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Abstract

Mixed packing-covering linear programs capture a simple but expressive subclass
of linear programs. They commonly arise as linear programming relaxations of a
number important combinatorial problems, including various network design and
generalized matching problems. In this paper, we propose an efficient distributed
approximation algorithm for solving mixed packing-covering problems which
requires a poly-logarithmic number of passes over the input. Our algorithm is
well-suited for parallel processing on GPUs, in shared-memory architectures, or on
small clusters of commodity nodes. We report results of a case study for generalized
bipartite matching problems.

1 Introduction

Linear programs (LP) that contain only non-negative coefficients and non-negative variables are called
mixed packing-covering LPs (MPC-LP). These problems constitute a “simple” but still expressive
subclass of LPs. MPC-LPs commonly arise as LP relaxations of a number of important combinatorial
problems and therefore play a crucial role in designing approximation algorithms for such problems.
Examples include various multicommodity flow problems [1, 2, 3, 4, 5], min-max/max-min resource
sharing problems [6, 7, 8, 9], and generalized bipartite matching [10] (for which a provably good
integer solution can be found by rounding the solution to the corresponding LP relaxation).

MPC programs can be solved exactly using standard solvers. However, these solvers cannot cope with
very large problem instances that may occur in practice. Parallel approaches, such as algorithms for
shared-memory [11, 12, 13] or shared-nothing [12, 14, 10] architectures, are essential for achieving
reasonable performance at massive scales.

In this paper, an extended abstract of [10], we develop a parallel approximation algorithm for MPC-LP
problems. These problems have general form

max{w>x : Px ≤ p,Cx ≥ c, x ≥ 0}, (MPC-LP)

where x ∈ <n
+ denotes a vector of variables, w ∈ <n

+ a vector of weights, P ∈ <m×n
+ a packing-

constraint matrix, p ∈ <m
+ the corresponding right-hand side, C ∈ <k×n

+ a covering-constraint
matrix, and c ∈ <k

+ the corresponding right-hand side. We consider an approximate variant of
MPC-LP, in which we seek for a near-optimal solution and additionally allow for a small violation
of packing and covering constraints. This “relaxation” allows us to develop a scalable distributed
approximation algorithm. In particular, denote by ε > 0 a small error bound. We say that x ∈ <n

+

is an ε-feasible solution to MPC-LP if packing and covering constraints are violated by at most a
factor of 1− ε and 1 + ε, respectively, i.e., Px ≤ (1 + ε)p and Cx ≥ (1− ε)c. For 0 < η < 1, an
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Algorithm 1 MPCSolver for MPC-LPs (feasibility)

Require: P ∈ <m×n
+ , p ∈ <m

+ , C ∈ <k×n
+ , c ∈ <k

+, ε
1: µ← ln(mkM/ε)/ε {scaling constant}
2: α← ε/4 {update threshold}
3: β ← α/(20µ) {multiplicative step size}
4: δ ← β/nM {additive increase}
5: Start with any x ∈ <n

+

6: repeat
7: Compute yi(x) = exp

[
µ ·
(
P ix− 1

)]
for i = 1, . . . ,m

8: Compute zi(x) = exp
[
µ ·
(
1−Cix

)]
for i = 1, . . . , k

9: for j = 1, . . . , n do
10: if P>

j y(x)

C>
j z(x)

≤ 1− α then
11: xj ← max{xj(1 + β), δ}
12: if P>

j y(x)

C>
j z(x)

≥ 1 + α then
13: xj ← xj(1− β)
14: until convergence

ε-feasible solution is called an (ε, η)-approximation if it obtains an objective value within a factor of
(1− η)(1− ε) of the optimal solution to MPC-LP. In what follows, we present a distributed algorithm
called MPCSolver that obtains such an approximation for feasible MPC-LPs. Our algorithm performs
only a poly-logarithmic number of passes over the data (in input size and the width of the LP), is
simple and efficient in practice, and can be readily implemented on GPUs, shared-memory and
shared-nothing architectures, as well as on MapReduce.

2 Solving Mixed Packing-Covering Linear Programs

We first discuss how to solve MPC-LP feasibility problems, i.e., ignoring the value of the objective
function, and then proceed to the optimization version.

Feasibility. MPCSolver, given as Alg. 1, is inspired by the work of Awerbuch and Khandekar [14]
and can be seen as a gradient descent method with multiplicative updates. To simplify our discussion,
we first describe our algorithm in a centralized environment and then generalize to the distributed
setting. Recall the definition of an MPC-LP given above. Without loss of generality, we assume that
p = 1 and c = 1, where 1 denotes the all-ones vector of the appropriate dimensionality, and that
each of the non-zero entries in P and C is equal to or larger than 1.1 Denote by M the largest entry
in P and C. We aim to find a vector x ≥ 0 such that Px ≤ 1 and Cx ≥ 1.

Denote by Ai the i-th row of any matrix A, by A>j the j-th row of A>, and by Aij the (i, j)-entry
of A. For any value of x ∈ <n

+, let y(x) = (y1, . . . , ym)> ∈ <m
+ and z(x) = (z1, . . . , zk)> ∈ <k

+

be given as follows:

yi(x) = exp
[
µ ·
(
P ix− 1

)]
zi(x) = exp

[
µ ·
(
1−Cix

)]
,

where µ is a scaling factor (defined in Alg. 1) and yi(x) and zi(x) denote the i-th entry of y(x)
and z(x), respectively. One may think of yi(x) as an exponential “penalty” function of packing
constraint P ix ≤ 1. Penalty yi(x) is small if the constraint is satisfied (yi(x) ≤ 1 if P ix ≤ 1)
and large otherwise (yi(x) > 1 if P ix > 1). Similarly, zi(x) is a penalty function for covering
constraint Cix ≥ 1. In what follows, we refer to yi(x) and zi(x) as the dual variable of the
corresponding constraint. Our algorithm tries to minimize the overall penalty, i.e., the potential
function Φ(x) =

∑m
i=1 yi(x) +

∑k
i=1 zi(x). The scaling constant µ is chosen sufficiently large

1This can be achieved by appropriate rescaling of the rows and the columns of the coefficient matrices.
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so that if Φ is (approximately) minimized, the corresponding solution is ε-feasible whenever the
MPC-LP is feasible. Since Φ is differentiable and convex in x, we use a version of gradient descent
to find the optimal solution (i.e., the one with lowest penalty). Consider the partial derivative of Φ
w.r.t. xj : ∂Φ/∂xj = µP>j y − µC

>
j z. At the minimum, all partial derivatives are zero. When the

derivative is negative (positive), we will increase (decrease) xj by a carefully chosen amount.

All parameters of MPCSolver depend on ε. Here α acts as an update threshold, β as a multiplicate
step size, and δ as an additive increase. The algorithm starts with an arbitrary initial point x0 ∈ <+.
In each round (i.e., each iteration of the repeat-until loop), we first compute the values of the dual
variables y and z. We update variable xj only if its partial derivative is sufficiently far away from zero.
In particular, we update xj if and only if ratio P>j y(x)/C>j z(x) lies outside (1− α, 1 + α); thus α
acts as an update condition. Moreover, updates are multiplicative: We add or subtract βxj from xj .
Step size parameter β determines how quickly we move through the parameter space. Finally, we
ensure that xj ≥ δ after an increase so that we can quickly move away from 0 when xj is very small.
The algorithm iterates until convergence (see below); we then obtain an approximate minimizer of Φ.

Runtime. If the given MPC-LP is feasible, MPCSolver produces an ε-feasible solution in
Õ( ε−5 ln3(kmMnxmax) ) rounds, where xmax = max { δ, x0,1, . . . , x0,n } and x0,j denotes the
j-th element of starting point x0. Here Õ hides lower-order terms. MPCSolver thus converges fast in
the sense that it is guaranteed to find an ε-feasible solution after a poly-logarithmic number of passes
over the data. Each pass can be parallelized as described below. See [10] for a full analysis of Alg. 1.

Convergence test. MPCSolver has converged as soon as one of the following criteria is met: (i) the
solution is ε-feasible, (ii) all variables remain unmodified, or (iii) the number of rounds exceeds the
poly-logarithmic bound. If (ii) or (iii) hold and the solution is not ε-feasible, the MPC-LP instance
is infeasible. In practice, the poly-logarithmic bound is usually too large to be useful (in particular
when ε is small). A heuristic convergence test, which was shown to be effective in practice [10], is to
stop MPCSolver when the decrease in potential stagnates; e.g., when it falls below some threshold in
two consecutive rounds.

Parallel implementation. MPCSolver is straightforward to parallelize on a shared-memory architec-
ture since both primal and dual variables are updated independently of each other. In what follows,
we discuss a shared-nothing implementation. In each round, MPCSolver first computes the dual
variables y and z associated with each packing or covering constraint, respectively. To distribute the
computation, we conformingly partition x> and partition matrices P and C column-wise across the
cluster nodes. Denote by P (i), C(i), and x(i) the respective partitions stored at some node i. Each
node computes the products P (i)x(i) and C(i)x(i) independently and in parallel. The partial results
are then summed up locally and broadcast across the compute cluster to obtain Px and Cx (e.g.,
using MPI Allreduce). Each node now is able to compute the value of the duals and update the
primal variables in partition x(i) independently and in parallel (lines 9–13). Since matrices P and C
are accessed once row-wise (to compute the partial products) and once column-wise (to update the
primal variables), we store at each node i two copies of P (i) and C(i) in memory: one in row-major
and one in column-major order. Note that the constraint matrices are partitioned only once before the
algorithm starts, and that only the partial products are communicated. This implementation can be
inefficient in terms of communication costs when there are many more constraints than variables;
however, the communication costs can be reduced significantly by exploiting the sparsity of the
constraint matrices. Moreover, we can exploit shared-memory parallel processing when multiple
thread are available on each compute node.

From feasibility to optimization. To optimize the objective function, we adapt a technique of
Young [12] to our setting. The key idea is to push the objective function into the constraints.
More precisely, we deal with the following optimization problem: find λ∗ = max{λ : (∃x)Px ≤
p,Cx ≥ c, w>x ≥ λ}. Given the value of λ∗, we can determine x via solving a feasibility problem
with the additional covering constraint w>x ≥ λ∗. To obtain an estimate of λ∗, we run a (small)
sequence of feasibility problems of form {Px ≤ p,Cx ≥ c, w>x ≥ λ}, where λ is determined
via binary search. More precisely, we obtain an (ε, η)-approximation by running MPCSolver with
an error bound of ε on O(log log(λmax/λmin) − log log(1 − η)−1) instances of such feasibility
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problems. Here λmin denotes a lower bound on the optimal value of the pure covering problem
min{w>x : Cx ≥ c, x ≥ 0}, and λmax refers to an upper bound on the optimal value of the pure
packing problem max{w>x : Px ≤ p, x ≥ 0}. Our search strategy is closely related to the one
of [12] but uses a fixed error bound; see [10] for details.

3 Case Study: Generalized Bipartite Matching

We report the results of a case study with instances of generalized bipartite matching (GBM) problems;
see [10] for a description of the problem and additional details about the experimental setup. In GBM
problems, we aim to find a maximum-weight matching (subset of the edges) of an undirected bipartite
graph such that the degree of each node in the matching lies between a specified lower and upper
bound. The LP relaxation of GBM is a mixed packing-covering linear program.

An attractive feature of MPCSolver is its simplicity; it can be implemented in a few lines of code.
Note that at each iteration, MPCSolver essentially computes a set of sparse matrix-vector products.
Modern GPU architectures allow for massively parallel computation of such products, and GPU
implementations can outperform CPU implementations by orders of magnitude. In our case study,
we make use of a C++ implementation for CPUs as well as a CUDA implementation for GPUs using
CUSPARSE [15] for matrix-vector products. We ran our C++ implementation on a compute node
equipped with an Intel Xeon 2.40GHz processor with 8 cores and 48GB main memory, and our
CUDA implementation on a NVIDIA GeForce GTX TITAN GPU with 6GB device memory.

For our experiments, we used two real datasets: Movielens10M consisting of 10M movie ratings of
72K users over 10k items, and NetflixTop50 consisting of 24M movie ratings of 480k users over
18k items. To create the latter dataset, we first applied the rating prediction algorithm of [16] to
predict unknown ratings in Netflix matrix, and then computed the set of items with the top-50 largest
predicted ratings for each user. To construct a GBM instance, we converted each dataset into a
bipartite graph in which users and items form vertices and ratings correspond to weighted edges;
our goal was to match (i.e., recommend) items to users. To create feasible instances, the following
bounds were chosen: We used a lower bound of 3 and an upper bound of 5 on the degree of each
user in the matching (i.e., the number of recommendations given to each user). For items, we did not
enforce a lower bound but chose an upper bound of 200 (i.e., each item to be recommended at most
200 times). On both datasets, we applied MPCSolver to obtain a 0.05-feasible solution.

In Table 1, we report results of the performance of MPCSolver on the Movielens10M and Net-
flixTop50 datasets. Compared to a sequential CPU implementation, MPCSolver obtained a 38.6x
and 26x speed up on NetflixTop50 and Movielens10M, respectively, when running on GPU. We
also compared MPCSolver to Young’s algorithm [12]. On both datasets and when running with
8 threads, Young’s algorithm required a few hours to obtain a 0.05-feasible solution. In the same
setup, MPCSolver achieved the desired precision within 9.8 and 3.7 minutes, respectively. Results of
additional experiments on larger datasets are given in [10].

Table 1: Experimental results on Movielens10M and NetflixTop50 (1x1 refers to 1 node running 1
thread, 1x8 refers to 1 node running 8 threads).

Dataset Average time/iteration (ms) Time for 0.05-feasibility (s)
1x1 1x8 GPU 1x1 1x8 GPU

Movielens10M 727 250 28 652 223 25
NetflixTop50 2513 750 65 1971 588 51

4 Conclusion

We presented MPCSolver, a distributed algorithm for approximately solving mixed packing-covering
linear programs. MPCSolver is easy to implement and parallelize and requires only a poly-logarithmic
number of passes over the data. Our experiments indicate fast convergence and good scalability.
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