A Distributed Algorithm for Large-Scale Generalized Matching

Faraz Makari, Baruch Awerbuch, Rainer Gemulla, Rohit Khandekar, Julián Mestre, Mauro Sozio

Given:

> A user-item feedback matrix

Goal:

 Recommend additional items users may like

Given:

> A user-item feedback matrix

Goal:

 Recommend additional items users may like

Approach:

I. Predict missing ratings

	Providents and Billion	MATRIX	
	4	1	2
	5	1	3
0	4	4	2
	3	5	2

Given:

> A user-item feedback matrix

Goal:

 Recommend additional items users may like

Approach:

- I. Predict missing ratings
- II. Recommend items with highest predicted ratings

Given:

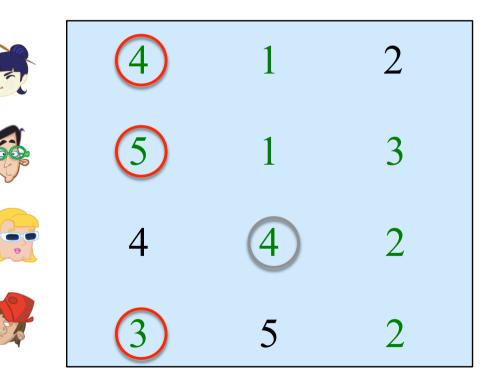
> A user-item feedback matrix

Goal:

 Recommend additional items users may like

Approach:

- I. Predict missing ratings
- II. Recommend items with highest predicted ratings



Given:

> A user-item feedback matrix

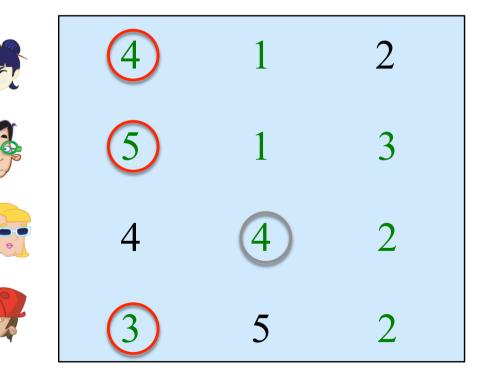
Goal:

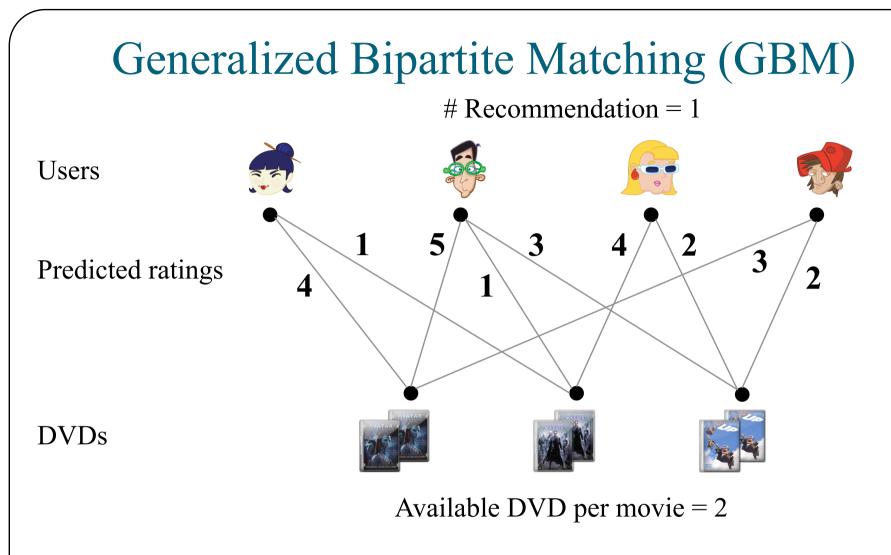
 Recommend additional items users may like

Approach:

- I. Predict missing ratings
- II. Recommend items with highest predicted ratings

How to recommend items under constraints?

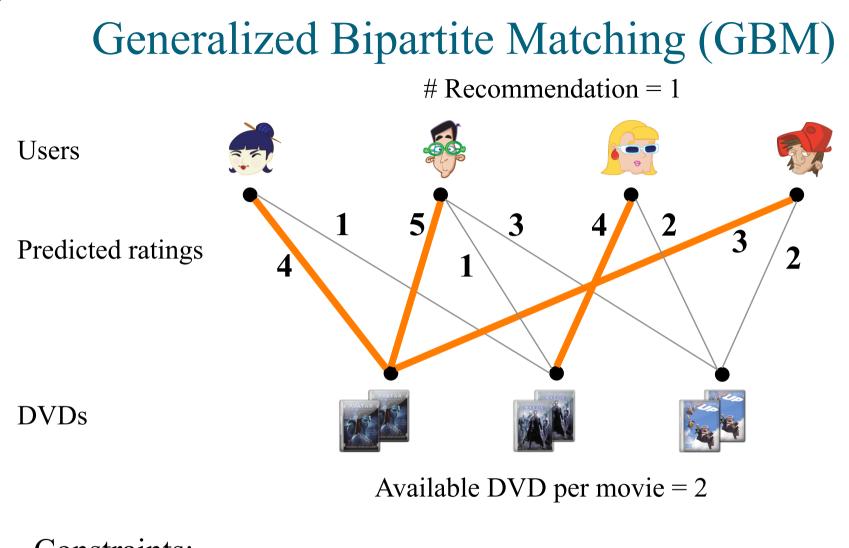




Constraints:

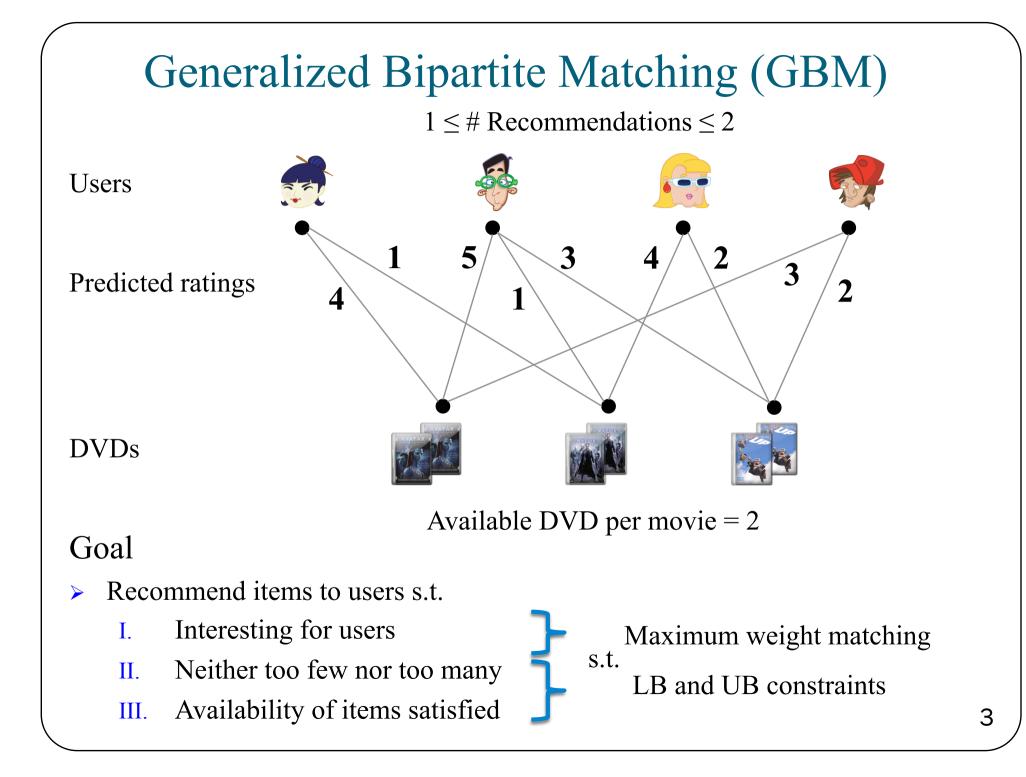
- Neither too few nor too many recommendations
- Number of DVDs limited

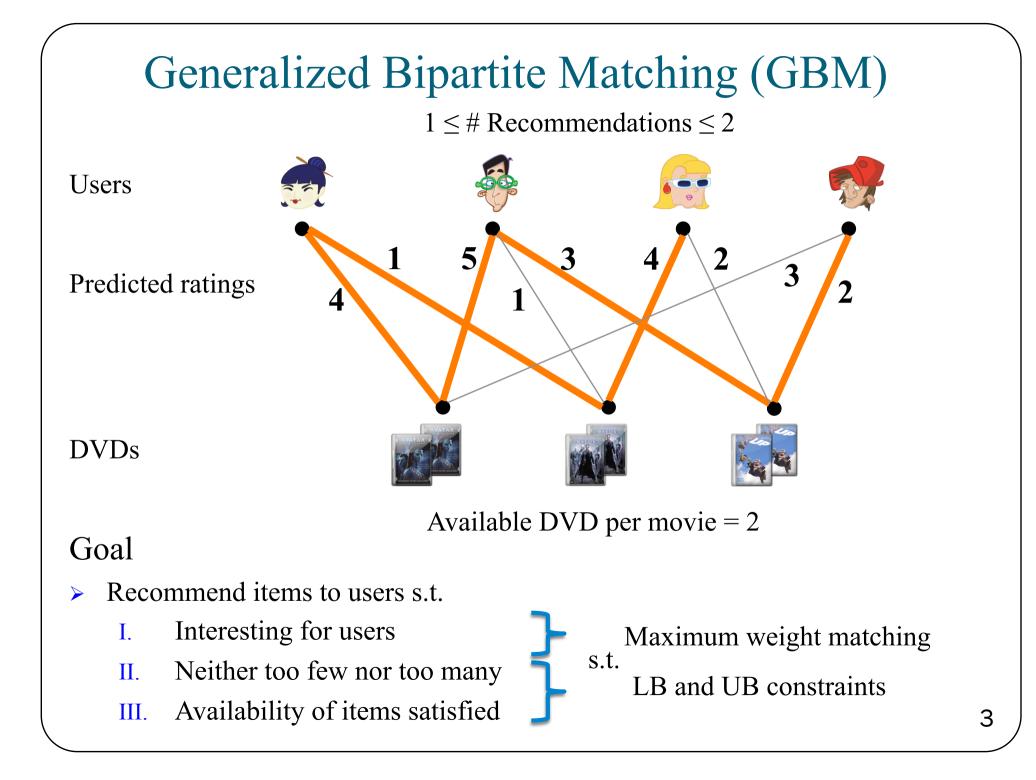
•••



- Constraints:
- Neither too few nor too many recommendations
- Number of DVDs limited

•••





Challenge

GBM optimally solvable in polynomial time

- > E.g., linear programming
- Available solvers handle small instances very well

Challenge

GBM optimally solvable in polynomial time

- > E.g., linear programming
- > Available solvers handle small instances very well

Real applications can be large

- E.g., Netflix has >20M users, >20k movies
- Available solvers do not scale to large problems

Challenge

GBM optimally solvable in polynomial time

- > E.g., linear programming
- > Available solvers handle small instances very well

Real applications can be large

E.g., Netflix has >20M users, >20k movies

Available solvers do not scale to large problems

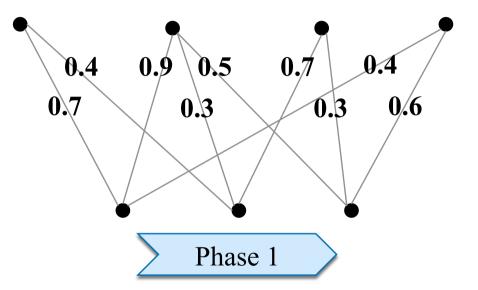
Goal:

Efficient and scalable algorithm for large-scale GBM instances

Framework

Phase 1: Approximate LP

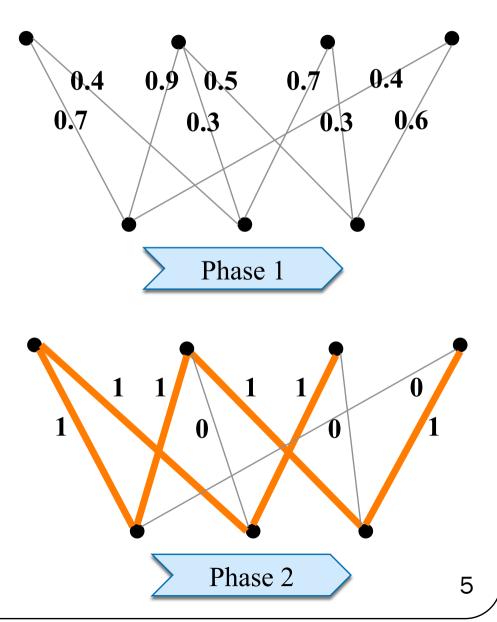
 Compute "edge probabilities" using linear programming



Framework

Phase 1: Approximate LP

 Compute "edge probabilities" using linear programming



Phase 2: Round

 Select edges based on probabilities from phase 1

Contrib. 1

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)

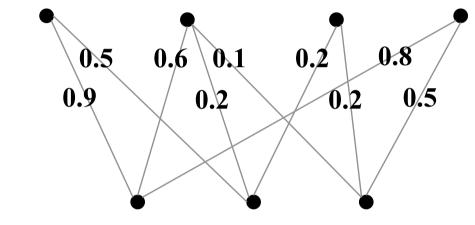
- Gradient-based multiplicative weights update algorithm
- > Approximately solves MPC LPs (ε: approx. parameter)
 - > LB and UB constraints satisfied up to $(1\pm\epsilon)$ \triangleleft Almost feasible
 - > Objective value $(1-\varepsilon)$ of the optimum
- Poly-log rounds
- > Easy to implement: Each round involves matrix-vector multiplications

Near-optimal

Contrib. 1

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)

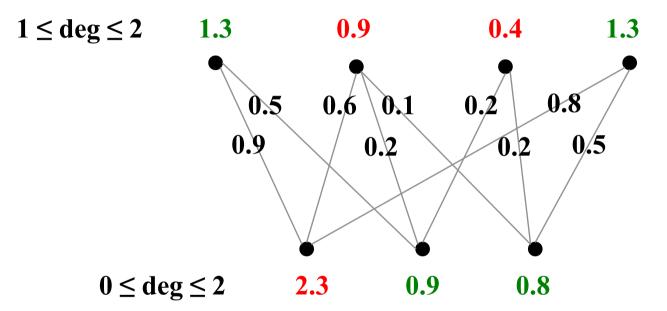
 $1 \leq deg \leq 2$



 $0 \leq deg \leq 2$

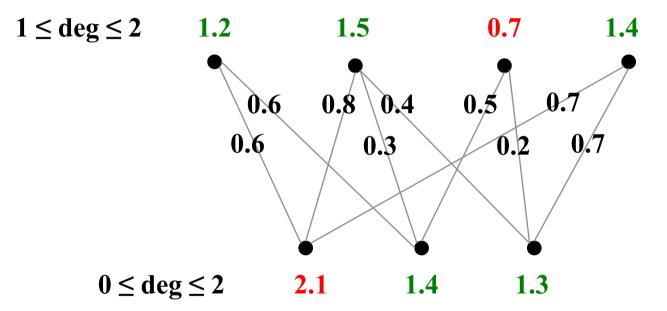
Contrib. 1

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)



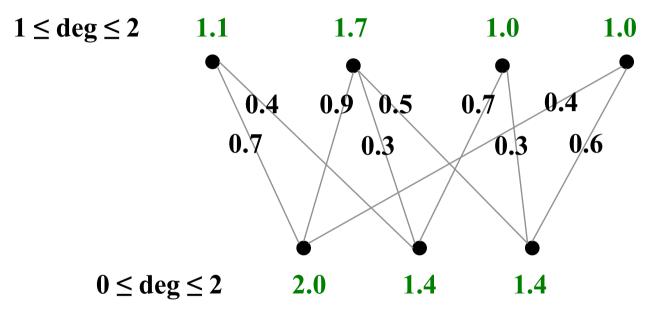
Contrib. 1

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)



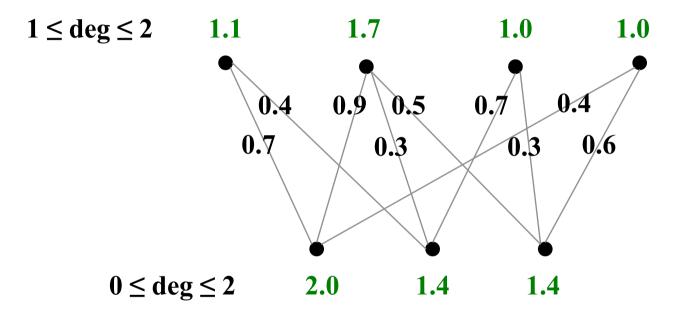
Contrib. 1

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)



Contrib. 1

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)

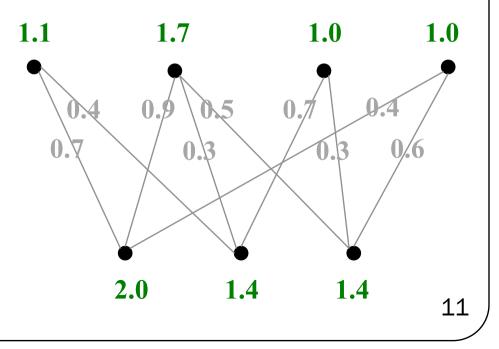


Contrib. 2

Distributed Processing for GBM (details in paper)

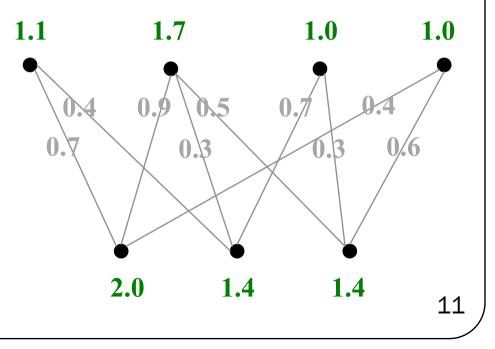
- Communication depends on # nodes not # edges
- > All computation in parallel

- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)



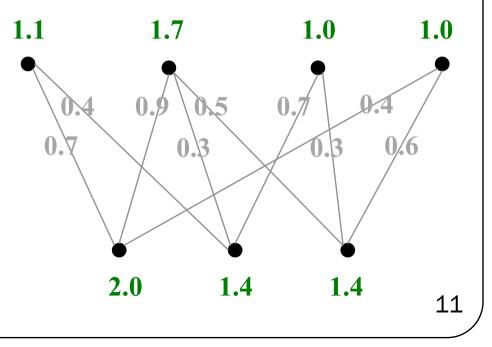
- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)

Naïve approach: Round independently using prob. from phase 1



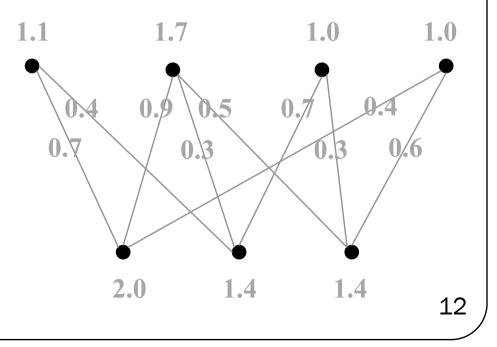
- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)

Naïve approach: Round independently using prob. from phase 1



- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)

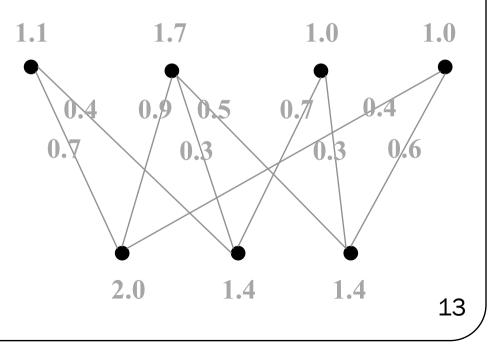
Seq. algorithm [Gandhi et al. 06]:



- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:

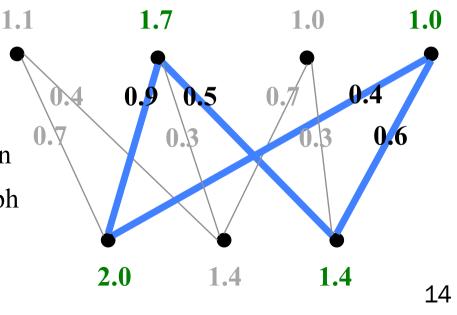
1. Find a cycle/maximal path



- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:

- 1. Find a cycle/maximal path
- Modify edge prob. on the cycle/maximal path (details omitted)
 - If edge prob. = 1, include in solution
 - > If edge prob. = 0, remove from graph

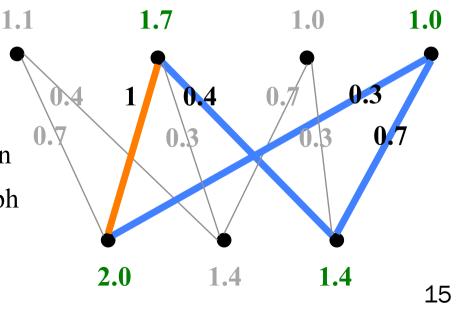


Cycle

- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:

- 1. Find a cycle/maximal path
- Modify edge prob. on the cycle/maximal path (details omitted)
 - If edge prob. = 1, include in solution
 - > If edge prob. = 0, remove from graph



Cycle

- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:

- 1. Find a cycle/maximal path
- Modify edge prob. on the cycle/maximal path (details omitted)
 - If edge prob. = 1, include in solution
 - > If edge prob. = 0, remove from graph
- 3. Repeat until graph is empty

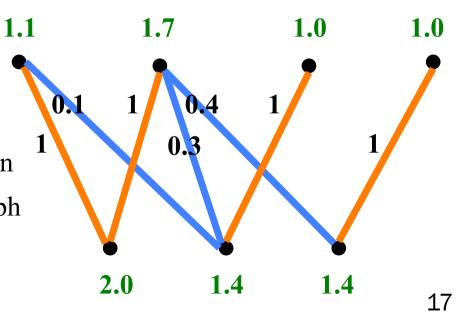
1.1 1.7 1.0 1.0 0.4 1 0.4 0.7 0.3 0.5 0.3 0.7 2.0 1.4 1.4 16

Cycle

- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:

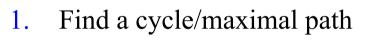
- 1. Find a cycle/maximal path
- Modify edge prob. on the cycle/maximal path (details omitted)
 - If edge prob. = 1, include in solution
 - > If edge prob. = 0, remove from graph
- 3. Repeat until graph is empty



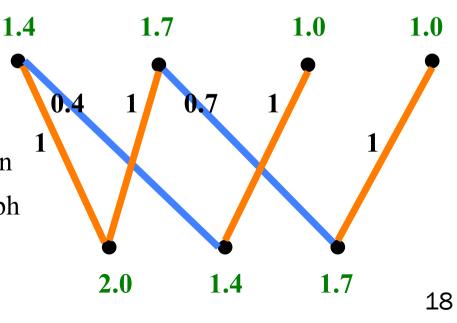
Maximal path

- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:



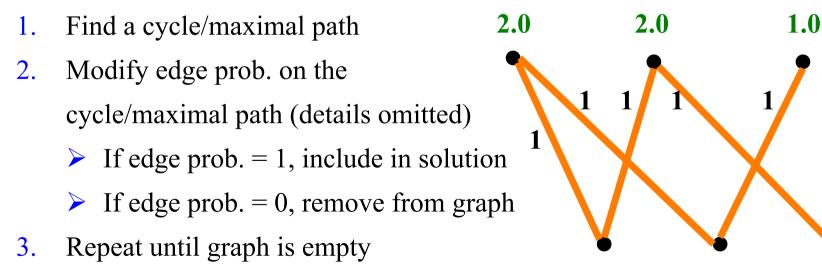
- Modify edge prob. on the cycle/maximal path (details omitted)
 - If edge prob. = 1, include in solution
 - > If edge prob. = 0, remove from graph
- 3. Repeat until graph is empty



Maximal path

- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:



1.0

19

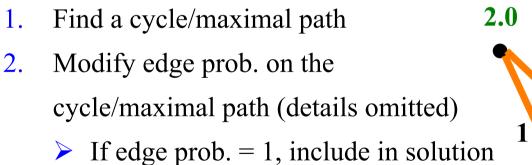
2.0

2.0

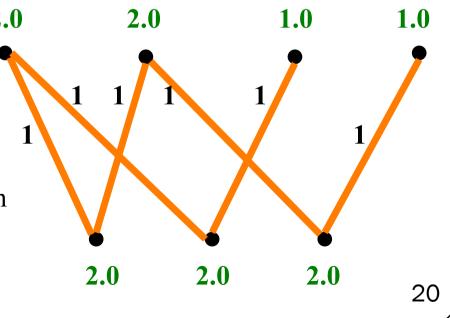
2.0

- Given: Edge probabilities from phase 1
- ➢ Goal: Select edges to be in final solution s. t.
 - I. LB and UB constraints satisfied (up to rounding)
 - II. Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:



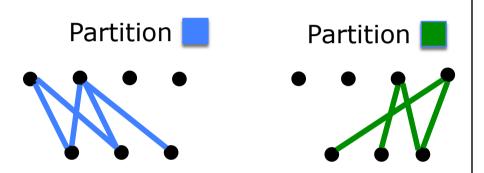
- > If edge prob. = 0, remove from graph
- 3. Repeat until graph is empty



Contrib. 3

How to distribute?

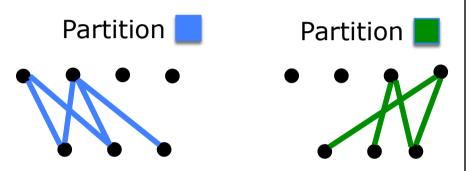
- A local cycle is a global cycle
- A local maximal path is not a global maximal path
- Order of processing cycles has no affect on approx. guarantess



Contrib. 3

Distributed algorithm:

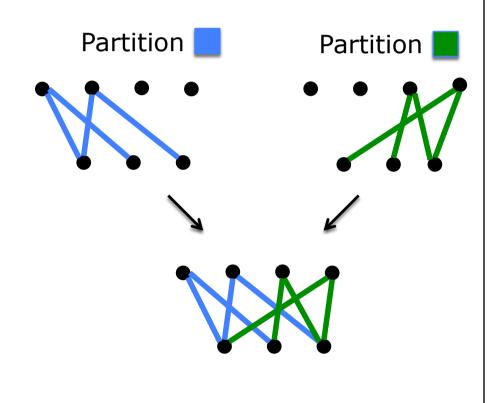
- 1. Partition edges uniformly across compute nodes
- 2. Process all cycles in each partition
- 3. Merge all partitions
- 4. Repeat until graph is "small enough"
- 5. On last partition: Process all cycles and maximal paths using seq. alg.

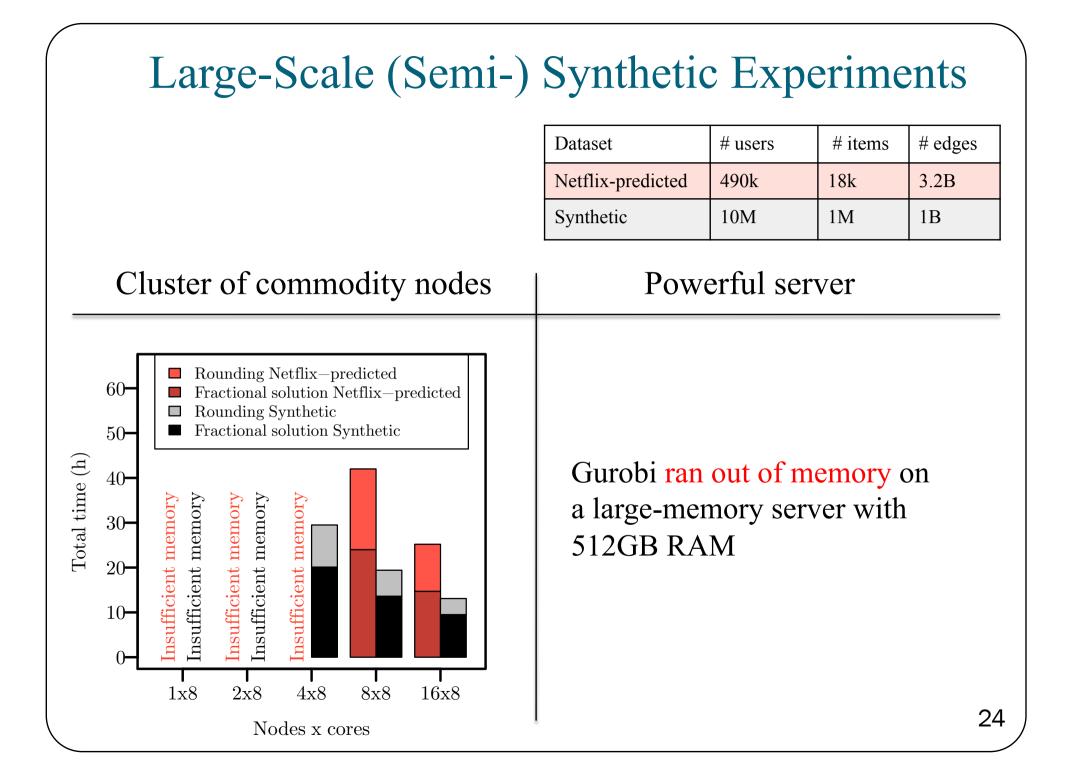


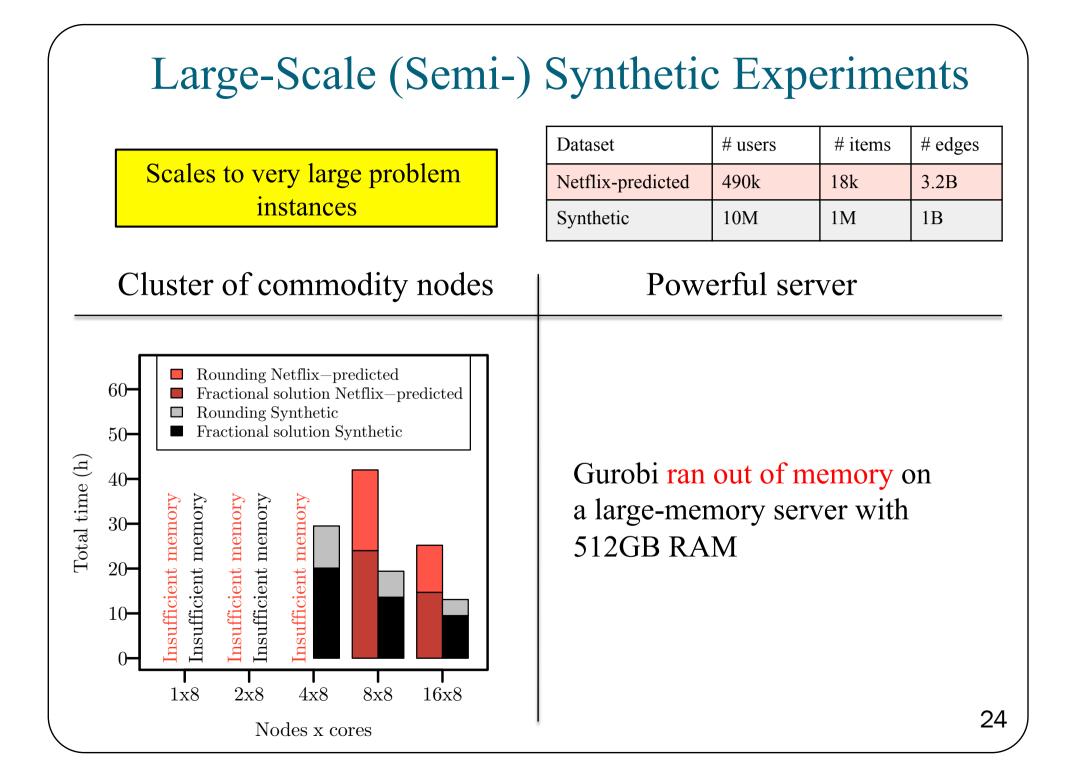
Contrib. 3

Distributed algorithm:

- 1. Partition edges uniformly across compute nodes
- 2. Process all cycles in each partition
- 3. Merge all partitions
- 4. Repeat until graph is "small enough"
- 5. On last partition: Process all cycles and maximal paths using seq. alg.







Summary

- Recommending items to users under constraints
- Contributions:
 - A scalable distributed algorithm for large-scale GBM
 - A simple and efficient algorithm for general MPC LPs
 - Effective distributed processing for GBM
 - A distributed randomized rounding for GBM
- Experiments indicate scalability to instances with millions and nodes and billions of edges

Summary

- Recommending items to users under constraints
- Contributions:
 - A scalable distributed algorithm for large-scale GBM
 - A simple and efficient algorithm for general MPC LPs
 - Effective distributed processing for GBM
 - A distributed randomized rounding for GBM
- Experiments indicate scalability to instances with millions and nodes and billions of edges

Thank you Questions?