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Abstract—Random sampling is one of the most widely used
means to build synopses of large datasets because random
samples can be used for a wide range of analytical tasks.
Unfortunately, the quality of the estimates derived from a sample
is negatively affected by the presence of “outliers” in the data.
In this paper, we show how to circumvent this shortcoming
by constructing outlier-aware sample synopses. Our approach
extends the well-known outlier indexing scheme to multiple
aggregation columns.

I. INTRODUCTION
Random sampling is an important tool for many large-scale

applications. For instance, it has been used for approximate
query processing, query optimization, stream processing, and
data analysis. One of its main advantages is its ability to deal
with a broad range of queries while providing probabilistic
error bounds at the same time. For aggregation queries,
however, estimates derived from random samples are sensitive
to extreme values in the data. For instance, imagine a hypo-
thetical company with a revenue of $1 billion in 2007 and
suppose that there is a single purchase order of $100 million.
This order is represented as a single tuple in the database, but
it constitutes 10% of the total revenue. Tuples like this one
are often called outliers; they are different from the rest of the
data and contribute significantly to the aggregate. To avoid
high estimation errors, outliers should be well represented by
a synopsis of the underlying dataset.
Chaudhuri et al. proposed a sampling scheme called outlier

indexing [1], which stores outliers separately and samples from
the remaining part of the dataset only. It has been shown
that this technique may significantly reduce the estimation
error. In this paper (a short version of [2]), we extend outlier
indexing to multiple aggregates. The main challenges are 1) to
detect outliers efficiently and 2) to balance the available space
between the sample and the outlier part of the synopsis. The
difficulty arises from the fact that outliers for one aggregate
are not necessarily outliers for the other aggregates. To address
this problem, we introduce and make use of error measures
which quantify the estimation error over all the aggregates
simultaneously. The goal is then to find the synopsis with the
lowest error measure. Since the computation of the optimum
synopsis is computationally prohibitive, we leverage heuristics
to prune the search space and also consider greedy algorithms
for picking outliers.

II. ERROR MEASURES
Given a dataset R = {r1, r2, . . .} and a set of attributes

A1, . . . , Al, we quantify how well a synopsis Ψ of R can

estimate aggregates on the Aj . We focus on sums and averages
but our techniques may also apply to other aggregates. We
consider synopses which consist of a set O ⊂ R of outliers
and a random sample S from R \ O—the efficient choice
of O is the main contribution of this paper. To estimate an
aggregate of the dataset, we first estimate the aggregate for
R \ O using the sample S and then combine this estimate
with the aggregate on the set O of outliers. Since outliers are
stored in their entirety, the only source of estimation errors is
the sample part of the synopsis.
Denote by rij the value of attribute Aj of the ith tuple

in R. Let Lj(R) =
∑

ri∈R rij be the linear sum and
Qj(R) =

∑
ri∈R r2

ij be the quadratic sum of these values.
Then, μj(R) = Lj(R)/|R| is the average value of Aj and

RSDj(R) =

√
Qj(R)
|R| −

(
Lj(R)
|R|

)2

|μj(R)|

denotes its relative standard deviation. An unbiased estimate
of μj(R) is given by μ̂j(R) = Lj(S)/|S|. For a sample of
size n, the relative standard error of the estimate equals [3]

RSEμ̂j
(R, n) = RSDj(R)

√
1

n
−

1

|R|
.

A value significantly smaller than 1 indicates low-error esti-
mates. Since μ̂j(R) is unbiased, the RSE is proportional to the
root mean square error (RMSE) but has the advantage of being
normalized and unitless. It can therefore be used to compare
the estimation error across multiple columns.
An error measure M is a function which takes a set of

outliers as its input and computes a numerical value which
quantifies the estimation error when this specific set of outliers
is chosen in the synopsis. A synopsis Ψ = (S, O) is said to
be more precise with respect to a measure M than another
synopsis Ψ′ = (S′, O′) if M(O) < M(O′). Our error
measures are based on the RSE as defined above. Suppose
that we have space to store M items and fix a set O of items
from R. We require that |O| < M so that the sample contains
at least 1 item. The RSE of the estimate on attribute Aj is
then given by RSEμ̂j

(O) = RSEμ̂j
(R \ O, M − |O|). This

mirrors the challenge of deciding on the number of outliers to
extract from the dataset: The selection of an outlier decreases
the RSD but also reduces the space available for the sample
of the remaining dataset.
If there is only a single attribute, we can directly use

RSEμ̂j
(O) as an error measure. For multiple attributes, the



situation gets more complex because the estimates of each
aggregate may have a different RSE. Perhaps the most intu-
itive way of combining the individual RSEs is to take their
maximum:

MMAX(O) =
l

max
j=1

RSEμ̂j
(O).

Here, only the column with the highest RSD has an influence
on the overall measure. The problem with this measure is
that other columns—which might also benefit from outlier
indexing—are simply ignored. Thus, we may try to minimize
the average RSE of the estimates:

MAV G(O) =
1

l

l∑
j=1

RSEμ̂j
(O).

Using this measure, the influence of each column is propor-
tional to its RSD. Going one step further, our last measure is
independent from the absolute values of the RSEs:

MGEO(O) = l

√√√√ l∏
j=1

RSEμ̂j
(O) ∝ l

√√√√ l∏
j=1

RSEμ̂j
(O)

RSEμ̂j
(∅)

.

Here, RSEμ̂j
(∅) is the RSE achieved by simple random sam-

pling and ∝ indicates proportionality. Intuitively, this measure
quantifies the improvement in the RSE compared to simple
random sampling. When this measure is minimized, estimates
on columns with outliers are improved significantly no matter
whether or not they already had a low RSE.

III. SYNOPSIS COMPUTATION
In this section, we show how to compute the set of outliers

which minimize a measure M. Our algorithm decides on
both the number and the composition of the outliers. It is
structured into 4 phases. In phase 1 (initialization), we build a
random sample SR of size M and construct a set C of outlier
candidates. The candidate set prunes the search space for the
next phases. As soon as phase 1 is complete, no further access
to the base data is required. In phase 2 (selection), we construct
sets O0, . . . , OM−1 of outliers so that Ok ⊆ C and |Ok| = k,
0 ≤ k < M . The set Ok can be seen as the optimum (or
close to optimum) choice of outliers from C when exactly k
outliers are chosen. In phase 3 (decision), we decide on one of
the Oi as the final set of outliers. In phase 4 (finalization), we
construct the synopsis Ψ using the outlier set and the random
sample SR. We now describe each of the phases in more detail.
Phase 1 (Initialization). In the first phase, outlier candidates
are computed. In the single-column case, the optimum set of
outliers solely consists of tuples from the lower and/or upper
end of A’s value range [1]. Thus, we may restrict C to the
tuples with the M − 1 smallest and M − 1 largest values
of A. A straightforward extension to multiple columns is to
include the tuples with the M − 1 smallest and largest values
of each column into C. However, there is no guarantee that
the optimum set of outliers is a subset of C. The reason
lies in the correlation between the columns. To understand
this, consider a relation R with two columns consisting of

tuples (4, 20), 10x(5, 5), (19, 19) and (20, 4). For M = 2,
the set C would contain items (4, 20) and (20, 4). However,
the optimum choice for O1 is (19, 19) /∈ C. Aside from non-
optimality, this choice of C is prohibitive in terms of memory
consumption: C can grow as large as 2l(M−1) tuples, which
is infeasible for the large amount of columns found in practical
scenarios. We therefore propose a heuristic approach which
selects exactly M −1 tuples from the base relation, no matter
how many columns are subject to optimization. In general, the
selected tuples satisfy one or both of the following properties:
(1) the tuple has extreme values in some of the columns or (2)
the tuple has values which differ from the average—though not
necessarily extremely—in most of the columns. Our approach
is to assign a weight to each tuple ri ∈ R and to then select the
tuples with theM−1 largest weights. The weight is chosen in
such a way that it is large whenever (1) or (2) holds and small
otherwise. Note that the absolute values of the weights are
unimportant; their purpose is to order the tuples in the relation
with respect to their outlier status. We make use of a priority
queue to determine the tuples with the M −1 largest weights,
so that phase 1 requires O(|R| log M) time and O(M) space.
The assignment of good weights to the individual tuples

is crucial for our algorithm. Clearly, the weights should
correlate with the measure we try to minimize. Inspired by the
computation of the RSD, we might weight the tuples according
to their relative distance from the mean:

WDistMean(ri) =

l∑
j=1

(
rij − μj(R)

μj(R)

)2

.

If WDistMean is large for some tuple ri, the tuple almost
certainly satisfies (1) or (2). We also consider two alternative
weights:

WSumRSD(ri) = −
l∑

j=1

RSDj(R \ {ri})

WProdRSD(ri) = −
l∏

j=1

RSDj(R \ {ri}).

These weights are tailored to MAV G and MGEO, respec-
tively. They equal the sum/product of the RSDs for each
column if tuple ri were removed. We want to select the
tuples with the largest decrease in RSD as candidates; for
this reason, a minus sign has been added to each weight. Note
that the time complexity of weight computation is proportional
to the number of attributes but independent of |R| because
RSDj(R\{ri}) can be computed from ri, Lj(R) and Qj(R).
In our experiments, we found that MMAX performs best
with WDistMean, while MAV G and MGEO produce the
highest quality synopses with WSumRSD and WProdRSD,
respectively.
Phase 2 (Selection). Let Ok ⊆ C be the optimum set of
outliers (with respect to C) with |Ok| = k. The output of
this phase consists of the sets O0, . . . , OM−1. We will also
discuss approximate methods; in this case, the Ok are only
approximate.



We first consider the single-column case, in which the set
C contains the M − 1 smallest and largest tuples. A naive
approach is to exhaustively try out all possible combinations to
find the one which minimizes the RSE. This approach requires
O(M2) time to compute O0, . . . , OM−1. One might hope that
the Ok can be computed incrementally. However, the relation-
ship Ok−1 ⊂ Ok does not hold in general. To understand this,
consider the relation R = {1, 2, 3, 5, 1000, 1000, 1000} and set
M = 6. The optimum choices for the Ok are: O1 = {1000},
O2 = {1000, 1000}, O3 = {1000, 1000, 1000} but for O4 =
{1, 2, 3, 5}. Clearly, O3 �⊂ O4. In this pathological example,
the variance among the outliers is low and the synopsis size
is high. In practice, however, the relationship almost always
holds, so that we can speed up outlier computation by selecting
outliers one by one. The resulting greedy algorithm starts
with O0 = ∅. To compute Ok from Ok−1, the tuple with
the highest distance to the mean (of the remaining dataset
R \ Ok−1) is added. In addition to being far more efficient,
the greedy algorithm almost always produced the same result
as the exhaustive algorithm in our experiments.
We now consider the multi-column case, in which the set

of outlier candidates consists of the M − 1 tuples with the
largest weights. It is computationally prohibitive to try out all
combinations for computing the Ok. In fact, there are

(
M−1

k

)
possible combinations for each Ok, which sums to 2M−1

combinations in total. Therefore, we again select the outliers in
a greedy way. Since the tuples are already weighted, we select
outliers in the order of their weights. Though this procedure is
fairly simple, it produces good results and is very efficient [2].
Phase 3 (Decision). The third phase decides on the optimum
value kopt for k. We compute M(O0), . . . ,M(OM−1) and
choose kopt so that M(Okopt

) is minimized. To increase
efficiency, an implementation might precompute the M(Ok)
during the selection phase.
Phase 4 (Finalization). In the last phase, we construct Ψ =
(S, O). We set O = Okopt

and compute S from SR by
subsampling SR \O down to size M − kopt.

IV. CASE STUDY
To investigate the efficiency and effectiveness of our ap-

proach in comparison to the naive method of exhaustive
enumeration, we conducted an experiment on a very small
synthetic dataset (100 tuples, 2 columns); see [2] for a detailed
description of the dataset. Figure 1a plots the total execution
time for synopsis sizes ranging from 1 to 50 tuples. As can
be seen, exhaustive enumeration is infeasible because the
execution time is exponential in M and explodes with an
increasing synopsis size. In contrast, the execution time of our
heuristic algorithms depends only logarithmically onM so that
it is significantly faster. In Figure 1b, we plot the value of the
MAV G measure for the resulting synopses. As can be seen,
both the exhaustive and the heuristic algorithm outperform
SRS. Also, our heuristic approach produces synopses close to
the optimum.
We now briefly report results of a case study on a large

real-world dataset. The dataset contains market research data
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Fig. 1: Efficiency and effectiveness

TABLE I: RSE of average estimate
Price Stock Purchase Sales

SRS 0.133% 0.356% 1.577% 1.606%

MMAX 0.185% 0.210% 0.191% 0.147%

MAV G 0.169% 0.213% 0.191% 0.149%

MGEO 0.168% 0.214% 0.191% 0.149%

Lower bound 0.123% 0.148% 0.136% 0.125%

and consists of 4, 383, 694 tuples with 5 columns. Each row
represents an item available in a specific year (YEAR), its
price (PRICE), the amount of stocked items (STOCK), and
the number of sales (SALES) and purchases (PURCHASE) of
the item. We evaluated the estimation error for the average
of the PRICE, STOCK, SALES and PURCHASE column. We
created a synopsis of size 10% of the dataset using simple
random sampling (SRS) and multi-column outlier indexing
(MCOI) with varying measures. Table I shows the RSE for
each of the 4 columns. We also give a theoretical lower
bound which is achieved by optimizing only the respective
column; we cannot give a tighter bound because exhaustive
enumeration is infeasible for such a large dataset. As can be
seen, MCOI significantly reduces the estimation error in high-
error columns. On low-error columns—which do not contain
outliers—MCOI might induce additional estimation error. In
any case, the resulting RSE is close to the lower bound. In
this experiment all the measures show a similar performance,
see [2] for examples where this is not the case.

V. SUMMARY
The presence of extreme values in the data has a negative

impact on the quality of estimates derived from random
samples. We introduced several error measures, paying respect
to the fact that synopses are often used to estimate a variety
of aggregates. We extended the well-known outlier indexing
scheme so that it produces synopses optimized for multiple
aggregates simultaneously. We introduced a heuristic and
greedy algorithm which handles the resulting combinatorial
explosion of possible synopses and is by several orders of
magnitude faster than the exhaustive approach.
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