A Distributed Algorithm for Large-Scale

Generalized Matching

Faraz Makari, Baruch Awerbuch, Rainer Gemulla,
Rohit Khandekar, Julidan Mestre, Mauro Sozio

l ' l I I max planck institut
informatik

-

Recommender systems

Given:
> A user-item feedback matrix

Goal:

> Recommend additional
items users may like

-

Recommender systems

Given:
> A user-item feedback matrix

Goal:

> Recommend additional
items users may like

Approach:

[. Predict missing ratings

-

Recommender systems

Given:
> A user-item feedback matrix

Goal:

> Recommend additional
items users may like

Approach:

[. Predict missing ratings

II. Recommend items with
highest predicted ratings

-

Recommender systems

Given:
> A user-item feedback matrix

Goal:

> Recommend additional
items users may like

Approach:
[. Predict missing ratings

II. Recommend items with
highest predicted ratings

-

_

Recommender systems

Given:
> A user-item feedback matrix

Goal:

> Recommend additional
items users may like

Approach:
[. Predict missing ratings

II. Recommend items with
highest predicted ratings

How to recommend items

under constraints?

-

Generalized Bipartite Matching (GBM)
Recommendation = 1
Users
Predicted ratings
DVDs
Available DVD per movie =2
Constraints:
> Neither too few nor too many recommendations
> Number of DVDs limited
>
N

-

Generalized Bipartite Matching (GBM)
Recommendation = 1
Users
Predicted ratings
DVDs
Available DVD per movie =2
Constraints:
> Neither too few nor too many recommendations
> Number of DVDs limited
> e
-

-

Generalized Bipartite Matching (GBM)

1 <# Recommendations <2

Users Q

Predicted ratings
DVDs
Available DVD per movie =2
Goal
> Recommend items to users s.t.
I Interesting for users } Maximum weight matching

II. Neither too few nor too many

S.1.
} LB and UB constraints
II1. Availability of items satisfied

_ W,

-

Generalized Bipartite Matching (GBM)

1 <# Recommendations <2

Users A

Predicted ratings
DVDs
Available DVD per movie =2
Goal
> Recommend items to users s.t.
I Interesting for users } Maximum weight matching

LB and UB constraints

II. Neither too few nor too many } S.L.
III. Availability of items satisfied

_ W,

-
Challenge

GBM optimally solvable in polynomial time
> E.g., linear programming
> Available solvers handle small instances very well

-
Challenge

GBM optimally solvable in polynomial time
> E.g., linear programming
> Available solvers handle small instances very well

Real applications can be large
> E.g., Netflix has >20M users, >20k movies

» Available solvers do not scale to large problems

NETERL N
LOVEFILME

-

Goal:

Challenge

GBM optimally solvable in polynomial time
> E.g., linear programming
> Available solvers handle small instances very well

Real applications can be large
> E.g., Netflix has >20M users, >20k movies

» Available solvers do not scale to large problems

NETELIX
LOVEFILME

> Efficient and scalable algorithm for large-scale GBM instances

-

Framework

Phase 1: Approximate LP
> Compute “edge probabilities”

using linear programming

> Phase 1 >

4 N
Framework

Phase 1: Approximate LP
> Compute “edge probabilities”
using linear programming

Phase 2: Round

> Select edges based on
probabilities from phase 1

4 N
Phase 1: Computing edge probabilities

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)

» (@Gradient-based multiplicative weights update algorithm

> Approximately solves MPC LPs (¢: approx. parameter)
> LB and UB constraints satisfied up to (1+¢) == Almost feasible
> Objective value (1-¢) of the optimum & Near-optimal

> Poly-log rounds

> Easy to implement: Each round involves matrix-vector multiplications

-

Phase 1: Computing edge probabilities

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)

1<deg<2

0<deg<2

~

-

Phase 1: Computing edge probabilities

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)

1<deg<2 1.3 0.9 0.4 1.3

~

-

Phase 1: Computing edge probabilities

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)

1<deg<2 1.2 1.5 0.7 1.4

~

-

Phase 1: Computing edge probabilities

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)

1<deg<2 1.1 1.7 1.0 1.0

~

4 N
Phase 1: Computing edge probabilities

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP)

1<deg<2 1.1 1.7 1.0 1.0

0<deg<2 2.0 1.4 1.4

Distributed Processing for GBM (details 1n paper)

» Communication depends on # nodes not # edges

> All computation 1n parallel

_ Y,

4 N
Phase 2: Selecting edges

> (Given: Edge probabilities from phase 1
» Goal: Select edges to be in final solution s. t.

I. LB and UB constraints satisfied (up to rounding)

II. Approx. guarantee preserved (in expectation)

4 N
Phase 2: Selecting edges

> (Given: Edge probabilities from phase 1
> (Goal: Select edges to be in final solution s. t.

I. LB and UB constraints satisfied (up to rounding)

II. Approx. guarantee preserved (in expectation)
Naive approach: Round independently using prob. from phase 1

1.1 1.7 1.0 1.0

4 N
Phase 2: Selecting edges

> (Given: Edge probabilities from phase 1
» Goal: Select edges to be in final solution s. t.

I. LB and UB constraints satisfied (up to rounding) X

II. Approx. guarantee preserved (in expectation) v

Naive approach: Round independently using prob. from phase 1

-
Phase 2: Selecting edges

> (Given: Edge probabilities from phase 1
> (Goal: Select edges to be in final solution s. t.

. LB and UB constraints satisfied (up to rounding)

1. Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:

-
Phase 2: Selecting edges

> (Given: Edge probabilities from phase 1
> (Goal: Select edges to be in final solution s. t.

. LB and UB constraints satisfied (up to rounding)

1. Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:

1. Find a cycle/maximal path

-

2.

L.

II.

Phase 2: Selecting edges

> (Given: Edge probabilities from phase 1
» Goal: Select edges to be in final solution s. t.

LB and UB constraints satisfied (up to rounding)

Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:
1.

Find a cycle/maximal path

Modify edge prob. on the

cycle/maximal path (details omitted)

\

» If edge prob. = 1, include in solution

» If edge prob. = 0, remove from graph

1.7

N

2.0

Cycle

1.4

1.0

-

2.

L.

II.

Phase 2: Selecting edges

> (Given: Edge probabilities from phase 1
» Goal: Select edges to be in final solution s. t.

LB and UB constraints satisfied (up to rounding)

Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:
1.

Find a cycle/maximal path

Modify edge prob. on the

cycle/maximal path (details omitted)

\

» If edge prob. = 1, include in solution

» If edge prob. = 0, remove from graph

1.7

N

2.0

Cycle

1.4

1.0

4)
Phase 2: Selecting edges
> (G1ven: Edge probabilities from phase 1
> (Goal: Select edges to be in final solution s. t.
. LB and UB constraints satisfied (up to rounding)
. Approx. guarantee preserved (in expectation)
Seq. algorithm [Gandhi et al. 06]: Cycle
1. Find a cycle/maximal path 1.7 1.0
2. Modify edge prob. on the
cycle/maximal path (details omitted) : 1
» If edge prob. = 1, include in solution \
» If edge prob. = 0, remove from graph
3. Repeat until graph 1s empty
2.0 1.4
16
N /

4)
Phase 2: Selecting edges
> (G1ven: Edge probabilities from phase 1
» Goal: Select edges to be in final solution s. t.
I. LB and UB constraints satisfied (up to rounding)
1. Approx. guarantee preserved (in expectation)
Seq. algorithm [Gandhi et al. 06]: Maximal path
1. Find a cycle/maximal path 1.1 1.7 1.0 1.0

2. Modify edge prob. on the
cycle/maximal path (details omitted)
» If edge prob. = 1, include in solution
» If edge prob. = 0, remove from graph
3. Repeat until graph 1s empty

2.0 1.4

1.4

4)
Phase 2: Selecting edges
> (G1ven: Edge probabilities from phase 1
» Goal: Select edges to be in final solution s. t.
I. LB and UB constraints satisfied (up to rounding)
1. Approx. guarantee preserved (in expectation)
Seq. algorithm [Gandhi et al. 06]: Maximal path
1. Find a cycle/maximal path 1.4 1.7 1.0 1.0

2. Modify edge prob. on the
cycle/maximal path (details omitted)

» If edge prob. = 1, include in solution 1

» If edge prob. = 0, remove from graph

3. Repeat until graph 1s empty

2.0 1.4

Phase 2: Selecting edges

> (Given: Edge probabilities from phase 1
> (Goal: Select edges to be in final solution s. t.

. LB and UB constraints satisfied (up to rounding)

1. Approx. guarantee preserved (in expectation)

Seq. algorithm [Gandhi et al. 06]:

1. Find a cycle/maximal path 2.0 2.0
2. Modify edge prob. on the a s
cycle/maximal path (details omitted) 11
» If edge prob. = 1, include in solution 1
» If edge prob. = 0, remove from graph
3. Repeat until graph 1s empty ®
2.0

Phase 2: Selecting edges

> (Given: Edge probabilities from phase 1
> (Goal: Select edges to be in final solution s. t.

. LB and UB constraints satisfied (up to rounding) v

1. Approx. guarantee preserved (in expectation) v

Seq. algorithm [Gandhi et al. 06]:

1. Find a cycle/maximal path 2.0 2.0
2. Modify edge prob. on the a s
cycle/maximal path (details omitted) 1 171
» If edge prob. = 1, include in solution 1
» If edge prob. = 0, remove from graph
3. Repeat until graph 1s empty ®
2.0

-

>

Phase 2: Selecting edges

How to distribute?
>

A local cycle 1s a global cycle

A local maximal path is not

Partition ¥

a global maximal path °© ¢
Order of processing cycles has no

affect on approx. guarantess

Partition |l

A

4 N
Phase 2: Selecting edges

Distributed algorithm:
1. Partition edges uniformly across

compute nodes Partition [Partition |l
2. Process all cycles in each partition ¢ o o o
3. Merge all partitions W W
4. Repeat until graph 1s “small enough”
5. On last partition: Process all cycles

and maximal paths using seq. alg.

4 N
Phase 2: Selecting edges

Distributed algorithm:
1. Partition edges uniformly across

compute nodes Partition [Partition |l
2. Process all cycles in each partition ¢ o o o
3. Merge all partitions W W
4. Repeat until graph 1s “small enough”
5. On last partition: Process all cycles \ /

and maximal paths using seq. alg. \ E F [

-

Large-Scale (Semi-) Synthetic Experiments

Cluster of commodity nodes

~

Dataset # users #items | # edges
Netflix-predicted | 490k 18k 3.2B
Synthetic 10M IM 1B

Powerful server

Total time (h)

60

50+

=

30

20—

10+

B Rounding Netflix—predicted
B Fractional solution Netflix—predicted
O Rounding Synthetic

B Fractional solution Synthetic
) o >

— — ~ ~

© o © O O

58 & &8 g

O © T O 9

5§ &8 & 8 &

+~ +~ = -+

=S 4 = g S

gL gL g

o o T . ©

s B o) =

n n n n n

= 4 = 4 =

[— p—

I I I I I

1x8 2x8 4x8 8x8 16x8

Nodes x cores

Gurobi ran out of memory on

a large-memory server with

512GB RAM

-

Large-Scale (Semi-) Synthetic Experiments

~

Scales to very large problem
Instances

Cluster of commodity nodes

Dataset # users #items | # edges
Netflix-predicted | 490k 18k 3.2B
Synthetic 10M IM 1B

Powerful server

Total time (h)

60

50+

=

30

20—

10+

B Rounding Netflix—predicted
B Fractional solution Netflix—predicted
O Rounding Synthetic

B Fractional solution Synthetic
) o >

— — ~ ~

© & © o O

58 & &8 g

O © T O 9

5§ &8 & 8 &

+~ +~ = -+

=S 4 = g S

gL gL g

o o T . ©

s B o) =

n n n n n

= 4 = 4 =

[— p—

I I I I I

1x8 2x8 4x8 8x8 16x8

Nodes x cores

Gurobi ran out of memory on

a large-memory server with

512GB RAM

-

Summary

» Recommending items to users under constraints

» Contributions:
> A scalable distributed algorithm for large-scale GBM
> A simple and efficient algorithm for general MPC LPs
> Effective distributed processing for GBM
> A distributed randomized rounding for GBM

» Experiments indicate scalability to instances with millions
and nodes and billions of edges

-

Summary

» Recommending items to users under constraints

» Contributions:
> A scalable distributed algorithm for large-scale GBM
> A simple and efficient algorithm for general MPC LPs
> Effective distributed processing for GBM
> A distributed randomized rounding for GBM

» Experiments indicate scalability to instances with millions
and nodes and billions of edges

Thank you
Questions?

