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Abstract. We provide parallel algorithms for large-scale matrix completion on problems with
millions of rows, millions of columns, and billions of revealed entries. We focus on in-memory
algorithms that run either in a shared-memory environment on a powerful compute node or in a
shared-nothing environment on a small cluster of commodity nodes; even very large problems can
be handled effectively in these settings. Our ASGD, DSGD-MR, DSGD++, and CSGD algorithms
are novel variants of the popular stochastic gradient descent (SGD) algorithm, with the latter three
algorithms based on a new “stratified SGD” approach. All of the algorithms are cache-friendly
and exploit thread-level parallelism, in-memory processing, and asynchronous communication.
We investigate the performance of both new and existing algorithms via a theoretical complex-
ity analysis and a set of large-scale experiments. The results show that CSGD is more scalable,
and up to 60% faster, than the best-performing alternative method in the shared-memory setting.
DSGD++ is superior in terms of overall runtime, memory consumption, and scalability in the
shared-nothing setting. For example, DSGD++ can solve a difficult matrix completion problem
on a high-variance matrix with 10M rows, 1M columns, and 10B revealed entries in around 40
minutes on 16 compute nodes. In general, algorithms based on stochastic gradient descent ap-
pear to perform better than algorithms based on alternating minimizations, such as the PALS and
DALS alternating least-squares algorithms.

Keywords: parallel and distributed matrix completion; low-rank matrix factorization; stochastic
gradient descent; recommender systems

1. Introduction

Low-rank matrix completion techniques have recently received significant attention
in the data mining community. In particular, they have been successfully applied in
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the context of collaborative filtering in recommender systems (Chen et al., 2012; Das
et al., 2010; Hu et al., 2008; Koren et al., 2009; Mackey et al., 2011; Niu et al., 2011; Recht
and Ré, 2013; Yu et al., 2012; Zhou et al., 2008). At its heart, matrix completion is
a variant of low-rank matrix factorization in which the input matrix is only partially
observed and the observations are potentially noisy. In the setting of recommender
systems, matrix rows correspond to users or customers, columns to items such as movies
or musical pieces, and entries to feedback provided by users for items (e.g., explicit
feedback in the form of numerical ratings and time of rating, or implicit feedback such
as page views). Matrix completion is an effective tool for analyzing such dyadic data in
that it discovers and quantifies the interactions between users and items. The idea is to
posit r ≥ 1 features for each user and for each item, where the rank r is a small number,
usually less than 100. The features are usually latent in that they do not have explicit
semantic interpretations; feature values are learned from the revealed matrix entries. In
the simplest case, which we focus on in this paper, each missing matrix entry is estimated
as the inner product of feature vectors for the corresponding user and item. Thus a user is
predicted to rate an item highly if features that are important to the customer (i.e., having
a large absolute value) match with the features of the item (large value of equal sign). In
general, the estimation formula can be a complex function of the features as well as of
other data such as the time stamp of the rating, user bias, implicit feedback, and so on.

Large applications can involve matrices with millions of rows, millions of columns,
and billions of entries. For example, Netflix—a company that offers movies for rental and
streaming and employs low-rank matrix completion in their recommendation engine—
gathered more than five billion ratings for more than 80k movies from its more than
20M customers (Amatriain and Basilico, 2012; Bennett and Lanning, 2007). Similarly,
Yahoo Music! collected billions of user ratings for musical pieces (Dror et al., 2012). At
such massive scales, algorithms for matrix completion must be parallelized to achieve
reasonable performance (Das et al., 2007; Das et al., 2010; Liu et al., 2010; Mackey
et al., 2011; Niu et al., 2011; Recht and Ré, 2013; Zhou et al., 2008; Yu et al., 2012).

Stochastic gradient descent (SGD) is an iterative optimization algorithm that has
been shown, in a sequential setting, to be very effective for matrix completion (Koren
et al., 2009). Unfortunately, the generic SGD algorithm is not embarrassingly parallel and
hence cannot directly scale to large data. We can, however, exploit the special structure
of the matrix-completion problem to obtain a “stratified” version of SGD (SSGD) that
can be parallelized, allowing scalability to extremely large problems.

In this paper, we apply the SSGD approach in three different computational settings
and propose three different algorithms:1 CSGD for parallel processing on a single
powerful machine with multiple shared-memory processors, DSGD++ for small clusters
of shared-nothing commodity nodes, and DSGD-MR for shared-nothing MapReduce
processing environments. In addition to SSGD-based algorithms, we experiment with
an asynchronous version of SGD (ASGD) for shared-nothing environments. Our new
algorithms are cache-friendly and designed to exploit thread-level parallelism, in-memory
processing, and asynchronous communication. See Tables 3 and 4 for a summary of new
and existing algorithms for matrix completion.

Our focus throughout is on in-memory algorithms. Such algorithms are applicable
when the problem instance, i.e., the data and feature vectors, can fit in the main memory
of a single machine (in the shared-memory setting) or in the aggregate memory of
a small cluster of commodity nodes (in the shared-nothing setting). This in-memory

1 Some of the material in this paper originally appeared in (Gemulla, Nijkamp, Haas and Sismanis, 2011) and
(Teflioudi et al., 2012).
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assumption holds for a wide range of real-world matrix completion problems. Consider,
for example, an extremely large hypothetical problem instance in which the input matrix
has 20M rows, 1M columns, and 1% of the entries are revealed. (By comparison, data
in (Bennett and Lanning, 2007; Dror et al., 2012) imply that 0.3% of Netflix entries and
0.04% of Yahoo! Music entries are known, and the number of rows and columns for the
Netflix problem is smaller than for the hypothetical problem.) If 100 features are used
per row and per column (i.e., a rank-100 factorization) and each entry is a 64-bit number,
then the total data and model size is approximately 1.5TB. High-end parallel machines
routinely ship with multiple terabytes of RAM, and shared-nothing clusters can have
even higher aggregate memory capacities. We also assume throughout (without loss of
generality) that the number of rows exceeds the number of columns, so that algorithms
in shared-nothing environments move mostly column-factor data between the nodes.

In the shared-nothing setting, there have been almost no studies of in-memory matrix
completion algorithms based on programming models, such as MPI (MPI, 2013), that
allow asynchronous communication among processors. Similarly, the possibilities for
exploiting multithreading have not been investigated. In a multithreaded shared-nothing
architecture, different processing nodes do not share memory, but threads at the same
processing node can share memory. We therefore provide a complexity analysis of shared-
nothing algorithms that illuminates the various performance trade-offs and provides
guidance in applying the algorithms to specific problems. This analysis shows that, under
our assumptions, the key performance-determining characteristics with respect to the
input data are the rank of the factorization and the ratio of the number of revealed entries
to the number of columns. The analysis also indicates that DSGD++ is the most effective
algorithm in terms of scalability and memory consumption.

We also report the results of an extensive set of experiments on both real-word and
synthetic datasets of varying sizes. These experiments both confirm our theoretical results
and provide a comprehensive comparison of new and existing algorithms for matrix
completion. In particular, we compare algorithms based on SGD both to each other
and to algorithms based on alternating-minimization approaches, such as alternating
least-squares and cyclic coordinate descent. With respect to this comparison, the key
experimental results are:

– For the shared-memory scenario, CSGD improves the runtime over the best-performing
alternative approach by up to 60%.

– On large datasets and a shared-nothing scenario, DSGD++ outperforms competing
methods in terms of overall runtime, memory consumption, and scalability. For ex-
ample, DSGD++ can solve a difficult matrix completion problem on a high-variance
matrix with 10M rows, 1M columns, and 10B revealed entries in around 40 minutes
on 16 compute nodes.

The remainder of this paper is organized as follows. Sec. 2 reviews the matrix
completion problem. In Sec. 3, we review sequential SGD, and introduce our new
parallel shared-nothing and shared-memory SGD algorithms. Sec. 4 surveys prior matrix
completion algorithms that are based not on SGD, but on alternating-minimization
ideas. Sec. 5 contains a comparative complexity analysis of shared-nothing algorithms
for matrix completion. Our experimental findings are summarized in Sec. 6, and we
conclude the paper in Sec. 7.
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2. The Matrix Completion Problem

To gain understanding about applications of matrix completion, consider the “Netflix
problem” (Bennett and Lanning, 2007) of recommending movies to customers. Netflix is
a company that offers tens of thousands of movies for rental. The company has more than
20M customers, each of whom can provide feedback about their personal taste by rating
movies with 1 to 5 stars. The feedback can be represented in matrix form, for example

(Avatar The Matrix Up
Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3

)
.

Each entry may contain additional data, e.g., the date of rating or other forms of feedback
such as click history. The goal of the completion is to predict missing entries (denoted
by “?”), so that entries with a high predicted rating can then be recommended to users
for viewing. This matrix-completion approach to recommender systems has been suc-
cessfully applied in practice; see (Koren et al., 2009) for an excellent discussion of the
underlying intuition.

Table 1 summarizes the notation used throughout this paper. Denote by the training
set Ω = {ω1, . . . , ωN } the set of revealed entries in m × n input matrix V , where
ωk = (ik, jk), k ∈ [1, N ], ik ∈ [1,m], and jk ∈ [1, n]. In what follows, we assume
without loss of generality that m ≥ n. Let Ni∗ and N∗j denote the number of revealed
entries in row i and column j, respectively. Finally, denote by r � min(m,n) a rank
parameter. Our goal is to find an m× r row-factor matrix L and an r × n column-factor
matrix R such that V ≈ LR, i.e., we aim to approximate V by the low-rank matrix
LR. The approximation is governed by an application-dependent loss function L(L,R)
that measures the difference between the revealed entries in V and the corresponding
entries in LR. (We suppress the dependence on V for brevity.) The matrix completion
problem is to find the factor matrices that give rise to the smallest loss, i.e.,

(L∗,R∗) = argmin
L,R

L(L,R). (1)

The matrix L∗R∗ is a “completed version” of V , and each unrevealed entry V ij is
predicted by [L∗R∗]ij .

The loss function L may also incorporate user biases, implicit feedback, temporal
effects, and confidence levels, as well as regularization terms to prevent over-fitting. The
most basic loss is the squared loss LSl(L,R) =

∑
(i,j)∈Ω(V ij − [LR]ij)

2. Table 2
summarizes other popular loss functions. LL2 incorporates L2 regularization and is
closely related to the problem of minimizing the nuclear norm of the reconstructed
matrix (Recht and Ré, 2013). LL2w incorporates weighted L2 regularization (Zhou
et al., 2008), in which the amount of regularization depends on the number of revealed
entries. This particular loss function was a key ingredient in the best performing solutions
of both the Netflix competition and the 2011 KDD-Cup (Koren et al., 2009; Chen
et al., 2012; Zhou et al., 2008).

Our formulation of the matrix completion problem is motivated by its application
in data-mining settings where a fixed set of training data and a loss function are given,
and the goal is to compute loss-minimizing factor matrices as efficiently as possible.
Candes and Recht (2009) discuss the theoretical foundations of the basic minimization
problem. There is also a large body of literature that assumes a “true” underlying V
matrix together with a stochastic process that generates from V the observed training
data. The goal is then to statistically infer the true V matrix from the training data, where
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Table 1. Notation
Symbol Description

V Data matrix
m,n Number of rows & columns of V

Ω Set of revealed entries in V
N Number of revealed entries in V
Ni∗ Number of revealed entries in row i of V
N∗j Number of revealed entries in column j of V
r Rank of the factorization

L,R Factor matrices
E Residual matrix
w Number of compute nodes
t Number of threads per compute node
p Total number of threads
b Number of row/column blocks (SSGD)
T Repetition parameter (CCD++)
s Number of shufflers (Jellyfish)

Table 2. Popular loss functions for matrix completion
Loss Definition Local loss

LSl
∑

(i,j)∈Ω(V ij − [LR]ij)2 (V ij − [LR]ij)2

LL2 LSl + λ
(∑

ik L2
ik +

∑
kj R

2
kj

)
(V ij − [LR]ij)2 + λ

∑
k(N−1

i∗ L2
ik +N−1

∗j R2
kj)

LL2w LSl + λ
(∑

ik Ni∗L
2
ik +

∑
kj N∗jR

2
kj

)
(V ij − [LR]ij)2 + λ

∑
k(L2

ik + R2
kj)

the inference algorithm may exploit knowledge about the stochastic process. In one such
model, the entries to be revealed are selected randomly and uniformly from the set of all
V entries. Many algorithms and supporting theory have been developed for this specific
setting; see, e.g., (Mackey et al., 2011).

In this paper, we focus on loss functions that admit a summation form; we say,
following (Chu et al., 2006), that a loss function is in summation form if it is written as
a sum of local losses Lij that occur at only the revealed entries of V , i.e., L(L,R) =∑

(i,j)∈Ω Lij(Li∗,R∗j), where Li∗ and R∗j refer to the i-th row of L and j-th column
of R, respectively. Table 2 shows examples of loss functions in summation form together
with the corresponding local losses. We refer to the gradient of a local loss as a local
gradient; by the linearity of the differentiation operator, the gradient of a loss function
having summation form can be represented as a sum of local gradients: L′(L,R) =∑

(i,j)∈Ω L
′
ij(Li∗,R∗j).

3. Stochastic Gradient Descent Algorithms

In the following sections, we present shared-nothing and shared-memory algorithms
based on stochastic gradient descent; see Table 1 for an overview of our notation.

We first describe the basic SGD algorithm and then discuss various parallelization
strategies. For brevity, we write L(θ) and L′(θ), where θ = (L,R), to denote the loss
function and its gradient. Denote by∇LL (resp.∇RL) the m× r (resp. r×n) matrix of
the partial derivatives of L w.r.t. to the entries in L (resp. R). Then L′ = (∇LL,∇RL).
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For example, [∇LLSl]ik = −2
∑

j:(i,j)∈Ωi∗
Rkj(V ij − [LR]ij), where Ωi∗ denotes the

set of revealed entries in row V i∗.

3.1. Stochastic Gradient Descent (SGD)

Various gradient-based methods have been explored in the context of matrix completion.
Perhaps the simplest algorithm is gradient descent (GD), which iteratively takes small
steps in the direction of the negative gradient:

θn+1 = θn − εnL′(θ),
where n denotes the step number and { εn } is a sequence of decreasing step sizes. Under
appropriate conditions, GD has a linear rate of convergence; better rates can be obtained
by using a quasi-Newton method, such as L-BFGS-B (Byrd et al., 1995).

Stochastic gradient descent (SGD) is based on GD, but uses a noisy estimate L̂′(θ)
of the gradient L′(θ). SGD iterates the stochastic difference equation

θn+1 = θn − εnL̂′(θ), (2)

The gradient estimate is obtained by scaling up just one of the local gradients, i.e.,
L̂′(θ) = NL′ij(θ) for some (i, j) ∈ Ω. The choice of training point (i, j) varies from
step to step according to a training point schedule; see below. Note that the local gradients
at point (i, j) depend only on V ij , Li∗ and R∗j . Therefore, only a single row Li∗ and a
single column R∗j are updated during each SGD step.

Thus for each pass over the training data, SGD performs many quick-and-dirty steps
whereas gradient descent (or a quasi-Newton method such as L-BFGS) performs a single
careful step. For large matrices, the increased number of SGD steps leads to much
faster convergence (Gemulla, Nijkamp, Haas and Sismanis, 2011). Moreover, the noisy
estimation of the descent direction helps keep the algorithm from getting stuck at a local
minimum, especially during the early stages of the descent. Further details of SGD are
as follows.

Step size sequence. All of our SGD implementations use a simple adaptive method for
selecting the step size that has worked extremely well in our experiments, even though
guarantees of asymptotic convergence2 have not been formally established. We refer to
one GD step or a sequence of N SGD steps as an epoch; an epoch roughly corresponds
to a single pass over the data. Exploiting the fact that the current loss can be computed
after every epoch, we employ a heuristic called bold driver (Battiti, 1989). Bold driver
starts from an initial step size ε0. After each epoch, the algorithm increases the step size
by a small percentage (5%) if the loss has decreased during the epoch, and drastically
decreases the step size (by 50%) if the loss has increased. Within each epoch, the step
size remains fixed. The initial step size ε0 is obtained by trying different step sizes on a
small sample (say, 0.1%) of Ω and picking the one that works best.

Training point schedule. Common schedules for an SGD epoch are: process Ω sequen-
tially in some fixed order (SEQ), sample with replacement from Ω (WR), and sample
without replacement from Ω (WOR). In practice, WOR often outperforms WR in terms
of number of epochs to convergence; SEQ requires even more epochs than WR and

2 “Convergence” refers to running an algorithm until some convergence criterion is met; “asymptotic conver-
gence” means that the algorithm converges to the true solution as the runtime increases to +∞.
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Require: Incomplete matrix V , initial values L and R
while not converged do /* epoch */

Create random permutation Π of { 1, . . . , N } /* WOR schedule */
for n = 1, 2, . . . , N do /* step */

Prefetch indexes (iΠn+2, j
Π
n+2) ∈ Ω for next but one step

Prefetch data V iΠn+1j
Π
n+1

, LiΠn+1∗, R∗jΠ
n+1

for next step
L′iΠn∗ ← LiΠn∗ − εnN∇LiΠn∗

LiΠn jΠ
n

(L,R)

R∗jΠ
n
← R∗jΠ

n
− εnN∇R∗jΠ

n
LiΠn jΠ

n
(L,R)

LiΠn∗ ← L′iΠn∗
end for

end while

Fig. 1. The SGD++ algorithm for matrix completion

converges to an inferior solution. Nevertheless, SEQ epochs are significantly faster than
WR or WOR epochs, because they have better memory locality. To reduce this perfor-
mance gap, we make use of the WOR schedule but employ latency-hiding techniques.
Specifically, we prefetch the required data into the CPU cache before it is accessed by the
SGD algorithm (e.g., using gcc’s builtin prefetch macro). In the beginning of
each epoch, we precompute and store a permutation Π of { 1, . . . , N } that indicates the
order in which training points are to be processed. In the n-th step, the SGD algorithm
accesses the values V iΠn jΠ

n
, LiΠn∗, and R∗jΠ

n
, whose common index value (iΠn , j

Π
n ) is

determined from the Π(n)-th entry of Ω. We access Π and then prefetch the index value
(iΠn , j

Π
n ) during SGD step n− 2 (so that it is in the CPU cache at step n− 1), and the

values V iΠn jΠ
n

, LiΠn∗, and R∗jΠ
n

in SGD step n − 1 (so that they are in the CPU cache
at step n). Note that Π itself is accessed sequentially so that no explicit prefetching is
needed. We refer to SGD with prefetching as SGD++; see Fig. 1. In our experiments,
SGD++ was up to 15% faster than SGD (Teflioudi et al., 2012). We discuss alternative,
cache-conscious approaches in Sec. 3.3.2.

3.2. SGD Methods for Shared-Nothing Environments

Even on only moderately large matrices, sequential methods may need an unacceptably
large amount of time to converge, so that parallel versions of SGD are needed for
scalability to massive data. The key challenge is that the SGD steps of Eq. (2) are not
independent. In particular, steps that process training points that lie on the same row i
(column j) both read and modify the corresponding row Li∗ (column R∗j) of the factor
matrix.

In this section, we describe SGD algorithms for shared-nothing parallel processing
environments. Such algorithms are designed for large-scale completion problems in
which the input and factor matrices do not fit into main memory of a single node. We
defer the discussion of parallel shared-memory algorithms, which target problems of
intermediate sizes, to Sec. 3.3. Denote by w the number of compute nodes and by t
the number of threads per node; the total number of threads is thus given by p = wt.
We assume throughout that t is no larger than the number of (physical or virtual) cores
available at each compute node. The main challenge in a shared-nothing environment is
to effectively manage the communication between the compute nodes.
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Ideally, we would like to parallelize the SGD algorithm by partitioning the data and
factors across the cluster such that (1) the nodes work on mutually disjoint pieces of
L and of R so that they can run independently and (2) each node processes roughly
the same amount of data so that the workload is balanced. In general, however, these
goals are not achievable simultaneously. To see this, assume to the contrary that there
exists such a partitioning and that some node k is responsible for training points Ωk ⊆ Ω.
Further suppose that (i, j) ∈ Ωk. Since SGD uses the local gradients L′ij as estimates of
the gradient L′, an SGD step on (i, j) will update Li∗ and R∗j . Since by assumption
these parameters are not updated by any other node, all of the training points in row i and
column j must also be in Ωk, i.e., (i, j) ∈ Ωk =⇒ Ωi∗ ∪ Ω∗j ⊆ Ωk. Thus, Ωk forms a
submatrix of V that contains all revealed entries of any of its rows or columns. We can
form w balanced partitions if and only if the rows and columns of V can be permuted
to obtain a w × w block-diagonal matrix with a balanced number of revealed entries in
each diagonal block. This is not possible in general; indeed, most (or even all) revealed
entries usually concentrate in a single block.

In what follows, we discuss two different approaches to circumvent this problem:
asynchronous SGD and stratified SGD. With the exception of the DSGD-MR algorithm
discussed in Sec. 3.2.3, we assume that nodes can directly communicate with each other
asynchronously, using a protocol such as MPI. All approaches partition the data and
factor matrices into a carefully chosen set of blocks; we refer to such a partitioning as a
blocking.

3.2.1. Asynchronous SGD (ASGD)

Suppose that V is blocked w × 1, L is blocked conformingly w × 1, and R is blocked
1 × w. At each node k, we store blocks V k∗, Lk, and Rk. Note that this particular
blocking ensures that each update of L is node-local, whereas updates of R are either
local or remote. In the following, we refer to R∗j as the master copy of column j; the
node that stores R∗j is referred to as master node. A naive way to parallelize SGD
is as follows: When node k processes training point (i, j), it locks column j at its
master node, fetches R∗j , updates Li∗ and R∗j locally according to (2), sends the new
value of R∗j back to the master, and unlocks. This synchronous algorithm is clearly
impractical, because the SGD steps of (2) are inexpensive so that most of the time is
spent in communicating columns of R.

Our asynchronous SGD algorithm (ASGD) avoids this problem by storing a working
copy R̂k

∗j of column R∗j at each node k. Initially, all the working copies agree with
their corresponding masters. We now run SGD on each node as above, but update the
working copy R̂k

∗j instead of the master when processing (i, j); this avoids synchronous
communication. However, the working copies still need to be coordinated to ensure
correctness. In the context of perceptron training, McDonald et al. (McDonald et al.,
2010) proposed averaging the working copies once after every epoch. In our setting,
however, nodes can communicate continuously, which allows us to improve on this
approach by also averaging during each epoch: From time to time, each node sends
its update vector ∆R̂k

∗j to the master, where ∆R̂k
∗j is given by the sum of updates to

R̂∗j since the last averaging. Whenever a master node has received all update vectors
∆R̂1

∗j , . . . ,∆R̂w
∗j , it adds their average to the master copy and broadcasts the result.

Each node k then updates its working copy and integrates all local changes that have
been accumulated meanwhile. The memory layout of ASGD is shown in Fig. 4a in Sec. 4.
In the figure, R̂

k
=
(
R̂

k

∗1
∣∣ R̂k

∗2
∣∣ · · · ∣∣ R̂k

∗n
)

and similarly for ∆R̂
k
.
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In contrast to SGD, updates to a column of R̂∗j at some node are not immediately
seen by other nodes. When the delay between updating a column and broadcasting the
update is bounded, asynchronous SGD converges to a stationary point of L (Tsitsiklis
et al., 1986). In contrast to general asynchronous SGD, we average only a subset of
the parameters, i.e., R but not L; this idea is motivated by the distributed LDA method
for text mining (Smola and Narayanamurthy, 2010). In our actual implementation, we
send update vectors both continuously during and once after every epoch. This ensures
that updates are communicated as often as possible and that the local copies agree
with the master after every epoch. The latter property also allows us to apply the bold
driver heuristic for step size selection. Moreover, we ensure that averaging is non-
blocking. Finally, instead of running ordinary sequential SGD on each node, we run
a multithreaded version of SGD called PSGD, which is described in Sec. 3.3.1 below.
Besides the threads used for PSGD, an additional thread takes care of averaging. This
latter thread has low CPU utilization since the time to compute the update vectors is
swamped by communication costs.

3.2.2. Stratified SGD (SSGD)

An alternative approach to parallelizing SGD uses a stratification technique to avoid
inconsistent updates; we refer to this general technique as stratified SGD (SSGD). SSGD
provides the basis for our shared-nothing DSGD-MR and DSGD++ algorithms, as well
as our shared-memory CSGD algorithm.

Recall the discussion at the beginning of Sec. 3.2, where we argued that parallelizing
SGD is hard because, in general, V cannot be written as a w × w block-diagonal matrix
with a balanced number of revealed entries in the diagonal blocks. The key idea behind
stratified SGD is to induce parallelism-friendly blockings, called strata, by ignoring
some of the entries. The algorithm moves from stratum to stratum in such a way that all
training points are sampled correctly and the algorithm converges.

In more detail, suppose that V is blocked b× b, where b is chosen to be greater than
or equal to the number of available processing units (nodes or threads); for simplicity, we
describe the algorithm for the case in which b exactly equals the number of processing
units. The corresponding factor matrices are blocked conformingly:


R1 R2 · · · Rb

L1 V 11 V 12 · · · V 1b

L2 V 21 V 22 · · · V 2b

...
...

...
. . .

...
Lb V b1 V b2 · · · V bb

.
Rows and columns are randomly shuffled prior to blocking, so that each block contains
N/b2 training points in expectation. Now observe that when SGD runs on some block
V ij , it accesses only the matrices Li and Rj . Thus SGD can, for example, be run inde-
pendently and in parallel on each of the blocks on the main diagonal (i.e., V 11, . . . ,V bb);
the SGD instances refer to disjoint parts of the factor matrices and will hence yield the
same result as processing the main diagonal using sequential SGD. In general, we say
that two different blocks V ij and V i′j′ are interchangeable whenever i 6= i′ and j 6= j′,
i.e., they share neither rows nor columns. We call a set of b pairwise interchangeable
blocks a stratum, the set of all strata is denoted by S ; see Fig. 3 for an example. By the
arguments above, the blocks of a stratum can be processed independently and in parallel
since they do not share any common rows or columns.
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Require: Incomplete matrix V , initial values L and R, blocking parameter b
Block V / L / R into b× b / b× 1 / 1× b blocks
while not converged do /* epoch */

Pick step size ε
for s = 1, . . . , b do /* subepoch */

Pick w blocks {V 1j1 , . . . ,V bjb} to form a stratum
for k = 1, . . . , b do /* in parallel */

Run SGD on the training points in V kjk with step size ε
end for

end for
end while

Fig. 2. The generic SSGD algorithm for matrix completion

It is convenient to view a stratum as a bijective map from a row-block index k to a
column-block index j = S(k); here k corresponds to a processing unit such as a node
or thread. For example, SB(1) = 2, SB(2) = 3, and SB(3) = 1 in the example of
Fig. 3. The complete SSGD algorithm is outlined in Fig. 2. SSGD repeatedly selects and
processes a stratum S ∈ S ; the selection is based on a stratum schedule (see below).
Stratum S is processed in parallel: processing unit k processes block V kS(k). Continuing
the example with S = SB , unit 1 processes block V 12, unit 2 processes block V 23,
and unit 3 processes block V 31. In what follows, we refer to the processing of a single
stratum as a subepoch and to a sequence of b subepochs as an epoch.3 Note that an epoch
roughly corresponds to processing N training points: each block contains N/b2 entries
in expectation, we process b blocks per subepoch, and there are b subepochs per epoch.

Stratum schedule. Just as the training point schedule of SGD influences its conver-
gence in practice, the stratum schedule influences the convergence properties of SSGD.
Formally, a stratum schedule is a (possibly random) sequence S1, S2, . . . of strata from
S ; SSGD processes stratum Sl in the l-th subepoch. It can be shown that SSGD asymp-
totically converges to a stationary point of L under some natural conditions on the stratum
schedule (Gemulla, Nijkamp, Haas and Sismanis, 2011; Gemulla, Haas, Nijkamp and
Sismanis, 2011). For example, a schedule must satisfy the property that every training
point is processed equally often in the long run.

When processing blocks during a typical epoch of SSGD, the simplest correct
schedule processes blocks in sequential order on each node (SEQ), i.e., we set Sl(k) =
1 + (k + l − 2 mod b). In the example above, this corresponds to using the stratum
schedule (SA, SB , SC) for every epoch. An alternative is to randomly select a stratum
from S in each subepoch (WR); e.g., the schedule (SA, SE , SA) might be selected for
a given epoch. Finally, we may select strata randomly but ensure that every block is
processed exactly once per epoch (WOR); e.g., possible schedules for an epoch include
all permutations of (SA, SB , SC) and all permutations of (SD, SE , SF ); at each epoch,
one of these 12 schedules is selected at random. In our experiments, we found that WOR
achieves the best results because it randomizes the order of blocks as much as possible
while ensuring that every training point is processed in every epoch.

3 It is sometimes desirable to choose a value of b exceeding the number of processing units p. In this case,
each stratum consists of p (< b) interchangeable blocks, so that p blocks are processed per subepoch and an
epoch comprises b2/p subepochs.
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V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

SA SB SC SD SE SF

Fig. 3. Strata used by SSGD for a 3× 3 blocking of V

Specific algorithms for different settings can be obtained by specializing the generic
SSGD algorithm. In the following sections, we describe DSGD-MR, an algorithm tailored
to the shared-nothing MapReduce framework, and DSGD++, an in-memory algorithm
for shared-nothing architectures in which nodes or threads can communicate directly. In
Sec. 3.3.2 we show how the SSGD idea can be applied in a shared-memory environment.

3.2.3. SGD on MapReduce (DSGD-MR)

In MapReduce, data is partitioned into physical files that are stored in a distributed file
system and read into memory as needed. Processing is divided into a map phase and
reduce phase; files are written out to disk after each processing step to guard against
data loss if a node fails. The w compute nodes do not communicate directly, but rather
indirectly through reading and writing of files.

DSGD-MR applies SSGD in the MapReduce environment. It makes use of a strat-
ification based on a w × w blocking of V (i.e., b = w), where node k stores blocks
V k1,. . .,V kw, Lk, and Rk. This layout is illustrated in Fig. 4b,4 where V k∗ refers
to the k-th row of blocks of V . To process a stratum, DSGD-MR launches a single
map-only job consisting of b map tasks. When processing a stratum Sl, the k-th map
task (1 ≤ k ≤ b) processes block V kSl(k). The required blocks V kSl(k) and Lk are
node-local and read from disk, and block RSl(k) is fetched from node Sl(k) before
processing and stored back afterward. Thus only blocks of R are communicated by
DSGD-MR.

3.2.4. DSGD++

The MapReduce environment is limited in the sense that nodes cannot communicate
directly and data is stored on disk. The DSGD++ algorithm, which we discuss next, is
an in-memory algorithm that can run on a small cluster of commodity nodes. It uses a
novel data partitioning and stratum schedule, and improves on DSGD-MR by exploiting
asynchronous communication, as well as direct memory access and multithreading.

Direct fetches. Denote by Sl the stratum used in the l-th subepoch and by S−1
l (j) the

node that updates block Rj in subepoch l. When running subepoch l, DSGD++ com-
municates the blocks of R directly between the nodes, i.e., the algorithm avoids writing
the result back to disk as in DSGD-MR. In more detail, node k fetches the block RSl(k)

directly from node S−1
l−1(Sl(k)), which processed this block in the previous subepoch.

A similar approach, but in the context of the Spark cluster-computing framework, has

4 To facilitate comparison with other algorithms, we assume in Fig. 4b that input data and factor matrices
are stored in main memory instead of in a distributed file system. Such an approach is also followed in the
DSGD-MR implementation used in our experimental study. See (Gemulla, Haas, Nijkamp and Sismanis, 2011)
for details on a disk-based Hadoop implementation.
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been explored in the Sparkler system (Li et al., 2013); this system focuses on issues
orthogonal to those of this paper, such as cluster elasticity, fault-tolerance and ease of
programming.

Overlapping subepochs. Node k starts processing block V kSl(k) as soon as RSl(k) has
been received. This strategy allows for overlapping of subepochs. For example, assume
that all nodes are working on a stratum SA as in Fig. 3 and then nodes 1 and 2 finish
their jobs, but node 3, which is slower, is still working on block V 33. Rather than forcing
both nodes 1 and 2 to wait for node 3 to finish, node 1 can immediately move to SB

and start working on block V 12 (because node 2 is finished and can send R2 to node 1).
Node 2 must wait until node 3 is finished before moving to SB and starting to process
block V 23, since it cannot start processing until it receives R3 from node 3. Note that
this protocol avoids inconsistent updates, e.g., on R3. In this way DSGD++ gracefully
handles varying processing speeds across the nodes.

Asynchronous communication. Observe that DSGD-MR is separated into a communi-
cation phase (receive next block of R) and a computation phase (process block of V ).
DSGD++ overlays communication and computation based on a w × 2w blocking of V
instead of a w × w blocking. In each epoch, DSGD++ conceptually partitions V (and
conformingly R) at random into two matrices V red and V blue, each consisting of w of
the 2w column blocks. The algorithm then alternates between running a subepoch on
V red and V blue. This approach ensures that the red and blue subepochs work on disjoint
blocks of R (cf. Fig. 4c). This is exploited as follows: Suppose that some node k runs
subepoch l (say, blue). Node k now simultaneously fetches the block of R needed in the
(l + 1)-st subepoch (red) from the node that processed it in the (l − 1)-st subepoch (also
red). Thus communication and computation are overlaid.

Multithreading. Given w compute nodes and t threads per node, DSGD++ exploits
thread-level parallelism by using a p × 2p blocking of V (instead of w × 2w), where
p = wt. Each node then stores 2tp blocks of V , t blocks of L, and 2t blocks of R, and
processes t blocks of V in t parallel threads during a subepoch. In contrast to using
multiple independent processes per node, multithreading allows us to share memory
between the threads. In more detail, when the block required in subepoch l (say, blue)
has been processed at the same node in subepoch l − 2 (also blue), no communication
cost is incurred (local fetch). Data only needs to be communicated if the block is stored
on some other node (remote fetch).

Locality-aware scheduling. A consequence of the distinction between local and remote
fetches is that different stratum schedules have different communication costs, depending
on the (expected) number of local fetches. SEQ is significantly more communication-ef-
ficient than WR/WOR because, in every subepoch, only a single remote fetch occurs per
node and the other t− 1 fetches are all local. However, the increased randomization of
WOR leads to better convergence properties. DSGD++ uses a locality-aware schedule
(LA-WOR) that strikes a compromise between the efficiency of SEQ and the desirable
randomness of WOR. The key idea is to apply the stratification idea twice: After V red
and V blue have been determined at the start of an epoch, randomly group the tw column
blocks of V red (and independently V blue) into w groups. Similarly, group the tw row
blocks of V red by the node at which they are stored. We thus obtain a w × w coarse-
grained blocking of V red. Each of the coarse-grained blocks is then further broken up
into t× t fine-grained blocks. When w = t = 2, for example, suppose that V red consists
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of V ∗1, . . . ,V ∗4 and that row blocks 1 and 2 (resp., 3 and 4) of V are stored at node 1
(resp., node 2). Then one possible blocking is:Node 1

(
V 11 V 14

V 21 V 24

) (
V 12 V 13

V 22 V 23

)
Node 2

(
V 31 V 34

V 41 V 44

) (
V 32 V 33

V 42 V 43

)


Here the column blocks V ∗1 and V ∗4 have been grouped together, as have V ∗2 and
V ∗3. To process a red stratum (a blue stratum is processed similarly), we use a w × w
WOR schedule over the coarse-grained blocking (to distribute across nodes), and another
t× t WOR schedule selected independently for each coarse-grained block (to parallelize
across threads). In this way, whenever a coarse-grained block is processed at a node, the
corresponding fine-grained blocks of R have to be communicated only once. Continuing
the example, we might obtain the following LA-WOR schedule for V red:

S1 S3 S5 S7


Node 1, thread 1 V 11 V 14 V 13 V 12

Node 1, thread 2 V 24 V 21 V 22 V 23

Node 2, thread 1 V 32 V 33 V 31 V 34

Node 2, thread 2 V 43 V 42 V 44 V 41

,

where the column entries for a stratum Si correspond to the blocks of V that comprise the
stratum, and the strata S1, S3, . . . , S7 are displayed in the order that they are processed
during a given sequence of red subepochs (hence the odd-numbered stratum indexes). As
before, we only need to communicate blocks of R. Assume that in this example blocks
R1 and R2 are initially stored on node 1, while blocks R3 and R4 are at node 2. Denote
by thread(i, j) the jth thread at node i. Stratum S1 is processed first. To process V 11,
thread(1, 1) fetches R1, a local fetch, whereas thread(1, 2) fetches R4 to process V 24, a
remote fetch. Similarly, thread(2, 1) and thread(2, 2) need to fetch R2 and R3, resulting
in one remote and one local fetch. Next, S3 is processed, which requires the fetching
of R4 and R1 by thread(1, 1) and thread(1, 2) and of R3 and R2 by thread(2, 1) and
thread(2, 2). Because these blocks of R were all fetched during the processing of S1,
they are now local, so that no remote fetches are required. Overall, the processing of
S1–S7 incurs 10 local fetches and only 6 remote fetches.

3.3. SGD Methods for Shared-Memory Environments

We now turn to methods for shared-memory parallel SGD on a single, powerful compute
node. Shared-memory algorithms target matrices of intermediate sizes, for which both
data and factor matrices fit into the memory of single compute node. In this setting,
our objectives are (1) to parallelize SGD across multiple threads, and (2) to make SGD
cache-conscious so that memory accesses do not become a bottleneck. As before, denote
by t the number of available threads.

3.3.1. Parallel SGD (PSGD)

As discussed previously, if two SGD steps process training points that lie in the same
row i (resp., column j), then both of these steps read and update row Li∗ (resp., column
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R∗j) of the factor matrix. Perhaps the simplest way to parallelize SGD is to partition the
training point schedule evenly among the t threads, i.e., each thread runs N/t SGD steps
per epoch. To avoid concurrent parameter updates, we lock row i of L and column j of
R before processing training point (i, j). This lock-based approach works well when
the number t of threads is small (say, t ≤ 8), but both locking and random memory
accesses impede scalability to large numbers of threads. Niu et al. (Niu et al., 2011)
experimented with a lock-free algorithm, henceforth denoted PSGD, in which no locks
are obtained so that inconsistent updates may occur. Since there are usually significantly
more rows and columns than available threads (i.e., m,n� t), it is unlikely that a given
row or column is processed by multiple threads at the same time; we thus expect few
inconsistent updates. Niu et al. found virtually no difference between lock-based and lock-
free parallel SGD in terms of running time and quality (for matrix completion problems).
On the whole, our experiments validate these findings, except that we observed a small
performance improvement (of up to 9%) of PSGD over the lock-based approach when
using a large number of threads (t ≥ 16).

3.3.2. Cache-Conscious Parallel SGD (CSGD and Jellyfish)

A key disadvantage of PSGD is that its memory access pattern is non-sequential. Recall
from Sec. 3.1 that SGD processes training points in random order. When N is large,
accesses to training points often result in cache misses, which hinders scalability to a
large number of threads due to high consumption of memory bandwidth. This effect is
especially pronounced in large machines based on non-uniform memory access designs
(NUMA), where a cache miss can lead to expensive accesses to non-local memory. In
this section, we propose a new cache-conscious parallel SGD algorithm, termed CSGD,
which alleviates this problem by localizing memory accesses.

The main idea behind CSGD is to run (a variant of) SSGD with a suitably chosen,
fine-grained blocking of the input matrix. In particular, the algorithm uses a blocking
parameter b� t such that each block V ij , as well as the corresponding factor matrices
Li and Rj , fit into the L2 cache of a single core. The training points within a block
are laid out in consecutive memory locations; if a block is processed using SGD, we
expect few cache misses when accessing the data and factor matrices because of higher
locality. To obtain a parallel algorithm, a direct application of the SSGD algorithm would
select, in each subepoch, t interchangeable blocks, process each block on a separate
thread using SGD, synchronize, and proceed to the next subepoch. Although such an
approach is feasible and guarantees correctness, the large number of subepochs (b2/t),
and hence synchronization points, severely limit performance in practice. An alternative
procedure is to simply omit synchronization, akin to the PSGD algorithm described
above. In particular, we partition matrix V evenly across the t threads such that each row
of blocks is assigned to exactly one core. This ensures that there will be no inconsistent
updates on the row-factor matrix L. Each thread then independently processes its blocks
in WOR order; inconsistent updates on R may occur, but since b� t, we expect this to
happen rarely.

An alternative approach to CSGD is the Jellyfish algorithm (Recht and Ré, 2013).
As with SSGD, Jellyfish uses a t× t blocking of the input matrix. In contrast to SSGD
and CSGD, Jellyfish changes the blocking of V from epoch to epoch by reshuffling the
entire data set. Once the data is shuffled, it is accessed in a sequential fashion so that
prefetching is very effective. To speed up data shuffling, Jellyfish maintains s copies
of the data, where s ≥ 2 is a small number. While one copy is being processed, s− 1
parallel shuffle threads reorganize the data in the remaining s− 1 copies. To process a
copy, Jellyfish makes use of t parallel threads, avoiding fine-grained locking in a manner
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similar to SSGD. As compared to CSGD, Jellyfish’s disadvantages are that (1) it is
memory intensive because multiple copies of the input matrix need to be maintained and
(2) parallel shuffling may also lead to memory bottlenecks.

CSGD can be seen as a combination of Jellyfish (which is cache conscious), lock-free
SGD (which allows a few inconsistent updates), and SSGD (which uses stratification,
i.e., a fixed blocking). Our experiments in Sec. 6 indicate that CSGD is currently the
most scalable and best-performing matrix completion algorithm in the shared-memory
setting (up to 60% faster than its closest competitor).

4. Matrix Completion via Alternating Minimizations

We now review some popular algorithms for large-scale matrix completion that are based
on the idea of “alternating minimizations”. See Tables 3 and 4 for a summary of the
parallel algorithms considered in this paper.
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Fig. 4. Memory layout used on node k by the shared-nothing algorithms (t = 1). Node-
local data is shown in white, master copies in light gray, and temporary data in dark
gray.

4.1. Alternating Least Squares (ALS)

ALS alternates between optimizing for L given R, and optimizing for R given L. For the
loss functionLSl, this amounts to solving a set of least squares problems: one for each row
of L and one for each column of R. During the computation of least squares solutions,
matrix V is accessed by row when updating L, and by column when updating R. For
this reason, ALS implementations need to store two (sparse) representations of V in
memory: one in row-major order (denoted V r) and one in column-major order (denoted
V c). Loss functions LL2 and LL2w can also be handled (Zhou et al., 2008). Under our
running assumption that m ≥ n, an ALS epoch has time complexity O(Nr2 +mr3).

A shared-memory parallel algorithm for ALS, denoted PALS, is based on the ob-
servation that the foregoing least-squares problems can be solved independently (Zhou
et al., 2008). E.g., an update to a row of L does not affect other rows of L, so that
the processing of rows of L can be partitioned evenly among the available threads.
Processing of columns of R can similarly be partitioned among threads.

Following (Zhou et al., 2008), we obtain a shared-nothing variant of ALS, denoted
DALS, as follows. Assume that each node has sufficient memory to store a fraction
of 2/w of the entries of V , as well as a full copy of the factor matrices L and R.
DALS uses a w × 1 blocking for V r and a 1 × w blocking for V c; factor matrices
are blocked conformingly. Node k stores blocks V k∗

r , V ∗kc , Lk, and Rk. This memory
layout is illustrated in Fig. 4d. To update Lk (at node k), DALS requires access to V k∗

r
and the entire R matrix. Note that V k∗

r and Lk are stored locally at node k, but R is
not. Therefore, DALS creates a local copy of R on each node by broadcasting blocks
R1, . . .Rk. DALS differs from the algorithm of (Zhou et al., 2008) only in that it uses
multiple threads (which share the same memory space and variables) instead of multiple
processes (each with its own address space) on each node, which allows DALS to reduce
memory consumption.
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4.2. Cyclic Coordinate Descent (CCD++)

Cyclic coordinate descent (CCD) can also be seen as an alternating minimization method:
It optimizes a single entry of one of the factor matrices at a time while keeping all
other entries fixed. This leads to a much simpler minimization problem than that of
ALS. Practical variants of CCD adopt the approach of “hierarchical” ALS (Cichocki and
Phan, 2009) in that they do not operate on the original input matrix but on the residual
matrix E whose entries are V ij − [LR]ij for (i, j) ∈ Ω.

Recently, a version of CCD, termed CCD++, has been proposed for matrix completion
problems (Yu et al., 2012). Similar to ALS, CCD++ stores two copies of the residual
matrix E: one in row-major order (to update L), denoted Er, and one in column-major
order (to update R), denoted Ec. CCD++ employs a feature-wise sequence of updates,
i.e., each iteration loops over all features f ∈ [1, r]. For each feature f , the algorithm
executes T update operations, where T is an automatically tuned parameter that is
independent of the data size, and each operation updates the f th feature-vector of L (i.e.,
L∗f ) and then the f th feature-vector of R (i.e., Rf∗). Finally, both copies of the residual
matrix are updated and the algorithm continues with feature f + 1. For each feature, the
residual matrix is scanned 2T times to update the corresponding feature vectors of L
and R, and twice to update Er and Ec. An iteration, i.e., the processing of all features,
therefore consists of 2r(T + 1) epochs and has overall time complexity of O(TNr).
Overall, our experiments, as well as results in (Yu et al., 2012), indicate that CCD++ is
computationally less expensive than ALS and can handle larger ranks efficiently.

Parallel versions of CCD++ (Yu et al., 2012) are based on ideas similar to those used
for parallelizing ALS; in particular, they make use of a similar partitioning of the factor
matrices. We refer to the shared-memory variant as PCCD++ and to the shared-nothing
variant as DCCD++. In contrast to DALS, DCCD++ requires only one feature vector to
be broadcast and stored in each epoch (instead of an entire factor matrix as in DALS);
see Fig. 4e. Since communication is needed every time a feature vector is being updated,
i.e., 2Tr times per iteration, synchronization costs between the nodes can potentially be
substantial.

4.3. Alternating Minimizations Versus SGD

Before embarking on a comprehensive comparison of algorithms, we make the following
general remarks concerning the alternating-minimizations and SGD approaches. Because
ALS needs to solve a large number of linear least squares problems, it is generally much
more expensive than SGD. This computational overhead is acceptable, however, when
the rank of the factorization is sufficiently small (say, r ≤ 50). An advantage of both
ALS and CCD++ over SGD is that the former methods are parameter-free, whereas
SGD methods make use of a step size sequence. Our experiments suggest, however,
that SGD is the method of choice when the step size sequence is chosen judiciously,
e.g., using the bold driver method of Sec. 3.1. Moreover, both ALS and CCD++ are
more memory-intensive than SGD since they need to store the data matrix twice. Finally,
SGD-based methods apply to a wide range of loss functions, whereas ALS and CCD++
target quadratic loss functions.
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5. Comparison of Methods I: Complexity Analysis

In this section, we begin our comparison of the various matrix completion algorithms
by providing a theoretical complexity analysis of shared-nothing methods. (We do not
present a theoretical analysis of shared-memory algorithms here because the results are
sensitive to assumptions about the memory architecture and cache behavior, which can
vary widely.) Empirical results are presented in Sec. 6.

A key objective of this section is to identify conditions under which distributed
processing is effective. To simplify the analysis, we assume that

1. computation and communication are not overlaid,
2. each revealed entry of V and each entry of L and R requires O(1) words of memory

and O(1) time to communicate,
3. the number t of threads per node is constant,
4. r, n ≤ m, and
5. N = O(mr).

We give bounds on the memory consumption per node as well as computation and
communication time per node and epoch.

Memory consumption per node. DALS stores in memory two partitions of the input
matrix (one partition from V r and one from V c) as well as both factor matrices; the
total memory consumption is O(N/w +mr) words. (DALS also stores a row-partition
of L and a column-partition of R, but these are negligible with respect to the other data.)
DCCD++ stores two partitions of the residual matrix, two feature vectors (i.e., a row of
R and a column of L), a row-partition of L, and a column-partition of R. Therefore the
total memory consumption is O((N +mr)/w+m) words. ASGD stores, in addition to
a partition of the input matrix and partitions of L and R, the smaller factor matrix R in
its entirety, for a total consumption of O((N +mr)/w + nr) words. Finally, DSGD++
fully partitions the factor matrices and thus requires O((N +mr)/w) words in total. We
conclude that DSGD++ is most memory-efficient, followed by DCCD++ and ASGD,
and then DALS.

Computation/communication trade-off. The overall performance of the shared-noth-
ing methods crucially depends on the relationship between computation and communi-
cation cost. We say that a distributed-processing algorithm is effective if computation
costs dominate communication costs, because the former costs are linearly reduced by
distributed processing, whereas the latter costs are increased. Under our assumptions,
DALS requires O(mr3/w) time for computation and O(mr) time for communication
per epoch. As m, r, w →∞, computation dominates communication if the rank of the
factorization is sufficiently large: r2 = ω(w). In practice, we often have r > w so that
we expect DALS to be effective. Similarly, for updating and communicating a single
factor, DCCD++ has computation cost O(mr/w) and communication cost O(m). Thus
DCCD++ is effective when r = ω(w), i.e., under tighter conditions than DALS.

For DSGD-MR, O(Nr/w) time is required for computation and O(nr) time for
communication, since we only communicate R. Denote by N̄ = N/n the average num-
ber of revealed entries per column of V ; N̄ measures the amount of work per column
and is key to determining how well we can parallelize SGD. To see this, rewrite the com-
putational cost as O(N̄nr/w) and observe that computation dominates communication
only for large values of N̄ , i.e., N̄ = ω(w). Thus, we expect DSGD-MR to be effective
when the data matrix is not too sparse or has few columns. The same conclusions hold
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for DSGD++ and ASGD, even though they do not satisfy Assumption 1 above. Indeed,
the analysis for DSGD-MR carries over to DSGD++ directly and to ASGD under the
additional assumption that working copies are averaged at least once per epoch.

Theoretical analysis and actual performance. To what extent can our asymptotic
complexity analysis predict the actual relative performance of the algorithms? There
are several causes for concern. One issue is that the data size and number of nodes
are in fact finite. Even when the data was small enough to fit on a single machine,
however, a number of conclusions from our theoretical analysis were confirmed by our
experiments. For example, DALS significantly outperformed PALS for problems of
a given size (confirming that DALS is “effective” as defined above), and the relative
time for a DSGD-MR or ASGD epoch compared to that of a PSGD epoch depends
on N̄ . Our theoretical analysis diverged somewhat from our empirical results in the
case of DSGD++. This latter algorithm proved effective even for small values of N̄
because—unlike the assumption that we used for the complexity analysis—computation
and communication are in fact overlaid.

Another potential inaccuracy in our complexity analysis is that distribution of pro-
cessing among nodes may affect the number of epochs required by the algorithms to
converge. This is not an issue for the algorithms based on alternating minimizations:
DALS and ALS, as well as DCCD++ and CCD++, perform identically, since they solve
the exact same least-squares problems. In contrast, the DSGD-MR, and DSGD++, and
ASGD algorithms may need more epochs to converge than PSGD. The reasons are that
the stratification used in DSGD-MR and DSGD++ reduces the randomness in training
point selection, and the asynchronous averaging used in ASGD introduces delay in
broadcasting updates. Therefore, the processing time per epoch is not by itself a reliable
indicator of overall performance; convergence-rate effects must be taken into account as
well. The experiments in the following section give further insight into the performance
of the algorithms.

6. Comparison of Methods II: Experimental Study

We conducted an experimental study and compared all algorithms along the following
dimensions: the time per epoch (excluding loss computation), the number of epochs
required to converge, and the total time to converge (including loss computations). Recall
that an epoch corresponds roughly to a single pass over the input data, so that the number
of epochs reflects the number of data scans. When comparing two algorithms A and B in
an experiment, we say that A is more compute-efficient than B if it needs less time per
epoch, more data-efficient if needs fewer epochs to converge, and faster if it needs less
total time.

6.1. Overview of Results

In the shared-memory setting, CSGD outperformed all alternative methods on both real
and synthetic datasets: It was up to 15.6x faster than PALS, up to 2.5x faster than PSGD,
and up to 5.7x faster than PCCD++. CSGD also showed better scalability than PSGD,
Jellyfish, and PCCD++ in that we could use more parallel threads before hitting the
memory bandwidth. PALS was the most data-efficient but the least compute-efficient
method, whereas PCCD++ was least data-efficient but most compute-efficient. The
SGD-based approaches lay in between.
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Table 5. Summary of datasets
m n N N̄ Size L λ

Netflix 480k 18k 99M 5.5k 2.2GB LL2w 0.05
KDD 1M 625k 253M 0.4k 5.6GB LL2w 1
Syn1B-rect 10M 1M 1B 1k 22.3GB LSl -
Syn1B-sq 3.4M 3M 1B 0.3k 22.3GB LSl -
Syn10B 10M 1M 10B 10k 223.5GB LSl -

In the shared-nothing setting, DSGD++ was the best-performing method on our
large-scale experiments in all configurations. It was up to 12.8x faster than DALS,
up to 5x times faster than DSGD-MR, and up to 12.3x faster than ASGD. Indeed,
DSGD++ even outperformed PSGD, by a large margin, in some of our experiments with
moderately-sized data for which both algorithms were applicable. DSGD++ was the only
shared-nothing method to outperform PSGD, which testifies to its high communication
efficiency. ASGD was faster than DSGD++ in two experiments with few nodes and large
N̄ , but its performance degraded significantly as more nodes were added. Thus ASGD,
and to a lesser extent also DSGD-MR, was much more sensitive to communication
overhead than DSGD++ and DALS. Finally, as with PALS, the DALS algorithm was the
most data-efficient but the least compute-efficient method. In terms of total time, it was
competitive only when the rank r was small.

6.2. Experimental Setup

Implementation. We implemented SGD, SGD++, ALS, PSGD, PALS, CSGD, DSGD-
MR, DSGD++, ASGD, and DALS in C++. For CCD++ and PCCD++, we used the
C++ implementation provided by the authors of (Yu et al., 2012); the code for DCCD++
was not available to us. For Jellyfish, we used the C++ implementation of (Recht and
Ré, 2013), but incorporated the bold driver heuristic for step size selection to ensure
a fair comparison. In all our experiments, we used s = 3 shuffle threads (we did not
see significant differences for other choices of s). For CSGD, we chose the blocking
parameter b such that one partition of the data and the corresponding factors barely fit into
the cache available for one core. For communication, all shared-nothing algorithms used
the MPICH2 implementation of MPI. We used the GNU scientific library for solving the
least-squares problems of ALS; in our experiments, GSL was significantly faster than
LAPACK and, in contrast to LAPACK, also supports multithreading.

Hardware. We used two different hardware configurations in our experiments: a com-
pute cluster comprising 16 nodes for the shared-nothing setting and a single powerful
high-memory server for the shared-memory setting. Each node in the compute cluster
had 48GB of main memory and an Intel Xeon 2.40GHz processor with 8 cores. The
high-memory server had 512GB of main memory and was equipped with 4 Intel Xeon
2.40GHz processors with 10 cores each (40 in total).

Real-world datasets. We used two real-world datasets: Netflix and KDD. The Netflix
dataset, which occupies 2.2GB of main memory, consists of roughly 99M ratings of 480k
Netflix users for 18k movies; rating values range from 1 to 5. The KDD dataset, which
occupies 5.5 GB of main memory, corresponds to that of Track 1 of the 2011 KDD Cup
2011 and consists of approximately 253M ratings of 1M Yahoo! Music users for 625k
musical pieces. Netflix and KDD differ significantly in the value of N̄ (large for Netflix,
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small for KDD). Detailed statistics for these datasets, as well as for the synthetic datasets
described below, are summarized in Table 5. For both real-world datasets, we used the
official validation sets and focused on LL2w because it performs best in practice (Zhou
et al., 2008; Koren et al., 2009; Chen et al., 2012). We did not tune the regularization
parameter for varying choices of rank r but used the values given in Table 5 throughout.

Synthetic datasets. For our large-scale experiments, we generated three synthetic
datasets that differ in the choice of m, n, and N . We generated each dataset by first cre-
ating two rank-50 matrices L∗m×50 and R∗50×n with entries sampled independently from
the Normal(0, 10) distribution. We then obtained the data matrix by sampling N random
entries from L∗R∗ and adding Normal(0, 1) noise. Note that the resulting datasets are
very structured. We use them here to test the scalability of the various algorithms; the
matrices can potentially be factored much more efficiently by exploiting their structure
directly. To judge the impact of the shape of the data matrix, we generated two large
datasets with 1B revealed entries and identical sparsity: Syn1B-rect is a tall rectangular
matrix (high N̄ , easier to distribute), Syn1B-sq is a square matrix (low N̄ , harder to
distribute). Note that we need to learn more parameters to complete Syn1B-rect (550M)
than to complete Syn1B-sq (320M). We also generated a very large dataset with 10B
entries (Syn10B) to explore the scalability of each method; Syn10B is significantly larger
than the main memory of each individual machine.

Methodology. For all datasets, we centered the input matrix around its mean. To inves-
tigate the impact of the factorization rank, we experimented with ranks r = 50 and r =
100; in practice, values of up to r = 1000 can be beneficial (Zhou et al., 2008). The start-
ing points L0 and R0 were chosen by taking i.i.d. samples from the Uniform(−0.5, 0.5)
distribution; the same starting point was used for each algorithm to ensure a fair compari-
son. Note that, for a given initial point (L0,R0) with R0 6= 0, CCD++ needs to compute
the residual matrix once at the beginning of the algorithm. In our experiments, the time
required for computing the residual matrix was negligible (always less than 0.05% of
the total time) and we do not include this overhead in our experimental results. For all
SGD-based algorithms, we selected the initial step size based on a small sample of the
data (1M entries): 0.0125 for Netflix (r = 50), 0.025 for Netflix (r = 100), 0.00125 for
KDD (r = 50, r = 100) and 0.000625 for Syn1B and Syn10B. Throughout, we used
the bold driver heuristic for step size selection with a step-size-increase factor of 5%
and a step-size-decrease factor of 50%; step size selection was thus fully automatic. See
(Teflioudi et al., 2012) for an experimental comparison of the bold driver heuristic with
other popular step size sequences. We used the WOR training point schedule and the
WOR stratum schedule throughout our experiments unless stated otherwise, and ran a
truncated version of SGD that clipped the entries in the factor matrices to [−100, 100]
after every SGD step. Also, unless stated otherwise, all SGD-based algorithms make use
of prefetching as in the SGD++ algorithm of Sec. 3.1. For each algorithm, we declared
convergence as soon as it reached a point within 2% of the overall best solution.

We focus on experimental results for the shared-memory and shared-nothing settings.
The performance of various sequential algorithms has been studied in (Teflioudi et al.,
2012).

6.3. Shared-Memory Algorithms

In order to evaluate the shared-memory methods, we performed experiments on the
Netflix, KDD, Syn1B-rect, and Syn1B-sq datasets on our high-memory server. We ran
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experiments using 8, 16, and 32 threads and refer to these setups as H8, H16, and H32,
respectively.

We initially experimented with PSGD both with and without locking. We found that
in settings with a large number of threads (H16 and H32), lock-free PSGD was slightly
more compute-efficient than PSGD with locking (e.g., 9% for KDD, r = 100) without
any degradation in the quality of the solution. We presume that this speedup originates
from the reduced synchronization costs of lock-free PSGD, which we used throughout
our experiments.

Netflix, KDD (Fig. 5). Fig. 5b and 5d show the time until convergence on Netflix and
KDD, r = 100, for various methods and setups. All approaches led to a similar overall
loss (all within 1% of each other); Fig. 5a and 5c show examples of the progress of the
methods over time. On Netflix, PCCD++ and PALS found a slightly better solution (1%
lower loss) than the SGD-based approaches; on KDD, results were almost identical.

Across all setups and datasets, PALS was the slowest and CSGD the fastest method.
The compute-efficiency of PALS was very low so that its epochs were significantly
slower than that of alternative methods. In particular, on Netflix, PALS performed only
3 epochs within 400s and was not able to reach the vicinity of the points obtained by
the other methods (for this reason, the PALS curve is not visible in Fig. 5a). PCCD++
performed better than PALS, and it outperformed PSGD on the Netflix dataset (but not
on KDD). Jellyfish was slower than PSGD throughout; potentially because worker and
shuffle threads compete for memory bandwidth and CPU cache. For this reason, we
excluded Jellyfish from our larger-scale experiments. Finally, CSGD was faster than its
closest competitors (PCCD++ on Netflix, PSGD on KDD); its cache-conscious blocking
thus appears to be effective.5

The overall runtime of all algorithms improved significantly as we moved from 8
to 16 threads (1.6x–1.7x speedup on Netflix, 1.5x–1.9x on KDD). When we increased
the number of threads further to t = 32, all methods still benefited on Netflix, but only
PALS and CSGD gave good speedups on KDD (1.7–1.9x, versus ≤1.3x speedup for
other methods). In particular, less CPU-intensive methods such as PCCD++, PSGD and
Jellyfish hit the memory bandwidth on KDD. An exception is CSGD (1.7x speedup
from H16 to H32), which avoids the memory bottleneck due to better cache utilization.
Overall, PALS and CSGD scaled best w.r.t. the number of threads.

PCCD++ was the least data-efficient, and PALS the most data-efficient method. In
more detail, PCCD++ required over 600 times more epochs than PALS to converge
(e.g., 4856 vs. 8 epochs on KDD). Nevertheless, PCCD++ was consistently faster than
PALS in terms of overall runtime. Recall that PCCD++ scans the input matrix 2r(T + 1)
times per iteration, i.e., for processing one feature. It thus requires many epochs, but
each epoch is inexpensive (O(N) time). In contrast, PALS executes only a few epochs,
but each epoch is expensive, taking O(Nr2 +mr3) time. Similarly, PSGD and CSGD
needed more epochs than PALS but fewer than PCCD++ to converge (e.g., 13 epochs
for PSGD on KDD); the compute efficiencies of PSGD and CSGD lie between those of
PALS and PCCD++.

Overall, we found that CSGD was the best-performing method on both datasets;
CSGD on H16 was faster than any other method on H32. On Netflix, PCCD++ was
closest (and slightly better in terms of quality); on KDD, PSGD was closest.

5 Note that our results w.r.t. the relative performance of PSGD and PCCD++ differ from the ones in (Yu
et al., 2012), presumably due to our use of the bold driver heuristic.
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Fig. 5. Performance of shared-memory algorithms on real datasets, r = 100

Syn1B-sq (Fig. 6a). On the larger Syn1B-sq dataset, CSGD was again the best-perform-
ing method. Using 16 (resp., 32) threads, it was 1.3x (resp., 2.5x) faster than PSGD,
the second-best-performing method (0.75h vs. 0.95h for H16; 0.41h vs. 1.04h for H32).
As with KDD, PSGD was significantly faster than PCCD++. The scalability behavior
of the various algortihms was also similar to that for KDD: When moving from 16 to
32 threads, PALS and PCCD++ achieved 1.8x and 1.18x speedup, respectively, PSGD
became slower, and CSGD achieved a 1.9x speedup. As before, CSGD with 16 threads
was faster than any other method with 32 threads.

Syn1B-rect (Figs. 6b and 7a). On Syn1B-rect, all methods were slower than on Syn1B-
sq, presumably because there are more factors to learn. One striking result is that PALS
did not converge to an acceptable solution, its loss being four orders of magnitude greater
than all other methods. We therefore report the running time of PALS until its loss
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Fig. 6. Performance of shared-memory algorithms on synthetic datasets
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Fig. 7. Comparison of shared-memory and shared-nothing methods on Syn1B-rect (PALS
and DALS converge to a different point)

changed by less then 0.1% in two consecutive epochs. (Such erratic behavior of PALS
was not observed on any other dataset.) As with Netflix, when moving from 16 to 32
threads, only PALS and CSGD yielded good speedups. Specifically, the speedups for
PCCD++ and CSGD were 1.12x and 1.5x, respectively, and PSGD actually slowed down.
Also as with Netflix, PCCD++ was somewhat faster than PSGD. In general, on Syn1B-
rect, PCCD++ behaved better relative to alternative methods than it did on Syn1B-sq. A
potential reason for this behavior is that the SGD-based methods are less data-efficient
on Syn1B-rect. In particular, we observed that the SGD-based methods required only a
small number of epochs to move to the vicinity of the solution, but converged slowly
afterward. Nevertheless, CSGD was the fastest method. It achieved a 25% (57%) speedup
in compute-efficiency over PSGD and ran 16.5% (45%) faster than PSGD on H16 (H32).

Overall, CSGD was the fastest method both on KDD and our synthetic datasets.
PSGD was the second-fastest method on KDD and Syn1B-sq, while PCCD++ was
the second-fastest method on Syn1B-rect and, on this dataset, was competitive with
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Table 6. Impact of stratum schedules on DSGD++ (2x8)
Netflix, r = 100 KDD, r = 100

SEQ WOR LA-WOR SEQ WOR LA-WOR

Time/ep. (s) 10.47 11.5 10.61 32.13 40.8 32.62
Epochs 200 65 106 88 62 69
Total time (s) 2426 861 1300 3750 3182 2976

CSGD. PCCD++ was consistently faster (up to 3.5x) than PALS. On the other hand,
being compute-intensive and slow, PALS was one of the most scalable methods; its
performance always improved by adding more threads.

6.4. Shared-Nothing Algorithms

For the shared-nothing setting, we experimented with both real (Netflix, KDD) and
synthetic datasets and used between 2 and 16 compute nodes with 8 threads each. We
write w × t to refer to a setup with w compute nodes, each running t threads.

DSGD++ stratum schedule (Table 6). Recall that the DSGD++ stratum schedule af-
fects both the time per epoch (governed by the relative number of local and remote
fetches) and the number of epochs to convergence (governed by the degree of random-
ization). In Table 6, we compare the performance of DSGD++ with the SEQ, WOR, and
LA-WOR schedules for the 2x8 setup. First, observe that WOR is more data-efficient
than LA-WOR, which in turn is more data-efficient than SEQ. As with the SGD training
point schedule, more randomness leads to better data-efficiency. Regarding compute-
efficiency, we found that all three approaches performed similarly on Netflix, because
N̄ is large and thus communication costs are relatively small. In such a setting, WOR
is the method of choice. On KDD, where N̄ is small so that communication becomes
significant, LA-WOR outperformed both WOR and SEQ. These results are in line with
the analysis in Sec. 5, and we therefore recommend the WOR schedule for datasets with
large N̄ and LA-WOR for those with small N̄ .

Netflix, KDD. Both of our real-world datasets are only moderately large so that dis-
tributed processing may not be necessary. In fact, CSGD can factor these datasets in a
few minutes, e.g., 2min for Netflix and 5min for KDD on H32. For experiments with
these datasets in a shared-nothing environment, see (Teflioudi et al., 2012), where it was
found that ASGD (2x8) and DSGD++ (4x8) were the fastest algorithms on Netflix, and
DSGD++ was the fastest algorithm on KDD (2x8 and 4x8).

Large-scale experiments (Fig. 8). For our large-scale experiments in the shared-nothing
setting, we used the Syn1B-rect, Syn1B-sq, and Syn10B datasets, and varied the number
of nodes (2–16) and threads per node (2–8). When running DSGD++, we used the LA-
WOR schedule for Syn1B-sq and Syn1B-rect, and the WOR schedule for Syn10B. The
results are summarized in Fig. 8. The plots show the total time to convergence required by
each of the shared-nothing methods and, if possible, the corresponding shared-memory
baselines. Note that the available memory was insufficient to run PALS for all datasets
(since it requires two copies of the data in memory) and to run PSGD for Syn10B. In
the remainder of this section, we describe the results in more detail for each of the three
datasets.
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Syn1B-rect (Figs. 7b and 8a). We applied the shared-nothing algorithms to Syn1B-
rect on the 1x8, 2x8, 4x8, and 8x8 setups. Syn1B-rect has a high value of N̄ , so that
distributed processing should be relatively effective, at least for smaller numbers of
nodes. DSGD-MR confirmed this expectation by performing better than the PSGD
baseline in all cases, though the communication and synchronization overheads of
DSGD-MR caused its performance to deteriorate slightly beyond 4 nodes. ASGD also
performed better than the baseline on 2 and 4 nodes but, in contrast to DSGD-MR, did
not behave gracefully beyond 4 nodes. Specifically, at 8 nodes the ASGD runtime became
significantly longer than for PSGD. Even though ASGD was more compute-efficient
on 8 nodes, the increased synchronization overhead led to increased delays between
parameter updates, which drastically reduced data efficiency.

DSGD++ performed best in all setups. It was 2.4x faster than PSGD on 2 nodes and
4.7x faster on 4 nodes. Speedup was superlinear, presumably due to larger overall cache
sizes. The communication overheads of DSGD++ did not adversely affect performance
because of asynchronous communication and use of the LA-WOR schedule. On 8 nodes,
the overhead of communication starts to become visible (7.5x speedup). Nevertheless,
DSGD++ was able to factor Syn1B-rect in 88 minutes on 8 nodes; its closest competitor
was ASGD, which required 186 minutes on 4 nodes. Even though we used different
hardware for our shared-memory and shared-nothing experiments, our results suggest
that on large datasets, DSGD++ is competitive with the best-performing shared-memory
methods running a similar number of threads (see Fig. 7).

Our final observation is that, even though Syn1B-rect is inherently amenable to dis-
tributed processing because of its high N̄ value, DALS did not converge to an acceptable
solution. Moreover, DALS exhibited sublinear speedup. This sublinearity indicates that
the time required to broadcast the factor matrices becomes significant as the number of
nodes increases. The poor performance of DALS is reminiscent of the shared-memory
experiments (Sec. 6.3), where the ALS-based algorithm (in that case PALS) also had
convergence problems.

Syn1B-sq (Fig. 8b). On Syn1B-sq, all methods were faster than on Syn1B-rect since
there were fewer factors to learn. Our other observations were as follows. First, we
observed that DALS (now working correctly) was consistently slower than the PSGD
baseline. As before, increasing the number of nodes led to sublinear speedup due to
increased communication overhead. Second, neither ASGD nor DSGD-MR were able to
improve on the PSGD baseline. Indeed, Syn1B-sq is our “hard” dataset (low N̄ ) so that
communication overheads dominate potential gains due to use of multiple processing
nodes. Note that ASGD behaves more gracefully than on Syn1B-rect for a large number
of nodes. We conjecture that the low value of N̄ decreases the effect of delayed parameter
updates since fewer SGD updates are run per column and time unit (but, as before, the
time per epoch decreased and the number of epochs increased). Our final observation
was that DSGD++ was the only method that was able to improve upon PSGD. It achieved
speedups of 1.6x (2 nodes), 2.3x (4 nodes), and 3.5x (8 nodes). As expected, the speedups
are lower than the ones for Syn1B-rect but nevertheless significant. Overall, our results
indicate that DSGD++ is the only SGD-based method that can handle matrices with low
N̄ gracefully.

Syn10B (Fig. 8c). We could not run experiments on Syn10B using four or fewer nodes
due to insufficient aggregate memory. We therefore show results only for 8x8 and 16x8.
Even in this setting, we could not run DALS on 8 nodes because the available memory
is insufficient to store the required two copies of data matrix and full copy of the factor
matrix simultaneously (DALS requires at least 11 nodes to do this). On 16 nodes, DALS
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Fig. 8. Performance of shared-nothing algorithms on synthetic datasets

took 2h to converge; the increased density of the Syn10B matrix simplifies the completion
problem so that only 11 epochs were needed. In contrast to DALS, all of the SGD-based
methods were able to run on both 8x8 and 16x8. Since these methods store the data
matrix only once and also fully partition the factor matrices, they are more memory
efficient and can thus be used on smaller clusters. Strikingly, DSGD-MR was faster on 8
nodes than DALS on 16 nodes. ASGD did not converge to a satisfactory point in this
experiment (2 orders of magnitude off the best loss) and was much slower than all other
methods (as before, we declared convergence when the loss reduced by less than 0.1%).
This is another indication that ASGD is not robust enough for larger clusters. Finally,
DSGD++ required 1.1h on 8 nodes and 0.7h on 16 nodes. Thus DSGD++ was faster on
8 nodes than any other method on 16 nodes, and was almost twice as fast on 16 nodes as
its closest competitor (DSGD-MR).
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Impact of distributed processing (Fig. 8d). In our final experiment on Syn1B-rect,
we investigated the behavior of the various algorithms as we increased the number of
nodes while keeping the overall number of threads constant (2x8, 4x4, 8x2). Since the
number of threads is identical in each setup, this allowed us to directly measure the
impact of distributed processing. We observed that all approaches except ASGD handle
the increased cluster size gracefully. The runtime of DALS increases slightly (increased
cost of broadcasting), while the runtime of DSGD++ and DSGD-MR decrease slightly
(more cache per thread). Thus even when less powerful compute nodes are available,
these methods perform well. In contrast, the runtime of ASGD again increases sharply
as we go beyond 4 nodes; see the discussion above.

7. Conclusion

We have provided parallel SGD algorithms for in-memory matrix completion in three
different settings: the CSGD algorithm for shared-memory architectures, the ASGD and
DSGD++ algorithms for shared-nothing architectures with MPI-like communication, and
the DSGD-MR algorithm for the shared-nothing MapReduce framework. Our algorithms
exploit thread-level parallelism, in-memory processing, asynchronous communication,
and are cache-conscious. In experiments with data of intermediate and large sizes, the
CSGD and DSGD++ algorithms, which are based on a novel stratification approach,
performed best in the shared-memory and shared-nothing settings, respectively. Both
algorithms scale to matrices with millions of rows, millions of columns, and billions
of entries and consistently outperformed alternative approaches with respect to speed,
scalability, and memory footprint.
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