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ABSTRACT
Model parameter management is essential for distributed train-
ing of large machine learning (ML) tasks. Some ML tasks are hard
to distribute because common approaches to parameter manage-
ment can be highly inefficient. Advanced parameter management
approaches—such as selective replication or dynamic parameter
allocation—can improve efficiency, but they typically need to be in-
tegrated manually into each task’s implementation and they require
expensive upfront experimentation to tune correctly. In this work,
we explore whether these two problems can be avoided.We first pro-
pose a novel intent signaling mechanism that integrates naturally
into existing ML stacks and provides the parameter manager with
crucial information about parameter accesses. We then describe
AdaPM, a fully adaptive, zero-tuning parameter manager based on
this mechanism. In contrast to prior parameter managers, our ap-
proach decouples how access information is provided (simple) from
how and when it is exploited (hard). In our experimental evalua-
tion, AdaPM matched or outperformed state-of-the-art parameter
managers out of the box, suggesting that automatic parameter man-
agement is possible.
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1 INTRODUCTION
Distributed training is essential for large-scale machine learning
(ML) tasks. It enables (i) training of models that exceed the memory
capacity of a single node and (ii) faster training by leveraging the
compute of multiple nodes of a cluster. Typically, each node accesses
one (local) partition of the training data, but requires global read and
write access to all model parameters. Thus, parameter management
(PM) among nodes is a key concern in distributed training. We refer
to any system that provides distributed PM, i.e., that provides global
parameter access across a cluster, as parameter manager. Most ML
systems include a parameter manager as core component [1, 6, 22].

Some large-scale ML tasks are particularly hard to distribute
because standard PM approaches are infeasible or inefficient. Cur-
rently, themost widely used approach is full static replication, i.e., to
maintain a copy of the entire model at each cluster node. Static full
replication is infeasible when the model size exceeds the memory
capacity of a single node. It is also inefficient when the task accesses
model parameters sparsely, i.e., when each update step reads and
writes only a small subset of all parameters. This is because it syn-
chronizes updates for all parameters to all nodes, even though each
node accesses only a small subset at each point in time. Such sparse
access is common in natural language processing [9, 19, 24, 25],
knowledge graph embeddings [3, 4, 21, 31], some graph neural net-
works [29, 30, 32], click-through-rate prediction [7, 10, 35, 41], and
recommender systems [5, 12, 15]. 1 Another standard PM approach—
static parameter partitioning—partitions model parameters and
transfers parameters to where they are needed on demand. This
approach is often inefficient because of the access latency that this
ad-hoc transfer induces [27]. Figure 1 shows that the performance
of both these approaches (blue and red lines) falls behind that of
a single node baseline for an example ML task, thus necessitating
more advanced PM.

Advanced PM approaches can improve efficiency [8, 11, 27, 39],
but to do so, they require information about the underlying ML task.
However, in current ML systems, this information is not readily
available to the parameter manager. To work around this lack of
information, existing advanced PM approaches require application
developers to control critical PM decisions manually, by exposing
configuration choices and tuning knobs. This requirement makes
these PM approaches complex to use, such that their adoption in
commonML systems remains limited. For example, multi-technique

1For example, sparsity may arise due to sparse features (e.g., binary features or embed-
ding layers of tokens, entities, or vertices) or due to sampling (e.g., negative sampling
for classification or neighborhood sampling in GNNs).
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Figure 1: Performance for training large knowledge graph
embeddings (ComplEx, dimension 500 on Wikidata5m) on
an 8-node cluster. Static full replication and static parameter
partitioning are easy to use, but inefficient. NuPS can bemore
efficient, but is hard to use. AdaPM is easy to use and efficient.
Details in Section 5.1.

parameter managers [26, 39] use different PM techniques (e.g., repli-
cation and dynamic allocation) for different parameters. This can
be more efficient than simple PMs (e.g., see the performance of
NuPS in Figure 1), but application developers need to specify up-
front which technique to use for which parameter, and—for optimal
performance—need to tune these technique choices. The absence
of a general-purpose approach that is both simple to use and ef-
ficient gives rise to a range of custom, task-specific approaches
that tightly couple PM to one specific ML task or one class of ML
tasks [2, 16, 18, 23, 38, 42]. These approaches can be efficient, but
they are not general-purpose leading to similar techniques being
re-developed and re-implemented many times.

In this paper, we propose intent signaling, a general-purpose
mechanism for providing the information that is necessary to enable
tuning-free advanced PM for training with (some) sparse parameter
access. Intent signaling cleanly decouples the application from
PM: the application passes information about which parameters
it intends to access before it does so, and the parameter manager
acts based on these signals. We designed intent signaling in a way
that can naturally be integrated into existing ML systems: the data
loader can signal intent during batch preparation. We show that
intent signaling not only simplifies the use of existing advanced
PM approaches, it also enables a range of novel, more fine-grained,
parameter managers that so far were impractical because PM had
to be controlled manually.

In addition, we develop AdaPM, a proof-of-concept parameter
manager that is based on intent signaling. AdaPM is (i) fully adap-
tive, i.e., it dynamically adapts all critical decisions to the underly-
ing ML task, and (ii) zero-tuning, i.e., it adapts automatically, based
purely on intent signals. To do so, AdaPM continuously re-evaluates
what is the most efficient way to manage a specific parameter in the
current situation (e.g., whether relocating the parameter is more
efficient than replicating it). As the timing of PM actions (e.g., when
to start maintaining a replica at a node) significantly affects perfor-
mance, AdaPM continuously optimizes its action timing by learning

from past timing decisions. AdaPM currently provides automatic
PM among the main memory of cluster nodes.2

We conducted an experimental evaluation on five ML tasks:
training knowledge graph embeddings, word vectors, matrix fac-
torization, click-through-rate prediction models, and graph neural
networks. AdaPM was efficient across all tasks without requiring
any tuning. In addition, it matched or even outperformed existing,
manually tuned PM approaches. Figure 1 shows one example of
this performance: AdaPM out of the box matched the performance
of the best NuPS configuration, which was tuned specifically for
this ML task.

In summary, our contributions are: (i) we analyze the complexity
of existing PM approaches (Section 2), (ii) we propose intent sig-
naling (Section 3), (iii) we describe AdaPM (Section 4), and (iv) we
investigate the performance of AdaPM in an experimental study
(Section 5).

2 EXISTING APPROACHES
Several general-purpose PM approaches aim to improve efficiency
by adapting specific aspects to the underlying ML task. This adapta-
tion requires information about the task. As this information is not
available to the parameter manager in current ML systems, existing
approaches rely on the application developers to manually con-
trol adaptation, which makes these approaches complex to use. In
this section, we briefly discuss existing approaches, which aspects
they adapt, and what makes them complex to use. Table 1 gives an
overview. A more detailed analysis that also discusses efficiency
can be found in Appendix A of the long version of this paper [28].

We discussed static full replication and static parameter partition-
ing in Section 1. These are implemented in many ML systems. For
example, TensorFlow [1] implements the two in the mirrored and
parameter server distribution strategies, respectively; PyTorch [22]
implements them in the distributed data parallel and fully sharded
data parallel wrappers, respectively. They are easy to use, but their
efficiency is limited, as discussed in Section 1.

Selective replication [37] statically partitions parameters, and,
to improve efficiency, selectively replicates parameters to further
nodes during training. Existing approaches [8, 11, 36] are complex to
use because they require applications to manually tune a staleness
threshold parameter that affects both model quality and run time
efficiency for each ML task.

Dynamic parameter allocation [27] partitions parameters to
nodes and, to improve efficiency, dynamically relocates parameters
to the nodes that access them during training. Existing approaches
are complex to use because they require the application to initiate
parameter relocations manually in the application code and to
tune the relocation offset (i.e., how long before an actual access the
relocation is initiated).

Multi-technique parameter managers [14, 26, 39] support
multiple PM techniques (e.g., replication, static partitioning, or
dynamic allocation) and use a suitable one for each parameter.
They are complex to use because they require the application to
specify upfront which technique to use for which parameter. For

2Workers may, of course, use GPUs to process batches. Direct support for GPUmemory
in AdaPM may provide further efficiency improvements and is a key direction for
future work.
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Table 1: Approaches to distributed PM: adaptivity, ease of use, and efficiency for sparse workloads. Existing approaches adapt
only individual system aspects to the underlying ML task and require applications to manually control these adaptations.

Adaptivity

Approach Replication Parameter location Choice of technique Timing Ease of use Efficiency

Static full replication static (full) static single none ++ --
Static parameter partitioning (PS-Lite) none static single none ++ --
Selective replication (Petuum) adaptive static single by application - -
Dynamic allocation (Lapse) none adaptive single by application -- -
Multi-technique PM (BiPS, Parallax) static (partial) static static none -- +
Multi-technique PM (NuPS) static (partial) adaptive static by application -- +
AdaPM (this paper) adaptive adaptive adaptive adaptive + ++

optimal performance, application developers additionally need to
tune these technique choices manually.

3 INTENT SIGNALING
To enable automatic adaptive PM, we propose intent signaling, a
novel mechanism that naturally integrates into ML systems. It
passes information about upcoming parameter access from the ap-
plication to the parameter manager. It decouples information from
action, with a clean API in between: the application provides in-
formation (intent signals); the parameter manager transparently
adapts to the workload based on the intent signals. In other words,
all PM-related decision-making and knob tuning is done transpar-
ently by the parameter manager. The application only signals intent.

An intent is a declaration by one worker that this worker intends
to access a specific set of parameters in a specific (logical) time
window in the future. A natural choice of time window is a training
batch. For example, a worker may signal that it will require access
to, say, only 1M out of 100M parameters in batch 2 after analyzing
the examples in that batch (e.g., embeddings of categories that
do not appear in the batch are not needed).3 Such an approach
integrates naturally with the data loader paradigm of common ML
systems — such as Pytorch’s data loader [22], TensorFlow’s data
sets [1], or the Gluon data loader [6] —, where training batches
are constructed upfront in one or more separate threads and then
queued until processed by the training thread(s) later on. This
process is illustrated in Figure 2.

In general, it is important that intent is signaled before the pa-
rameter is actually accessed, such that the parameter manager can
adapt proactively. We use logical clocks as a general-purpose con-
struct for specifying the start and end points of intents. To ensure
generality, each worker 𝑖 has one logical clock 𝐶𝑖 that is indepen-
dent of other workers’ clocks.4 Each worker advances its clock
with an advanceClock() primitive (as done in Petuum [37], but,
in contrast to Petuum, invocation of our advanceClock() is cheap,
as it only raises the clock). For example, a worker could advance
its clock whenever it starts processing a new batch.

We propose the following primitive for signaling intent:

Intent( parameters, Cstart, Cend [, type] )

3For example, in the click through-rate prediction task of Sec. 5, processing a batch size
with 10000 examples requires accesses to less than 0.7% of all parameters on average.
4Applications may, of course, synchronize worker clocks.
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Figure 2: The data loader is a natural place to integrate intent
signaling. After a batch 𝑖 is constructed, the data loader sig-
nals intent for the parameters P𝑖 that are accessed in batch 𝑖.

With this primitive, a worker signals that it intends to access a
set of parameters in the time window between a start clock Cstart
(inclusive) and an end clock Cend (exclusive). The primitive allows
to (optionally) specify intent type, e.g., read, write, read+write. Fig-
ure 2 illustrates an example of how the data loader can signal intent.
With Intent(P2, 2, 3), the data loader signals that the correspond-
ing worker intends to access parameters P2 (e.g., 1M out of 100M
parameters) when at clock 2 (i.e., while it trains on batch 2). We
say that an intent is inactive if it is signaled, but the worker has
not reached the start clock yet, i.e., Ci < Cstart. We say that an
intent is active if the worker clock is within the intent time window,
i.e., Cstart ≤ Ci < Cend. And we say that an intent is expired when
the worker clock has reached the end clock, i.e., when Cend ≤ Ci.
Invocation of the Intent primitive is meant to be cheap, i.e., it
should not slow down the worker, even if the worker signals a
large number of intents. Workers can flexibly combine intents: they
can signal multiple (potentially overlapping) intents for the same
parameter, extend one intent by signaling another later on, etc.

Intent signaling enables the PM to continuously adapt its param-
eter management strategy. This is in contrast to most existing PM
approaches, where applications directly or indirectly control which
or when actions such as selective replication are performed. As
we will discuss in Section 4, intent signals allow AdaPM to choose
suitable PM techniques dynamically during run time (as opposed
to statically per parameter) and to time actions appropriately (as
opposed to explicitly triggering actions). The key benefits of intent
signaling are (i) ease of use, as applications do not need to make
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Figure 3: AdaPM architecture. For efficiency, AdaPM runs
multiple worker threads in one process per node, and ac-
cesses locally available parameters via shared memory.

these hard choices (but only signal intent), and (ii) improved effi-
ciency, as the PM can make better choices by carefully deciding
which and when to perform actions.

4 THE ADAPM PARAMETER MANAGER
Intent signaling opens a large design space for adaptive PM. Key
design questions include: when and where to maintain replicas,
whether and when to change parameter allocation, when to act
on intent signals, how to synchronize replicas, how to exchange
intent signals, on which nodes to make decisions, and how to com-
municate efficiently. We explore this space and describe AdaPM,
a parameter manager that—in contrast to previous ones—is fully
adaptive, i.e., it adapts all critical aspects to the underlying ML
task, see Table 1. It does so automatically, based purely on intent
signals, thus requiring no user input or knob tuning. And it does
so dynamically, continuously re-evaluating what the most efficient
approach is for the current situation. AdaPM has low overhead —a
major design goal—and it takes all management decisions off the
critical path of workers.

We give a brief overview of key design choices before we discuss
the most challenging ones in detail. Figure 3 illustrates the archi-
tecture of AdaPM. We assume an architecture that—for efficiency—
co-locates the parameter store in the same processes as the worker
threads, as parameter managers commonly do [11, 13, 27].

Adaptive choice of technique. AdaPM employs dynamic allo-
cation and selective replication, and adaptively picks between the
two per parameter. AdaPM dynamically chooses the most efficient
technique for the current situation. Intuitively, AdaPM relocates
a parameter if—at one point in time—only one node accesses the
parameter. Otherwise, it creates replicas precisely where they are
needed. We discuss AdaPM’s choice of technique in Section 4.1.

Adaptive action timing. AdaPM learns automatically when the
right time to act on an intent signal is. This ensures that applications
do not need to fine-tune the timing of their intent signals. They can
simply signal their intents early, without sacrificing performance.
See Section 4.2 for details.

Responsibility follows allocation. In AdaPM, the node that
currently holds the main copy of a parameter (owner node) takes on
the main responsibility for managing this parameter: it decides how
to act on intent signals and acts as a hub for replica synchronization.

For efficiency, this responsibility moves with the parameter when-
ever the it is relocated. This strategy generally reduces network
communication as the responsibility for a parameter is always at a
node that “needs” it. Details can be found in Appendix B.1 of the
long version of this paper [28].

Efficient communication. AdaPM communicates for exchang-
ing intent signals, relocating parameters, and managing replicas. To
communicate efficiently, AdaPM locally aggregates intents, groups
messages when possible to avoid small message overhead, and em-
ploys location caches to improve routing. Details can be found in
Appendix B.2 of the long version of this paper [28].

Optional intent. Intent signals are optional in AdaPM. An
application can access any parameter at any time, without signaling
intent. However, signaling intent makes access more efficient, as it
allows AdaPM to avoid synchronous network communication.

4.1 Adaptive Choice of Technique
AdaPM receives intent signals from workers. Based on these intent
signals, AdaPM tries to ensure that a parameter can be accessed
locally at a node while this node has active intent for this parameter.
To achieve this, AdaPM has to determine where to ideally allocate
a parameter, if and where to create replicas, and for how long to
maintain each replica.

To make parameters available locally, AdaPM employs (i) dy-
namic allocation and (ii) selective replication. That is, it (i) can
relocate parameters among nodes and (ii) can selectively create
replicas on subsets of nodes for specific time periods. AdaPM uses
a simple heuristic rule to decide between the two: if, at one point
in time, only one node has active intent for a parameter, AdaPM
relocates the parameter to the node with active intent. After the
node’s intent expires, AdaPM keeps the parameter where it is until
some other node signals intent. In contrast, when multiple nodes
have active intent for one parameter concurrently, AdaPM selec-
tively creates a replica at each of the nodes when the intent of
that node becomes active. It destructs the replica when the intent
of that node expires. The simplicity of the decision rule allows
AdaPM to communicate intent among nodes efficiently. Figure 4a
illustrates AdaPM’s decision between relocation and selective repli-
cation. More involved approaches (or cost models) may provide
further benefits, but this simple strategy performed remarkably
well in our experimental study.

Let us consider three exemplary intent scenarios:

(1) Two nodes have intent for the same parameter, and the active
phases of the intents do not overlap; see Figure 4b. AdaPM
relocates the parameter from its initial allocation to the first
node with intent and keeps it there even after the intent
expires. AdaPM relocates the parameter to the second node
with intent shortly before the node’s intent becomes active.

(2) Two nodes have intent for the same parameter, and the active
periods of the intents partially overlap; see Figure 4c. AdaPM
relocates the parameter to the first node with intent, then
creates a replica on the second node while the two active
intents overlap, and finally relocates the parameter to the
second node after the intent of the first node expires.

(3) Multiple nodes repeatedly have intent for the same parame-
ter, see Figure 4d. AdaPM creates replicas on all nodes with
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Figure 4: AdaPM decides automatically whether to relocate or replicate a parameter at any time 𝑡 (a). Example scenarios (b–d).

active intent. Whenever there is exactly one node with active
intent (and the parameter is not currently allocated at this
node), AdaPM relocates the parameter to this node.

AdaPM combines parameter relocation and replication because
previous research has shown that their combination is benefi-
cial [26]. Relocation is efficient for parameters that are accessed
infrequently, as in the first example above, because the parameter
value is transferred over the network only once per access (from
where the parameter currently is to where the intent is). In con-
trast, replication can significantly reduce network overhead for
frequently accessed parameters. In addition, unlike previous multi-
technique approaches [26, 39], AdaPM employs selective replication:
AdaPM creates a replica precisely for the time during which it is
needed. This increases efficiency as AdaPM does not need to main-
tain replicas while they are not needed. This also limits the impact
of stale reads — which always arise when replication is used —
since (i) AdaPM replicates as few parameters and as selectively as
possible and continuously refreshes them (cf. Tab. 2) and (ii) no
staleness occurs for reads of any non-replicated parameter. Further,
unlike previous approaches, the choice of PM techniques for each
parameter is dynamic: AdaPM can relocate the parameter at one
point in time, and replicate it at another.

Formaking its decisions, AdaPM treats all intent types identically.
More complex approaches could tailor their choices to intent type.
For example, systems could choose to take different actions for read
and write intents. In AdaPM, we keep the system simple and treat
all intent types identically because we do not expect tailoring to
improve performance for typical ML workloads: (i) applications
typically both read and write a parameter and (ii) synchronous
remote reads are so expensive that it is beneficial to provide a
locally accessible value for a parameter even for a single read.

4.2 Adaptive Action Timing
AdaPM receives intent signals before the intents become active. I.e.,
there is an action window between the time the intent is signaled
and the time the intent becomes active. AdaPM needs to determine
at which point in this action window it should start to act on the
intent signal, i.e., when it relocates the parameter or sets up a replica
for this parameter. For example, consider the intent of node 3 in
Figure 4c: AdaPM needs to figure out at which point in time it starts
maintaining a replica on node 3.

Relocating a parameter or setting up a replica takes some time.
Consequently, if AdaPM acts too late and relocation or replica
setup is not finished in time, remote parameter access is required.

On the other hand, if AdaPM acts too early, it might maintain a
replica longer than needed, inducing unnecessary communication.
Furthermore, if AdaPM acts too early, it might use replication in
scenarios in which—with better timing—relocation would have
been both possible and more efficient. However, acting on an intent
signal (slightly) too early is much cheaper than acting too late
because the remote accesses caused by too late action slow down
training significantly. In contrast, acting slightly too early merely
causes over-communication. Thus, it is better to err on the side of
acting too early.

The key challenge is that both (i) the preparation time for reloca-
tion or replica setup and (ii) the length of the action window are
unknown. The action window length is unknown because it is un-
clear when the worker will reach the intent’s start clock. Both times
are affected by many factors, e.g., by the application, the compute
and network hardware, and the utilization of that hardware.

4.2.1 Learning When to Act. AdaPM aims to learn when the right
time is to act on an intent signal. A general approach would esti-
mate both preparation time and action window length separately.
However, AdaPM acts on intent signals in point-to-point commu-
nication rounds that take a fairly constant amount of time. AdaPM
thus simplifies the general approach and directly estimates the
number of worker clocks per communication round. This allows
AdaPM to decide whether an intent signal should be included in
the current round or if it suffices to include the signal in a later
round. A later round suffices if the next round will finish before the
worker reaches the start clock of the intent.

As acting (slightly) too early is much cheaper than acting too
late, our goal is to estimate a soft upper bound for the number
of clocks during one communication round. I.e., we want to be
confident that the true number of clocks only rarely (ideally, never)
exceeds this soft upper bound. To this end, we employ a probabilistic
approach in AdaPM: we assume that the number of clocks follows
a Poisson distribution, estimate the (unknown) rate parameter for
the distribution from past communication rounds, and use a high
quantile of this Poisson distribution as a soft upper bound (e.g., the
0.9999 quantile). In detail, we assume that the number of clocks by
worker 𝑖 in round 𝑡 follows Poisson(𝜆𝑖𝑡 ) with expected rate 𝜆𝑖𝑡 . We
choose a Poisson distribution because it is the simplest, most natural
assumption, and it worked well in our experiments. Note that we
assume a Poisson distribution for a short time period (one round 𝑡
by one worker 𝑖), not one global distribution (a much stronger,
unrealistic assumption, which, for example, would not account for
changes in workload or system load).



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Alexander Renz-Wieland et al.

𝐶𝑖
𝑡

current
worker
clock

𝜆𝑖𝑡

clocks
during this
comm. round
(round 𝑡 )

𝜆𝑖𝑡

clocks
during next
comm. round
(round 𝑡 + 1)

Poisson(2𝜆𝑖𝑡 )
(shifted by𝐶𝑖

𝑡 )

In communication round 𝑡 , AdaPM acts on
intents that start in this window.

0.9999
quantile

Figure 5: AdaPM learns automatically when to act on an
intent signal, using a probabilistic model to estimate a soft
upper bound.

Input: Intent start 𝐶start, previous estimate 𝜆𝑖
𝑡−1, clock of

worker 𝑖 at the start of round 𝑡 (𝐶𝑖
𝑡 ) and round 𝑡 − 1 (𝐶𝑖

𝑡−1),
smoothing factor 𝛼 , quantile 𝑝 .
1: Δ← 𝐶𝑖

𝑡 −𝐶𝑖
𝑡−1

2: if Δ > 0 then
3: 𝜆𝑖𝑡 ← (1 − 𝛼)𝜆𝑖𝑡−1 + 𝛼 (Δ) ;
4: else
5: 𝜆𝑖𝑡 ← 𝜆𝑖

𝑡−1 ;
6: end if

return 𝐶start < 𝐶𝑖
𝑡 +𝑄Poiss (2 ·max(𝜆𝑖𝑡 ,Δ), 𝑝);

Algorithm 1:Whether to act on a given intent in round 𝑡 .

AdaPM acts on a given intent in round 𝑡 if it estimates that the
corresponding worker might reach the start clock of the intent
(𝐶start) before round 𝑡 + 1 finishes, i.e., roughly5 if

𝐶start < 𝐶𝑖
𝑡 +𝑄Poiss (2 · 𝜆𝑖𝑡 , 𝑝)

where 𝐶𝑖
𝑡 is the current clock of worker 𝑖 at the start of round 𝑡

and 𝑄Poiss (𝜆, 𝑝) computes the 𝑝 quantile of a Poisson distribution
with rate parameter 𝜆. Figure 5 illustrates this decision. Under our
Poisson assumption, a 𝑝 = 0.9999 quantile gives a 99.99% probability
that the actual number of clocks during the two rounds is below
our estimate.

4.2.2 Estimating the Rate Parameter. Naturally, the true Poisson
rate 𝜆𝑖𝑡 is unknown. AdaPM estimates this rate from the number of
clocks in past communication rounds, using exponential smoothing:

𝜆𝑖𝑡 ← (1 − 𝛼)𝜆𝑖𝑡−1 + 𝛼 (𝐶
𝑖
𝑡 −𝐶𝑖

𝑡−1)

where 𝜆𝑖𝑡 is the estimate for the number of clocks by worker 𝑖 in
round 𝑡 and 𝛼 is the smoothing factor.

We consider two further aspects to improve the robustness of
the estimate 𝜆𝑖𝑡 . First, in ML training tasks, there commonly are
periods in which the workers do not advance their clocks at all.
For example, this is commonly the case at the end of an epoch,
while training is paused for model evaluation. In such periods, the
estimate would shrink. To keep it more constant, AdaPM does not
update the estimate when the worker did not raise its clock during
the previous communication round (i.e., if 𝐶𝑖

𝑡 −𝐶𝑖
𝑡−1 = 0).

5The exact decision is given in Algorithm 1 in Section 4.2.2.

Second, the observed number of clocks during round 𝑡 − 1 (i.e.,
𝐶𝑖
𝑡 − 𝐶𝑖

𝑡−1 = Δ) is not independent of the estimate 𝜆𝑖
𝑡−1: if the

estimate was too low, AdaPM did not act on some intents that the
worker reached in this round, so that the worker was potentially
slowed down drastically by remote parameter accesses. Thus, the
estimate could settle in a “slow regime”. A large enough Poisson
quantile (i.e., 𝑝 ≫ 0.5) ensures that the estimate grows out of such
regimes over time. AdaPM further uses a simple heuristic to get out
more quickly: if the number of clocks in the last round is larger than
the current estimate, it uses this number rather than the estimate
(i.e., it uses max(𝜆𝑖𝑡 ,Δ)).

Algorithm 1 depicts precisely how AdaPM decides whether to
act on a given intent and how it updates the estimate.

4.2.3 Effect on Usability. AdaPM’s action timing relieves applica-
tions from the need to signal intent “at the right time”, as is, for
example, required for initiating relocations in dynamic allocation
PM approaches. It is important that applications signal intent early
enough so that there is enough time for AdaPM to act on the signal.
Below this lower limit, however, action timing makes AdaPM in-
sensitive to when intent is signaled. Thus, applications can simply
signal intent early, and rely on AdaPM to act at the right time.

AdaPM’s adaptive action timing introduces three hyperparam-
eters: the smoothing factor 𝛼 , the quantile 𝑝 , and the initial rate
estimate 𝜆𝑖0. However, these hyperparameters do not require task-
specific tuning. We used the same configuration for all ML tasks
and all experiments (𝛼 = 0.1, 𝑝 = 0.9999, and 𝜆𝑖0 = 10). This config-
uration worked well across all five tested tasks, see Section 5.2.

5 EXPERIMENTS
We conducted an experimental study to investigate whether and to
what extent automatic fully adaptive PM is possible and beneficial.
The source code, datasets, and information for reproducibility are
available online.6

In our study, we evaluated the performance of AdaPM by com-
paring it to efficient single-node baselines (Section 5.2), a manually
tuned state-of-the-art parameter manager (Section 5.3), and stan-
dard PM approaches (Section 5.4). Further, we investigated whether
and to what extent AdaPM benefits from supporting multiple man-
agement techniques (Sections 5.5 and 5.6), how scalable it is (Sec-
tion 5.7), whether action timing is crucial for its performance (Sec-
tion 5.8), how its performance compares to GPU implementations
(Section 5.9). and which decisions it makes in practice (Appendix E
of the long version [28]). Our major insights are: (i) AdaPM pro-
vided good speedups out of the box, without any tuning, (ii) AdaPM
matched or even outperformed a manually tuned state-of-the-art
parameter manager, (iii) AdaPM scaled efficiently, and (iv) adaptive
action timing is a key building block for AdaPM’s efficiency. We
conclude that automatic PM is possible and can be efficient.

5.1 Experimental Setup
Tasks. We considered five ML tasks: knowledge graph embeddings
(KGE), word vectors (WV), matrix factorization (MF), click-through-
rate prediction (CTR), and graph neural networks (GNN). The tasks
differ in multiple ways, including the size of the models, the size

6https://github.com/alexrenz/AdaPM/

https://github.com/alexrenz/AdaPM/
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of the data set, with what rate workers advance their clocks, and
in their access patterns. In particular, some workloads exhibit a
large amount of dense accesses (e.g., 52% for CTR), some very few
(e.g., 0% for MF). We used common practices for task training, e.g.,
for partitioning training data and measuring model quality. When
necessary, we tuned hyperparameters for each task on a single
node and used the best found setting in all systems and variants.
Appendix C of the long version of this paper [28] describes each
task in detail. Table 3 of the long version provides an overview.

Baselines.We compared the performance of AdaPM to efficient
single-node implementations, to NuPS [26] (a state-of-the-art multi-
technique parameter manager), to static parameter partitioning, to
static full replication, and to three ablation variants. To ensure a
fair comparison to NuPS, we ran six different hyperparameter con-
figurations of NuPS for each task. Five configurations are designed
to simulate a typical hyperparameter search by an application de-
veloper: a random search that is loosely informed by the NuPS
heuristic and intuition, see Appendix D of the long version for
details. In addition, we ran NuPS with the tuned hyperparameters
from Renz-Wieland et al. [26]. These were tuned in a series of de-
tailed experiments (but for a setting with 8 worker threads per
node, not 32). Note that such detailed insights are not commonly
available to application developers. As a single node baseline, we
used an efficient shared memory implementation.

Implementation and cluster.We implemented AdaPM in C++,
using ZeroMQ and Protocol Buffers for communication. We used a
cluster of up to 16 Lenovo ThinkSystem SR630 computers, running
Ubuntu Linux 20.04, connected with 100 Gbit/s Infiniband. Each
node was equipped with two Intel Xeon Silver 4216 16-core CPUs,
512 GB of main memory, and one 2 TB D3-S4610 Intel SSD. We
compiled code with g++ 9.3.0. The CTR and GNN tasks are imple-
mented using PyTorch 1.12.1 and ran with Python 3.9.13. All other
tasks are implemented in C++. We consistently used 32 worker
threads per node and, unless specified otherwise, 8 cluster nodes.
In NuPS and AdaPM, we additionally used 3 ZeroMQ I/O threads
per node. In AdaPM, we used 4 communication channels per node;
in NuPS, we used 1 channel as it supports only 1. As prior work,
we use asynchronous SGD throughout so workers do not block.
Thus, reads to non-replicated parameters (e.g., in static partitioning,
NuPS, AdaPM) are always current. Reads to replicated parame-
ters, however, may be stale (e.g., in full replication, NuPS, AdaPM).
This staleness is generally bounded by the time between refreshs;
see [11, 17] for a convergence analysis under bounded staleness.

Measures. To keep costs controlled, we ran all variants with a
fixed 4 h time budget. This time budget was sufficient for conver-
gence for the fastest methods. We measured model quality over
time and over epochs within this time budget. We conducted 3
independent runs of each experiment, each starting from a distinct
randomly initialized model, and report the mean. For NuPS, we ran
each of the 6 configurations once. We depict error bars for model
quality and run time; they present the minimum and maximum
measurements. In some experiments, error bars are not clearly
visible because of small variance. Gray shading indicates perfor-
mance that is dominated by the single node. We report two types
of speedups: (i) raw speedup depicts the speedup in epoch run time,
without considering model quality; (ii) effective speedup depicts the
improvement w.r.t. time-to-quality. It is calculated from the time

that each variant took to reach 90% of the best model quality that
we observed in the single node. We chose this rather low threshold
to determine speed-ups also for slower variants (which otherwise
would not achieve the threshold in the time budget). The speed-ups
for AdaPM at a higher accuracy, e.g., 99%, are near-identical to the
ones at 90% (e.g., for CTR, 6.4x for both levels).

5.2 Overall Performance (Figure 6)
We ran AdaPM on all tasks, without any tuning, and compared its
performance to the one of a single node. Figure 6 depicts the results.
Figure 12 of the long version additionally shows model quality per
epoch. AdaPM achieved good speedups over the single node
for all tasks out of the box, with 6.5x–7.0x effective speedups
on 8 nodes.

Wemeasured these speedups against the efficient shared-memory
single-node implementation to ensure that they are practically rel-
evant. Not comparing the performance of distributed implemen-
tations to single-node baselines or comparing to inefficient single-
node implementations can be misleading [27].

5.3 Comparison to Manually Tuned PM
(Figure 6)

We further compared the performance of AdaPM to NuPS on the
tasks for which NuPS implementations and tuned configurations
are available (KGE, WV, and MF). Figures 6a, 6b, and 6c depict the
results. AdaPM matched or even outperformed the perfor-
mance of NuPS across all tasks.

NuPS required task-specific tuning to achieve good performance.
The figures depict three of the six NuPS configurations: (i) the
best and worst performing ones per task from our hyperparame-
ter search and (ii) the ones tuned by the NuPS authors. Different
configurations were efficient for different tasks. For example, con-
figuration 4 was the best one for MF, but the worst one for WV.

AdaPM matched (MF) or outperformed (slightly in KGE7 and
drastically in WV) the best NuPS configurations. AdaPM can out-
perform NuPS because AdaPM manages parameters more precisely,
e.g., it maintained replicas only while needed, allowing it to syn-
chronize fewer replicas more frequently. Appendix E of the long
version provides more insight into how AdaPM works and how it
differs from NuPS.

5.4 Comparison to Standard PM (Figure 6)
We compared AdaPM to static full replication and static parameter
partitioning for all tasks. Again, Figure 6 shows the results.AdaPM
outperformed standard PM.

Static full replication provided poor performance for all tasks
but WV. It provided poor model quality for KGE and CTR because
synchronizing full replicas on all nodes allowed for only infrequent
replica synchronization. It ran out of memory for MF and GNN
because their models are large. It worked well for WV because the
WV model is small (only 14GB, see Table 3 of the long version) and
the WV task is robust towards infrequent replica synchronization.

Static parameter partitioning was inefficient because it re-
quired synchronous network communication for the majority of

7Epoch were 20% faster in AdaPM than in tuned NuPS.
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Figure 6: Performance of AdaPM on 8 nodes (32 threads per node), compared to efficient single-node baselines (Section 5.2),
manually tuned PM (Section 5.3), standard PM approaches (Section 5.4), and single-technique AdaPM variants (Section 5.5).

Table 2: Per-epoch network communication and staleness.

Variant Commun. (GB per node) Mean replica staleness (ms)

KGE WV MF CTR GNN KGE WV MF CTR GNN

AdaPM 490 415 39 910 82 1.2 11.2 1.4 7.2 2.0
AdaPM w/o relocation 685 607 349 1066 171 1.4 13.8 7.7 7.7 2.6

parameter accesses. It was relatively efficient for GNN because this
task accesses parameters in large groups, such that the impact of
access latency is small.

5.5 Comparison to Single-Technique Adaptive
PM (Figure 6)

We compared AdaPM to two ablation variants, see Figure 6. These
variants are identical to AdaPM, but each variant is restricted to
one management technique: AdaPM without relocation only repli-
cates parameters, and AdaPM without replication only relocates pa-
rameters. AdaPM without replication was inefficient; AdaPM
without relocation was efficient for most tasks.

AdaPM without replication performed poorly for all tasks
because relocation is inefficient for hot spot parameters, as observed
previously [26].

AdaPM without relocation was efficient for KGE, WV, CTR,
and GNN. For MF, it was 3.0x slower than AdaPM because the MF
task exhibits locality (due to row-partitioning, each row parameter
is accessed by only one node) and replication is inefficient for
managing locality.

5.6 The Benefit of Relocation (Table 2)
As replication-only AdaPM performed well on many tasks (see
Section 5.5), we further investigated whether it is beneficial for
AdaPM to employ relocation in addition to replication. To do so, we
measured the amount of communicated data and replica staleness.
For simplicity, we take the time since the last replica refresh (i.e.,
the last check for updates) as staleness and ignore whether or
not the value has actually changed since then. Table 2 depicts
the results. Besides improving performance for some tasks (see
Section 5.5), employing relocation reduced network overhead
and decreased replica staleness for all tasks.

The contrast in communication and staleness was particularly
large for tasks with locality (MF and GNN due to data partitioning),
where AdaPM communicated up to 9x fewer data. But supporting
relocation also improved efficiency for all other tasks. For example,
AdaPM without relocation communicated 40% more data for one
KGE epoch because relocation is more efficient if two nodes access a
parameter after each other: relocation sends the parameter directly
from the first to the second node, whereas replication synchronizes
via the owner node.

5.7 Scalability (Figure 7)
We investigated the scalability of AdaPM and compared it to NuPS.
Figure 7 depicts raw and effective speedups over the single node
for KGE, WV, and MF; Figure 13 in the long version does so for the
other tasks. AdaPM scaled efficiently, achieving near-linear
raw and good effective speedups.

AdaPM scaled more efficiently than NuPS because NuPS’s scala-
bility was limited by relocation conflicts (i.e., concurrent accesses to
a relocation-managed parameter). For example, in KGE, the share
of remote accesses in the best found NuPS configuration was 1.2%,
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Figure 7: Scalability (logarithmic axes). Raw speedup (a-c),
i.e., w.r.t. epoch run time, and effective speedup (d-f), i.e.,
w.r.t. reaching 90% of the best model quality observed on a
single node. Runs that did not reach this threshold within
the time limit are not shown.
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Figure 8: The effect of adaptive action timing for WV on
epoch run time (a) and on model quality after one epoch (b).

2.4%, 3.4%, and 5.3% on 2, 4, 8, and 16 nodes, respectively; in AdaPM,
it was <0.0001%. The effective speedups slightly dropped on 16
nodes because we tuned task hyperparameters (e.g., learning rate
and regularization) for the single node and—to minimize the impact
of hyperparameter tuning—used these settings throughout all ex-
periments. These settings were not optimal for runs with 16x more
parallelism. Other settings achieved better effective scalability.

5.8 Effect of Action Timing (Figure 8)
To investigate the effect of action timing, we compared AdaPM to
an ablation variant that acts immediately after each intent signal,
on workloads with varying signal offsets. Figure 8 depicts the re-
sults for WV, see Figure 14 of the long version for further tasks.
With adaptive action timing, AdaPM was efficient for any
sufficiently large signal offset.

Early signals. With adaptive action timing, AdaPM provided
excellent performance for all large signal offset values. In contrast,
with immediate action, performance was poor for large signal off-
sets: run time increased andmodel quality decreased. The reason for

this was that the immediate action variant maintained replicas for
longer than necessary (thus lowering synchronization frequency).

Late signals. Smaller relocation offsets improved performance
for immediate action, but did not further improve performance
for AdaPM. For both, epoch run time was poor when intent was
signaled so late that the system did not have sufficient time for
setting up replicas or relocating parameters. Thus, there was a task-
specific optimum value for immediate action (necessitating tuning),
but not for AdaPM.

5.9 Comparison to GPU Implementations
CTR and GNN models are typically trained on GPUs, whereas we
used CPUs in our proof-of-concept implementation of AdaPM. To
put our results in perspective, we briefly compared to recent GPU-
based methods for these two tasks. Some overhead is expected
because these methods are task-specific, i.e., they use specialized
and tuned training algorithms that cannot be used for other tasks
directly, whereas AdaPM is general-purpose. Although the CPU and
GPU settings are very different and cannot be compared directly, we
found that the results obtained by AdaPM seem competitive.

For CTR, Zheng et al. [40] ran one epoch on a 90% train split of
our dataset, for the same model, and with comparable batch size8
in 76.8 minutes on one V100 GPU. AdaPM took 57.5 minutes on 8
CPU nodes for a 85.7% train split. The key bottleneck of GPU-based
methods is data transfer to and from GPUmemory as the models do
not fit in GPU memory. Very large batch sizes can mitigate this to
some extent, but require careful work to avoid loss of accuracy [40].

For GNN, Min et al. [20] ran one epoch on the same dataset,
but with a different model, on 2 RTX 3090 GPUs in 10.2 minutes.
AdaPM ran 1 epoch in 5.3 minutes on 8 CPU nodes. MariusGNN [33]
achieved a validation accuracy of 0.6638 in 8.2 minutes on the same
dataset (with a slightly different model) using 1 V100 GPU. Waleffe
et al. [33] further report that DGL [34] required 4 V100 GPUs to
achieve the same accuracy in similar time. AdaPM achieved slightly
better accuracy (0.665) after 15.5 minutes using 8 CPU nodes.

6 CONCLUSION
We proposed intent signaling, a novel mechanism that decouples
providing information about parameter accesses (simple) from how
and when it is exploited (hard). Intent signaling increases ease of
use and efficiency in parameter management. We presented AdaPM,
a parameter manager that automatically adapts to the underlying
ML task based solely on intent signals. In our experimental study,
AdaPM was efficient for many ML tasks out of the box, without
requiring any tuning, and matched or even outperformed state-of-
the-art (more complex to use) systems. Interesting directions for
future work are how to better integrate co-processor (e.g, GPU)
memory in an adaptive parameter manager such as AdaPM and
how to support intent signaling directly in common ML systems.
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