
Scalable Frequent Sequence Mining With Flexible Subsequence Constraints
Alexander Renz-Wieland1, Matthias Bertsch2, Rainer Gemulla2

1Technische Universität Berlin, 2Universität Mannheim

Goal: Useful, Useable, and Scalable FSM

•Useful: Develop general FSM algorithms that can be
tailored to diverse applications, such as natural language
processing, information extraction, web usage mining,
market-basket analysis, and computational biology
•Useable: Flexible subsequence constraints allow
applications to specify patterns of interest intuitively
• Scalable: Ability to deal with large input, search space,
and output

DESQ [1, 2]: Usefulness and Usability

A unified FSM framework to specify flexible subsequence con-
straints in an intuitive, declarative way
(1) Hierarchies
•Allow for discovering non-trivial patterns
• Example: DSLR → Tripod → Flash
(2) Pattern Expressions
• Specify subsequence constraints
• Example: (Book)[.{0, 2}(Book)]{1, 4}
(3) FSTs
•Computational framework: translate input sequence to
candidate subsequences
• Example: q0 q1 q2

.

(A)
.

(.↑)

(b)
.

Example

Sequence database:
T1: a1cdcb

T2: eea1ea1eb

T3: cdcb
T4: a2db

T5: a1a1b

Item hierarchy:

A

a1 a2

b

c d e

Pattern expression:
.∗(A)[(.↑).∗]∗(b).∗

Minimum support:
σ = 2
Output:

a1b (3), a1a1b (2), a1Ab (2)

Our Contribution: Scalability

1. A general framework for distributed FSM with flexible
subsequence constraints

2. Two algorithms within this framework:
(a) D-CAND: Communicate compressed candidate
subsequences
(b) D-SEQ: Communicate rewritten input sequences

3. Large-scale experimental study

1. General Framework
•We generalize existing item-based partitioning approaches
(MG-FSM, LASH) to a general framework that supports
flexible subsequence constraints
•Key questions: how to distribute computation and what
to communicate

Local preprocessing
(map)

Local mining
(reduce)

Communication
(shuffle)

2a. Communicate Candidates
•Communicate candidate subsequences as compressed
nondeterministic finite automata (NFA)
•Beneficial for selective constraints
• Example:

a1cdcb, a1cdb, a1cb,
a1dcb, a1ccb

Prefix
Prefix (frequent)
Prefix (not expanded)
Expansion
Projected database

ε a1

a1A a1Ab

a1a1 a1a1b

a1a1ea1b

a1c

a1d

a1e

T1, 0, q0
T2, 0, q0
T5, 0, q0

T1, 1, q1
T2, 3, q1
T5, 1, q1

T2, 5, q1
T5, 2, q1

T2, 7, q2
T5, 3, q2

T2, 5, q1
T5, 2, q1

T2, 7, q2
T5, 3, q2

T1, 5, q2
T2, 7, q2
T5, 3, q2 T1, 2, q1

Fig. 6: Search tree for the local mining of partition Pa1 with
σ = 2. Final state q2 is underlined.

a1, because G2
πex

(a1a1b) and G2
πex

(T2) agree on the pivot
sequences for pivot a1: { a1a1b, a1Ab, a1b } (see also Fig. 3).

Naı̈vely, we can check relevancy by simulating the FST for
T and its variant and subsequently compare the set of pivot
sequences. However, doing so for all positions and all pivot
items is inefficient.

We thus focus on a subset of irrelevant positions that we can
identify efficiently: leading and trailing irrelevant positions.
That is, we identify the first relevant position and the last
relevant position for each pivot item k. We then omit the
positions outside this range from ρk(T ). This ensures that
dropping positions does not introduce additional accepting
runs (and, thus, additional pivot sequences). The first (last)
relevant position is the first (last) position (starting at the
beginning of T ) that either (1) produces output for a pivot
sequence or (2) causes the FST simulation to change to another
state of the FST in any accepting run for pivot k. We can
identify these positions efficiently in the forward pass over
the grid. In our example, for pivot a1, we find the two
irrelevant positions at the beginning of T2 and, thus, send
ρa1(T2) = a1ea1eb to partition Pa1 .

This sufficient condition worked well in our experiments.
We experimented with more sophisticated tests, but they took
more time to compute irrelevant positions than they saved
in communication and mining. In fact, when patterns occur
locally in the input sequence (as is often the case), our
sufficient condition already identifies most irrelevant positions.

C. Local Mining

In the following, we discuss how to mine efficiently for
frequent subsequences with pivot item k in a partition Pk
(line 7 in Alg. 1). In principle, we can run any FSM algorithm
that supports flexible subsequence constraints and discard
frequent subsequences S with κ(S) 6= k. However, in doing
so, we may spend a significant amount of time to mine
such non-pivot frequent subsequences. Instead, we adapt the
DESQ-DFS algorithm, a pattern-growth approach, to mine
only pivot sequences. DESQ-DFS was shown to outperform
other approaches [5].

Mining starts with the empty sequence and expands this
prefix recursively by one item at a time, creating a search tree.
Fig. 6 shows this tree for partition Pa1 of our example. Each
node in the tree is associated with a projected database, which

{a1} {c} {b}
{a1} {c} {c} {b}
{a1} {c} {d} {b}
{a1} {c} {d} {c} {b}
{a1} {d} {c} {b}

(a) Uncompressed (21 vertices, 20 edges).
{b}

{a1}
{c}

{c} {b}

{d}
{b}

{c} {b}{d}
{c} {b}

(b) Trie (13 vertices, 12 edges).
{c}

{a1} {c}

{d}

{d}
{c}

{b}{c}
{b}

{b}

(c) Minimized (7 vertices, 10 edges).

Fig. 7: NFAs for ρc(T1). D-CAND communicates minimized
NFAs as shown in (c).

stores a list of 3-tuples (T, i, q) that can produce this prefix—
comprising an input sequence T , the last-read position i of T ,
and the current state q in FST simulation.

At partition Pk, frequent subsequences cannot contain any
items w > k: such sequences have pivot item κ(S) > k.
Consequently, we do not expand nodes in the search tree with
items w > k. For example, at partition Pa1 , we do not expand
the prefix with items c or e, because e > c > a1.

Early stopping. This approach may still produce sequences
that consist solely of items w < k and, consequently, have
pivot “smaller” than k. In our example, this is not the case for
Pa1 . In Pc, however, mining yields frequent sequence a1b,
although κ(a1b) = a1 < c. We employ a heuristic to prevent
some branches of the search tree that produce such frequent
subsequences: for each input sequence T , we determine the
last position of T that can potentially produce the pivot item.
We then do not use T to expand a prefix that does not contain
the pivot item beyond this position.

VI. CANDIDATE REPRESENTATION

The D-CAND algorithm is based on candidate represen-
tation. It is targeted at subsequence constraints that produce
small numbers of candidate subsequences. We describe ef-
ficient methods to determine pivot items and to construct a
compressed representation simultaneously (Sec. VI-A) and to
mine directly on this representation (Sec. VI-B).

A. Pivot Search and Representation

In candidate representation, we send to partition Pk the
set of candidate subsequences of T that have pivot item k.
Naı̈vely, we can send a list of these. For instance, for T1, we
can send ρc(T1) = { a1cdcb, a1cdb, a1cb, a1dcb, a1ccb } to Pc
and ρa1(T1) = { a1db, a1b } to Pa1 . However, this approach
suffers from similar drawbacks as NAÏVE and SEMI-NAÏVE.

Prefix
Prefix (frequent)
Prefix (not expanded)
Expansion
Projected database

ε a1

a1A a1Ab

a1a1 a1a1b

a1a1ea1b

a1c

a1d

a1e

T1, 0, q0
T2, 0, q0
T5, 0, q0

T1, 1, q1
T2, 3, q1
T5, 1, q1

T2, 5, q1
T5, 2, q1

T2, 7, q2
T5, 3, q2

T2, 5, q1
T5, 2, q1

T2, 7, q2
T5, 3, q2

T1, 5, q2
T2, 7, q2
T5, 3, q2 T1, 2, q1

Fig. 6: Search tree for the local mining of partition Pa1 with
σ = 2. Final state q2 is underlined.

a1, because G2
πex

(a1a1b) and G2
πex

(T2) agree on the pivot
sequences for pivot a1: { a1a1b, a1Ab, a1b } (see also Fig. 3).

Naı̈vely, we can check relevancy by simulating the FST for
T and its variant and subsequently compare the set of pivot
sequences. However, doing so for all positions and all pivot
items is inefficient.

We thus focus on a subset of irrelevant positions that we can
identify efficiently: leading and trailing irrelevant positions.
That is, we identify the first relevant position and the last
relevant position for each pivot item k. We then omit the
positions outside this range from ρk(T ). This ensures that
dropping positions does not introduce additional accepting
runs (and, thus, additional pivot sequences). The first (last)
relevant position is the first (last) position (starting at the
beginning of T ) that either (1) produces output for a pivot
sequence or (2) causes the FST simulation to change to another
state of the FST in any accepting run for pivot k. We can
identify these positions efficiently in the forward pass over
the grid. In our example, for pivot a1, we find the two
irrelevant positions at the beginning of T2 and, thus, send
ρa1(T2) = a1ea1eb to partition Pa1 .

This sufficient condition worked well in our experiments.
We experimented with more sophisticated tests, but they took
more time to compute irrelevant positions than they saved
in communication and mining. In fact, when patterns occur
locally in the input sequence (as is often the case), our
sufficient condition already identifies most irrelevant positions.

C. Local Mining

In the following, we discuss how to mine efficiently for
frequent subsequences with pivot item k in a partition Pk
(line 7 in Alg. 1). In principle, we can run any FSM algorithm
that supports flexible subsequence constraints and discard
frequent subsequences S with κ(S) 6= k. However, in doing
so, we may spend a significant amount of time to mine
such non-pivot frequent subsequences. Instead, we adapt the
DESQ-DFS algorithm, a pattern-growth approach, to mine
only pivot sequences. DESQ-DFS was shown to outperform
other approaches [5].

Mining starts with the empty sequence and expands this
prefix recursively by one item at a time, creating a search tree.
Fig. 6 shows this tree for partition Pa1 of our example. Each
node in the tree is associated with a projected database, which

{a1} {c} {b}
{a1} {c} {c} {b}
{a1} {c} {d} {b}
{a1} {c} {d} {c} {b}
{a1} {d} {c} {b}

(a) Uncompressed (21 vertices, 20 edges).
{b}

{a1}
{c}

{c} {b}

{d}
{b}

{c} {b}{d}
{c} {b}

(b) Trie (13 vertices, 12 edges).
{c}

{a1} {c}

{d}

{d}
{c}

{b}{c}
{b}

{b}

(c) Minimized (7 vertices, 10 edges).

Fig. 7: NFAs for ρc(T1). D-CAND communicates minimized
NFAs as shown in (c).

stores a list of 3-tuples (T, i, q) that can produce this prefix—
comprising an input sequence T , the last-read position i of T ,
and the current state q in FST simulation.

At partition Pk, frequent subsequences cannot contain any
items w > k: such sequences have pivot item κ(S) > k.
Consequently, we do not expand nodes in the search tree with
items w > k. For example, at partition Pa1 , we do not expand
the prefix with items c or e, because e > c > a1.

Early stopping. This approach may still produce sequences
that consist solely of items w < k and, consequently, have
pivot “smaller” than k. In our example, this is not the case for
Pa1 . In Pc, however, mining yields frequent sequence a1b,
although κ(a1b) = a1 < c. We employ a heuristic to prevent
some branches of the search tree that produce such frequent
subsequences: for each input sequence T , we determine the
last position of T that can potentially produce the pivot item.
We then do not use T to expand a prefix that does not contain
the pivot item beyond this position.

VI. CANDIDATE REPRESENTATION

The D-CAND algorithm is based on candidate represen-
tation. It is targeted at subsequence constraints that produce
small numbers of candidate subsequences. We describe ef-
ficient methods to determine pivot items and to construct a
compressed representation simultaneously (Sec. VI-A) and to
mine directly on this representation (Sec. VI-B).

A. Pivot Search and Representation

In candidate representation, we send to partition Pk the
set of candidate subsequences of T that have pivot item k.
Naı̈vely, we can send a list of these. For instance, for T1, we
can send ρc(T1) = { a1cdcb, a1cdb, a1cb, a1dcb, a1ccb } to Pc
and ρa1(T1) = { a1db, a1b } to Pa1 . However, this approach
suffers from similar drawbacks as NAÏVE and SEMI-NAÏVE.

2b. Communicate Inputs

•Communicate task-relevant items of input sequences
•Robust across a wide range of mining tasks
• Example:

a1ea1ebee eeee

3. Experimental Study

•Flexible Patterns: Both algorithms outperformed
naïve approaches by up to 50x

N1(10) N2(100) N3(10) N4(1k) N5(1k)

Subsequence constraint

T
ot

al
 t

im
e 

(i
n 

se
co

nd
s)

1
10

10
0

10
00

Naïve
SemiNaïve
D−SEQ
D−CAND

(a) New York Times data

A1(500) A2(100) A3(100) A4(100)

Subsequence constraint

T
ot

al
 t

im
e 

(i
n 

se
co

nd
s)

1
10

10
0

10
00

n/
a 

(O
O

M
)

n/
a 

(O
O

M
)

(b) Amazon Review data

•Traditional Patterns: Both algorithms exhibited
acceptable generalization overhead over existing,
specialized methods

T3(100,1,5) T3(10,1,5) T3(100,2,5) T3(100,1,6)

Subsequence constraint

T
ot

al
 t

im
e 

(i
n 

m
in

ut
es

)

0

5

10

15

20 LASH
D−SEQ
D−CAND

References and Resources

[1] K. Beedkar and R. Gemulla.
DESQ: Frequent sequence mining with subsequence constraints.
IEEE International Conference on Data Mining ’16.

[2] K. Beedkar, R. Gemulla, and W. Martens.
A unified framework for frequent sequence mining with subsequence constraints.
To appear in ACM Transactions on Database Systems ’19.

Code is open source and available at
https://github.com/rgemulla/desq/tree/distributed.

https://github.com/rgemulla/desq/tree/distributed

