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Abstract—We study scalable algorithms for frequent sequence
mining under flexible subsequence constraints. Such constraints
enable applications to specify concisely which patterns are of
interest and which are not. We focus on the bulk synchronous
parallel model with one round of communication; this model
is suitable for platforms such as MapReduce or Spark. We
derive a general framework for frequent sequence mining under
this model and propose the D-SEQ and D-CAND algorithms
within this framework. The algorithms differ in what data are
communicated and how computation is split up among workers.
To the best of our knowledge, D-SEQ and D-CAND are the
first scalable algorithms for frequent sequence mining with
flexible constraints. We conducted an experimental study on
multiple real-world datasets that suggests that our algorithms
scale nearly linearly, outperform common baselines, and offer
acceptable generalization overhead over existing, less general
mining algorithms.

I. INTRODUCTION

Frequent sequence mining (FSM) is a data mining task that
finds frequent subsequences in a sequence database. FSM is
ubiquitous in applications, including natural language process-
ing [19], information extraction [12], web usage mining [29],
market-basket analysis [28], and computational biology [9].

Fig. 1 gives an overview of prior FSM algorithms, cat-
egorized along the dimensions of flexibility and scalability.
Roughly speaking, more flexible algorithms aim to support
a wider range of applications, whereas scalable algorithms
can handle very large datasets with hundreds of millions
of sequences. Prior work on FSM focused mostly on one
of the dimensions. More specifically, a number of scalable
FSM algorithms has been proposed [6], [8], [15], [16], [21],
[22], [35]. These algorithms are inflexible, however, in that
they cannot be tailored to a particular application. They often
produce a multitude of frequent subsequences, among only
few may be interesting to applications [27]. One approach to
improve flexibility is the use of subsequence constraints, which
specify conditions under which a subsequence is potentially
interesting to the particular application. Ordered by increasing
flexibility, common types of subsequence constraints include
length constraints [28], [34], gap and duration constraints [14],
[28], [34], hierarchy constraints [28], “output filter” regular ex-
pression constraints [2], [3], [13], [31], and regular expression
constraints with capture groups and hierarchies [5], [7]. The
latter type subsumes the remaining ones, and we subsequently
refer to it as flexible constraints.
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(this paper)
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Fig. 1: Selected FSM algorithms, arranged by scalability and
flexibility in terms of supported subsequence constraints.

Consider for example the task of mining frequent
relational phrases between entities from large text corpora
as in [12], [23]; e.g., the phrase make a deal with may be
frequent between persons and/or organizations. An FSM
algorithm that does not support flexible constraints cannot
solve such a task: it cannot be tailored to consider only
relational phrases, thereby producing many uninteresting
(i.e., non-relational) patterns, and it does not support
context constraints, thereby producing spurious patterns
(i.e., patterns that do not connect entities). In contrast,
FSM algorithms that support flexible constraints can
express this task—e.g., using a constraint such as
ENTITY (VERB+ DET? NOUN+? PREP?) ENTITY [12]
in the pattern language of DESQ [5], [7]—but they cannot
handle very large datasets. Other examples involving flexible
constraints include the construction of the well-known Google
n-gram corpus [30] and mining of protein sequences that
exhibit a given motif [31].

In this paper, we study FSM algorithms that are both flexible
and scalable. We focus on the bulk synchronous parallel
model with one round of communication, which is suitable
for platforms such as MapReduce or Spark. We propose the
D-SEQ and D-CAND algorithms, which differ in how work is
distributed and what data are communicated among workers.
More specifically, we make the following contributions:
• We generalize existing approaches for distributed FSM

with one round of communication to a general framework
that supports flexible subsequence constraints (Sec. III).

• We propose D-SEQ (Sec. V), an FSM algorithm that
communicates rewritten input sequences [6], [22] among
workers. The algorithm provides robust performance
across a wide range of subsequence constraints.



T1: a1cdcb
T2: eea1ea1eb
T3: cdcb
T4: a2db
T5: a1a1b

(a) Sequence db.

A

a1 a2

b

c d e

(b) Item hierarchy

w f(w,Dex)

b 5
A 4
d 3
a1 3
c 2
e 1
a2 1

(c) Item freq.

Fig. 2: Running example. Sequence database Dex, item hier-
archy, and item frequencies f(w,Dex).

• We propose D-CAND (Sec. VI), an FSM algorithm
that communicates candidates (in compressed form). The
algorithm is tailored to more selective constraints and it
mines such constraints more efficiently than D-SEQ.

• We report results of an experimental study (Sec. VII)
that examines the relative performance of D-SEQ and D-
CAND and compares them to baseline and state-of-the-art
(specialized) methods on real-world datasets.

We found that our algorithms scaled nearly linearly with the
number of sequences in the sequence database. They also
had acceptable generalization overhead (between 0.9x and
4.3x) over existing specialized methods, which cannot handle
flexible constraints.

II. PRELIMINARIES

We start with introducing basic concepts and a formal
definition of the FSM problem that we consider in this paper.

Sequence database. A sequence database is a set1 of
sequences, denoted D =

{
T1, T2, . . . , T|D|

}
. Each sequence

T = t1t2 . . . t|T | is a list of items from a vocabulary Σ ={
w1, w2, . . . , w|Σ|

}
. We denote by ε the empty sequence, by

|T | the length of sequence T , by Σ∗ the set of all sequences
that can be constructed from items in Σ. Fig. 2a shows an
example sequence database Dex with 5 sequences.

Item hierarchy. The items in Σ are arranged in an item
hierarchy, i. e., a directed acyclic graph that expresses how
items can be generalized (or that they cannot be generalized).
With item hierarchies, analysts can succinctly express con-
straints or find patterns involving general concepts that may
not occur directly in the data (e.g., make may generalize
to V ERB). Fig. 2b shows an example hierarchy in which,
for example, item a1 generalizes to item A. We say that an
item u generalizes directly to an item v, denoted u ⇒ v,
if u is a child of v. We further denote by ⇒∗ the reflexive
transitive closure of ⇒. For each item w ∈ Σ, we denote
by anc(w) = {w′ | w ⇒∗ w′ } the set of ancestors of w
(including w) and by desc(w) = {w′ | w′ ⇒∗ w } the set of
descendants of w (again, including w). In our running exam-
ple, we have anc(a1) = { a1, A } and desc(A) = {A, a1, a2 }.

Subsequence. Let S = s1s2 . . . s|S| and T = t1t2 . . . t|T |
be two sequences composed of items from Σ. We say that S is
a subsequence of T , denoted S v T , if S can be obtained by
deleting and/or generalizing items in T . More formally, S v T

1To simplify exposition, we assume that input sequences are distinct.

TABLE I: Selected pattern expressions. Pattern expression E
matches any item t ∈ inE and outputs any element of outE(t).

E inE outE(t) Description

. t ∈ Σ { ε } Match any item, empty output
(.↑) t ∈ Σ anc(t) Match any item, output ancestors
(w) t ∈ desc(w) { t } Match any desc. of w, output matched item

if and only if there exist integers 1 ≤ i1 < i2 < · · · < i|S| ≤
|T | such that tij ⇒∗ sj for 1 ≤ j ≤ |S|. Continuing our
example, we have a1a1b v T5 and Ab v T5, but a1e 6v T5.

Subsequence constraints. We follow [5], [7] and express
subsequence constraints using subsequence predicates of form
π : Σ∗ × Σ∗ → { 0, 1 }. We say that S is a π-subsequence of
T , denoted S vπ T , if S v T and π(S, T ) = 1. We then also
say that T π-generates S. Denote by

Gπ(T ) = {S | S vπ T }

the set of subsequences π-generated by T . The subsequences
in Gπ(T ) constitute candidate subsequences for FSM. For the
example of Fig. 2, a subsequence predicate πex may specify
that we are interested in only the subsequences that begin with
A or one of its descendants and end with b. Adopting the the
language of [5], [7] (see below), we can express this constraint
using pattern expression

πex = .∗(A)[(.↑).∗]∗(b).∗

We have Gπex
(T5) = { a1a1b, a1Ab, a1b } . Note that, for

example, b v T5 but b 6vπex
T5. Fig. 3 depicts the candidate

subsequences for all T ∈ Dex.
Pattern expression language. The pattern expression lan-

guage is defined inductively: (1) For each item w ∈ Σ, the
expressions w, w=, w↑, and w↑= are pattern expressions. (2) .
and .↑ are pattern expressions. (3) If E is a pattern expression,
so are (E), [E], [E]∗, [E]+, [E]?, and for all n,m ∈ N with
n ≤ m, [E]{n}, [E]{n, }, and [E]{n,m}. (4) If E1 and E2

are pattern expressions, so are [E1E2] and [E1|E2].
Pattern expressions are based on regular expressions, but

additionally include capture groups (in parentheses), hierar-
chies (by omitting =), and generalizations (using ↑ and ↑=).
Intuitively, pattern expressions work like regular expressions:
when they match, they output what is captured and may gener-
alize along the hierarchy (optionally via ↑, always via ↑=). The
language makes use of the usual precedence rules for regular
expressions to suppress square brackets (but not parentheses);
operators that appear earlier in the above definition have higher
precedence. Tab. I shows the input and output of selected
pattern expressions. For example, Aa1b 6vπex

T5, because
pattern expression (A) does not allow to generalize matched
items, i.e., out(A)(a1) = { a1 }.

Tab. III (page 9) gives examples of application pattern
expressions. A more detailed description of the syntax and
semantics of pattern expressions can be found in [7].

Support. The support of a subsequence S in a sequence
database D is the set of input sequences that π-generate S:

Supπ(S,D) = {T ∈ D | S ∈ Gπ(T ) } .



Algorithm 1: Distributed FSM in MapReduce
Data: Database D , constraint π, threshold σ

1 Function Map(T ) // process input sequence T
2 K(T )← keys of partitions for which T is relevant
3 foreach k ∈ K(T ) do
4 ρk(T )← representation to send to partition Pk

5 Emit 〈k, ρk(T )〉

6 Function Reduce(k, Pk) // process partition Pk

7 Fk(Pk)← candidate subsequences with partition key k
along with their frequencies

8 foreach (S, f) ∈ Fk(Pk) do
9 if f ≥ σ then

10 Emit 〈S, f〉

Denote by fπ(S,D) = |Supπ(S,D)| the frequency of S in D .
Given a minimum support threshold σ > 0, a subsequence S
is frequent if fπ(S,D) ≥ σ.

We sometimes omit π to refer to the unconstrained sup-
port or frequency. For example, f(w,D) refers to the item
frequency of w in D ; see Fig. 2c. The set of all frequent
items along with their frequency is called the f-list. We assume
throughout that the f-list is known.

Problem statement. Given a sequence database D , a sub-
sequence predicate π, and a minimum support threshold σ,
output each frequent subsequence (w.r.t. π and σ) along with
its frequency.

For πex and σ = 2 in Dex, we find frequent subsequences
a1a1b and a1Ab with frequency 2 and a1b with frequency 3.

III. OVERVIEW

We first discuss a framework for distributed FSM with
flexible constraints and one round of communication. The
framework generalizes prior distributed algorithms [6], [22].

We assume throughout that the sequence database is dis-
tributed across a set of machines, each holding a subset of
the input sequences. We focus on algorithms that operate in
three phases: (1) process each input sequence independently
(map), (2) construct a set of partitions (shuffle), and (3) mine
each resulting partition independently (reduce). We require for
correctness that each frequent subsequence is output exactly
once and with its correct frequency (and no other subsequences
are output). Parallel computation is performed in the map
and reduce phases, communication in the shuffle phase. Such
algorithms fit the bulk synchronous parallel model (with one
round of communication) and are suitable for platforms such
as MapReduce [11] or Spark [33]. Alg. 1 shows a basic
MapReduce implementation that any such algorithm follows.

As each frequent subsequence needs to be output exactly
once, Alg. 1 implicitly partitions the space of subsequences:
each subsequence S is associated with exactly one of the
partitions (the one that ultimately outputs S in case it is
frequent). To model this property, we associate with each
partition Pk a unique partition key k—which we write as
subscript—and with each sequence S the key κ(S) of the

Sequence
representation

(Sec. V)

Input sequences T ∈ Dex (left) and
candidate subsequences Gπex

(T ) (right)
Candidate

representation
(Sec. VI)

PcPc
PbPb
Pa1Pa1

PAPA
PdPd
PePe
Pa2Pa2

a1cdcbT1: a1cdcb, a1cdb, a1cb,
a1dcb, a1ccb

a1db, a1b

a1ea1ebT2: ee a1a1b, a1Ab, a1b

a1eb, a1eeb, a1a1eb,
a1Aeb, a1ea1b, a1eAb,
a1ea1eb, a1eAeb

cdcbT3: ∅

a2dbT4: a2db, a2b

a1a1bT5: a1a1b, a1Ab, a1b

Fig. 3: Item-based partitioning for the running example (σ =
2). Pivot items are underlined. Candidate subsequences that
contain infrequent items and partitions of infrequent items are
crossed out.

partition associated with S. Partition Pk then outputs S if and
only if κ(S) = k and S is frequent.

Every input sequence T carries information that may be
relevant for some of the partitions. Roughly speaking, if T
contains a candidate subsequence S—i.e., S ∈ Gπ(T )—
then T is potentially relevant for partition Pκ(S). Likewise,
if T does not contain any subsequence associated with some
partition Pk, T is not relevant for Pk. When processing T ,
Alg. 1 (line 2) first determines the set K(T ) of (the keys
of) the partitions which “need to know” about T . For each
such partition Pk, Alg. 1 (line 4) constructs a representation
ρk(T ) that contains the required information for partition Pk,
potentially in compressed form. Partition Pk then collects
the representations obtained from all input sequences and
determines the subset Fk(Pk) of all frequent subsequences
S with κ(S) = k in a local mining phase (line 7).

Different distributed FSM algorithms differ in the defini-
tion of K(T ), ρk(T ), and Fk(Pk). The key challenge is to
simultaneously ensure correctness, efficiency, and scalability.

A. Subsequence-Based Partitioning

A NAÏVE approach to distributed FSM is to generate
all candidate subsequences and subsequently count their fre-
quency (similar to word count). This approach corresponds to
a subsequence-based partitioning. In our notation, NAÏVE sets
κsp(S) = S (and, consequently, K(T ) = Gπ(T )), ρk(T ) = 1,
and Fk(Pk) = { (k, |Pk|) }.

This naı̈ve approach is simple. It is also efficient if Gπ(T )
is small on average—that is, if each input sequence generates
few candidates. For subsequence predicates that generate many
candidates, NAÏVE is often infeasible: in the worst case, the
number of candidate subsequences for a given input sequence
is exponential in the sequence length. Another issue with
NAÏVE is that partition sizes may not be balanced: partitions
corresponding to frequent subsequences are significantly larger
than those corresponding to infrequent ones.

A restricted form of support antimonotonicity holds in the
context of subsequence predicates [5], [7]: for all w ∈ S and



for all π, f(w,D) ≥ fπ(S,D). Consequently, no frequent
subsequence can contain an infrequent item. Denote by

Gσπ(T ) = {S vπ T | ∀w ∈ S : f(w,D) ≥ σ }

the set of candidate subsequences that consist only of frequent
items. SEMI-NAÏVE, an improved version of NAÏVE, sets
K(T ) = Gσπ(T ) (and is otherwise equivalent to NAÏVE),
thereby constructing partitions only for candidate subse-
quences that consist entirely of frequent items. When there
are many infrequent items, the SEMI-NAÏVE algorithm can
be significantly more efficient than the NAÏVE algorithm; the
worst-case behavior remains unaffected.

B. Item-Based Partitioning

Item-based partitioning [6], [10], [17], [22] prevents the
exponential number of partitions that can arise in subsequence-
based partitioning. Each partition Pk is responsible for a single
item k ∈ Σ. Consequently, there are at most |Σ| partitions.
Subsequence S is associated with partition

κip(S) = max {w ∈ S } ,

where the maximum is taken w.r.t. some total order < on the
items in the vocabulary. Following [22], we subsequently refer
to the partitioning key in item-based partitioning κip(S) as the
pivot item of S (similarly, to k as the pivot item of Pk), and
to a subsequence S with k = κip(S) as a pivot sequence for
pivot item k. Thus, partition Pk is responsible for mining all
frequent subsequences that contain k but no item larger than
k or, equivalently, all frequent pivot sequences for k.

The total order < has a large impact on the balance of
partition sizes. A common approach is to define < such that
w1 < w2 if f(w1,D) > f(w2,D). Then the pivot item of a
sequence is its least frequent item. For example, Fig. 2c shows
items w ∈ Dex in such an order: b < A < · · · < a2. The
reasoning behind this approach is that frequent items occur
in many input sequences, but their partitions are responsible
for few distinct subsequences. For example, for the most
frequent item b, partition Pb outputs only sequences of form
b, bb, bbb, and so on. Beedkar and Gemulla [4] show that
when the representation ρk(T ) is constructed appropriately
(see below), little information needs to be sent to partitions
corresponding to frequent items, which tends to lead to well-
balanced partition sizes.

Sequence representation. The key questions in item-based
partitioning are how to split up work and how to minimize
communication via suitable representations. One option, to
which we refer as sequence representation and which D-SEQ
uses, is to send input sequence T (or an equivalent rewritten
variant T ′) to the partitions for which T is relevant. We set

K ip(T ) = { k | S ∈ Gσπ(T ), κip(S) = k } (1)

and ρk(T ) = T (or T ′). Then, for each subsequence S with
κip(S) = k, partition Pk contains all the input sequences
that generate S and can thus compute S’s frequency exactly.
To determine Fk(Pk), we could run any sequential FSM
algorithm and filter out all non-pivot sequences afterwards.

Fig. 3 depicts item-based partitioning for our running ex-
ample with σ = 2. The center column of the figure shows the
input sequences T ∈ Dex (left) along with their candidate sub-
sequences Gπex

(T ) (right). Pivot items are underlined and can-
didate subsequences that contain infrequent items are crossed
out. The left column illustrates item-based partitioning with
sequence representation. For example, K ip(T1) = { a1, c }.
Consequently, we send T1 to partitions Pa1 and Pc.

The key idea of [6], [22] is to set ρk(T ) = T ′, where
T ′ is a “rewritten” variant of T such that T ′ is shorter than
T but Gσπ(T ) and Gσπ(T ′) nevertheless agree on the set of
pivot sequences for k (but may otherwise be different). This
approach is effective in reducing communication costs and
it speeds up local mining because partitions are smaller. A
second significant performance improvement is to make the
local miner Fk aware of the fact that only pivot sequences
need to be output [6]. The aforementioned methods have
outperformed alternative methods in the experiments of [6],
[22]. Their main drawback, however, is that they are suitable
for length and gap constraints only. In Sec. V, we discuss how
and to what extent these ideas can be lifted to support more
powerful subsequence constraints.

Candidate representation. An alternative communication
strategy is to send each candidate subsequence to its respective
partition. Specifically, we use K ip(T ) as defined above and set
ρk(T ) = {S | S ∈ Gσπ(T ), κip(S) = k }. Then, Pk contains
as many “copies” of each pivot sequence S as there are
sequences in D that generate S. In other words, we can obtain
Fk(Pk) by simply counting the number of occurrences of
each sequence in Pk. Thus, the approach is closely related to
SEMI-NAÏVE (the same amount of data is communicated) and
suffers from similar drawbacks. Our D-CAND algorithm al-
leviates these drawbacks via suitable compression techniques.
In Sec. VI, we study how far candidate representation can be
pushed and how it compares to sequence representation.

The right column of Fig. 3 depicts the use of candidate
representation for our running example. For instance, we split
G2
πex

(T1) into two parts ρa1(T1) and ρc(T1), which contain the
candidate subsequences with pivot item a1 and c, respectively,
and are sent to the corresponding partitions.

Discussion. Generally, we expect candidate representation
to reduce communication cost if few candidates are generated
(or can be well compressed) and input sequences are long
(and cannot be well compressed). Sequence representation is
beneficial if short sequences generate many candidates (as in
our running example) that cannot be well compressed. In the
remainder of this paper, we derive efficient algorithms based
on sequence representation (Sec. V) and candidate represen-
tation (Sec. VI) and discuss and evaluate their performance.

IV. DESQ SUBSEQUENCE CONSTRAINTS

To develop efficient parallel mining algorithms, we need
to be able to peek into the subsequence predicate π. For
example, a naı̈ve approach to determine the set of partitioning
keys K ip(T ) in item-based partitioning is to first compute
and then iterate over Gπ(T ). As Gπ(T ) can be exponential
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Fig. 4: FST for subsequence predicate πex.

in the length of T , such an approach is often inefficient.
In the remainder of this paper, we adopt the computational
model of DESQ [5], [7] for subsequence predicates: it allows
to model flexible subsequence constraints (see Fig. 1), yet
imposes enough structure to enable efficient mining. In what
follows, we summarize relevant concepts of DESQ.

DESQ describes a subsequence predicate π via a com-
pressed finite state transducer (FST), which “translates” an
input sequence T to its candidate subsequences Gπ(T ). We
define an FST as a 6-tuple (Q, qS , QF ,Σ, 2

Σ ∪ {ε},∆), con-
sisting of a set of states Q, an initial state qS ∈ Q, a set of final
states QF ⊆ Q, input alphabet Σ, output alphabet 2Σ∪{ε}, and
a transition relation ∆ ⊆ Q×2Σ×(Σ→ 2Σ∪{ε})×Q. Fig. 4
depicts an FST corresponding to subsequence predicate πex.

A transition δ ∈ ∆ is a tuple (qfrom, inδ, outδ, qto), where
qfrom and qto refer to the source and the target state, inδ ⊆ Σ to
the set of acceptable input items, and outδ : Σ→ 2Σ∪{ε} to a
function that computes a set of output items for one accepted
input item. Intuitively, transition δ matches an input item t if
t ∈ inδ and then (conceptually) non-deterministically produces
one of the output items in outδ(t). We require throughout
that outδ(t) ⊆ anc(t) ∪ {ε}, i.e., when a transition outputs
an item, it is guaranteed to be an ancestor of its input (which
includes the input itself). We use pattern expressions to specify
combinations of inδ and outδ compactly, see Tab. I (page 2)
for some of the supported ones. For example, transition δ1 in
Fig. 4 (labeled (A)) matches any descendant of A and outputs
the input item that was matched.

We simulate an FST on an input sequence T to find
accepting runs. Let T = t1t2 . . . tn. A run for T is a sequence
r = δ1–δ2–· · · –δn of transitions δi = (qi, inδi , outδi , q

′
i) such

that q1 = qS , qi+1 = q′i for 1 ≤ i < n, and ti ∈ inδi for
1 ≤ i ≤ n. A run is an accepting run if q′n ∈ QF . We denote
the set of accepting runs for an input sequence T as R(T ). For
T5 of Dex, a (non-accepting) run is δ1–δ3–δ2. The accepting
runs are r1 = δ0–δ1–δ4, r2 = δ1–δ2–δ4, and r3 = δ1–δ3–δ4.

The accepting runs for T generate the candidate subse-
quences Gπ(T ). Each accepting run r ∈ R(T ) produces
a sequence of output sets (sets of output items) outδ1(t1)–
outδ2(t2) –· · · –outδn(tn). For example, run r3 (described
above) produces { a1 }–{ a1, A }–{ b }. We associate each run
r with a set Gπ(r) of candidate subsequences by taking
the Cartesian product of the output sets (and concatenating
each resulting tuple). For instance, Gπex

(r3) = { a1 } ×
{ a1, A }×{ b } = { a1a1b, a1Ab }. The complete set of candi-
date subsequences is then given by Gπ(T ) =

⋃
r∈R(T )Gπ(r).

In our example, Gπex(r1) = Gπex(r2) = { a1b } so that
Gπex(T5) = { a1b, a1a1b, a1Ab }, as desired.

V. SEQUENCE REPRESENTATION

In this section, we describe D-SEQ, an algorithm based
on sequence representation, i.e., it communicates (potentially
rewritten) input sequences to partitions. D-SEQ is aimed
at subsequence constraints that produce large numbers of
candidate subsequences. We describe efficient methods to find
pivot items (Sec. V-A), rewrite the input sequence (Sec. V-B),
and mine each partition locally (Sec. V-C).

In what follows, we consider an arbitrary subsequence
predicate π, represented by FST (Q, qS , QF ,Σ, 2

Σ ∪ {ε},∆).
For brevity, we write κ(S) for κip(S) and K(T ) for K ip(T ).

A. Pivot Search

For each input sequence T , we aim to determine K(T )—
the set of pivot items of partitions for which T is relevant (see
Eq. (1))—efficiently (line 2 in Alg. 1). For example, for T1,
we aim to determine K(T1) = { a1, c }.

Naı̈vely, one can generate all candidate subsequences
Gπ(T ) and determine the pivot item of each candidate subse-
quence in the set. However, this approach is often infeasible
due to the exponential number of candidate subsequences.

In the DESQ model, there are two sources for the exponen-
tial number of candidate subsequences: (1) the Cartesian prod-
uct can produce exponentially many candidate subsequences
for one accepting run and (2) there can be exponentially many
accepting runs. In the following, we address both of these
causes. We propose an algorithm that, for a given FST, is
linear in the length |T | of the input sequence T .

Pivot items of a run. We define K(r) ⊆ K(T ) as the pivot
items of a run r:

K(r) = { k | S ∈ Gπ(r), κ(S) = k } .

From DESQ’s computational model, it follows K(T ) =
∪r∈R(T )K(r). Consequently, we can determine K(r) for each
accepting run separately and merge the results.

When is an item in a run a pivot item? First, consider an
example run r4 for a subsequence constraint π′ 6= πex with
output sets { b, c }–{A }–{ d, a1 }. Recall that b < A < d <
a1 < c. We have Gπ′(r4) =

{
bAd, bAa1, cAd, cAa1

}
and,

thus, pivots K(r4) = { c, d, a1 }. Now consider a general run r
with output sets outδ1(t1)–outδ2(t2)–· · · –outδn(tn). An item
w ∈ outδi(ti) is a pivot item if it is the maximum item of at
least one of the candidate subsequences Gπ(r). The Cartesian
product for r produces such a candidate subsequence if there
is at least one item w′ ≤ w in every other output set.

In the following, we propose a method to “merge” output
sets in linear time. To do so, we investigate further in which
cases an item is a pivot item. In a run of length 1 (i.e., with 1
output set), all items are pivot items. For example, r′4: { b, c }
produces Gπ′(r′4) = { b, c }. In a run of length 2, an item
of one set is a pivot item if it is greater than or equal to the
minimum item of the other set. For example, r′′4 : { b, c }–{A }
produces Gπ′(r′′4 ) = { bA, cA } (pivots A and c). We have
A ≥ min { b, c } and c ≥ min {A }, but b < min {A }. In
general, we make use of a commutative and associative “pivot



merge” function ⊕ to determine the pivot items of two output
sets U and Q (with ε < w for w ∈ Σ):

U⊕Q = {ω ∈ U | ω ≥ min(Q) }∪{ω ∈ Q | ω ≥ min(U) } .

As we have to check for minimum items in every other set,
we apply ⊕ repeatedly, see Th. 1. For example, we find the
pivot items of r4 as K(r4) = { b, c } ⊕ {A } ⊕ { d, a1 }.

Theorem 1: The pivot items K(r) of run r with output sets
outδ1(t1)–outδ2(t2)–· · · – outδ|T |(t|T |) can be computed by

K(r) = outδ1(t1)⊕ outδ2(t2)⊕ · · · ⊕ outδ|T |(t|T |).

As there are at most |Σ| items in each output set, we can
compute ⊕ in time O(Σ) using appropriate data structures.
For a run of length |T |, total computation time reduces from
O(|Σ||T |) via computation of Gπ(r) to O(|T ||Σ|) using Th. 1.

Repeated computation. The number of accepting runs can
be exponential in the length |T | of the input sequence: an FST
with |∆| transitions can have O(|∆||T |) accepting runs. Thus,
naı̈vely iterating all runs can be infeasible. Fig. 5a shows all
accepting runs for T2 of our running example, depicted as a
trie. Note that there are many more non-accepting runs. Edges
are labeled by the number of the FST transition; for example,
the uppermost run is δ0–δ0–δ0–δ0–δ1–δ2–δ4.

As remedy, we propose a dynamic programming approach
that is based on the key observation that a position–state pair
(i, q) of the last-read position i in the input sequence and the
current FST state q fully determines the subsequent simulation
(from position i + 1 to the end of the input sequence).
Consequently, we store the result of this subsequent simulation
and reuse it when the simulation revisits (i, q). For example,
simulation for T2 visits (5, q1) multiple times (marked blue
in Fig. 5a). Simulation starting in (5, q1) consistently leads to
two accepting runs: · · · –δ2–δ4 and · · · –δ3–δ4.

To exploit this property, we interpret FST simulation in a
2-dimensional position–state grid. Fig. 5b shows such a grid
for T2. We construct this grid during FST simulation. When
first visiting a coordinate pair (i, q), we store the result of
the FST simulation starting from (i, q). If the simulation finds
accepting runs starting from (i, q), we add the taken transitions
into the grid between the corresponding coordinates, labeling
them with the number of the taken transition. If the simulation
finds no accepting runs starting from (i, q), we mark (i, q) as
a dead end (red crosses in Fig. 5b).

In Fig. 5b, we label edges by the produced output set and,
as subscript, the transition number. For example, the edge
leaving (6, q1) corresponds to FST transition δ4 and produces
outδ4(b) = { b }, so we label it { b }4.

We find the pivot items K(T ) from the accepting runs, i.e.,
runs ending in position–state pairs (|T |, q) with q ∈ QF . For
each position–state pair, we define as R(i, q) a set of partial
runs: the first i transitions of the accepting runs whose ith
transition ends in q. More formally: R(i, q) = { δ1– · · · –δi |
δ1– · · · –δi– · · · –δ|T | ∈ R(T ), δi ends in q }. For example,
R(4, q1) = { δ0–δ0–δ1–δ2, δ0–δ0–δ1–δ3 }. We further define
as K(i, q) the pivot items of these partial runs: K(i, q) =
∪r∈R(i,q)K(r). For instance, we have K(4, q1) = { a1, e }

: (5, q1)

0 0 0 0 1 2 4
3 41

2 2 2 4
3 43
2 4
3 4

3

2 2 4
3 43
2 4
3 4

(a) As trie. Edges are labeled by the transition number.

Pivot items K(i, q) = : { ε } : { a1 } : { a1, e }

{ε}0 {ε}0 {ε}0 {ε}0

{a1}1{a1}1 {ε}2

{e}3
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e
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(b) As position–state grid. Edges are labeled by the produced output
set and, as subscript, the transition number.

Fig. 5: Accepting runs for T2.

(the partial outputs of (4, q1) are subsequences a1 and a1e).
In Fig. 5b, we give the set K(i, q) for each coordinate that is
part of an accepting run. We get K(T ) = ∪q∈QFK(|T |, q).
Only q2 is a final state, so K(T2) = { a1, e } in our example.

We compute all K(i, q) efficiently in one forward pass
over the grid after FST simulation has finished. Denote as
inc(i,q) the incoming transitions of coordinate (i, q), com-
prising tuples of source state and transition. We compute
K(i, q) = ∪(q′,δ)∈inc(i,q)K(i − 1, q′) ⊕ outδ(ti). Intuitively,
for each incoming transition, we take the pivots of the partial
runs up to i − 1 and combine them with the output set
produced by the incoming transition. For example, we have
inc(4,q1) = { (q1, δ2), (q1, δ3) } and compute K(4, q1) =
({ a1 } ⊕ { ε }) ∪ ({ a1 } ⊕ {e}) = { a1 } ∪ { e }.

In our implementation, we exclude infrequent items (which
cannot be pivot items) early on—that is, we do not add any
item w with f(w,D) < σ to any set K(i, q). In the example,
with σ = 2, we exclude e.

Using the grid bounds run time polynomially. Directly
processing the output sets of O(|∆||T |) accepting runs takes
O(|T ||∆||T |) time. Using the grid, we process each coordinate
at most once and, since there are at most |∆| outgoing
transitions per coordinate, obtain a lower computational cost
of O(|T ||Q||∆|).

B. Representation

Previous work [6], [22] introduced ideas to send (shorter)
rewritten variants of an input sequence T to partitions. This
can reduce communication cost and speed up local mining.
However, existing ideas focus on and are limited to length
and gap constraints. In this section, we lift these ideas to the
general case of flexible subsequence constraints.

When constructing ρk(T ), we aim to drop positions of T
that are irrelevant for a partition. A position is irrelevant for a
partition Pk if T and the variant of T without the item at this
position agree on the set of pivot subsequences for pivot k. For
example, all positions with e’s of T2 are irrelevant for pivot
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Fig. 6: Search tree for the local mining of partition Pa1 with
σ = 2. Final state q2 is underlined.

a1, because G2
πex

(a1a1b) and G2
πex

(T2) agree on the pivot
sequences for pivot a1: { a1a1b, a1Ab, a1b } (see also Fig. 3).

Naı̈vely, we can check relevancy by simulating the FST for
T and its variant and subsequently compare the set of pivot
sequences. However, doing so for all positions and all pivot
items is inefficient.

We thus focus on a subset of irrelevant positions that we can
identify efficiently: leading and trailing irrelevant positions.
That is, we identify the first relevant position and the last
relevant position for each pivot item k. We then omit the
positions outside this range from ρk(T ). This ensures that
dropping positions does not introduce additional accepting
runs (and, thus, additional pivot sequences). The first (last)
relevant position is the first (last) position (starting at the
beginning of T ) that either (1) produces output for a pivot
sequence or (2) causes the FST simulation to change to another
state of the FST in any accepting run for pivot k. We can
identify these positions efficiently in the forward pass over
the grid. In our example, for pivot a1, we find the two
irrelevant positions at the beginning of T2 and, thus, send
ρa1(T2) = a1ea1eb to partition Pa1 .

This sufficient condition worked well in our experiments.
We experimented with more sophisticated tests, but they took
more time to compute irrelevant positions than they saved
in communication and mining. In fact, when patterns occur
locally in the input sequence (as is often the case), our
sufficient condition already identifies most irrelevant positions.

C. Local Mining

In the following, we discuss how to mine efficiently for
frequent subsequences with pivot item k in a partition Pk
(line 7 in Alg. 1). In principle, we can run any FSM algorithm
that supports flexible subsequence constraints and discard
frequent subsequences S with κ(S) 6= k. However, in doing
so, we may spend a significant amount of time to mine
such non-pivot frequent subsequences. Instead, we adapt the
DESQ-DFS algorithm, a pattern-growth approach, to mine
only pivot sequences. DESQ-DFS was shown to outperform
other approaches [5].

Mining starts with the empty sequence and expands this
prefix recursively by one item at a time, creating a search tree.
Fig. 6 shows this tree for partition Pa1 of our example. Each
node in the tree is associated with a projected database, which

{a1} {c} {b}
{a1} {c} {c} {b}
{a1} {c} {d} {b}
{a1} {c} {d} {c} {b}
{a1} {d} {c} {b}

(a) Uncompressed (21 vertices, 20 edges).
{b}

{a1}
{c}

{c} {b}

{d}
{b}

{c} {b}{d}
{c} {b}

(b) Trie (13 vertices, 12 edges).
{c}

{a1} {c}

{d}

{d}
{c}

{b}
{c}

{b}

{b}

(c) Minimized (7 vertices, 10 edges).

Fig. 7: NFAs for ρc(T1). D-CAND communicates minimized
NFAs as shown in (c).

stores a list of 3-tuples (T, i, q) that can produce this prefix—
comprising an input sequence T , the last-read position i of T ,
and the current state q in FST simulation.

At partition Pk, frequent subsequences cannot contain any
items w > k: such sequences have pivot item κ(S) > k.
Consequently, we do not expand nodes in the search tree with
items w > k. For example, at partition Pa1 , we do not expand
the prefix with items c or e, because e > c > a1.

Early stopping. This approach may still produce sequences
that consist solely of items w < k and, consequently, have
pivot “smaller” than k. In our example, this is not the case for
Pa1 . In Pc, however, mining yields frequent sequence a1b,
although κ(a1b) = a1 < c. We employ a heuristic to prevent
some branches of the search tree that produce such frequent
subsequences: for each input sequence T , we determine the
last position of T that can potentially produce the pivot item.
We then do not use T to expand a prefix that does not contain
the pivot item beyond this position.

VI. CANDIDATE REPRESENTATION

The D-CAND algorithm is based on candidate represen-
tation. It is targeted at subsequence constraints that produce
small numbers of candidate subsequences. We describe ef-
ficient methods to determine pivot items and to construct a
compressed representation simultaneously (Sec. VI-A) and to
mine directly on this representation (Sec. VI-B).

A. Pivot Search and Representation

In candidate representation, we send to partition Pk the
set of candidate subsequences of T that have pivot item k.
Naı̈vely, we can send a list of these. For instance, for T1, we
can send ρc(T1) = { a1cdcb, a1cdb, a1cb, a1dcb, a1ccb } to Pc
and ρa1(T1) = { a1db, a1b } to Pa1 . However, this approach
suffers from similar drawbacks as NAÏVE and SEMI-NAÏVE.
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Fig. 8: NFA for ρa1(T5).

Instead, we propose to send a compressed representation and
mine on this representation directly. Compression is effective
when the candidate subsequences have shared structure. E.g.,
in ρc(T1), all subsequences start with a1 and end with b.

We use nondeterministic finite automata (NFAs) to com-
press sets of candidate subsequences. We interpret a set ρk(T )
as a finite language and construct an NFA for it. That is,
this NFA accepts precisely the subsequences in ρk(T ). For
example, Fig. 7a shows such an NFA for ρc(T1). One NFA
edge corresponds to an output set outδi(ti). We can compress
an NFA in any way, given that the compressed version also
accepts precisely the candidate subsequences in ρk(T ).

We aim to construct a representation that minimizes shuffle
size. Thus, ideally, we want to minimize the NFA. In general,
NFA minimization is PSPACE-complete [18]. Tries, however,
are acyclic, so they can be minimized in linear time [25]. We
construct tries and subsequently minimize the tries.

Construction. To construct the NFAs for input sequence T ,
we simulate the FST to find accepting runs and maintain
one trie for each found pivot item k ∈ K(T ). When the
simulation finds an accepting run r ∈ R(T ), we insert this
run into the tries for k ∈ K(r). We drop all items w > k
from the output sets of the run, because these items produce
candidate subsequences with κ(S) > k. After FST simulation,
we minimize the constructed tries. In our example, for T1,
we construct two NFAs: one for ρc(T1) (Fig. 7b shows the
trie, Fig. 7c the minimized NFA) and one for ρa1(T1). We
do not use a position–state grid to construct NFAs, because
we found that the subsequence constraints that D-CAND is
aimed at (i.e., constraints that produce only few candidate
subsequences) do not benefit significantly from using a grid.

Serialization. We serialize an NFA by writing out informa-
tion about each of its transitions. Naı̈vely, for each transition,
we write its source state, its label (an output set), and its
target state. Additionally, we note which states are final (F).
Consider the example NFA for ρa1(T5), depicted in Fig. 8.
We write 0 a1 1 | 1 a1A 2 | 2 b 3 | 1 b 3 | F : 3.

To decrease serialization size, we use the following com-
pression: (1) if no source state is given for a transition, the
transition starts in the target state of the previous transition
and (2) if no target state is given, it ends in a new one.

To obtain the compressed representation, we run depth-
first search on the NFA and serialize the transitions in the
visit order. We write out the label for every transition and
additionally (1) the source state if the state was visited before,
(2) the target state if the target state was visited before, and
(3) a “final” marker if the target state is final and was not
visited before. For example, for the NFA for ρa1(T5) and a
DFS order q0 → q1, q1 → q2, q2 → q3, q1 → q3, we serialize
a1 | a1A | bF | 1 b 3.

TABLE II: Dataset and hierarchy characteristics.

NYT AMZN AMZN-F CW50

Total sequences (M) 50 21 21 567
Total items (M) 1 130 83 83 10 774
Unique itemsa (M) 8 10 10 23
Max. sequence length 21 000 44 557 44 557 20 993
Mean sequence length 22.8 3.9 3.9 19.0

Hierarchy items 9 874 089 9 903 422 9 894 624 22 642 566
Max. ancestors 3 282 10 1
Mean ancestors 2.8 5.1 3.5 1.0

We experimented with different serialization schemes and
found this one to be the most efficient—considering time for
serialization, communication, and deserialization.

Aggregation. We found that different input sequences often
send identical NFAs, especially to partitions of frequent items.
Therefore, we use a MapReduce combine function to aggregate
identical NFAs into a single NFA weighted by its frequency.

B. Local Mining

In D-CAND, the most time-consuming computations—that
is, simulating the FST on the input sequences—are run in
the map phase. Local mining merely counts the number of
occurrences of each candidate subsequence in the set of
received (weighted) NFAs. To count occurrences efficiently,
we operate directly on the compressed NFAs and employ a
pattern-growth approach [24].

VII. EXPERIMENTS

We studied the performance of D-SEQ and D-CAND using
multiple real-world datasets and a variety of subsequence
constraints. We compared the presented algorithms with each
other and to the state-of-the-art w.r.t. performance and scala-
bility. We further compared sequence and candidate represen-
tation, and we investigated the benefits of specific components
of D-SEQ and D-CAND. Our major insights are:

• Both sequence and candidate representation can reduce
communication cost significantly (up to 100x).

• Both D-SEQ and D-CAND scaled nearly linearly with
the size of the sequence database.

• D-CAND was up to 5x faster than D-SEQ on selective
subsequence constraints (i.e., constraints that select only
few candidate subsequences per input sequence). D-SEQ
was more robust for less selective constraints.

• D-SEQ and D-CAND exhibited acceptable generaliza-
tion overhead over existing, specialized methods (usually
within 0.9x and 4.3x).

A. Setup

Implementation and cluster. We implemented our algo-
rithms in Java (JDK 1.8) and Scala (version 2.11.8) for Apache
Spark (version 2.0.1). Our source code is available online.2 We

2At https://github.com/rgemulla/desq/tree/distributed.

https://github.com/rgemulla/desq/tree/distributed


TABLE III: Example subsequence constraints with examples for found frequent sequences. Adapted from [5].

Notation Subsequence constraint and pattern expression Example frequent sequences (with support)

Text Mining
N1(σ) Rel. phr. betw. entities: ENTITY (VERB+ NOUN+? PREP?) ENTITY NYT: lives in (4 322), graduated from (3 693), is survived by (1 749)
N2(σ) Typed rel. phr.: (ENTITY↑ VERB+ NOUN+? PREP? ENTITY↑) NYT: ORG is offering ENTITY (2 239), PER was born in LOC (11 581)
N3(σ) Copular rel. for an entity: (ENTITY↑ be↑=) DET? (ADV? ADJ? NOUN) NYT: PER be professor (1 582), LOC be great place (99)
N4(σ) Generalized 3-grams before a noun: (.↑){3} NOUN NYT: NOUN PREP DET (8 163 372), DET ADV ADJ (760 714)
N5(σ) 3-grams, one item generalized: ([.↑. .]|[. .↑.]|[. . .↑]) NYT: who VERB also (22 223), human rights NOUN (21 883)

Recommendation
A1(σ) Max. 5 electronic items, max. gap 2: (Electr↑)[.{0, 2}(Electr↑)]{1, 4} AMZN: ‘MP3 Players’ ‘Headph.’ (11 761), ‘Mice’ ‘Keyb.’ ‘Accessib.’ (875)
A2(σ) Sequences of books: (Book)[.{0, 2}(Book)]{1, 4} AMZN: ‘A Storm of Swords’ ‘A Feast for Crows’ (153)
A3(σ) Gen. items after a digital camera: DigitalCamera[.{0, 3}(.↑)]{1, 4} AMZN: ‘Lenses’ ‘Tripods’ (158), ‘Batteries’ ‘SD&SDHC Cards’ (149)
A4(σ) Musical instruments: (MusicInstr↑)[.{0, 2}(MusicInstr↑)]{1, 4} AMZN: ‘MusicInstr’ ‘Bags&Cases’ (2 158)

Traditional constraints
T1(σ, λ) PrefixSpan: max. length λ: (.)

[
.∗(.)

]
{, λ-1} AMZN [λ=5]: ‘Kindle Fire’ ‘Folio Case’ (715), ‘Subw. Surf.’ ‘Flappy W.’ (579)

T2(σ, γ, λ) MG-FSM: max. length λ, max. gap γ: (.)
[
.{0, γ}(.)

]
{1, λ-1} NYT [γ=1,λ=5]: most of the (115 243), spoke on cond. anon. (9 995)

T3(σ, γ, λ) LASH: max. length λ, max. gap γ, hierarchy: (.↑)
[
.{0, γ}(.↑)

]
{1, λ-1} AMZN-F [γ=1,λ=5]: ‘Pop CD’ ‘Pop CD’ ‘Pop CD’ (49 139)

used the authors’ implementations of LASH3 and DESQ4 and
PrefixSpan of Spark 2.0.1. We used a local cluster of 8+1 Dell
PowerEdge R720 computers, running CentOS Linux 7.3.1611
and connected with 10 GBit Ethernet. Each of the 8 worker
nodes was equipped with two Intel Xeon E5-2640 v2 8-core
CPUs, 128 GB of main memory, and four 2 TB NL-SAS
7200 RPM hard disks, the master node had 1 such CPU and
64 GB of memory. The algorithms read input sequences from
HDFS (Hadoop 2.5.0) and stored found frequent sequences
to HDFS. We ran 1 executor with 8 virtual CPU cores and
64 GB of memory per worker node.

Measures. We report end-to-end run times as measured
by Apache Spark. We report Spark’s shuffleWriteBytes
metric for the map stage as shuffle size. All reported measure-
ments are the mean of three independent runs that we ran with
no other applications running on the cluster.

Datasets. Tab. II depicts statistics about the used datasets. In
the New York Times Annotated Corpus (NYT) words generalize
to their lemma and to their part-of-speech tag. Named entities
generalize to their type and to ENTITY. We interpreted one
sentence as one input sequence.

The AMZN dataset comprises product reviews of Amazon
customers [20]. We interpreted the products reviewed by one
customer as one input sequence. Items generalize to broader
categories and to departments, according to the Amazon prod-
uct hierarchy. We constructed AMZN-F, a variant of AMZN,
for algorithms that support only hierarchies of forest form
(i.e., each item can generalize to at most one other item):
for an item that generalizes to more than one other item, we
retained only the generalization to the most frequent parent
item. Subsequently, we removed hierarchy items that have only
one child when this child has identical item frequency.

The dataset CW50 is a 50% sample of the ClueWeb09-T09B
subset of ClueWeb. We interpreted one sentence as one input
sequence. We used no hierarchy for this dataset.

3From https://github.com/uma-pi1/lash. LASH is not available for Spark, so
we used the authors’ Hadoop implementation. Thus, we compare two systems.
We argue that a comparison is meaningful nevertheless, as the compared
algorithms are compute-bound and run only one round of communication.

4From https://github.com/rgemulla/desq/tree/master.

Preprocessing—that is, computing item frequencies and
converting the dataset to a frequency-based encoding—took
approximately 2 minutes and 10 seconds for both NYT and
AMZN and roughly 9 minutes for CW50. As the preprocessing
has to be run only once per dataset, we do not include
preprocessing times in our experiments.

Subsequence constraints. Tab. III depicts the constraints
we used in our experiments and example frequent sequences
for each constraint. N1–N5 are text mining applications,
based on [12], [23], [30]. They exploit the NYT hierarchy to
specify item constraints. A1–A4 are examples for order-aware
recommendation tasks. T1, T2, and T3 model the constraint
types of existing scalable algorithms. The examples in Tab. III
show that flexible constraints allow analysts to increase the
usefulness of frequent sequences, e.g., contrast T2 with N2.

B. D-SEQ and D-CAND

We found that (1) D-SEQ and D-CAND outperformed
naı̈ve methods by up to 50x, (2) both sending rewritten input
sequences and sending NFA-encoded candidate subsequences
lead to compact representations, (3) D-CAND mined flexible
subsequence constraints up to 5x faster than D-SEQ, and
(4) proposed enhancements to D-SEQ and D-CAND improve
performance with minimal overhead.

D-SEQ and D-CAND outperformed naı̈ve methods by up
to 50x, see Fig. 9a and Fig. 9b. Existing scalable methods do
not support these subsequence constraints.

CSPI. The differences in relative performance stem mostly
from the number of candidate subsequences per input se-
quence (CSPI) that a subsequence constraint generates. Tab. IV
depicts CSPI statistics. We refer to constraints with low
CSPI as selective and ones with high CSPI as loose. The
main problem of the naı̈ve methods is that they generate
and communicate all candidate subsequences. Consequently,
for selective constraints (e.g., N1(10) or N2(100)), naı̈ve
approaches worked relatively well. For greater CSPI (e.g.
N5(1k) or A1(500)), D-SEQ and D-CAND outperformed
naı̈ve methods clearly. For loose constraints (with still greater
CSPI, e.g., T3(10, 1, 5) or T1(400, 5)), naı̈ve methods ran out

https://github.com/uma-pi1/lash
https://github.com/rgemulla/desq/tree/master
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Fig. 9: Performance for flexible subsequence constraints. Both D-SEQ and D-CAND offer efficient representations and
outperform baselines by up to 50x. None of the existing scalable FSM algorithms support these constraints.

TABLE IV: Statistics on candidate subsequences.

Constraint, dataset matched # cand. seqs. CSPI
seqs. (%)a (in million) mean med.

N1(10), NYT 3.8 2 1.0 1
N2(100), NYT 3.8 16 8.5 9
N3(10), NYT 0.9 1 2.9 3
N4(1k), NYT 88.5 5 052 115.1 99
N5(1k), NYT 98.1 6 335 130.2 119

A1(500), AMZN 5.4 5 050 4 394.4 30
A2(100), AMZN 5.1 42 38.5 1
A3(100), AMZN 0.6 3 216 25 716.9 989
A4(100), AMZN 0.3 205 3 787.6 25

T3(100,1,5), AMZN-F 47.8 242 309 23 953.1 69
T3(10,1,5), AMZN-F 48.2 392 492 38 458.2 107

T1(6400,5), AMZN 5.8 2.5 2.1
T1(1600,5), AMZN 17.4 1 830 494.1
T1(400, 5), AMZNb 37.6 3 235 364 406 146.6
a % of sequences that produce at least one candidate subsequence
b Estimated from a 0.1% random sample of the sequences
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Fig. 10: Detailed analysis. Each algorithm component acceler-
ates some constraints drastically with little overhead for others.
Horizontal lines within bars mark the start of the mine stage.

of memory, because Spark failed to spill accrued shuffle to
disk before it exceeded the YARN container memory limit.

Representations. Both sending rewritten input sequences
(in D-SEQ) and sending NFA-compressed candidate subse-
quences (in D-CAND) lead to compact representations. Fig. 9c
shows shuffle sizes for two constraints. Both D-SEQ and D-
CAND shuffled up to 100 times less data than the naı̈ve
methods. In particular, it is notable that the NFA representation
in D-CAND is almost as concise as the one of D-SEQ.

Detailed analysis. In D-SEQ, we studied individually the
effects of using the position–state grid, rewriting input se-

quences, and stopping early, see Fig. 10a. In D-CAND, we
studied the effects of aggregating and minimizing NFAs, see
Fig. 10b. The effects vary among subsequence constraints.
In general, all these enhancements improved performance for
some subsequence constraints drastically and added no or only
little overhead for the remaining constraints. A horizontal line
inside a bar in a figure marks the start of the mine stage.

C. Scalability

We found that our methods scaled nearly linearly with
the number of input sequences, achieved significant speed-
ups over sequential execution, and were able to mine large
datasets, for which sequential execution ran out of memory.

Weak, strong, and data scalability. We observed near-
linear scaling of D-SEQ and D-CAND for several subsequence
constraints. We report the results for constraint T3(100, 1, 5).
Apart from a constant worker setup time (for creating tasks
and broadcasting the dictionary), both map and mine time
increased linearly as we increased dataset size (Fig. 11a), de-
creased linearly as we used more executors (Fig. 11b), and re-
mained roughly constant as we increased both simultaneously
(Fig. 11c). To vary dataset size, we created random samples of
the AMZN-F dataset with 25%, 50%, and 75% of the original
sequences. We adapted σ to the number of sequences in the
samples, such that the shuffle size increases proportionally
and the number of frequent sequences increases slightly with
increasing dataset size. Specifically, for T3(σ, 1, 5), we set σ
to 25, 50, 75, and 100, respectively.

Speed-up over sequential execution. Tab. V depicts run
times for DESQ-DFS [5], D-SEQ, and D-CAND. DESQ-DFS
is a suitable sequential baseline as it, according to [5], outper-
forms alternative methods. We ran DESQ-DFS on one machine
of our cluster with 124 GB of maximum heap memory. We
ran our methods using standard settings (i.e., 65 CPU cores
in total, including 1 core for the driver). The speed-ups are
not perfect as our methods run additional computation to
separate the work into independent parts and communicate
over network. Distributed execution leads to better speed-ups
for longer-running tasks due to constant worker setup time. D-
CAND achieves a (high) 58x speed-up for N4(1k) because it
aggregates the many identical NFAs that N4 produces. DESQ-
DFS ran out of memory (OOM) for both CW50 tasks with
both 124 GB and 204 GB (using swap) heap space.
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Fig. 11: Scalability. D-SEQ and D-CAND scale nearly linearly. Depicted: T3(100,1,5) on dataset AMZN-F.

TABLE V: Speed-up over sequential execution. DESQ-DFS
runs on 1 CPU core, D-SEQ and D-CAND on 65.

Run time in minutes (speed-up)

Constraint Dataset DESQ-DFS D-SEQ D-CAND

N4(1k) NYT 99.37 8.44 (12×) 1.70 (58×)
N5(1k) NYT 67.46 7.18 (9×) 4.23 (16×)
T3(10,1,5) AMZN-F 280.63 13.43 (21×) 14.05 (20×)
T3(10k,1,5) AMZN-F 15.56 2.39 (7×) 2.81 (6×)
T3(100,3,5) AMZN-F 676.70 38.19 (18×) 49.11 (14×)
T2(100,0,5) CW50 (OOM) 48.73 (n/a) 24.24 (n/a)
T2(1k,0,5) CW50 (OOM) 45.62 (n/a) 22.13 (n/a)

D. Existing Methods

Comparing to existing scalable FSM algorithms, we found
that D-SEQ, D-CAND, and even naı̈ve methods can mine tasks
that existing methods cannot mine efficiently, and that D-SEQ
and D-CAND were competitive to existing methods even in
their specialist settings. D-CAND can run out of memory for
very loose constraints.

Our algorithms support more general and more flexible sub-
sequence constraints than existing scalable FSM algorithms.
This allows for more useful output and mining can focus on
relevant patterns early on. Existing methods [6], [8], [21], [22]
support only a subset of typical constraints and are therefore
of limited use for many applications. For example, existing
methods cannot mine constraints such as N1-N5 or A1-A4.
In this section, we investigate how our general algorithms
perform in the special settings of existing algorithms.

LASH setting. In the setting LASH is optimized for
(max. gap and max. length constraints and item hierarchies),
D-SEQ and D-CAND were within 0.9x and 2.8x the run times
of LASH, see Fig. 12a and Fig. 12b. For LASH, the horizontal
line within a bar depicts the end of the last map task. We argue
that both D-SEQ (within 1.3x and 2.5x) and D-CAND (within
0.9x and 2.8x) offer acceptable generalization overhead over
LASH. As LASH, D-SEQ sends rewritten input sequences to
the partitions. In the LASH setting, D-SEQ is slower than
LASH because LASH employs rewrite and mining techniques
that are specific for its setting and not directly applicable
to the more general setting of D-SEQ. To have comparable
computational resources for LASH, which is implemented for
Apache Hadoop, we ran LASH with 8 map and 8 reduce tasks
per worker node and 8 GB of main memory per task.

MLlib setting. D-SEQ outperformed MLlib in its special-
ized setting (max. length constraint, no item hierarchies, and
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Fig. 12: LASH setting. D-SEQ and D-CAND offer acceptable
generalization overhead over the specialized LASH algorithm.
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Fig. 13: MLlib setting (T1(σ, 5) on AMZN without hierarchy).
D-SEQ is competitive to LASH and outperforms MLlib.

arbitrary gaps). D-CAND ran out of memory for these very
loose constraints, see Fig. 13. LASH can mine this setting,
so we included it for reference. We assume that D-SEQ was
slightly faster than LASH for short (<50s) tasks because
task scheduling takes longer in Hadoop than in Spark, and
because Hadoop writes shuffle data to disk between the map
and the reduce stage. For longer-running tasks, this difference
is negligible. D-CAND ran out of memory while constructing
NFAs, as Spark again failed to spill to disk in time. Note
however that that the MLlib setting (with arbitrary gaps and
no hierarchy) is the worst possible subsequence constraint for
D-CAND: the gaps allow for the maximum theoretical number
of accepting runs. We argue that the MLlib setting is too loose
for most applications.

We omit a separate comparison to MG-FSM and Suffix-σ,
as LASH strictly outperformed MG-FSM [6] and MG-FSM
outperformed Suffix-σ [4] in other studies.

VIII. RELATED WORK

Due to space constraints, we focus our discussion on meth-
ods that handle flexible constraints and on distributed methods.



Subsequence constraints. There exist many approaches
for constraining which subsequences should be considered
for mining. GSP [28] introduced minimum and maximum
gap constraints as well as sliding windows for time-annotated
sequences. cSpade [34] supports length, gap, and item con-
straints. Wu et al. [32] studied periodic wild card gaps. Regular
expressions as “output filter” were proposed in the SPIRIT
family of algorithms [13], RE-Hackle [2], and SMA algo-
rithms [31]. Such filters are evaluated on only the subsequence,
but not the input sequence, so that context constraints cannot
be specified. DESQ [5], [7] extends regular expressions with
contextual constraints by considering both input sequence and
subsequence as input for evaluating constraints. Our methods
use the DESQ framework to specify and evaluate constraints.
However, DESQ is a sequential algorithm and, consequently,
does not scale to large datasets.

Scalable mining. To mine large datasets efficiently, parallel
algorithms have been developed for shared [35] and distributed
memory architectures [15], [16], but without support for
constraints or hierarchies. Apache Spark’s MLlib library [21]
features a distributed version of PrefixSpan [24] for distributed
FSM with sequences of itemsets, but without support for
hierarchies or subsequence constraints other than maximum
subsequence length. It uses prefix-based partitioning; that is,
it recursively partitions sequences by their first items. Thus,
it runs multiple rounds of communication. In the context of
itemset mining, Savasare et al. [26] proposed to partition inputs
(instead of outputs). Their approach has the drawback that all
candidates need to be communicated to all workers.

Most closely related to our work is a group of distributed
sequential pattern mining algorithms targeted towards the
MapReduce programming model: Suffix-σ [8], MG-FSM [4],
[22], and LASH [6]. Suffix-σ mines subsequences of consec-
utive items in one MapReduce step with suffix-partitioning.
However, it does not support gaps. MG-FSM and LASH are
distributed FSM algorithms with maximum gap and maximum
length constraints. They use item-based partitioning and se-
quence representation with specialized rewrite techniques. The
methods are inspired by item-based partitioning for parallel
itemset mining [10], [16]. LASH extends MG-FSM with item
hierarchies and introduces a technique to focus local mining
on pivot sequences. According to [6], LASH outperforms MG-
FSM. MG-FSM and LASH inspired D-SEQ, which is more
general. D-SEQ supports many more types of subsequence
constraints, including the ones of MG-FSM and LASH.

IX. CONCLUSION

We described D-SEQ and D-CAND, the first two FSM
algorithms that are scalable and support flexible subsequence
constraints. We demonstrated that they can mine varied types
of subsequence constraints efficiently, scale nearly linearly,
and offer acceptable generalization overhead over existing,
specialized methods.
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