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Recommender systems

Given:
> A user-item feedback matrix

Goal:

> Recommend additional
items users may like

Approach:
[. Predict missing ratings

II. Recommend items with
highest predicted ratings

How to recommend items

under constraints?
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Predicted ratings
DVDs
Available DVD per movie =2
Goal
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} LB and UB constraints
II1. Availability of items satisfied

\_ W,




-

Generalized Bipartite Matching (GBM)

1 <# Recommendations <2

Users A

Predicted ratings
DVDs
Available DVD per movie =2
Goal
> Recommend items to users s.t.
I Interesting for users } Maximum weight matching

LB and UB constraints

II. Neither too few nor too many } S.L.
III. Availability of items satisfied

\_ W,




-
Challenge

GBM optimally solvable in polynomial time
> E.g., linear programming
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> Efficient and scalable algorithm for large-scale GBM instances
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Framework

Phase 1: Approximate LP
> Compute “edge probabilities”

using linear programming

> Phase 1 >
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Framework

Phase 1: Approximate LP
> Compute “edge probabilities”
using linear programming

Phase 2: Round

> Select edges based on
probabilities from phase 1
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Phase 1: Computing edge probabilities

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)

» (@Gradient-based multiplicative weights update algorithm

> Approximately solves MPC LPs (¢: approx. parameter)
> LB and UB constraints satisfied up to (1+¢) == Almost feasible
> Objective value (1-¢) of the optimum & Near-optimal

> Poly-log rounds

> Easy to implement: Each round involves matrix-vector multiplications
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Phase 1: Computing edge probabilities

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)

1<deg<2 1.1 1.7 1.0 1.0

0<deg<2 2.0 1.4 1.4

Distributed Processing for GBM (details 1n paper)

» Communication depends on # nodes not # edges

> All computation 1n parallel

\_ Y,
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Phase 2: Selecting edges

> (Given: Edge probabilities from phase 1
» Goal: Select edges to be in final solution s. t.

I. LB and UB constraints satisfied (up to rounding)

II. Approx. guarantee preserved (in expectation)
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> (Given: Edge probabilities from phase 1
> (Goal: Select edges to be in final solution s. t.

. LB and UB constraints satisfied (up to rounding)

1.  Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:

1. Find a cycle/maximal path
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Phase 2: Selecting edges

> (Given: Edge probabilities from phase 1
» Goal: Select edges to be in final solution s. t.

LB and UB constraints satisfied (up to rounding)

Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:
1.

Find a cycle/maximal path

Modify edge prob. on the

cycle/maximal path (details omitted)

\

» If edge prob. = 1, include in solution

» If edge prob. = 0, remove from graph
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Phase 2: Selecting edges
> (G1ven: Edge probabilities from phase 1
> (Goal: Select edges to be in final solution s. t.
. LB and UB constraints satisfied (up to rounding)
.  Approx. guarantee preserved (in expectation)
Seq. algorithm [Gandhi et al. 06]: Cycle
1. Find a cycle/maximal path 1.7 1.0
2.  Modify edge prob. on the
cycle/maximal path (details omitted) : 1
» If edge prob. = 1, include in solution \
» If edge prob. = 0, remove from graph
3. Repeat until graph 1s empty
2.0 1.4
16
N /
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Phase 2: Selecting edges
> (G1ven: Edge probabilities from phase 1
» Goal: Select edges to be in final solution s. t.
I. LB and UB constraints satisfied (up to rounding)
1. Approx. guarantee preserved (in expectation)
Seq. algorithm [Gandhi et al. 06]: Maximal path
1. Find a cycle/maximal path 1.1 1.7 1.0 1.0

2.  Modify edge prob. on the
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Phase 2: Selecting edges
> (G1ven: Edge probabilities from phase 1
» Goal: Select edges to be in final solution s. t.
I. LB and UB constraints satisfied (up to rounding)
1. Approx. guarantee preserved (in expectation)
Seq. algorithm [Gandhi et al. 06]: Maximal path
1. Find a cycle/maximal path 1.4 1.7 1.0 1.0

2.  Modify edge prob. on the
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Phase 2: Selecting edges

How to distribute?
>

A local cycle 1s a global cycle

A local maximal path is not

Partition ¥

a global maximal path °© ¢
Order of processing cycles has no

affect on approx. guarantess

Partition |l

A
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Phase 2: Selecting edges

Distributed algorithm:
1. Partition edges uniformly across

compute nodes Partition [ Partition |l
2. Process all cycles in each partition ¢ o o o
3. Merge all partitions W W
4. Repeat until graph 1s “small enough”
5. On last partition: Process all cycles

and maximal paths using seq. alg.




4 N
Phase 2: Selecting edges

Distributed algorithm:
1. Partition edges uniformly across

compute nodes Partition [ Partition |l
2. Process all cycles in each partition ¢ o o o
3. Merge all partitions W W
4. Repeat until graph 1s “small enough”
5. On last partition: Process all cycles \ /

and maximal paths using seq. alg. \ E F [




-

Large-Scale (Semi-) Synthetic Experiments

Cluster of commodity nodes

~
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Scales to very large problem
Instances
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Summary

» Recommending items to users under constraints

» Contributions:
> A scalable distributed algorithm for large-scale GBM
> A simple and efficient algorithm for general MPC LPs
> Effective distributed processing for GBM
> A distributed randomized rounding for GBM

» Experiments indicate scalability to instances with millions
and nodes and billions of edges
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Thank you
Questions?




