and should
always be used.
(10) Local sampling with a dynamic sampling pool improved effi-
ciency and should be used on large graphs.
(11) A static local sampling pool often had a negative influence on
embedding quality.
(12) Batch sampling significantly deteriorated resulting quality on
most graphs. On Freebase, however, it significantly improved
quality.

5.2 Experimental Setup

We provide code, search configurations, and resulting hyperparam-
eters at https://github.com/uma-pil/dist-kge.

Datasets. We used knowledge graphs of varying sizes; see Tab. 4.
FB15k [5], a small subset to compare to prior work on KGE, Yago3-
10 [9], Wikidata5m [32] and the Freebase KG as used in [19, 36].°
Note that a KGE model for Freebase does not fit on a single GPU
(e.g., a ComplEx model with d = 400 takes 128GB plus optimizer
state). For all datasets except Freebase, we use the validation and test
sets that accompany the datasets. For Freebase, we sample 10,000
triples from the original validation and test sets (which contain
about 17M triples each) to keep evaluation costs feasible. These sets
are still sufficiently large to estimate model quality accurately.

Hardware. We ran all experiments on the same hardware. We
used two machines with 40 CPUs (Intel(R) Xeon(R) CPU E5-2640
v4, 2.40GHz) and 4 GPUs (GeForce RTX 2080 Ti). The bandwidth
between the machines was 1 GB/s. For each experiment, we write
G@C to indicate that G GPUs were used on each of C machines.
For example, a 1@2 experiment uses two machines with one GPU
each. On each GPU, we run two workers so that the 1@2 setup
trains with four workers.

Implementation. We implemented parallel training on top of
the PyTorch-based LibKGE library [6, 26], which provides a num-
ber of KGE models, training methods, and evaluation techniques.
KGE models can be grouped into semantic matching models and
translational distance models [31]. We consider ComplEx [30] and
RotatE [28], which are are among the currently best-performing
models [1, 18, 26, 28] for the former and latter group, respectively.
For single-machine multi-GPU training, we used a shared-memory
PyTorch tensor to store parameters in main memory. For multi-
machine training, we used the parameter server LAPSE [24].

9dump: https://developers.google.com/freebase/, preprocessed: http://web.informatik.
uni-mannheim.de/pil/kge- datasets/freebase.tar.gz.

https://github.com/uma-pi1/dist-kge
https://github.com/uma-pi1/dist-kge
https://developers.google.com/freebase/
http://web.informatik.uni-mannheim.de/pi1/kge-datasets/freebase.tar.gz
http://web.informatik.uni-mannheim.de/pi1/kge-datasets/freebase.tar.gz

Metrics. We compared parallel to sequential training methods.
We used two different sequential settings: sequential (GPU memory)
and sequential (main memory), which differ in the location of the
KGE model parameters. For the main memory version, parameters
are copied to and retrieved from the GPU memory when process-
ing each batch; this allows to handle very large KGE models. We
evaluated efficiency in terms of runtime and communication cost
(GBs transferred) per epoch. To evaluate quality, we follow stan-
dard practice and compute the filtered mean reciprocal rank (MRR)
for the link prediction task. In particular, for each triple (s, p, 0) in
the test set, we rank all triples of form (s, p, ?) (and subsequently
(?, p,0)) by their predicted scores, filter out all triples that occur
in the training, validation or test data, and finally determine the
reciprocal rank of the test triple. The so-obtained filtered reciprocal
ranks are averaged; higher values are better. In the case of ties, we
use the mean rank to avoid misleading results [25, 26, 29]. Finally,
to evaluate effectiveness, we combined efficiency and result quality,
which may be affected by parallelization. In particular, for each
setting, we report the time required to reach a MRR that exceeds
95% of the best MRR achieved in the sequential setting.

Hyperparameter optimization. A solid choice of hyperpa-
rameters is key to obtain high-quality KGE models. In general, we
followed [26] and performed the model selection using a quasi-
random search with 30 trials in a sequential setup. Each trial was
run for 20 epochs using Adagrad; the best resulting model was then
run for up to 300 epochs (Wikidata5m) or 400 epochs (FB15k, Yago3-
10). We used 128-dimensional embeddings for all datasets. For our
parallel experiments, we generally used the best-performing se-
quential hyperparameters. An exception is Freebase (which would
be infeasible to run sequentially); here we used the best performing
setting on FB15k with Row-Adagrad and trained up to 10 epochs.

Techniques. As shared negative sampling was instrumental
for efficient parallel training, we consistently use it unless noted
otherwise. We explored local (L) and batch (B) sampling, reparti-
tioning of triple partitions and relocation of corresponding entity
partitions (R), shuffling of entity partitions (r), combined mirror
triple partitions (C) and active entities (A). We use batch sampling
combined with uniform sampling (50/50) unless stated otherwise.
For stratification we set M = 2W for all datasets but Freebase. For
Freebase, we use M = 32 throughout so that the entity partitions
fit in GPU memory in all settings.

5.3 Partitioning Techniques (Tab. 5-6)

Tab. 5a (ComplEx) and Tab. 5b (RotatE) summarize the most ef-
fective parallelization techniques for various numbers of GPUs
and machines. For all settings but 4@2, we ran all partitioning
techniques and report the one with lowest time to 0.95 MRR. For
4@2, we used the best performing partitioning technique found
for 1@2 (2@2 for Freebase). Parallelization was effective on all
datasets, but the speedups on Yago3-10 were small; here paralleliza-
tion overheads and quality degradation dominated. For the larger
Wikidata5m and Freebase datasets, speedups were significant: up
to 8x without any quality degradation. The two models behaved
similar but overall RotaE train times were higher compared to Com-
plEx. Furthermore, graph-cut partitioning had a smaller negative
influence on quality with RotatE than with ComplEx.

Table 5: Partitioning techniques (best-performing variant in
terms of time to 0.95 MRR). Calculating time to 0.95 MRR
was too expensive for Freebase.

(a) ComplEx model (n.r. means not reached).

Set Partitioning Epoch Time to MRR Hits

up technique time 0.95 MRR @10
1@1 Seq. (GPU memory) 5.9s 3.9min 0.779 0.862
1@1 Seq. (main memory) 7.7s 5.1min 0.779 0.862

24

g 2@1 Random (R) 2.6s 2.0min 0.775 0.859

= 1@2 Random (R) 29s 2.2min 0.775 0.859
4@2 Random (R) 1.3s 1.3min 0.766 0.858

1@1 Seq. (GPU memory) 24.3s 38.5min 0.542 0.675

5:7’ 1@1 Seq. (main memory) 42.6s 67.5min 0.542 0.675
;80 2@1 Relation 19.0s 33.2min 0.538 0.669
. 1@2 Random (RL) 19.5s 35.8min 0.547 0.679

4@2 Random (RL) 5.6s nr. 0.503 0.653
g 1@1 Seq. (GPU memory) 438.4s 219.0min 0.297 0.385
% 1@1 Seq. (main memory) 774.3s 387.0min 0.297 0.385
E 2@1 Stratification (CARL) 232.8s 77.6min 0.308 0.398
% 1@2 Stratification (CARL) 228.0s 76.0min 0.308 0.398
= 4@2 Stratification (CARL) 97.1s 105.2min 0.294 0.377
o 1@1 Seq. (main memory) 3929.0s - 0.364 0.487
% 4@1 Random (RLB) 704.65 - 0.426 0.529
8 2@2 Random (RLB) 966.75 - 0.426 0.529
™ 4@2 Random (RLB) 591.6s - 0.421 0.523

(b) RotatE model.
Set Partitioning Epoch Time to MRR Hits
up technique time 0.95 MRR @10

11.9min 0.705 0.834
14.3min 0.705 0.834

1@1 Seq. (GPU memory) 9.5s
1@1 Seq. (main memory) 11.4s
2@1 Stratification (CARL) 4.6s 5.8min 0.725 0.835
1@2 Stratification (CARL) 5.9s 7.4min 0.725 0.835

FB15k

1@1 Seq. (GPU memory) 74.1s 259.3min 0.451 0.637
1@1 Seq. (main memory) 88.0s 307.8min 0.451 0.637
2@1 Stratification (CARL) 40.8s 166.6min 0.438 0.607
1@2 Stratification (CARL) 43.3s 175.8min 0.438 0.607

1@1 Seq. (GPU memory) 798.4s 199.6min 0.258 0.348
1@1 Seq. (main memory) 985.7s 246.4min 0.258 0.348
2@1 Stratification (ARL) 466.7s 77.8min 0.264 0.344
1@2 Stratification (ARL) 477.7s 79.6min 0.264 0.344

Freebase Wikidata5m| Yago3-10

1@1 Seq. (main memory) 6495.7s - 0.566 0.627
4@1 Random (RLB) 1290.8s - 0.567 0.630
2@2 Random (RLB) 1541.4s - 0.567 0.630
4@2 Random (RLB) 938.3s - 0.562 0.621

Overall, the best performing techniques were dataset-dependent.
In most cases, a variant of stratification or random partitioning
outperformed other techniques or was close to the best result. We
analyzed Freebase separately (Tab. 6). Here the random partitioning
baseline in combination with local (L) and batch (B) sampling was

Table 6: Comparison of partitioning techniques (ComplEx,
Freebase). Note that the sampled MRR (sMRR) metrics used
in some prior studies are misleading. Lower part shows re-
sults with 10X # negatives.

Set- Partition Epoch Data sent sMRR MRR Hits
up technique time per epoch /1,000 @10
1@1 Seq. (mm) 3929s - 0.811 0.364 0.487
1@1 Seq. (B) (mm) 3925s - 0.815 0.426 0.528

2@2 Random (RLB) 966s
2@2 Relation (rLB) 823s
2@2 Strat. (CARLB) 803s
2@2 Graph-cut (LB) 1170s
4@2 Random (RLB) 591s

2@2 Random (RLB) 1481s
2@2 Relation (rLB) 1341s
2@2 Strat. (CARLB) 1127s
2@2 Graph-cut (LB) 1810s

232.8GB 0.816 0.426 0.529
205.9GB 0.801 0.397 0.507
123.2GB 0.793 0.325 0.424
42.5GB 0.789 0.407 0.512
251.9GB 0.819 0.421 0.523

232.8GB 0.841 0.478 0.588
205.9GB 0.808 0.454 0.569
122.1GB 0.798 0.451 0.556
44.4GB 0.786 0.467 0.567

10X neg.

Table 7: Avg. processing and wait time in seconds per worker
and epoch with std. dev. (ComplEx, 1@2, Wikidata5m).

Rand. (R) Rand. (RL) Rel. GC (L) Strat. (CARL)

Total time 338+6 2750 315+1 232+54 227+0
Proc. time 228+4 218+0 219+4 193+44 217+£2
Wait time 1101 63+0 96+3 39.3x10 11x2

Table 8: Performance comparison to original implementa-
tions (ComplEx, Freebase).

Frame- Partition Epoch .
Setup work technique " Time MRR Hits@10
2@2 PBG Strat. (LB) 100 2856s 0.157 0.250

4@1 DGL-KE Relation (B) 400 ~600s® 0.614 0.665

2@2 Ours Strat. (LB) 100 1983s 0.291 0.384
4@1 Ours Relation (B) 400 860s 0.612 0.662

most effective; stratification led to the overall worst results. One
reason for the weaker performance of stratification was the reduced
effectiveness of batch sampling with this partitioning technique,
see Sec. 5.6. Increasing the number of negative samples by 10x
mildened this effect and led to an overall increased embedding
quality (see also Tab. 6). Graph-cut partitioning further reduced
communication cost by 5-6%, but did not provide faster epoch times
due to unbalanced triple partition sizes.

Tab. 7 shows processing and wait time per worker and epoch for
each partitioning technique. Stratification (CARL) and graph-cut
heavily reduced wait times and therefore led to the shortest over-
all processing times. However, graph-cut showed a high variance
between workers; see Sec. 5.7 for additional analysis on graph-cut.

5.4 Comparison to Original Work (Tab. 8)

The above results were all obtained using an independent imple-
mentation of parallel training. It is challenging to put these results
in perspective with the results originally reported by the DGL-KE
and PBG frameworks. The reason is that these prior studies (i) did
not report MRR but sampled MRR (sMRR) and (ii) used different
variants of sMRR. In general, sMRR/X is obtained by ranking test
triples against a set of X random triples instead of all triples. Note
that SMRR/X decreases with increasing X until it reaches the MRR.
The use of sMRR is computationally cheaper, but we found that it
produced misleading results. As can be seen in Tab. 6, sMRR highly
overestimated MRR and, perhaps more importantly, different mod-
els suggested similar quality in terms of SMRR even when their MRR
differed substantially. One reason for this misleading approxima-
tion is that "hard negative" entities (which appear before the target
entity in the full ranking) are unlikely to be sampled. Addressing
this issue [19] and [36] proposed a batch sampling approach. We
did not consider these methods because they did not solve the prob-
lematic approximation in preliminary experiments and resulted in
an evaluation metric that is batch size dependent. For this reason
we use MRR, even though the computation is expensive.

To get some intuition into the framework performance, we
trained a ComplEx model with DGL-KE and PBG with their pro-
vided hyperparameter settings. We then trained a corresponding
model in our framework (using the same dimensionality). The re-
sults in Tab. 8 suggest that our implementation is competitive.

5.5 Sampling Techniques (Tab. 9)

Shared Sampling. To investigate the effect of shared sampling, we
ran a hyperparameter search for the model ComplEx with uniform
sampling (1@1) to obtain a suitable choice of the numbers N
and N, of negative samples. We fixed this configuration but (i)
switched to shared sampling to measure impact on quality and (ii)
used a 1@2 setup with random partitioning to measure impact on
communication costs. Our results are summarized in Tab. 9a.

First observe that shared sampling is very efficient: its use led to
a 40x reduction in network footprint and a 7x reduction in epoch
time. However, the model quality suffered in that the resulting
MRR decreased. This is a consequence of the reduced variety of
negative samples introduced by shared sampling. We found that the
quality degradation could be countered by using a large number of
negative samples. We reran the hyperparameter search with shared
sampling and a 10x larger limit in the upper bound on the number
of samples; the results are also reported in Tab. 9a. As can be seen,
the increased number of samples led to models of similar or better
quality than obtained with uniform sampling but is substantially
more efficient in terms of epoch time and network footprint. The
lower part of Tab. 6 shows that these quality improvements also
hold for the largest dataset Freebase.

Local Sampling. To study the impact of local sampling, we first
investigated the performance obtained by the various partitioning
techniques with shared sampling with and without local sampling;
see Tab. 9b. We found that none of the partitioning techniques
provided substantial benefits w.r.t. random partitioning without the

0This epoch time is approximated since DGL-KE does not have a concept of epochs
but only reports in steps.

Table 9: Sampling techniques (ComplEx, 1@2)

(a) Shared sampling reduced communication overhead and epoch
time (Random (R)).

EPoch Data sent MRR Hits
time per epoch @10
Uniform 892 894 114.9s 66.5GB 0.518 0.659
Shared 892 894 9.3s 1.9GB 0.508 0.649

Shared 8919 8942 21.1s 7.2GB 0.538 0.672
Uniform 66 236 5112.3s 3262.0GB 0.218 0.325
Shared 66 236 153.6s 24.6GB 0.204 0.310
Shared 2176 7851 347.2s 114.2GB 0.296 0.395

Setting N; N

Yago3-10

Wiki-
data5m

(b) Local sampling reduced epoch time. The static sampling pool
of relation/graph-cut can have a negative influence on quality.

Sample from: All Entities Local Entities

Time Comm. MRR Time Comm. MRR

Random (R) 29s 0.7GB 0.775 29s 0.5GB 0.775

é Relation 2.8s 0.6GB 0.771 2.8s 0.4GB 0.729
& Strat. (CAR) 3.5s 0.3GB 0.771 2.9s 0.1GB 0.765

Graph-cut 33s 0.3GB 0.766 3.3s 0.1GB 0.506
=] Random (R) 21.1s 7.2GB 0.538 19.5s 1.3GB 0.547
m(') Relation 23.6s 7.1GB 0.538 22.6s 1.3GB 0.497
o0 Strat. (R) 29.8s 12.1GB 0.534 13.8s 1.2GB 0.531
- Graph-cut 28.3s 11.2GB 0.535 18.2s 0.2GB 0.211
L% Random (R) 347.2s 114.2GB 0.296 290.6s 27.2GB 0.297
g Relation 320.5s 111.4GB 0.296 275.6s 24.1GB 0.290
E Strat. (CAR) 393.1s 143.7GB 0.291 228.0s 15.0GB 0.308
§ Graph-cut 417.4s 137.7GB 0.294 317.2s 6.1GB 0.192

(c) Batch sampling is dataset-dependent (Random (R)).

Dataset Batch Neg. Time Comm. MRR Hits@10
0% 2.9s 0.7GB 0.775 0.859

FB15k 50% 2.9s 0.6GB 0.766 0.852
100% 2.7s 0.6GB 0.745 0.845

0% 21.1s 7.2GB 0.538 0.672

Yago3-10 50% 14.4s 5.6GB 0.422 0.589

100% 9.1s 1.0GB 0.375 0.555
Wiki- 0% 347.2s 114.2GB 0.296 0.395
data5m 50% 230.8s 72.3GB 0.224 0.321

100% 142.6s 19.4GB 0.186 0.274
Free- 0% 983.8s 295.0GB 0.364 0.483
base 50% 944.7s 263.4GB 0.420 0.525

100% 948.2s 232.0GB 0.405 0.512

use of local sampling. When local sampling was used, epoch times
and communication cost decreased for all partitioning techniques
on all datasets; stratification benefited the most.

While local sampling may be efficient, it is not always effective
as it may decrease quality. To gain insight into why this is the
case, Fig. 4 shows the progress of validation MRR during training
for various techniques. Note that there was a substantial drop in

mmm Stratification = Random — (L) no repartitioning
mmm Graph-cut Relation (RL) repartitioning

0.30
0.25
Z 0.20
=
0.15
0.10
0 50 100 150 200 250 300
Epoch

Figure 4: Local sampling without repartitioning led to sub-
stantial drops in embedding quality for stratification and
graph-cut. (ComplEx, Wikidata5m)

validation MRR for stratification and graph-cut partitioning once
local sampling was used. Stratification with repartitioning (as also
done in CARL stratification) remained unaffected. Since repartition-
ing changes the sampling pool from epoch to epoch, the quality
degradation was avoided.

We conclude that local sampling was generally efficient, but
required data repartitioning between epochs to avoid large drops
in embedding quality.

Batch Sampling. We analyzed the effect of batch sampling
next. We trained ComplEx in a 2@1 setup. For each setting, we
trained with 0%, 50% and 100% of entities sampled from within
the batch (and the rest shared). The results are shown in Tab. 9c.
We found that the substantial reduction of the sampling pool per-
formed by batch sampling consistently deteriorated embedding
quality on all datasets but Freebase, where batch sampling sub-
stantially improved embedding quality. Results are thus highly
dataset-dependent. Over all datasets a combination of uniform and
batch sampling was preferable. To see whether the quality degra-
dation can be avoided, we performed a separate hyperparameter
search with batch sampling enabled, but were not able to reach a
similar quality as achieved without batch sampling.

5.6 Combination of Sampling and Partitioning
Techniques (Tab. 10)

We investigated the interplay of partitioning techniques with local
sampling as well as batch sampling on Freebase, the only dataset for
which we saw a positive influence of batch sampling. Our results
for random and stratification partitioning are shown in Tab. 10.
Batch sampling was generally beneficial, whereas a combination
of local and batch sampling deteriorated quality with stratification
but not random partitioning.

5.7 Graph-Cut Partitioning (Tab. 11)

In our experiments, we often found that graph-cut partitioning led
to lower speedups than CARL stratification (in addition to often
leading to deteriorating embedding quality). The reason was that
triple partition sizes were often quite unbalanced. Tab. 11 shows
that this holds for all datasets, and that the time required to process a
partition varied substantially between smallest and largest partition.

Table 10: Comparison of sampling technique combinations
(ComplEx, Freebase).

Set- Partition Epoch Data sent Hits
. - MRR

up technique time per epoch @10

1@1 Seq. (mm) 3929s - 0.364 0.487

1@1 Seq.(B) (mm) 3925s - 0426 0.528

2@2 Random (R) 983s 295.0GB 0.364 0.483

232.0GB 0.365 0.485
263.4GB 0.420 0.525
232.8GB 0.426 0.529
124.3GB 0.327 0.439
182.4GB 0.391 0.491
123.2GB 0.325 0.424

2@2 Random (RL) 953s
2@2 Random (RB) 944s
2@2 Random (RLB) 966s
2@2 Strat. (CARL) 819s
2@2 Strat. (CARB) 1128s
2@2 Strat. (CARLB) 803s

Table 11: Graph-cut leads to unbalanced triple partitions. CV
is the coeflicient of variation of the triple partition sizes.

#Parti- #Triples Epoch time
Dataset .
tions CV Min Max Min Max
FB15k 8 24.9% 6.3% 17.4% 0.8s 2.0s
Yago3-10 371% 73% 22.0% 5.6s 14.8s

8
Wikidata5m 8 289% 7.3% 173% 92.4s 194.7s
8

Freebase 159% 9.4% 15.1% 587.9s 1170.6s

Table 12: Stratification - average fraction of active entities
per partition (M = 8).

FB15k Yago3-10 Wikidata5m Freebase

Normal 78.6% 37.3% 27.3% 25.9%
Combined 82.6% 62.0% 43.2% 31.3%

5.8 Plain Stratification (Tab. 13)

We used the improved CARL stratification throughout the experi-
mental study because it was consistently more efficient and effective
than plain stratification. Here we report on the influence of com-
bining mirror partitions (C), relocating only active entities (A), and
repartitioning (R). We trained various variants of stratification in a
2@1 setting and measured training time, embedding quality, and
communication costs.

Tab. 12 lists the average fraction of active entities for stratifi-
cation with M = 8 with and without combining mirror partitions.
Note that for the larger datasets, most entities are inactive, i.e.,
they do not occur in the respective partition. As shown in Tab. 13,
the restriction of parameter relocation to active entities substan-
tially reduced the network footprint (up to 70%) and also improved
epoch times (by up to almost 20%). Combining partitions further re-
duced the network footprint and communication cost as parameters
needed to be synchronized less often.

Repartitioning (R) mainly affected quality; see Fig. 5. In fact,
stratification without repartitioning led to a substantial drop in
quality due to local sampling, as discussed in Sec. 5.5. Stratification
with repartitioning as well as CARL stratification did not lead to

Table 13: With Stratification sampling only from active en-
tities (A) and combining mirror partitions (C) decreased net-
work footprint and epoch time (ComplEx 1@2).

All entities Active entities

Epoch Data Epoch Data
Dataset . -

time sent time sent

= FB15k 3.4s 0.2GB 3.6s 0.2GB

g Yago3-10 13.8s 1.2GB 10.7s 0.4GB

Z Wikidata5m 296.7s 60.3GB 245.6s 26.5GB

. o FBI15k 3.0s 0.1GB 29s 0.1GB

g & Yagos10 113s 06GB 109s 0.4GB
O 8

Wikidata5m 252.3s 31.0GB 228.0s 15.0GB

0.15
—— Stratification (L) —— Stratification (ARL)
010 /0 e Stratification (RL) Stratification (CARL)
0 50 100 150 200 250 300
Epoch

Figure 5: Sampling only from active entities (A) has a posi-
tive influence on quality (ComplEx, Wikidata5m).

reduced quality. In contrast, we observed a small improvement with
CARL stratification. This may be due to the change of sampling
bias when using active entities: it is closer to the actual distribution
of entities in the KG.

Overall, CARL stratification was instrumental for the effective-
ness of stratification; plain stratification was not competitive.

6 CONCLUSION

We described and evaluated state-of-the-art techniques for paral-
lel training of KGE models of large-scale knowledge graphs. We
found that it is possible to achieve high speedup (up to 8x with
8 GPUs) with high embedding quality, both in a single-machine
multi-GPU and in a multi-machine multi-GPU setup. However, the
parallelization techniques currently implemented in large-scale
KGE training frameworks did not realize these improvements and
often led to a quality degradation compared to sequential train-
ing. This was mainly caused by the combination of a static par-
titioning and local sampling used by these implementations. Our
experiments suggest that the overall choice of partitioning and
sampling technique is highly dataset-dependent. For example, on
Freebase, the random partitioning baseline in combination with
improved sampling methods led to the overall best results. On all
other datasets, CARL stratification—a variant of stratification as
used in PyTorch BigGraph—along with shared local sampling often
performed competitive or best.

REFERENCES

(1]

&

&

(6

=

[7

[

[10]

[11]

[12]

[13

[14]

[15]

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail
Galkin, Sahand Sharifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. 2020.
Bringing Light Into the Dark: A Large-scale Evaluation of Knowledge Graph
Embedding Models Under a Unified Framework. arXiv preprint arXiv:2006.13365
(2020).

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Shar-
ifzadeh, Volker Tresp, and Jens Lehmann. 2021. PyKEEN 1.0: A Python Library
for Training and Evaluating Knowledge Graph Embeddings. Journal of Machine
Learning Research 22, 82 (2021), 1-6. http://jmlr.org/papers/v22/20-825.html
Stephan Baier, Yunpu Ma, and Volker Tresp. 2017. Improving visual relationship
detection using semantic modeling of scene descriptions. In International Semantic
Web Conference. Springer, 53-68.

Ivana Balazevi¢, Carl Allen, and Timothy M Hospedales. 2019. Tucker: Tensor fac-
torization for knowledge graph completion. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing (EMNLP).

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013), 2787-2795.
Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek, Patrick Betz, and Rainer
Gemulla. 2020. LibKGE A knowledge graph embedding library for reproducible
research. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang, and Yangfeng
Ji. 2020. HittER: Hierarchical Transformers for Knowledge Graph Embeddings.
arXiv preprint arXiv:2008.12813 (2020).

Luca Costabello, Sumit Pai, Chan Le Van, Rory McGrath, Nicholas McCarthy,
and Pedro Tabacof. 2019. AmpliGraph: a Library for Representation Learning on
Knowledge Graphs. https://doi.org/10.5281/zenodo.2595043

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2D Knowledge Graph Embeddings. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Ad-
vances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018. 1811-1818. https://www.aaai.org/ocs/index.php/AAAT/AAAI18/paper/
view/17366

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of machine learning
research 12, 7 (2011).

Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. 2011. Large-
scale matrix factorization with distributed stochastic gradient descent. In Pro-
ceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining. 69-77.

Ronald L Graham. 1966. Bounds for certain multiprocessing anomalies. Bell
system technical journal 45, 9 (1966), 1563—-1581.

Xu Han, Shulin Cao, Lv Xin, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi Li.
2018. OpenKE: An Open Toolkit for Knowledge Embedding. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing (EMNLP).
George Karypis and Vipin Kumar. 1998. Multilevelk-way partitioning scheme
for irregular graphs. Journal of Parallel and Distributed computing 48, 1 (1998),
96-129.

Seyed Mehran Kazemi and David Poole. 2018. SimplE Embedding for Link
Prediction in Knowledge Graphs. In NeurIPS.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations.

Bhushan Kotnis and Vivi Nastase. 2017. Analysis of the impact of negative
sampling on link prediction in knowledge graphs. arXiv preprint arXiv:1708.06816
(2017).

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. 2018. Canonical
tensor decomposition for knowledge base completion. In Proceedings of 35th
International Conference on Machine Learning. PMLR, 2863-2872.

(19]

[20

[21]

[22

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

[37

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large-scale graph
embedding system. Proceedings of the 2nd SysML Conference (2019).

Sameh K Mohamed, Aayah Nounu, and Vit Novacek. 2019. Drug target discovery
using knowledge graph embeddings. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing. 11-18.

Jason Mohoney, Roger Waleffe, Yiheng Xu, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2021. Learning Massive Graph Embeddings on a Single Machine.
arXiv preprint arXiv:2101.08358 (2021).

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015.
A review of relational machine learning for knowledge graphs. Proc. IEEE (2015).

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way
model for collective learning on multi-relational data.. In Proceedings of the 28th
International Conference on Machine Learning, Vol. 11. 809-816.

Alexander Renz-Wieland, Rainer Gemulla, Steffen Zeuch, and V. Markl. 2020.

Dynamic parameter allocation in parameter servers. Proceedings of the VLDB
Endowment 13 (2020), 1877 — 1890.

Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo
Merialdo. 2021. Knowledge graph embedding for link prediction: A comparative
analysis. ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 2
(2021), 1-49.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. 2020. You CAN Teach
an Old Dog New Tricks! On Training Knowledge Graph Embeddings. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
BkxSmIBFvr

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593-607.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. RotatE: Knowl-
edge Graph Embedding by Relational Rotation in Complex Space. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
HkgEQnRqYQ

Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and Yiming
Yang. 2019. A re-evaluation of knowledge graph completion methods. arXiv
preprint arXiv:1911.03903 (2019).

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume
Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In Proceedings
of the 33rd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016. 2071-2080. http://proceedings.mlr.press/v48/
trouillon16.html

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724-2743.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan Liu, Juanzi Li, and Jian
Tang. 2021. KEPLER: A unified model for knowledge embedding and pre-trained
language representation. Transactions of the Association for Computational Lin-
guistics (2021).

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015.
Embedding Entities and Relations for Learning and Inference in Knowledge Bases.
In Proceedings of the International Conference on Learning Representations (ICLR).
Denghui Zhang, Manling Li, Yantao Jia, Yuanzhuo Wang, and Xueqi Cheng. 2017.
Efficient parallel translating embedding for knowledge graphs. In Proceedings of
the International Conference on Web Intelligence. 460-468.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019. Quaternion Knowledge Graph
Embeddings. In NeurIPS.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zi-Hao Ye, J. Dong, Hao Xiong,
Zheng Zhang, and G. Karypis. 2020. DGL-KE: Training Knowledge Graph Em-
beddings at Scale. Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval (2020).

Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. 2019. Graphvite: A high-
performance cpu-gpu hybrid system for node embedding. In The World Wide
Web Conference. 2494-2504.

http://jmlr.org/papers/v22/20-825.html
https://doi.org/10.5281/zenodo.2595043
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Background
	2.2 Parallel Training

	3 Partitioning
	3.1 Desiderata for Partitioning Techniques
	3.2 Random Partitioning
	3.3 Relation Partitioning
	3.4 Graph-Cut Partitioning
	3.5 Stratification Partitioning
	3.6 Improved Stratification Partitioning (CAR)

	4 Negative Sampling
	4.1 Uniform Sampling
	4.2 Shared Sampling
	4.3 Batch Sampling
	4.4 Local Sampling

	5 Experimental Study
	5.1 Key Findings
	5.2 Experimental Setup
	5.3 Partitioning Techniques (Tab. 5–6)
	5.4 Comparison to Original Work (Tab. 8)
	5.5 Sampling Techniques (Tab. 9)
	5.6 Combination of Sampling and Partitioning Techniques (Tab. 10)
	5.7 Graph-Cut Partitioning (Tab. 11)
	5.8 Plain Stratification (Tab. 13)

	6 Conclusion
	References

