JNIVERSITAT DRESDEN Faculty of Computer Science Database Technology Group

Designing Random Sample Synopses with Outliers

Setting

 large tables with outliers in aggregation columns

Goal

- approximate aggregation queries

Outlier-Aware Sample Synopses

Example sample instance

Order	Price
order#2	200
order#4	180
order#5	110
order#10	130
AVG(Price): 155

Example synopsis instance

Order	Price
order#6	1000
Order	Price
order#4	180
order#5	110
order#10	130

AVG(Price): 226

S. Chaudhuri, G. Das, M. Datar, and R. M. V. Narasayya. Overcoming nitations of Sampling for Aggregation Queries. In ICDE, 2001

O Impact on Single-Column Outlier-Aware Synopses

Computational Contribution

O Search Space

1 Outlier Selection

http://wwwdb.inf.tu-dresden.de/research/

Philipp Rös **Rainer Ger** Wolfgang L

B Extension to Multiple Columns

Problems

- **1** What is an outlier?
 - Outliers of one column may not be outliers in other columns
 - Multiple single-column instances are not optimal under space constraint

Solution

- Quantification of a synopsis' quality with **measures** based on the relative standard error (RSE) of the estimates
- **2** How to select outliers?
 - Number of possible outliers is prohibitively large

Solution

• Speed up computation by using **heuristics** and greedy proceeding

Measures

MAX-Measure

- effect: minimizes maximum RSE of the estimates
- + most intuitive
- fails if column with maximum RSE has no outliers

GEO-Measure

- effect: maximizes improvement in RSE compared to simple random sampling
- + eager outlier selection
- a lot of effort into columns with very low RSE

AVG-Measure

- effect: minimizes the average RSE of the estimates
- + prefers outliers from columns with high RSE
- + shows best overall performance

Computational Contribution

1 Search Space

- **Problem:** huge number of possible outlier sets $\sum_{i=0}^{M} \binom{|R|}{i}$ with memory bound M
- **Solution:** select *M* outlier candidates during the single scan of the data selection based on weights specific to measure of choice

2 Outlier Selection

Problem: 2^{M} combinations for *M* candidates **Solution:** select outliers greedily from candidate set based on weights

Estimate

Estimate distribution

Estima
distribu

sch	🖂 philipp.roesch@tu-dresden.de
nulla	🖂 gemulla@inf.tu-dresden.de
ehner	⊠ wolfgang.lehner@tu-dresden.de

