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ABSTRACT
Parameter servers (PSs) facilitate the implementation of distributed

training for large machine learning tasks. In this paper, we argue

that existing PSs are inefficient for tasks that exhibit non-uniform

parameter access; their performance may even fall behind that of

single node baselines. We identify two major sources of such non-

uniform access: skew and sampling. Existing PSs are ill-suited for

managing skew because they uniformly apply the same parameter

management technique to all parameters. They are inefficient for

sampling because the PS is oblivious to the associated randomized

accesses and cannot exploit locality. To overcome these perfor-

mance limitations, we introduce NuPS, a novel PS architecture

that (i) integrates multiple management techniques and employs a

suitable technique for each parameter and (ii) supports sampling

directly via suitable sampling primitives and sampling schemes that

allow for a controlled quality–efficiency trade-off. In our experi-

mental study, NuPS outperformed existing PSs by up to one order

of magnitude and provided up to linear scalability across multiple

machine learning tasks.
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1 INTRODUCTION
To keep up with increasing dataset sizes and model complexity,

distributed training has become a necessity for large machine learn-

ing (ML) tasks. Distributed training enables (i) scaling to models

and datasets that exceed the memory of a single machine by dis-

tributing them to the nodes of a compute cluster and (ii) faster
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Figure 1: Parameter server (PS) performance for training
large knowledge graph embeddings (ComplEx [65], dimen-
sion 500 onWikidata5mdata) on an 8-node cluster (8worker
threads per node). The performance of state-of-the-art PSs
falls behind that of a single node (8 worker threads) due to
communication overhead. NuPS improves performance by
up to one order of magnitude. Details in Section 5.1.

training by performing distributed compute. Usually, each node

accesses only its local part of the training data, but requires global

read and write access to all model parameters. Parameter manage-

ment is thus a key concern in distributed ML. Parameter servers (PS)
ease distributed parameter management by providing primitives

for reading and writing parameters, while transparently handling

partitioning and synchronization across nodes [2, 15, 24, 38, 60].

Many ML system stacks employ a PS as a core component, e.g.,

TensorFlow [1], MXNet [8], PyTorch BigGraph [37], STRADS [33],

STRADS-AP [32], or Project Adam [10], and there are many stan-

dalone PSs, e.g., Petuum [24], PS-Lite [38], Angel [30], FlexPS [26],

Glint [27], PS2 [72], Lapse [57], and BytePS [31].

As cluster nodes access parameters over the network, distributed

training induces communication overhead. For some ML tasks, this

overhead causes the performance of distributed implementations to

even fall behind that of single node baselines [57]; Figure 1 depicts

this exemplarily for a large knowledge graph embeddings task. We

observe that a key cause for such poor performance can be non-
uniform parameter access and focus on ML tasks where this is the

case. We identify two main sources of non-uniformity: skew and

sampling. First, in a workload that exhibits skew, a (typically small)

subset of parameters is accessed frequently (e.g., up to 100 000 times

per second), whereas a large part of the parameters is accessed

rarely (e.g., only once every minute) [9, 12, 20, 21, 44, 47]. The

main reason for skew is that real-world datasets often have skewed
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Figure 2: NuPS architecture. NuPS differs from existing PSs
in twomain ways: it introduces (i) multi-technique parame-
termanagement to handle skewand (ii) a samplingmanager
and API to handle sampling.

frequency distributions (e.g., graphs [9, 20, 21], texts [47], and oth-

ers [12, 44]), and many ML models associate specific parameters

with specific data items (e.g., with the tokens in a text document or

with the vertices of a graph) [35, 45, 49]). The second source of non-

uniformity is sampling: for a subset of parameter accesses, random

sampling (rather than training data) determines which parameters

are read and written [3, 6, 40, 45, 55, 58, 59]. One common reason

for this access pattern is negative sampling [3, 22, 45, 58], which,

for example, is used to reduce the cost of many-class classification

tasks or to mitigate an absence of negative training data (e.g., in

recommender systems with only positive feedback or in knowledge

graphs that contain only positive edges).

In this paper, we explore how to extend the scope of PSs to

ML tasks that exhibit such non-uniform parameter access. To this

end, we present NuPS, a novel non-uniform PS architecture. Fig-

ure 2 depicts an overview of this architecture. NuPS overcomes

two key performance limitations of existing PSs. First, existing

PSs are inefficient for managing skew because they employ one

single management technique for all parameters. Using a single

technique limits performance as none of the existing techniques is

efficient for all access patterns. To overcome this limitation, NuPS

introducesmulti-technique parameter management, i.e., it integrates
multiple parameter management techniques and chooses a suitable

technique for each parameter. In particular, NuPS integrates both

replication [14, 24] and relocation [57].

Second, existing PSs are inefficient for sampling because common

parameter management techniques are ill-suited for randomly sam-

pled access. To improve performance, applications can implement

specialized sampling schemes manually, outside the PS [29, 37, 62,

73], but this limits the efficiency of some schemes, potentially pro-

duces incorrect samples, and causes repeated implementation effort.

NuPS overcomes this limitation by integrating sampling schemes

directly into the PS. To do so, NuPS extends the PS API with a sam-

pling primitive that allows applications to request samples from a

specific sampling distribution (rather than accessing specific param-

eters directly). NuPS’s sampling manager transparently chooses one
of several sampling schemes to reduce communication overhead for

sampling, according to a conformity level. Conformity levels provide

a controlled trade-off between efficiency and sample quality.

In our experimental evaluation, NuPS outperformed state-of-the-

art PSs by up to one order of magnitude and provided up to linear

scalability across multiple ML tasks. Figure 1 exemplarily shows its

performance for the task of training knowledge graph embeddings.

In summary, our contributions are as follows: (i) we evaluate the

suitability of existing PSs under skew (Section 3.1), (ii) we propose

multi-technique parameter management to handle skew efficiently

(Section 3.2), (iii) we develop a hierarchy of conformity levels (Sec-

tion 4.1) and analyze properties of common sampling schemes

(Section 4.2), (iv) we argue for and propose a PS API extension for

sampling (Section 4.3) and present how NuPS implements several

schemes behind this API (Section 4.4), and (v) we experimentally

investigate how these changes affect PS performance (Section 5).

2 NON-UNIFORM PARAMETER ACCESS
We study ML tasks that exhibit non-uniform parameter access. We

identify two main sources of non-uniformity: skew (Section 2.1)

and sampling (Section 2.2).

2.1 Skew
A workload exhibits skew non-uniformity when some parts of the

model are accessed (much) more frequently than others. The main

reason for this is that many real-world datasets have skewed fre-

quency distributions [9, 12, 20, 21, 44, 46, 47]. For example, heavy

skew is common in text corpora, because word frequencies are

skewed [47], and in graph data, because in- and out-degree distri-

butions are skewed [9, 20, 21, 46]. As many ML models associate

specific parameters with specific data items (e.g, with words in a

text or with the nodes of a graph) [22, 35, 45, 49], access to the

parameters is heavily skewed, too: a small subset of hot spot param-
eters is accessed frequently, whereas the majority of parameters is

accessed rarely. In the following, we will refer to the parameters

that are not hot spots as long tail parameters.
We have measured the extent of skew for two real-world ML

tasks: training knowledge graph embeddings and training word

vectors. The left hand sides of Figures 3a and 3b show the number

of reads per parameter over one epoch of these tasks, respectively.

Access is heavily skewed: in the knowledge graph embeddings

task, 18% of 12.9 trillion total reads go to only 0.02% of 4.8 billion

parameters. In the word vectors task, 45% of 9 trillion total reads go

to 0.17% of 1.9 billion parameters. Details on the tasks and datasets

can be found in Section 5.1.

Note that skew is not always present in distributed training. For

example, there is no skew in convolutional neural networks for

image recognition [36] because model access is dense, i.e., every

update step writes to all parameters. In contrast, in common neural

network models for natural language processing [16, 25, 52], access

is partially dense, and partially sparse and skewed: access to the

first (embedding) layer and sometimes the last (classification) layer

is based on word or token frequency (and thus sparse and skewed),

and access to other layers is dense. The share of parameters with

frequency-based access depends on the model architecture, but can

be high, e.g., around 90% in ELMo [52]. In this paper, we investigate

skew in shallow models, but conjecture that a non-uniform PS can

also be beneficial for deeper models with partially skewed access.

2.2 Sampling
A workload exhibits sampling non-uniformity when, for a subset of

parameter accesses, random sampling determineswhich parameters



(a) Knowledge graph embeddings

(b) Word vectors

Figure 3: Number of accesses per parameter in one epoch. Pa-
rameters are sorted by decreasing total number of accesses.
See Section 5.1 for details on tasks and experimental setup.

are read and written [3, 6, 40, 45, 53, 55, 58, 59]. I.e., the applica-

tion randomly draws a parameter key from an application-specific

sampling distribution over (all or a subset of) parameter keys. It

then accesses the drawn parameter for training. We refer to such

access as sampling access. In contrast, in direct access, the training
data determines which parameters are accessed. Sampling access

is common in many-class classification tasks, e.g., extreme classi-

fication [3], natural language processing [45], knowledge graph

embeddings [40, 58], graph representations [22, 69], recommender

systems [55], and when triplet loss is used [6, 59].

For example, knowledge graph embeddings and word vectors

training tasks often use negative sampling to enable efficient train-

ing [45, 53, 58]. For each (positive) data point, a set of negative
samples is drawn from a distribution. Each negative sample corre-

sponds to a data item (e.g., a word) or a class. The corresponding

parameters are subsequently accessed for training. For instance,

the example knowledge graph embeddings task draws negative

samples from a uniform distribution over all entities [40, 58]. The

right hand side of Figure 3a shows the frequency distributions of

direct and sampling accesses separately for this task. In our im-

plementation (based on [40]) and with 200 negative samples for

each subject–relation–object triple (100 negative samples for the

subject and another 100 for the object), sampling accesses make

up 31% of all accesses. In the word vectors task, negative samples

correspond to words and the sampling distribution resembles the

word frequencies in the training data [45], see Figure 3b. In the

plot for direct access, parameters that belong to the output layer

of the task’s neural network are visually distinct from the other

parameters. The reason for this is that the task draws samples only

from the output layer, and parameters in the plot are sorted by total

access frequency. In our implementation (based on [45]) and with

3 negative samples for each word–word pair, sampling accesses

make up 56% of all parameter accesses in this task.

3 MULTI-TECHNIQUE PARAMETER
MANAGEMENT

In this section, we analyze the suitability of existing PSs for ML

tasks with skewed parameter access (Section 3.1) and argue that

existing PSs are inefficient for managing skew because they employ

one single management technique for all parameters. Based on this

analysis, we propose multi-technique parameter management and

discuss NuPS’s implementation (Section 3.2).

3.1 Analysis of Common Parameter
Management Techniques

PSs [2, 15, 24, 26, 27, 30, 31, 38, 57, 60, 72] partition the model pa-

rameters across a set of servers. The PS provides pull and push
primitives for global reads and writes to model parameters, respec-

tively. In the data-parallel setting, the training data are partitioned

to a set of workers. During training, each worker processes its local

part of the training data (often multiple times) and continuously

reads and updates model parameters. To coordinate parameter ac-

cesses across workers, each parameter is assigned a unique key.
Many PSs physically co-locate the (logically distinct) servers and

workers on the same nodes for efficiency, either in multiple pro-

cesses per node [27, 30, 38] or within one process [24, 26, 57].

Several techniques have been proposed for managing parame-

ters among the cluster nodes in a PS. In the following, we discuss

common techniques, briefly introducing each before analyzing its

suitability for managing skew.

3.1.1 Classic PS. A classic PS allocates parameters to servers stati-

cally (e.g., via range partitioning of the parameter keys) and uses

no replication [2, 38, 60]. Thus precisely one server holds the cur-

rent value of a parameter, and this server is used for all pull and

push operations on this parameter. Classic PSs typically guarantee

sequential consistency for operations on the same key [57].

Analysis: The performance of a classic PS is limited for
both hot spots and long tail parameters. The reason for this is

that every parameter access uses the network: it incurs network

latency for two messages (to and from the responsible server) and

the parameter value is sent over the network once (from the server

to the worker in a pull operation, in the other direction for a push

operation). This network overhead is incurred for all parameters,

i.e., hot spot and long tail ones. For hot spots, the overhead is

incurred many times for a few parameters. In the long tail, the

overhead is incurred a few times for each of many parameters.

3.1.2 Replication PS. A replication PS replicates parameters and

tolerates some amount of staleness in the replicas [13, 14, 24, 26, 30].

Replication PSs provide weaker consistency guarantees, such as

bounded staleness, and require applications to explicitly control stal-
eness via special primitives (e.g., an “advance the clock” operation).

There are two main protocols for creating and refreshing replicas in

general-purpose PSs: SSP [24] creates a replica when a parameter is

accessed and uses this replica until the staleness bound is reached

(at which point the replica is terminated). ESSP [14] also creates a



replica when a parameter is (first) accessed, but then maintains this

replica throughout the entire training task (by repeatedly propa-

gating updates). In both SSP and ESSP, nodes accumulate replica

updates locally and propagate them to the responsible server at

the subsequent “advance the clock” invocation. A subset of repli-

cation PSs specifically target deep learning workloads in which

each node holds replicas of all parameters and replicas are updated

synchronously after each step of mini-batch stochastic gradient

descent [23, 28, 31, 70]. In contrast to NuPS, these PSs focus on

workloads in which (i) the model size does not exceed the memory

capacity of a single node and (ii) synchronous replica updates are

not prohibitively slow w.r.t. to computational cost; some further

apply only to GPU-based training [31].

Analysis: A replication PS is efficient for hot spots, but its
benefit for the long tail is limited. Replication reduces network

overhead (compared to a classic PS) if a replicated parameter value

is used more than once and multiple updates can be sent to the

PS in aggregated form. Replication further reduces access latency

if a parameter value (within the acceptable staleness bound) is al-

ready locally available when a read operation is issued. Both is

typically the case for hot spot parameters, even within relatively

tight staleness bounds (because hot spot parameters are accessed

frequently at each node). In contrast, long tail parameters are ac-

cessed infrequently. So it is unlikely that a long tail parameter is

accessed more than once within reasonable staleness bounds (large

staleness bounds commonly deteriorate model convergence [24]).

For the same reason, SSP (which creates replicas on demand) does

not reduce access latency for long tail parameters, because repli-

cas are mostly “cold”. With its eager replica maintenance, ESSP

ensures that replicas are always “warm” (after the first access to

a parameter), but at the cost of significant over-communication:

ESSP constantly updates all replicas, although replicas for long tail

parameters are accessed rarely.

3.1.3 Relocation PS. A relocation PS asynchronously re-allocates

parameters among nodes during run time so that access operations

can be processed locally, without network communication [57].

Relocation PSs require applications to control allocation via special

primitives (e.g., a “localize” operation). As classic PSs, relocation

PSs can provide per-key sequential consistency [57].

Analysis: A relocation PS is efficient for long tail parame-
ters, but has limited benefit for hot spots.Relocation eliminates

access latency if there is sufficient time to relocate a parameter

between accesses at different nodes. It further reduces network

overhead (compared to classic) if a parameter is accessed more than

once between two relocations (which is common, most ML tasks at

least read and write a parameter): a relocation takes three messages

in Lapse [57] (including the parameter value once), whereas each

remote access in a classic PS sends two messages (including the

parameter value once). There is typically sufficient time for relo-

cating long tail parameters between accesses by different nodes,

as they are accessed infrequently. Hot spot parameters, however,

are frequently accessed at multiple nodes concurrently [56]. Thus,

there is not sufficient time for relocations between accesses, such

that access latency is not eliminated. Further, a relocation PS in-

curs higher network overhead than a classic PS if a parameter is

relocated so frequently that only one operation is processed locally.

NuPS process at node 1

Replicated

parameters

Local

relocated

parameters

worker 1

worker 2

...

worker n

server

shared

memory

NuPS process at node 2

...

NuPS process at node 3

...

remote access,

replica sync.,

relocation

Figure 4: Parameter management in NuPS. NuPS replicates
hot spots and relocates long tail parameters. It accesses repli-
cated and current local parameters via shared memory.

3.1.4 Summary. Individual management techniques are efficient

for either hot spot or long tail parameters (or neither of the two), but

none is efficient for both. Consequently, managing all parameters

with the same technique limits the performance of PSs for ML tasks

with skewed parameter access.

3.2 Parameter Management in NuPS
From the above discussion, it follows naturally to explore whether

combining multiple management techniques is beneficial for PS per-

formance. The idea of combining multiple management techniques

has been studied in other (non-PS) distributed datamanagement sys-

tems, such as general-purpose distributed databases [11, 17, 19, 67]

and distributed graph processing systems [42]. These systems com-

bine static allocationwith replication, but do not consider relocation.

To the best of our knowledge, integrating multiple management

techniques in PSs has not been explored before.

NuPS integrates two management techniques: replication and

relocation. First, to manage hot spot parameters efficiently, NuPS

integrates a lightweight variant of eager replication [14]. NuPS

eagerly creates replicas for hot spot keys on all nodes and pro-

vides time-based staleness bounds. Basing the staleness bound on

time rather than clocks alleviates the need for adding “advance the

clock” operations to application code, but potentially complicates

the analysis of convergence properties. We discuss these implica-

tions below. Second, to manage long tail parameters efficiently,

NuPS integrates relocation. As Lapse [57], NuPS asynchronously

relocates these parameters before they are accessed. This guaran-

tees per-key sequential consistency for long tail parameters. NuPS

picks a technique for each key based on the key’s access pattern:

if the key is accessed frequently, NuPS replicates the key; if there

are few accesses, NuPS employs relocation (see Section 5.1). The

choice of management technique is transparent to the application,

i.e., the application accesses all parameters in the same way, via the

push and pull primitives. Our experimental evaluation shows that

the combination of replication and relocation can be highly benefi-

cial. Integrating other techniques (e.g., highly tailored ones) may

further improve performance, but is beyond the scope of this paper.

NuPS does not integrate the classic technique as it is dominated by

replication for hot spots and by relocation for the long tail.

For efficiency, NuPS co-locates workers and servers in one pro-

cess per node, and accesses replicas and locally allocated parameters

via shared memory. Figure 4 depicts an overview. To access a key, a



worker checks whether this key is managed by replication or relo-

cation. If the key is managed by replication, the worker accesses the

key via shared memory, without network communication. If the

key is managed by relocation, the worker checks whether the key

is currently allocated locally. If so, it accesses the key via shared

memory. Otherwise, the worker accesses the parameter remotely,

using the message protocol proposed in Lapse [57]: a request to the

node that knows where the parameter is currently allocated, which

then forwards the request to this node, which in turn processes the

request and sends a response to the worker.

NuPS is designed to minimize the run time overhead of providing

multiple management techniques. To do so, NuPS integrates the

check for the management technique and the check for local alloca-

tion into one latch acquisition (i.e., a lock held for the duration of

the API call). Further, NuPS can be reduced to a single-technique

PS with no measurable run time overhead for providing more than

one management technique: If replication is not used for any key,

the replica synchronization background thread exits immediately,

without sending any messages. If relocation is not used for any key,

no messages are sent for relocation.

NuPS bases its staleness bounds on time rather than logical clocks

because this makes the PS easier to use: time-based bounds alleviate

the need for adding “advance the clock” operations to application

code and for timing them appropriately. NuPS synchronizes the

replicas periodically, using sparse all-reduce operations (i.e., only

updated parameters are exchanged [64]). The synchronization is run

by a background thread and uses the recursive doubling algorithm.

However, time-based bounds potentially complicate the analysis of

convergence properties. If only a bounded number of SGD steps can

occur within one synchronization round, bounded staleness holds

(as for clock-based staleness bounds) and the corresponding analysis

carries over [24]. However, if the number of SGD steps within one

synchronization round cannot be bounded, convergence analyses

for asynchronous SGD apply [39, 71]. In our experiments, the effect

of time-based bounds on performancewasminimal becausewe used

replication only for a small number of parameters and synchronized

replicas frequently (see Section 5.6 and Section 5.7).

4 SAMPLING MANAGEMENT
Existing PSs provide no support for sampling. This means that ap-

plications manually sample keys and then access the corresponding

parameters via direct access, which leads to significant commu-

nication overhead. To reduce this overhead, many applications

implement a variety of sampling schemes [29, 37, 62, 73]. The key

idea of such sampling schemes is that slightly (or sometimes rather

significantly) deviating from the ideal of independent sampling

from the desired target distribution might have only little or no

effect on model quality, but can reduce communication overhead

substantially (and consequently speed up model training). The lack

of sampling support in PSs forces applications to implement such

schemes in application code, outside the PS. This leads to repeated

implementation effort and potentially produces incorrect samples.

Further, this precludes schemes that require tight integration with

parameter management.

In contrast to existing PSs, NuPS integrates sampling directly

into the PS. In the following, we present the components of this

integration. We first introduce a set of conformity levels that allow

for a controlled trade-off between efficiency and sample quality

(Section 4.1). We then analyze conformity and communication over-

head of sampling schemes that are commonly used by applications

(Section 4.2). Based on this analysis, we propose an API extension

that enables sampling in PSs (Section 4.3) and discuss how NuPS

implements several sampling schemes, within this API (Section 4.4).

4.1 Sampling Conformity Levels
Let 𝜋 be a target distribution over parameter keys. We assume that

𝜋 is specified by the application and remains fixed throughout

run time.
1
For example, in the word vectors training task of Sec-

tion 2.2, the target distribution 𝜋 roughly corresponds to relative

word frequencies [45]; cf. Figure 3b. When training knowledge

graph embeddings, 𝜋 is often a uniform distribution over all enti-

ties [58]; cf. Figure 3a. Denote by K the set of parameter keys and

by 𝜋𝑘 ≥ 0 the target probability for key 𝑘 ∈ K , where

∑ |𝐾 |
𝑘=1

𝜋𝑘 = 1.

Workers repeatedly draw one or more samples from the target

distribution 𝜋 . Denote by 𝑋𝑞𝑖 ∈ K a random variable for the 𝑖-th

sample obtained at node 𝑞.2 Wewrite 𝑁𝑞 for the number of samples

drawn at node 𝑞 during the complete run time of some application.

Set X𝑞 = {𝑋𝑞1, . . . , 𝑋𝑞𝑁𝑞
} and X =

⋃
𝑞 X𝑞 .

We propose a hierarchy of four sampling conformity levels to
control the trade-off between sample quality and efficiency. From

the top (L1) to the bottom (L4) of this hierarchy, sample quality

decreases, and potential efficiency increases:

(L1) CONFORM. The sampling scheme produces mutually indepen-

dent samples from the target distribution 𝜋 . I.e.,

𝑝 (𝑋𝑞𝑖 = 𝑘 |S) = 𝜋𝑘
for all 𝑞, 𝑖, 𝑘 and S ⊆ X \

{
𝑋𝑞𝑖

}
.

(L2) BOUNDED. The samples at each node have dependencies on

past samples, but these dependencies are limited and samples at

different nodes are independent. In more detail, given a depen-
dency bound 𝐵 ∈ N, it holds

𝑝 (𝑋𝑞𝑖 = 𝑘 |S−𝐵
𝑞 ,S−𝑞) = 𝜋𝑘

for all 𝑞, 𝑖, 𝑘 , where S−𝑞 ⊆ X \ X𝑞 refers to samples at other

nodes andS−𝐵
𝑞 ⊆ {𝑋𝑞1, . . . , 𝑋𝑞 (𝑖−𝐵−1) } refers to samples at node

𝑞 taken from all but the last 𝐵 samples taken so far. Note that

first-order inclusion probabilities match the target probabilities—

i.e., 𝑝 (𝑋𝑞𝑖 = 𝑘) = 𝜋𝑘—even though subsequent samples may

be dependent. For example, a sampling scheme that internally

draws independent samples from 𝜋 but uses each sample twice

is BOUNDED with 𝐵 = 1.

(L3) LONG-TERM. Themean first-order inclusion probabilitiesmatch

the target probabilities asymptotically at each node, i.e.,

lim

𝑁𝑞→∞
1

𝑁𝑞

𝑁𝑞∑
𝑖=1

𝑝 (𝑋𝑞𝑖 = 𝑘 |𝑋𝑞1, . . . , 𝑋𝑞 (𝑖−1) ) = 𝜋𝑘 (1)

for all 𝑞, 𝑘 . Note that this does not imply 𝑝 (𝑋𝑞𝑖 = 𝑘) = 𝜋𝑘 . Also,
arbitrary dependencies between samples within one or across

1
This is mainly to facilitate analysis; an applicationmay use multiple different sampling

distributions, each of which can be analyzed separately.

2
Depending on the implementation, there can be multiple workers on each node. We

analyze sampling schemes at the node level to simplify exposition.



Table 1: Conformity levels of common sampling schemes.

L1 L2 L3

CONFORM BOUNDED LONG-TERM

Independent sampling ✓ ✓ ✓
Sample reuse × ✓ ✓
Local sampling × × ×

Direct-access repurposing × × ×

multiple nodes are accepted as long as the asymptotic relative

frequencies of the samples match the target. For example, a se-

quential sampling scheme that selects a random key order for the

|𝐾 | keys and then draws samples in a round-robin fashion sat-

isfies LONG-TERM but not BOUNDED: each key is selected equally

often in the long run, but the knowledge of the first |𝐾 | sam-

ples allows to uniquely determine all future samples, so that no

dependency bound can be established.

(L4) NON-CONFORM. No guarantees about the sampling probabilities

or independence.

The levels are hierarchical in that L1 implies L2, and L2 implies L3.

The first implication follows since we can set S = S−𝐵
𝑞 ∪ S−𝑞 for

any choice of S−𝐵
𝑞 and S−𝑞 .

Proof (L2 implies L3). Starting from some offset 1 ≤ 𝑜 ≤ 𝐵,

fix some node 𝑞 and consider the subset

{
𝑋𝑞 (𝑎𝐵+𝑜)

}
𝑎∈N of every

𝐵-th sample on node 𝑞, starting from the 𝑜-th sample. Using the

definition of BOUNDED, we obtain

1

⌊(𝑁𝑞 − 𝑜)/𝐵⌋

⌊ (𝑁𝑞−𝑜)/𝐵⌋∑
𝑎=1

𝑝 (𝑋𝑞 (𝑎𝐵+𝑜) = 𝑘 |𝑋𝑞1, . . . , 𝑋𝑞 (𝑎𝐵+𝑜−𝐵) ) = 𝜋𝑘

for any choice of 𝑁𝑞 , i.e., the long-term relative frequencies of every

𝐵-th sample match if we start at offset 𝑜 . Since this holds for every

offset 𝑜 , we conclude that Eq. (1) holds and L2 implies L3.

Note that we defined L3 via Eq. (1) rather than a simpler first-

order probability condition such as 𝑝 (𝑋𝑞𝑖 = 𝑘) = 𝜋𝑘 , because

correct first-order conditions are not sufficient to ensure that a

sampling scheme is useful in practice. For example, a sampling

scheme that internally draws one independent sample 𝑋 from 𝜋 ,

and then uses solely this sample throughout (i.e., 𝑋𝑞𝑖 = 𝑋 for all

𝑞, 𝑖) satisfies such a condition, but is clearly unsuitable in practice.

4.2 Analysis of Common Sampling Schemes
ML applications employ a variety of sampling schemes. In the

following, we analyze schemes that are common in distributed

training [29, 34, 37, 62, 73] w.r.t. their effect on (i) communication

overhead and (ii) sampling quality, i.e., into which conformity level

they fall. Table 1 provides an overview of the latter.

Independent sampling. Ideally, applications draw iid. samples

from the target distribution and use each sample once. This scheme

is CONFORM, but can lead to significant communication overhead:

for each sample, the corresponding parameter values need to be

transferred to the node and, after an update is computed, updates

need to be propagated to other nodes.

Sample reuse. Sample reuse reduces communication overhead

by using each sample multiple times [5, 29, 37, 73]. For example,

knowledge graph embeddings training can use shared sampling, i.e.,

reuse negative samples for all positive examples in a mini-batch [5].

Reusing a sample multiple times avoids the transfer of parameter

values for another, fresh sample: using a sample𝑈 times can reduce

the communication overhead by a factor of 𝑈 . We refer to this

factor as the use frequency and to a sample reuse scheme that uses

each sample 𝑢 times as U=u sample reuse. Sample reuse does not

provide CONFORM since samples are not independent. However, it

can provide BOUNDED. For example, if each fresh sample is sampled

iid. from 𝜋 and then used exactly 𝑈 times, then the scheme is

BOUNDED for all 𝐵 ≥ 𝑈 . Moreover, in mini-batch negative sample

reuse as in [5, 29, 37], BOUNDED also holds. Here samples are reused

only within one mini-batch of gradient descent so that the mini-

batch size provides a bound on the sample dependency.

Local sampling. In many distributed ML architectures [14, 24,

26, 57], at each node, a distinct subset of the model parameters—the

local partition—can be accessed without network communication.

Local sampling restricts sampling accesses to this local partition [73].

This scheme eliminates network overhead for sampling accesses

entirely. However, local sampling is NON-CONFORM as nodes see

only samples from the local partition. Some implementations re-

partition parameters periodically such that all nodes at least see all

samples over time [73]. Careful re-partitioning might satisfy Eq. (1)

for certain target distributions; e.g., if 𝜋 is uniform and parameters

are allocated uniformly and at random. In general, however, local

sampling cannot provide LONG-TERM. For example, consider any

target distributions in which 𝜋𝑘 > 1/𝑄 for some 𝑘 (with 𝑄 being

the number of nodes). Local sampling cannot satisfy Eq. (1) for such

a target since key 𝑘 is available for sampling at only one node at

a time. This implies that there is at least one node at which the

long-term frequency of 𝑘 is ≤ 1/𝑄 .
Direct-access repurposing. Another sampling scheme is to

repurpose direct-access parameters, i.e., to use them as negative

samples. For example, DGL-KE [73] generates some of the samples

by repurposing parameters that occur as positives in other data

points of an SGD mini-batch. This requires no additional commu-

nication for sampling accesses, as the values for the direct access

parameters are transferred to the node either way. In this scheme,

the relative frequency of a seeing a key in a sample depends on

the occurrence frequency of the key in the training data. As the

training data occurrence distribution can be (and typically is [5, 45])

different from the target distribution, this scheme is NON-CONFORM.

4.3 A Primitive for Sampling
It is impossible for PSs to integrate these sampling schemes within

the push/pull API. The main problem is that sampling is done by

application code: to conduct a sampling access, an ML application

draws a sample of keys and accesses them via pull or push. For
instance, this makes it impossible for the PS to restrict sampling to

the local partition. Further, the PS cannot even distinguish between

direct access (for which it cannot leverage sampling schemes) and

sampling access (for which it can leverage sampling schemes).

To overcome these limitations, we propose to extend the PS

API with a sampling primitive that allows applications to access a



Prepare
Sample

Pull
Sample

Back-

ground

thread

Independent
sampling
(CONFORM)

sample iid. from

𝜋 and localize

(async)

pull parameters

(remotely

if necessary)

Sample
reuse

(BOUNDED)

re-localize if

necessary

(async)

pull parameters

(remotely

if necessary)

fill pool:

sample iid. from

𝜋 and localize

Sample reuse
with postponing
(LONG-TERM)

re-localize if

necessary

(async)

pull parameters

if local, o/w

postpone the

sample

fill pool:

sample iid. from

𝜋 and localize

Local
sampling

(NON-CONFORM)

sample from

locally available

part of 𝜋

and pull locally

Figure 5: Sampling scheme implementations in NuPS.

sample from a target distribution, under a specific sampling confor-

mity level. The sampling manager in NuPS transparently chooses a

sampling scheme that conforms with the chosen conformity level

and applies the scheme for all sampling accesses. We propose one

operation dist = register_distribution(π, L) to register a

specific sampling distribution 𝜋 under a specific sampling confor-

mity level 𝐿, and a combination of two operations to draw samples:

handle = PrepareSample(dist, N)
keys, values = PullSample(handle[, nj])

The argument 𝑁 is the number of desired samples. PrepareSample
is intended to return instantaneously (and run preparatory work in

the background), PullSample blocks if called synchronously. After

PullSample returns, the corresponding keys are stored in keys and
corresponding values are copied to values. Applications can call

PullSample once to obtain all 𝑁 samples at once or multiple times

to obtain the 𝑁 samples in smaller portions (by passing 𝑛0, 𝑛1, ... <

𝑁 to multiple invocations of PullSample such that

∑
𝑛 𝑗 = 𝑁 ).

Such partial pulls give the PS more flexibility, and, thus, may result

in better performance.

This extension provides sufficient flexibility for implementing a

wide range of sampling schemes, as we describe in the following

Section 4.4. The extension derives its flexibility from three key

design choices. First, the extension transfers sampling from the

application to the PS. Second, the extension provides the PS with a

hook for doing preparatory work, such as pre-fetching parameter

values, modifying partitions, or coordinating among nodes. Third,

the extension does not force final decisions (e.g., about the sampled

keys) before PullSample returns.

4.4 The Sampling Manager in NuPS
The sampling manager is responsible for generating samples and

managing the corresponding parameters. The sampling manager

of NuPS currently supports four sampling schemes behind the

sampling API. Figure 5 provides an overview. Schemes implement

PrepareSample and PullSample, and optionally a background

thread. From the four implemented schemes, the sampling manager

picks a scheme that is suitable for the specified conformity level.

We now discuss the schemes in turn.

Independent sampling (CONFORM). In this scheme, NuPS sam-

ples iid. from the target distribution and localizes the corresponding

parameters in PrepareSample (such that they can be accessed lo-

cally when PullSample is called). In PullSample, NuPS accesses
the parameters remotely if they have been relocated to another node

in-between PrepareSample and PullSample (this can happen be-

cause other nodes can independently work on the same parameters).

This approach is CONFORM because each worker samples iid. from 𝜋 .

Sample reuse (BOUNDED). NuPS implements a sample reuse

scheme that reuses pools of keys. The pooling increases the tem-

poral distance between the reused samples and thereby increases

randomness. For a given pool size 𝐺 and use frequency 𝑈 , NuPS

repeatedly samples 𝐺 keys iid. from 𝜋 to form a sample pool and
produces samples by traversing the sample pool 𝑈 times, each

time in a random order. For example, consider𝑈 = 2 and suppose

that the iid. draws produce keys 𝑘1, 𝑘2, and 𝑘3, respectively. With

𝐺 = 1, we obtain sample sequence 𝑘1𝑘1𝑘2𝑘2𝑘3𝑘3. With 𝐺 = 3, a

sequence such as 𝑘1𝑘2𝑘3𝑘2𝑘1𝑘3 is possible. The pools are prepared

by a background thread. When the background thread generates

a new pool, it localizes the corresponding parameters. NuPS lo-

calizes the parameters again in PrepareSample if they have been

relocated to another node since pool preparation. In PullSample,
NuPS accesses the parameters remotely if necessary. This sample

reuse scheme is BOUNDED because samples are drawn iid. from the

target distribution 𝜋 , inter-sample dependency is bounded by𝑈 ·𝐺 ,
and𝑈 is identical for all samples.

The background thread determines automatically when to pre-

pare a new pool. Adding a new pool takes time and (for good

performance) the localization should be finished when PullSample
is called. This time depends on the ML task, the used hardware, and

the system configuration. To estimate this time, we use a heuristic.
3

In particular, the background thread keeps track of the duration of

previous pool relocations. If the number of prepared, but unused

samples is less than double of the current estimated relocation time,

the preparation of another pool is triggered.

Sample reuse with postponing (LONG-TERM). NuPS addition-
ally implements sample reuse with sample postponing. This is iden-
tical to the described sample reuse scheme, but adds sample post-

poning: if sample 𝑖 cannot be accessed locally in PullSample, NuPS
re-localizes the corresponding parameters, postpones sample 𝑖 for

later use, and uses sample 𝑖 + 1 instead. To achieve LONG-TERM, it is
crucial that, at some point, samples are used (and not re-postponed

indefinitely).
4
Thus, NuPS postpones only within the 𝑁 samples of

one invocation of PrepareSample (in other words, only within the

samples of one handle). I.e., when NuPS finds a non-local sample

(in PullSample), it moves the sample to the end of the 𝑁 samples

of this handle. NuPS postpones each sample maximally once. When

it reaches samples that it has already postponed once (towards

the end of the 𝑁 samples), it accesses them remotely if necessary.

This implementation of postponing reduces communication over-

head only if the samples of one handle are pulled in groups smaller

than 𝑁 and there is some time between these partial pulls for the

parameter relocation. Assuming that 𝑁 is bounded from above, it

provides LONG-TERM. It does not provide BOUNDED because sampling

probabilities depend on the current allocation of a key (i.e., keys

can be postponed to a later sample if they are not local).

3
Note that while the heuristic may affect performance, it does not affect correctness.

4
If samples could be re-postponed indefinitely, some samples may never be used

because they are constantly being relocated. In such cases, Eq. (1) would not hold.



Table 2: ML tasks, models, datasets, and share of direct and sampling access.

Task Model parameters Data Parameter access

Model Keys Values Size Dataset Data points Size Direct Sampling

Knowledge graph embeddings ComplEx, dim. 500 4.8M 4.8 B 35.9GB Wikidata5M 21M 317MB 69% 31%

Word vectors Word2Vec, dim. 1000 1.9M 1.9 B 7.0GB 1b word benchmark 375M 3GB 44% 56%

Matrix factorization Latent Factors, rank 1000 11.0M 11 B 82.0GB 10m × 1m matrix, zipf 1.1 1000M 31GB 100% 0%

Local sampling (NON-CONFORM). NuPS implements local sam-

pling without active re-partitioning. Instead, NuPS relies on the

application to relocate parameters: in a relocation PS, the local

partition usually changes constantly, as workers relocate the pa-

rameters that they work with (in direct access). The effect of this

local sampling variant heavily depends on the relocations of the

application. Generally, this approach cannot give any guarantees,

as, for example, an application might not relocate parameters at

all. Thus, it generally falls into the NON-CONFORM level. In an ideal

setting, however, this approach could provide LONG-TERM. For ex-
ample, this can be the case if an application partitions its training

data randomly and continuously relocates all parameters (such

that a parameter is equally likely to be on all nodes) and samples

uniformly (such that 𝜋𝑘 ≪ 1

𝑄
for all 𝑘). To make local sampling

efficient, NuPS employs a fast sampling implementation that does

not sample independently.

5 EXPERIMENTS
We conducted an experimental study to investigate whether and

to what extent a non-uniform PS is beneficial for PS performance.

Source code, datasets, and information for reproducibility are avail-

able online.
5

In our study, we compared the performance of NuPS to several

state-of-the-art PSs on three large-scale ML tasks (Section 5.2). Fur-

ther, we conducted an ablation study (Section 5.3), investigated

scalability (Section 5.4), evaluated different sampling schemes (Sec-

tion 5.5), and explored specific components of NuPS (Sections 5.6

and 5.7). Our major insights are: (i) NuPS was more than an order of

magnitude faster than existing PSs. (ii) NuPS achieved best perfor-

mance when it replicated a small fraction of the model parameters,

and relocated all other parameters. (iii) Both sample reuse and lo-

cal sampling significantly reduced communication overhead for

sampling access. We conclude that a non-uniform PS is key for high
performance in ML tasks with non-uniform parameter access.

5.1 Experimental Setup
We considered three popular ML tasks that require long training:

knowledge graph embeddings, word vectors, and matrix factor-

ization. These tasks are representatives for shallow models that

exhibit sparse and skewed access. The tasks differ in multiple ways,

including the number of parameters, parameter access distributions,

sampling distribution, and frequency of sampling accesses. Table 2

provides a summary. In the following, we briefly discuss each task.

Knowledge graph embeddings. Knowledge graph embed-

ding (KGE) models learn algebraic representations of the entities

5
https://github.com/alexrenz/NuPS

and relations in a knowledge graph. For example, these representa-

tions have been applied successfully to infer missing links in knowl-

edge graphs [48]. This task, based on [40], trains ComplEx [65] (one

of the most popular KGE models) embeddings using SGD with Ada-

Grad [18] and negative sampling [40, 58]. Negative sampling creates

sampling access in this task: to generate negative samples, both

the subject and the object entity of a positive triple are perturbed

𝑛neg times, by drawing random entities from a uniform distribution

over all entities (we used a common setting of 𝑛neg = 100 [58]). We

used the Wikidata5M dataset [66], a real-world knowledge graph

with 4 818 679 entities and 828 relations, and a common embedding

size of 500 [58]. We partitioned the subject–relation–object triples

of the dataset to the nodes randomly, as done in [34]. We used

LibKGE [5] (commit 3146885) to evaluate models and report the

mean reciprocal rank (filtered) (MRRF) as metric for model quality.

Word vectors. Word vectors (WV) are a language modeling

technique in natural language processing: each word of a vocabu-

lary is mapped to a vector of real numbers [45, 51, 52]. These vec-

tors are useful as input for many natural language processing tasks,

for example, syntactic parsing [61] or question answering [41].

This task, based on [45], uses SGD and negative sampling to train

the skip-gram Word2Vec [45] model (dimension 1000) on the One

Billion Word Benchmark [7] dataset (with stop words of the Gen-

sim [54] stop word list removed). The negative sampling creates

sampling accesses: in this task, for each word pair, 3 negative sam-

ples are drawn from a distribution that is based on word frequencies

(see Section 2.2). We used common model parameters [45] for win-

dow size (5), minimum count (1), and frequent word subsampling

(0.01). We measured model accuracy using a common analogical

reasoning task of 19 544 semantic and syntactic questions [45].

Matrix factorization. Low-rank matrix factorization (MF) is

a common tool for analyzing and modeling dyadic data, e.g., in

collaborative filtering for recommender systems [35]. This task,

based on [63], uses SGD to factorize a synthetic, zipf-1.1 distributed

10m × 1m dataset with 1b revealed cells, modeled after the Netflix

Prize dataset.
6
Data points were partitioned to nodes by row and

to workers within a node by column. Each worker visited its data

points by column (to create locality in column parameter accesses),

with random order of columns and of data points within a column.

There is no sampling access in this task. We report the root mean
squared error (RMSE) on the test set as metric for model quality.

Baselines. We compared performance to a classic PS, to Petuum

(a state-of-the-art replication PS), to Lapse (a state-of-the-art re-

location PS), and to a single node implementation. As classic PS,

we used Lapse with relocation disabled, which, according to [57],

provides performance similar to PS-Lite. We ran both the SSP and

6
See https://netflixprize.com/. We use a synthetic dataset because the largest openly

available dataset that we are aware of is only 7.6GB large.

https://github.com/alexrenz/NuPS
https://netflixprize.com/
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Figure 6: End-to-end performance of different PSs on 8 nodes. NuPS outperformed Petuum (a state-of-the-art replication PS)
and Lapse (a state-of-the-art replication PS) by up to one order of magnitude and provided up to linear scalability over the
single node. The gray shaded area indicates performance that is dominated by the single node. Error bars depict minimum and
maximummeasurements for run time and model quality (but are often not visible due to low variance). The dashed gray line
depicts the model quality threshold at which effective speedups are computed (90% of the best observed single-node quality).

ESSP protocols of Petuum [68], with different staleness thresholds.

Petuum does not provide KGE or WV implementations. Thus, we

implemented the KGE task described above in Petuum. We used

version 1.1 of Petuum. We did not implement specific sampling

schemes in application code, i.e., applications draw independent

samples and access them via direct access. We used a shared mem-

ory implementation with 8 worker threads as single node baseline.

Implementation and cluster.We implemented NuPS in C++,

using ZeroMQ and Protocol Buffers for communication, based on

PS-Lite [38].We used a local cluster of up to 16 Lenovo ThinkSystem

SR630 computers, running Ubuntu Linux 20.04, connected with

100 Gbit Infiniband. Each node was equipped with two Intel Xeon

Silver 4216 16-core CPUs, 512 GB of main memory, and one 2 TB

D3-S4610 Intel SSD. We compiled code with g++ 9.3.0, except for

Petuum, which we compiled with g++ 7.5.0, as the compilation with

g++ 9.3.0 failed. Unless specified otherwise, we used 8 nodes and

8 worker threads per node. In Lapse and NuPS, we additionally

used 1 server and 3 ZeroMQ I/O threads per node. In Petuum, we

used 4 communication channels per node. To prevent exploding

gradients, we used gradient norm clipping as suggested in [50] for

replicated parameters in the WV and MF tasks (clipping updates

that exceed the average norm by more than 2x). In the KGE task,

the use of AdaGrad prevented exploding gradients. For each task,

we tuned hyperparameters on the single node and used the best

found hyperparameter setting in all systems and variants.

NuPS. We ran NuPS in two configurations: (i) a generally appli-

cable untuned configuration that requires no task-specific tuning

and (ii) a task-specific tuned configuration. The untuned config-

uration employs a heuristic to decide the management technique

for each parameter: it replicates a parameter if its access frequency

exceeds 100 times the mean access frequency. This heuristic is com-

puted from dataset frequency statistics. The untuned configuration

further employs sample reuse without postponing (BOUNDED) with
a use frequency of U=16. To indicate the performance potential

of task-specific insights, we included a tuned configuration by in-

forming our configuration choices with the results of our detail

experiments in Sections 5.5 and 5.6. The tuned configuration for

KGE replicates the 900 most frequently accessed keys (the same as

the untuned setting), but uses local sampling (NON-CONFORM). The
tuned configuration for WV replicates the 209 k most frequently

accessed keys (64x more keys than the untuned configuration), and

employs local sampling (NON-CONFORM). For MF, the untuned con-

figuration seemed to be near-optimal, such that we did not add a

separate tuned configuration. Unless mentioned otherwise, we used

the settings of the untuned configuration and a replica staleness

threshold of 40ms in all experiments. Throughout all experiments,

we used a pool size of 250 in the sample reuse scheme.

Measures. Unless noted otherwise, we ran all variants with a

fixed 6 h time budget. We measured model quality over time and

over epochs within this time budget (using the quality metrics

described above). We conducted 3 independent runs of each experi-

ment, each starting from a distinct randomly initialized model, and

report the mean. We depict error bars for model quality and run

time; they present the minimum and maximum measurements. In



some experiments, error bars are not clearly visible because of small

variance. Gray dotted lines indicate the performance of the single

node baseline. Gray shading indicates performance that is domi-

nated by the single node baseline. We report two types of speedups:

(i) raw speedup depicts the speedup in epoch run time, without con-

sidering model quality; (ii) effective speedup is calculated from the

time that each variant took to reach 90% of the best model quality

that the single node baseline achieved. Unless specified otherwise,

we report effective speedups.

5.2 Overall Performance
We investigated the overall effect of a non-uniform PS on PS perfor-

mance. To do so, we compared the performance of NuPS to existing

PSs and to the single node baseline.We ran each variant for the fixed

time budget and measured model quality over this time. Figures 6a,

6b, and 6c showmodel quality over time, Figures 6d, 6e, and 6f show

model quality over epoch. In summary, NuPSwas 31–36x faster
than a state-of-the-art replication PS (Petuum), 6–46x faster
than a state-of-the-art relocation PS (Lapse), and 2.3–10.3x
faster than the single node baseline.7

The classic PS was inefficient (with epochs over 7x slower than

the single node) because it accesses parameters over the network,

which induced significant access latency. Lapse was faster than Clas-

sic, but still slower than the single node, because Lapse relocates all

parameters, including hot spots. Hot spot parameters, however, are

frequently accessed by multiple nodes simultaneously [56], such

that some of these nodes had to wait for the relocation to finish

or access the parameter remotely, which induced access latency.

The per-epoch model quality of Classic and Lapse was indistin-

guishable from the single node in KGE and WV, as these systems

provide sequential consistency for all parameters and employ no

specialized sampling schemes. In MF, all distributed variants pro-

vided lower per-epoch quality than the single node, an effect that

has been observed before [43]. The step pattern that is visible in

MF training stems from the bold driver heuristic [4] that the MF

implementation [43] that we adapted uses to tune the learning rate.

For KGE, we ran Petuum SSP and ESSP with staleness thresholds

1, 10, 100, 200, or 1000, and tried different frequencies for advancing

the clock.
8
None of the configurations completed the first epoch

within the time budget of 6 hours. We observed the best perfor-

mance for ESSP with staleness 10, which finished the first epoch

after 13h with a model quality (MRRF) of 0.11. The best SSP run

(staleness 200) finished the first epoch after 15h with a model qual-

ity of 0.10. The reasons for this performance are that Petuum is

inefficient for long tail parameters (as discussed in Section 3.1) and

that Petuum’s replica approach is inefficient for sampling because

sampling access provides no locality: SSP replicas are mostly cold,

ESSP over-communicates. Petuum’s MF implementation ran out of

memory, because it stores the training matrix in dense format.

The untuned NuPS configuration outperformed existing PSs

across all three tasks. For KGE andMF, it was also clearly faster than

the single node, with up to 6.7x effective speedups over the single

7
The comparisons to Petuum and Lapse report raw speedups, because Petuum and

Lapse did not reach the 90% thresholds within the time budget.

8
We tried to advance the clock after every 1, every 10, and every 100 data points. We

observed best performance for clocking after every 10th data point. Due to the high

run times of Petuum, we ran each configuration only once.
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Figure 7: Ablation. Both (i) combining replication and reloca-
tion and (ii) integrating specialized sampling accessmanage-
ment techniques improved performance individually, and it
was beneficial to combine the two.

node and minimal negative effect on (per-epoch) model quality.

For WV, however, it barely outperformed the single node (but still

outperformed existing PSs). In contrast, the tuned configuration

provided 4.6–10.3x effective speedups over the single node across

all three tasks. For KGE, the tuned configuration of NuPS provided

better per-epoch convergence than the single node. This was an

effect of local sampling; see Section 5.5 for more details.

5.3 Ablation
NuPS introduces two novel features compared to existing PSs: (i)

multi-technique parameter management and (ii) the integration of

sampling into the PS. To investigate individual effects, we enabled

each feature individually and measured model quality within the

time budget. Figure 7 shows the results.We omitMF because there is

no sampling access inMF, such that the entire performance improve-

ment stems from multi-technique parameter management (which

is visible in Figure 6c).We found that bothmulti-technique pa-
rametermanagement and sampling integration can be bene-
ficial individually, and the individual benefits compounded
when both were combined.

We compared the performance of four variants: (i) Lapse, a relo-
cation PS without sampling integration; (ii) Relocation + Replication,
a PS with multi-technique parameter management but without

sampling integration; (iii) Relocation + Sampling, a relocation-only
PS with sampling integration; (iv) NuPS, a multi-technique PS with

sampling integration. Going from a single-technique relocation PS

to a multi-technique PS made an epoch 67–73% faster with only

small effect on model quality. Adding sampling support to the re-

location PS made an epoch 17–62% faster, with a small negative

effect on model quality. The combination of both made an epoch

94% faster, with a small negative effect on per-epoch model quality.

5.4 Scalability
To investigate scalability, we ran Lapse, the best Petuum SSP and

ESSP configurations, and NuPS for one epoch on 1, 2, 4, 8, and 16

nodes and calculated the raw speedup. Figure 8 depicts the results.

Further, we ran convergence experiments on 16 nodes for those

systems that reached the 90% model quality threshold on 8 nodes.

Figure 9 depicts the effective speedup for these systems. Overall,
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Figure 8: Raw scalability (logarithmic axes). The y-axis de-
picts raw speedup, i.e., speedup w.r.t. epoch run time over
the shared-memory single-node baseline. NuPS scaledmore
efficiently than other PSs, with up to near-linear speedups.
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Figure 9: Effective scalability (logarithmic axes). The y-axis
depicts effective speedup, i.e., speedup w.r.t. reaching 90% of
the best model quality observed on a single node.

NuPS scaledmore efficiently than other PSs, with up to near-
linear raw and up to superlinear effective speedups.

We first discuss raw scalability, i.e., the speedup w.r.t. epoch run

time (Figure 8). On a single node, NuPS and Lapse were faster than

Petuum because NuPS and Lapse access local parameters via shared

memory, whereas Petuum sends intra-process messages to do so.

Lapse provided poor scalability because the more nodes are used,

the higher the chance that multiple nodes access a parameter at

the same time and, thus, that they have to wait for a relocation

to finish or to access parameters remotely. Neither Petuum ESSP

nor SSP outperformed the shared-memory single-node baseline,

even on 16 nodes. ESSP scaled poorly even when compared to

its own (inefficient) run time on a single node (4.8x faster on 16

nodes) because its eager replication protocol over-communicates:

after a short warm-up period, each node holds a replica of the full

model. The more nodes, the more replicas had to be synchronized,

such that replica synchronization became a bottleneck. The lazy

replication protocol of SSP scaled better than ESSP compared to its

own (inefficient) run time on a single node (12x faster on 16 nodes),

but its overall performance was poor because its replicas were cold

most of the time (and thus required synchronous replica refreshes).

NuPS scaled more efficiently than existing PSs because it (i)

limits the bottleneck of eager replication by replicating only a small
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Figure 10: Performance of different sampling access man-
agement techniques. Both sample reuse and local sampling
led to significant speedups over relocation.

subset of hot spot parameters, (ii) prevents themajority of relocation

conflicts by employing relocation only for long tail parameters, and

(iii) employs sampling schemes to reduce sampling communication

overhead. With 16 nodes, it provided up to 13.4x raw speedups

over the shared memory single node. NuPS further provided up

to 20x effective speedups for KGE and 8x for MF (see Figure 9).

For WV, although the raw speedup on 16 nodes was 10.2x, the

effective speedup was only 2.2x. The reason for this is that we used

the hyperparameter configuration that worked best on the single

node throughout all experiments. With other hyperparameters, we

observed better effective speedups for WV.

5.5 Effect of Sampling Schemes
We investigated the effect of different sampling schemes in NuPS on

run time and model quality. To do so, we ran KGE and WV with dif-

ferent sampling schemes: independent sampling (CONFORM), U=16
and U=64 sample reuse without postponing (BOUNDED) and with

postponing (LONG-TERM), and local sampling (NON-CONFORM). Fig-
ures 10a and 10b show model quality over time, Figures 10c and 10d

show model quality over epoch. We omit MF as it does not contain

sampling access.We further omit the results from sample reuse with

postponing as its results were within 10% of sample reuse without

postponing.
9 We found that both sample reuse and local sam-

pling led to significant speedups over independent sampling,
with small negative or—in the case of local sampling—even
positive effects on per-epoch model quality.

9
Postponing made no measurable difference in KGE, and sped up WV run times by

10%, with no measurable impact on model quality.



Table 3: Share of replicated keys, replica size, and share of
accesses to replicas for different extents of replication. A cell
is marked red if the resulting model quality was not within
10% of the quality without replication.

Replicated

keys (%)

Size of replicated

values (MB)

Accesses to

replicas (%)

Factor KGE WV MF KGE WV MF KGE WV MF

0 0.0000 0.0000 0.0000 0 0 0 0 0 0

1/64 x 0.0003 0.0027 0.0001 0 0 0 23 7 3

1/16 x 0.0012 0.0108 0.0004 0 1 0 33 13 5

1/4 x 0.0047 0.0435 0.0017 2 3 1 38 25 9

1 x

0.0187 0.1740 0.0069 7 12 6 41 45 14

(heuristic)

4 x 0.0747 0.6958 0.0275 27 50 23 44 67 19

16 x 0.2988 2.7832 0.1098 110 200 92 45 82 24

64 x 1.1951 11.1330 0.4393 439 799 369 47 88 30

256 x 4.7806 44.5319 1.7571 1758 3195 1475 52 92 37

Independent sampling provided per-epoch quality near-identical

to the single node, but was slowest, because it induced high commu-

nication overhead for each sample. Sample reuse had lower commu-

nication overhead (and, thus, faster epoch run times), but at the cost

of a (small) negative effect on per-epoch model quality. The higher

the use frequency, the faster an epoch and the larger the negative

effect on quality. The U=16 variant provided a good compromise,

with minimal effect on model quality and fast run times.

Local sampling exhibited excellent performance, despite provid-

ing no guarantees on sampling quality: it was fast and per-epoch

model quality was as good as the single node in WV, and was better
in KGE. We hypothesize that this mainly is because NuPS combines

local sampling with dynamic allocation: both tasks continuously

relocate model parameters, such that the local parameter parti-

tions contain many different parameters over time. To evaluate this

hypothesis, we ran local sampling with static allocation in KGE.

Figure 10c includes the results: with static allocation, model quality

deteriorated drastically. We further conjecture that the reason for

the better-than-single-node quality of local sampling in KGE was

that relocation led to local samples that were more informative than

global samples. Similar effects have been observed previously [73].

5.6 Choice of Management Technique
We investigated how the choice of management technique, i.e., the

choice of whether to replicate or relocate a key, affects the perfor-

mance of NuPS. The NuPS untuned heuristic replicates the 900most

frequent keys in KGE, the 3272 most frequent keys in WV, and the

755 most frequent column keys in MF. We varied these numbers by

factors
1

64
,
1

16
,
1

4
, 4, 16, 64, and 256. The leftmost columns of Table 3

depict what share of keys was replicated for each setting. We ran

one epoch of each setting and measured epoch run time and model

quality. Figure 11 depicts the results.We found that it was crucial
for performance to replicate “enough” parameters such that
the set of hot spot parameters ismanaged by replication, but
not too many parameters, as replication created significant
over-communication for long tail parameters.

This effect was visible for all tasks: starting from no replicated

keys (i.e., all keys managed by relocation), increasing the number

of replicated keys first improved run time, and had minimal effect

on model quality. However, after some point, replicating more keys

deteriorated model quality, and even slowed down run time for

KGE and MF. The reason for the negative effect on model quality

was that the replicas were stale, because the replica updates became

too large to synchronize them frequently over the network of the

cluster. We configured NuPS to provide the default 40ms staleness

bound (i.e., 25 synchronizations per second), but to not block oper-

ations when it did not reach this goal. Figure 11 includes the actual

synchronization frequency if model quality was not within 10%

of the model quality without replication. The middle columns of

Table 3 provide the size of the replicated values for all settings. For

example, the 64xWV setting replicated 799MB of parameter values.

Large numbers of replicated keys led to slower epoch run times for

KGE and MF, because relocation operations competed with replica

synchronization for network bandwidth. This effect was not visible

for WV because, in WV, the majority of accesses went to replicated

keys (and, thus, were fast despite network congestion). The share of

accesses that went to replicas is depicted in the rightmost columns

of Table 3. For example, 88% of all accesses went to replicas in the

64x WV setting.

5.7 Effect of Replica Staleness
We investigated the effect of replica staleness on epoch run time

and model quality. To do so, we varied synchronization frequency:

we synchronized replicas either 125, 25, 5, 1, or 0.2 times per second

or not at all. We ran one epoch of each setting and measured epoch

run time and model quality after this epoch. Note that without

replica synchronization, nodes may hold different models. In these

cases, we evaluated the model of the first node. Figure 12 reports

the results. Overall, replication had only minimal effect on
model quality when replica staleness was low.

Replication had only small effect on model quality when replicas

were synchronized at least 5 times per second. In contrast, infre-

quent synchronization (less than once per second) deteriorated

model quality drastically in KGE and WV. However, infrequent

synchronization (or no synchronization at all) worked well in some

settings (in particular in MF). We theorize that the reason for this

was that NuPS employs replication for only a small subset of pa-

rameters, such that replication parameters are kept synchronized

indirectly through the parameters that are managed by relocation.

5.8 Comparison to Task-Specific
Implementations

In a general-purpose system, a performance overhead over opti-

mized task-specific implementations is expected. To investigate the

extent of this overhead in NuPS, we compared to specific implemen-

tations for each task. Each of these implementations is specialized

and highly tuned for the respective task. In contrast to a general-

purpose PS such as NuPS, these implementations cannot be used to

run other ML tasks. Note that some of these implementations use

different, more complex training algorithms than the implementa-

tions in NuPS. Overall, we found that NuPS was competitive
to specialized and tuned task-specific implementations.
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For MF, we compared to the highly tuned MPI implementations

of DSGD and DSGD++ [63]. We ran convergence experiments on 8

and 16 nodes. We measured how long the implementations took to

reach the 90% quality threshold.We used the same hyperparameters,

model starting points, and learning rate schedule across DSGD,

DSGD++, and NuPS. On 8 nodes, NuPS was 16% faster than DSGD

and 15% slower than DSGD++. On 16 nodes, NuPS was 37% faster

than DSGD and 16% faster than DSGD++.

For KGE, we compared to the highly specialized framework

PyTorch-BigGraph [37]. Note that PyTorch-BigGraph is designed

for a different training algorithm, with different hyperparame-

ters: to reduce communication overhead, it uses mini-batch SGD,

whereas the KGE implementation in NuPS employs regular SGD

(i.e., batch size 1). To minimize the impact of algorithm hyperpa-

rameters in our comparison, we compared epoch run times. NuPS

ran an epoch in 12 minutes on 16 nodes (24 minutes on 8 nodes). In

this setting (i.e., batch size 1), PyTorch-BigGraph was much slower

than NuPS: it took more than 5 hours to run one epoch, both on 8

and 16 nodes. Using a very large batch size led to faster epochs in

PyTorch-BigGraph (up to 3x faster with batch size 1000 than NuPS

with batch size 1), but can also be implemented in NuPS.

For WV, we are not aware of a highly tuned and publicly avail-

able distributed implementation, so we compared to two highly

tuned single-node implementations: the original C implementation

of Word2Vec [45] and Gensim [54]. The implementation in Gensim

and the one in NuPS are both based on the original C implementa-

tion. For both single-node implementations, we achieved the fastest

epoch run times with 64 threads. Gensim completed an epoch in

15 minutes, the original implementation in 12 minutes. With 8x8

threads, NuPS took 13.5 minutes for one epoch; with 16x8 threads,

it took 8 minutes. One factor that limits the performance of NuPS

compared to these task-specific implementations is that—as other

general-purpose PSs [57]—NuPS provides per-key atomic updates.

To achieve this, workers receive dedicated working copies of pa-

rameters. Creating these copies and writing updates back into the

parameter store creates overhead compared to the task-specific WV

implementations, which let workers read and write in the parame-

ter store directly, without any consistency or isolation guarantees.

Empirically, this works well for this particular task, but the effects

for other tasks in a general-purpose system are unclear.

6 CONCLUSION
We explored how to extend the scope of PSs toMLwith non-uniform

parameter access. To this end, we presented NuPS, a non-uniform PS

that employs multi-technique parameter management to efficiently

handle skew and integrates sampling schemes to efficiently handle

sampling. We found that a non-uniform PS can be highly beneficial:

in our experimental study, NuPS outperformed existing PSs by up

to one order of magnitude. These results open up several research

directions for further improving PS performance: integrating more

management techniques (e.g., highly specialized ones), developing

further sampling schemes, and devising fine-grained methods for

picking management techniques for parameters.
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