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Given:  
    A user-item feedback matrix 

Goal: 
    Recommend additional 
      items users may like   

Approach: 
I.  Predict missing ratings 
II.  Recommend items with 

highest predicted ratings 

How to recommend items 
under constraints?  
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Generalized Bipartite Matching (GBM) 
1 ≤ # Recommendations ≤ 2 
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Available DVD per movie = 2 
Goal 
  Recommend items to users s.t. 

I.  Interesting for users 
II.  Neither too few nor too many 
III.  Availability of items satisfied 

Maximum weight matching   

LB and UB constraints 
s.t. 
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  E.g., linear programming 
  Available solvers handle small instances very well 

Real applications can be large 
  E.g., Netflix has >20M users, >20k movies  
  Available solvers do not scale to large problems   

Goal: 
  Efficient and scalable algorithm for large-scale GBM instances 
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Framework 
Phase 1: Approximate LP 
  Compute “edge probabilities’’  
 using linear programming 

Phase 2: Round 
  Select edges based on 

probabilities from phase 1   
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Phase 1: Computing edge probabilities 

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP) 
  Gradient-based multiplicative weights update algorithm 
  Approximately solves MPC LPs (ε: approx. parameter)  

  LB and UB constraints satisfied up to (1±ε)               Almost feasible  
  Objective value (1-ε) of the optimum                         Near-optimal 

  Poly-log rounds 
  Easy to implement: Each round involves matrix-vector multiplications   
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Phase 1: Computing edge probabilities 

Algorithm for Mixed Packing Covering (MPC) LPs (like GBM LP) 

Distributed Processing for GBM (details in paper) 
  Communication depends on # nodes not # edges 
  All computation in parallel 10 
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Phase 2: Selecting edges 
  Given: Edge probabilities from phase 1   
  Goal: Select edges to be in final solution s. t.  

I.  LB and UB constraints satisfied (up to rounding)     
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  Given: Edge probabilities from phase 1   
  Goal: Select edges to be in final solution s. t.  

I.  LB and UB constraints satisfied (up to rounding)    
II.  Approx. guarantee preserved (in expectation)   

Seq. algorithm [Gandhi et al. 06]: 
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  Given: Edge probabilities from phase 1   
  Goal: Select edges to be in final solution s. t.  

I.  LB and UB constraints satisfied (up to rounding)    
II.  Approx. guarantee preserved (in expectation)   

Seq. algorithm [Gandhi et al. 06]: 
1.  Find a cycle/maximal path 
2.  Modify edge prob. on the 
 cycle/maximal path (details omitted) 

  If edge prob. = 1, include in solution  
  If edge prob. = 0, remove from graph 
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How to distribute? 
  A local cycle is a global cycle 
  A local maximal path is not  
 a global maximal path 
  Order of processing cycles has no 

affect on approx. guarantess 

Contrib. 3 
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Distributed algorithm: 
1.  Partition edges uniformly across 

compute nodes 

2.  Process all cycles in each partition 

3.  Merge all partitions  

4.  Repeat until graph is “small enough”  

5.  On last partition: Process all cycles    
and maximal paths using seq. alg.   
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and maximal paths using seq. alg.   
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Dataset # users  # items # edges 

Netflix-predicted 490k  18k  3.2B 

Synthetic 10M  1M  1B 

Gurobi ran out of memory on  
a large-memory server with   
512GB RAM  
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  Contributions: 
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 A simple and efficient algorithm for general MPC LPs 

 Effective distributed processing for GBM 

 A distributed randomized rounding for GBM  

  Experiments indicate scalability to instances with millions  
and nodes and billions of edges   
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Thank you 
Questions? 


