
k-Ary Search on Modern Processors

Benjamin Schlegel
Technische Universität Dresden

benjamin.schlegel@tu-
dresden.de

Rainer Gemulla
IBM Almaden Research Center

rgemull@us.ibm.com

Wolfgang Lehner
Technische Universität Dresden

wolfgang.lehner@tu-
dresden.de

ABSTRACT
This paper presents novel tree-based search algorithms that
exploit the SIMD instructions found in virtually all mod-
ern processors. The algorithms are a natural extension of
binary search: While binary search performs one compar-
ison at each iteration, thereby cutting the search space in
two halves, our algorithms perform k comparisons at a time
and thus cut the search space into k pieces. On traditional
processors, this so-called k-ary search procedure is not ben-
eficial because the cost increase per iteration offsets the cost
reduction due to the reduced number of iterations. On mod-
ern processors, however, multiple scalar operations can be
executed simultaneously, which makes k-ary search attrac-
tive. In this paper, we provide two different search algo-
rithms that differ in terms of efficiency and memory access
patterns. Both algorithms are first described in a platform
independent way and then evaluated on various state-of-the-
art processors. Our experiments suggest that k-ary search
provides significant performance improvements (factor two
and more) on most platforms.

1. INTRODUCTION
Searching is a fundamental operation that is used in al-

most every domain of computer science. The classical prob-
lem is to retrieve from a dataset of disjoint key/value pairs
(i) the value for a single given key or (ii) all the pairs within
a range of two given keys. For example, suppose that the
dataset consists of a set of persons. Then, a single-key query
might ask for a person with a given name, while a range
query might ask for all persons born between 01/01/1980
and 12/31/1980.

The classical search problem has been studied extensively
in the literature. Apart from linear search, one distin-
guishes sort-based, tree-based, and hash-based search algo-
rithms. Hash-based algorithms are well-suited for single-key
lookups, but they require memory over and above that to
store the base data1 and—since the distribution of keys to

1Although some modern hashing techniques [11] can achieve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Fifth International Workshop on Data Management on
New Hardware (DaMoN 2009) June 28, 2009, Providence, Rhode-Island
Copyright 2009 ACM 978-1-60558-701-1 ...$10.00.

buckets is randomized—they perform poorly in the presence
of range or nearest-key queries. In this paper, we restrict our
attention to the former two classes, i.e., sort-based and tree-
based search. When the dataset is sorted, binary search
constitutes the provably best algorithm of the sort-based
class of algorithms in terms of time complexity. Each step
of a binary search halves the search space by performing
one comparison so that the total number of comparisons is
logarithmic in the dataset size. Similar arguments hold for
tree-based search based on a binary search tree.

The downside of binary search is that it does not make use
of the SIMD capabilities of modern processors. On IBM’s
Cell processor, for example, the cost of a single 32-bit scalar
comparison is identical to the cost of four 32-bit scalar com-
parisons executed simultaneously. A naive execution of bi-
nary search would therefore “waste” three comparisons at
each step. A natural idea to boost the speed of searching is,
therefore, to not run binary search but k-ary search, k > 2,
where each step divides the search space into k parts based
on the outcome of k − 1 comparisons (e.g., k = 5 for the
Cell with 4-way vector registers). Although this approach
does not affect the asymptotic time complexity of search, it
might significantly reduce the actual execution cost.

In this paper, we take a closer look at k-ary search on
SIMD architectures. Our goal is to determine which SIMD
operations are essential for k-ary search to be more efficient
than binary search and by what margin the former outper-
forms the latter on selected processors. Furthermore, we
show that an additional reduction in execution time can be
achieved by rearranging the dataset in an order more ap-
propriate for k-ary search. Our reordering is based on a
linearization of a k-ary search tree.

In what follows, we consider a somewhat idealistic scenario
in which the dataset is stored in main memory and is static
(or updated infrequently, e.g., on a daily or monthly basis).
Although these restrictions do not always hold in practice,
they allow us to focus on the advantages of modern architec-
tures over more conventional ones. To see this, suppose that
the dataset is not stored in memory but on hard disk. Then,
the I/O cost of reading the data would dominate the cost
of search and usually outweigh any performance gain due
to SIMD instructions. For the former reason, one typically
keeps as much of the data in memory as possible, in which
case k-ary search is attractive. Similarly, if the dataset is
updated frequently with respect to the number of searches,
the maintenance cost of both the sorted-array representation
and the linearized-tree representation become substantial.

up to 95-99% occupancy.

1483 110 46 47 48 58 61 6456 69 733332 35 42 82 83 88 92 93 9491 97

1483 110 46 47 48 58 61 6456 69 733332 35 42 82 83 88 92 93 9491 97

1483 110 46 47 48 58 61 6456 69 733332 35 42 82 83 88 92 93 9491 97

1483 110 46 47 48 58 61 6456 69 733332 35 42 82 83 88 92 93 9491 97

1483 110 47 48 58 61 6456 69 733332 35 42 82 83 88 92 93 9491 9746

Figure 1: Binary search for key 46 with n = 26

In this case, balanced search trees appear to be the method
of choice. We conjecture that SIMD instructions will also
be valuable to speed up search on those trees, but this is
beyond the scope of our current work.

2. PREREQUISITES
In this section, we review various implementations of bi-

nary search and discuss their advantages and disadvantages
when run on modern processors. We also provide a brief
overview of the SIMD instructions found in these processors
and summarize previous work to exploit these instructions
for search.

In what follows, we assume that the input to the search
algorithm is (1) a sorted array of unique keys2 A =
(a1, . . . , an), where ai < aj for 1 ≤ i < j ≤ n, and (2) a
search key s. When s ∈ A, the algorithm returns index i∗

such that ai∗ = s. Otherwise, the algorithm reports that
s /∈ A. In order to be able to exploit SIMD capabilities,
we restrict our attention to the case where the keys are of a
type natively supported by the underlying processor archi-
tectures, i.e., integer and floating point types.

2.1 Binary Search
Binary search is a dichotomic divide-and-conquer search

algorithm. In each iteration, the algorithm starts by picking
the median key as the so-called separator key. The separator
divides the search space into two equally-sized sets of keys,
henceforth called partitions: the keys strictly smaller than
the separator (left partition) and the keys strictly larger than
the separator (right partition). Note that, since A is sorted,
the median can be found at the center position—i.e., abn/2c
in the first iteration—and that the two sets of keys are con-
tiguous. The next step is to compare the separator and the
search key. If both are equal, the desired key has been found
and the search terminates. Otherwise, the search process is
repeated using either the left or the right partition as its in-
put, depending on whether the search key is smaller or larger
than the separator, respectively. When the selected parti-
tion is empty, we have s /∈ A and the search terminates. It
can be shown that the algorithm performs h = dlog2(n + 1)e
iterations in the worst case and h− (2h − h− 1)/n > h− 2
iterations on average.

Figure 1 illustrates the algorithm’s search for key 46 in
an example dataset with 26 keys. In each iteration, the
separator key is underlined and the left and right partitions
are framed. The algorithm performs five iterations in total,
which is the worst case for this dataset. The average number
of iterations is 4.

Knuth [7] presents various implementations of the generic

2The restriction to unique keys simplifies exposition but is
not crucial. When run with duplicate keys, our algorithms
find any copy of the search key; other copies can be found
to the left and to the right of the result.

binary search algorithm. The most widely known implemen-
tation uses two variables l (left) and r (right) to store the
indexes of the boundaries of the search space. The separa-
tor can be found at index b(l + r)/2c. This implementation,
as well as all the other implementations given by Knuth,
heavily relies on branches. In fact, there are three branches
in each iteration: one branch for negative termination, one
for positive termination, and one for choosing the next par-
tition. As shown by Ross [10], branch misses can lead to
serious performance penalties.

2.2 SIMD Instructions For Searching
Apart from their regular instruction sets, modern pro-

cessors provide SIMD instruction sets (for single instruc-
tion, multiple data). For example, Intel’s Nehalem, Intel’s
Xeon, and AMD’s Phenom processors support the so-called
Streaming SIMD Extensions (SSE) instruction sets, which
provide 128-bit registers that can hold four 32-bit keys.
By supporting simultaneous execution of instructions on
multiple elements, these instructions are particularly well-
suited to accelerate numerical calculations or computation-
intensive applications such as multimedia applications, sci-
entific applications, or encryption. Recent research has
shown that data-intensive applications like sorting [2, 4],
hash-based search [11], and relational query processing [5,
12] can also benefit from SIMD instructions. This paper
complements these techniques by providing efficient meth-
ods for sort-based search.

In this section, we briefly review the SIMD instructions
that we will be exploiting for search. We assume throughout
that the registers of the processor of interest are vectors of
k − 1 scalars. We classify the instructions into instructions
for data loading, element-wise instructions, and horizontal
instructions.

Loading. The first instruction takes as input a scalar value
and produces as output a vector consisting of k − 1 copies
of that scalar value. This instruction will mainly be used
to generate copies of the search key. The next instruction
takes as input an address in memory and, starting from the
given address, loads k−1 consecutive scalars into a register.
This function will mainly be used to load the input data.

Element-wise instructions. We make use of element-wise
versions of arithmetic integer functions (+,−, ∗, /) and com-
parison functions (<,≤, =,≥, >). All functions store their
results in another register, which can be treated as a vec-
tor of integers for both arithmetic functions and comparison
functions (0 = false, −1 = true). We assume that the num-
ber of processor cycles required for an element-wise SIMD
instruction is significantly smaller than the processing time
of the corresponding k−1 scalar instructions. This assump-
tion is easily satisfied in practice, where the cost of a SIMD
instruction is typically the same as the cost of a single scalar
instruction.

Horizontal instructions. Our proposed search algorithm
relies on so-called horizontal SIMD instructions, which work
across the scalars in a register. Our algorithm will make use
of either one of the following two horizontal functions: (1)
computation of the sum of elements in a vector, (2) compu-
tation of a bitmap having the ith bit set to 1 if and only if
the most significant bit of the ith scalar is set to 1 (i.e., it is
negative). Most architectures provide at least one of these
two instructions. If not, they can be emulated by other in-
structions at the cost of some performance.

1483 110 46 47 48 58 61 6456 69 733332 35 42 82 83 88 92 93 9491 97

1483 110 46 47 48 58 61 6456 69 733332 35 42 82 83 88 92 93 9491 97

1483 110 46 47 48 58 61 6456 69 733332 35 42 82 83 88 92 93 9491 97

Figure 2: SIMDized binary search for key 46 with n = 26,
k = 3

2.3 Binary Search With SIMD Instructions
Zhou et al. [12] proposed a SIMDized version of binary

search that is geared towards small datasets (up to a few
hundred keys). The key idea of their approach is to replace
the comparison of just the separator with the search key by
the comparison of the separator and its k−2 subsequent keys
with the search key; see Figure 2 for an example with k = 3.
An implementation would <-compare a register holding k−1
copies of the search key with a register that contains the
separator and its k − 2 subsequent keys. If the result of the
comparison consists only of −1s (true), all k − 1 keys are
larger than the search key and the search traverses to the
left partition. If it consists of only 0s (false), all k−1 keys are
smaller than the search key and the search traverses to the
right partition.3 Otherwise, the register contains a sequence
of 0s followed by a sequence of −1s, in which case the search
terminates. The search key, if present in A, then resides at
the position in the input register that corresponds to the
last 0 in the result of the comparison.

To analyze SIMDized binary search, we conceptually“con-
dense” the dataset to a sequence of dn/(k − 1)e blocks
of (k − 1) elements, retaining their order. Each iter-
ation of SIMDized binary search can be seen to oper-
ate on one of the resulting blocks; it either accepts the
block or branches to the left or right partition. This mir-
rors exactly what a binary search algorithm on the con-
densed dataset would do if it were to find one of the
blocks. We can therefore plug in the complexity results
for plain binary search, replacing all occurences of n by
dn/(k − 1)e. We find that the worst-case number of iter-
ations of the SIMDized binary search algorithm is given by
dlog2(n/(k − 1) + 1)e ≥ dlog2(n + 1)− log2(k − 1)e. Com-
pared to plain binary search, the worst-case number of it-
erations is reduced by at most log2(k − 1) iterations when
(k− 1) is a power of 2 and by at most 1 + log2(k− 1) itera-
tions otherwise. Modern processors typically provide k = 5
for 32-bit search keys, which translates to a reduction of the
worst-case cost by at most two iterations. Similar arguments
hold for the average case.

When the dataset is small, the savings in terms of the
number of iterations are significant. In the example of Fig-
ure 2, where k = 3, the worst-case number of iterations is
reduced from 5 to 4, and the average number of iterations is
reduced from 4 to approximately 3.15. Under the (quite re-
alistic) assumption that the cost of an iteration of SIMDized
search is roughly the same as the cost of an iteration in plain
binary search, this directly results in a performance increase.
The speedup is roughly log2(n+1)/[log2(n+1)−log2(k−1)].
As mentioned previously, the speedup is significant when the
dataset is small but is negligible for large n. In fact, the

3If the result is all 0s, then the right-most key might be
equal to the search key. This case is handled at the end of
the search process: If the comparison of the final iteration
yields only −1s, the search key may reside directly to the
left of the final separator.

488

73

32

42

3 11 14 35 46 4733 56

8861 93

64 69 82 91 92 9483 97580

Figure 3: A k-ary search tree for k = 3

speedup converges to 1 as n→∞. The goal of this paper is
to provide an algorithm that realizes a substantial speedup
when n is large.

3. K-ARY SEARCH
In k-ary search, we pick k−1 separators in each iteration,

thereby dividing the search space into k partitions. As in
binary search, the separators are chosen so that all partitions
have equal size, i.e., they correspond to the i/k-quantiles of
the dataset, where 1 ≤ i < k. The entire search process
can be visualized using a k-ary search tree, in which nodes
represent separators and children represent partitions. An
example of such a tree is shown in Figure 3.

For expository reasons, we start our discussion of k-ary
search using a k-ary search tree as input. Note that the
search tree itself is not materialized in practice. We then
proceed to algorithms for k-ary search that work directly
on the sorted-array representation of the data. Finally, we
show that a linearized representation of the k-ary search
tree is more amenable for k-ary search than a sorted array.
This representation can be leveraged in applications in which
reordering of the data is acceptable.

3.1 On a k-ary Search Tree
Suppose for the moment that the search tree is perfect,

i.e., that every node—including the root node—has precisely
k−1 entries, every internal node has k successors, and every
leaf node has the same depth. For example, the tree shown in
Figure 3 is perfect. A perfect search tree can be constructed
for any dataset of size n = kh − 1 for some integer h > 0.
We extend our discussion to non-perfect trees in Section 3.4.

The search consists of the following steps, starting at the
root:

S1: Load the k − 1 separators of the current node into a
register R.

S2: Terminate with success if the key is present in the
register. Otherwise, terminate with failure when the
current node is a leaf.

S3: Find the partition that encloses the search key.

S4: Move to the child node corresponding to that parti-
tion. Then, go to S1.

In this section, we focus on steps S2 and S3 only; steps S1
and S4 are discussed in subsequent sections.

The key ingredient to making steps S2 and S3 efficient is to
use only a few SIMD instructions and no loops. To achieve
this goal, we make use of a register S that contains k − 1
copies of the search key s. Given such a register, step S2
is straightforward: We run a single element-wise =-compare
instruction on S and R and terminate with success if the
resulting vector is non-zero. We terminate with failure if the
depth of the current node (maintained in another register)
is equal to the depth of the tree. Each check constitutes a

Keys Bin Bin2 3-ary Bin4 5-ary Bin8 9-ary
1k 11 10 7 9 5 8 4
32k 16 15 10 14 7 13 5
1M 21 20 13 19 9 18 7

Table 1: Comparison of worst-case number of iterations

branch, but both branches are uncritical because their result
can be predicted accurately (non-termination is the frequent
outcome).

Finding the next partition is more involved. Formally,
we want to determine the number m, with 0 ≤ m < k, of
the partition that encloses s. To do so, we compare S and
R using the element-wise <-comparison instruction. The
outcome of this comparison is a vector consisting of m “ze-
ros” (comparison false) followed by k −m− 1 “minus ones”
(comparison true). Thus, to determine m, we compute the
horizontal sum of the result of the comparison and add it to
k−1. On architectures that do not provide horizontal sums,
we can leverage the bitmap instruction that replicates the
most significant bit of each element into a single scalar. For
example, suppose that k = 5 and m = 1. The result vector
(0,−1,−1,−1) would be translated into the scalar value 7,
which has the binary representation 0111. The number of
set bits corresponds to k −m − 1; it can be determined ef-
ficiently using either the “population count” instruction or
the “count leading zeros” instruction. Thus, both steps S2
and S3 take only a constant number of instructions that is
independent of the value of k.

We now analyze the number of required iterations in de-
pendency of n. Since the tree is perfect, each iteration of
steps S1 through S4 reduces the search space by a factor of
k (or terminates). For this reason, the algorithm performs
h = dlogk(n + 1)e iterations in the worst case. Compared to
binary search, the speedup of the worst case in terms of the
number of iterations is dlog2(n + 1)e / dlogk(n + 1)e ≈ log2 k
for large n. For example, when k = 5, the speedup is ≈ 2.32,
that is, binary search requires more than twice as many
iterations as k-ary search. For our running example with
n = 26, the worst-case number of iterations is 3 for k-ary
search, 4 for SIMDized binary search, and 5 for plain binary
search.

Table 1 lists the worst-case number of iterations performed
by binary search (Bin), SIMDized binary search (Bin[k−1])
and k-ary search for various dataset sizes and values of k.
Clearly, k-ary search is the more attractive the larger the
dataset and the larger the value of k. But even for small
datasets (e.g., a page of a B-tree) and k = 5, it requires sig-
nificantly less iterations than its competitors. Future gen-
erations of processors will support much larger values of k
and thus provide further efficiency gains. For example, Intel
recently announced that its upcoming processors will sup-
port the AVX instruction set [6] with 256-bit vector registers
(k = 9 for 32-bit keys) for the 2010 processor generation and
up to 512-bit vector registers (k = 17) for later generations.
Similarly, the upcoming Larrabee GPGPU [9]—a hybrid be-
tween a GPU and a multi-core CPU—provides 16-way vec-
tor registers (k = 17) for integer, single-precision float, and
double-precision float instructions.

3.2 On a Sorted Array
We now show how to execute steps S1 and S4 of the above

1483 110 46 47 48 58 61 6456 693332 35 82 83 88 92 93 9491 97

1483 110 46 47 58 6456 69 733332 35 42 82 83 88 92 93 9491 97

1483 110 48 58 61 6456 69 733332 35 42 82 83 88 92 93 9491 97

7342

48 61

46 47

Figure 4: k-ary search for key 46 with n = 26, k = 3

search algorithm on a sorted array A; steps S2 and S3 re-
main unmodified. As for binary search, we make use of two
variables l (initialized to 1) and r (initialized to n) that rep-
resent the left and right end of the remaining search space.
Then, step S1 takes l and r as input and loads the separators
into R. Step S4 takes m as an additional input and updates
l and r to point to the next partition (given m).

Step S1 consists of two parts: (a) calculate the indexes
of the separators and (b) load them into R. Substep (a) is
required because the k − 1 separators are stored in non-
contiguous memory locations, see Figure 4.4 With p =
r − l + 1 denoting the number of elements in the current
partition, we find that the separators are stored at posi-
tions l + i d(p + 1)/ke for 1 ≤ i < k. We can compute all
these positions simultaneously using element-wise SIMD in-
structions. On some architectures, the computation of the
distance d(p + 1)/ke between consecutive separators is ex-
pensive because it requires a division. For these architec-
tures, we suggest to precompute separator distances and to
store them in a table. The table will be small because there
are only dlogk(n + 1)e possible values for p, one for each
iteration. Substep (b) cannot be SIMDized on current pro-
cessor platforms, see the discussion below. For this reason,
we perform a (unrolled) loop with k − 1 iterations to load
the separators into register R.

Step S4 can be implemented by reusing the separator dis-
tances from step S1. We set l ← l + 1 + m d(p + 1)/ke
and r ← min(l − 1 + d(p + 1)/ke , r − 1), where as before
0 ≤ m < k denotes the index of the next partition.

The above algorithm has one major disadvantage when
compared to k-ary search on a tree: It requires k − 1 non-
contiguous memory accesses executed sequentially in the load
step of each iteration. This totals to (k − 1) dlogk(n + 1)e
such memory accesses in the worst case; this is roughly
(k − 1)/ log2 k more than required by binary search. Pro-
cessor architectures with gather-and-scatter instruction sup-
port alleviate this problem by allowing k − 1 parallel loads
from non-contiguous addresses; the upcoming Larrabee [9]
will provide such instructions. For processor architectures
without such functionality, the performance of k-ary search
is likely to deteriorate as k becomes large. For k = 5, how-
ever, our experiments suggest that the savings in the number
of iterations outweigh the additional cost for non-contiguous
memory accesses.

3.3 On a Linearized k-ary Search Tree
In applications where reordering of the data is accept-

able, an alternative approach that avoids the aforementioned
problems of non-contiguous memory accesses is to use a
representation of the data that is more amenable to k-ary
search. The key idea is to change the data layout so that the
separators in each step are located in contiguous memory lo-
cations. Conceptually, this can be achieved by linearizing a

4The separators may be stored in contiguous locations in
the final iteration.

48873 3242 3 11 14 35 46 4733 568861 93 64 69 82 91 92 9483 97580

48873 3242 3 11 14 35 46 4733 568861 93 64 69 82 91 92 9483 97580

48873 3242 3 11 14 35 46 4733 568861 93 64 69 82 91 92 9483 97580

Figure 5: k-ary search for key 46 on a linearized tree with
n = 26, k = 3

k-ary search tree in level-order. Applying this idea to the
search tree shown in Figure 3, we obtain the array shown in
Figure 5. In the appendix, we outline some algorithms for
performing this reordering without constructing the search
tree and for traversing the linearized representation in sorted
order.

To execute k-ary search on the linearized tree, we make
use of a single variable l that points to the memory location
that contains the separators of the current partition. Ini-
tially, l is set to 1. The implementation of steps S1 and S4
is straightforward. Step S1 loads k−1 keys starting at index
l into register R. In contrast to loading from sorted arrays,
this step can be executed in a single instruction. As for step
S4, we set l← lk + m(k − 1).

Both the average and worst-case number of iterations of
k-ary search on a sorted array and k-ary search on a lin-
earized tree are identical. Working on a linearized tree has
the advantage that steps S1 and S4 become both simpler
and more efficient.

3.4 Non-perfect Trees
The discussion thus far has assumed that n = kh − 1 for

some integer h > 0 so that the (conceptual) search tree is
perfect. For other values of n, a perfect k-ary search tree
cannot be constructed. Instead, we (again conceptually)
construct a complete tree. Informally, a tree of height h =
dlogk(n + 1)e is complete if (1) removing the leaves at depth
h−1 yields a perfect tree of height h−1 and (2) the leaves at
depth h−1 grow from left to right. A more formal definition
is given in the appendix. Complete trees are well-suited to
k-ary search mainly because their level-order linearization
does not exhibit any “holes.”

The previous algorithms have been presented in such a
way that they can be used almost directly with values of n
that correspond to complete trees. For search on a linearized
tree, the only difference is that the search terminates as soon
as l > n. For search on a sorted array, we slightly change the
way the dataset is partitioned, i.e., we change the table that
contains the precomputed distances p between separators.
For the first iteration, we store the sizes of all k partitions;
the leftmost and rightmost partition each contain kh−1 − 1
keys (as in the perfect tree) and the remaining keys are
equally distributed between the k − 2 inner partitions. For
all subsequent iterations, we reuse the separator distances
for perfect trees (p = kh−i−1 for the ith iteration). For this
reason, some keys might be checked twice, but the search
is still correct and guaranteed to terminate after at most h
iterations.5

5The additional comparisons could be avoided by storing 3h
possible values of p for each iteration. To see this, observe
that the children of an arbitrary node at depth d are roots
of either (i) a perfect tree of height h − d − 1, (ii) a com-
plete tree of height h− d− 1, or (iii) a perfect tree of height
h − d − 2. One can show that (ii) applies to at most one
node per level. Together with the fact that the number of

4. EXPERIMENTS
We now present the results of our experimental study on

several architectures.

4.1 Experimental Setup
We implemented binary search (Bin), binary search with

SIMD instructions (Bin[k-1]), k-ary search on a sorted ar-
ray (k-ary), and k-ary search on a linearized search tree
(k-ary-lt) on different processors including an IBM Power
Processor Element (PPE) and a Synergistic Processing Ele-
ment (SPE) of the Cell Broadband Engine, an Intel Core i7,
and an AMD Phenom. All processors provide 128-bit vec-
tor registers and support for the required SIMD instructions,
e.g., element-wise summation, element-wise multiplication,
and replication of a scalar.

All algorithms were implemented in C using C-intrinsics
for SIMD instructions. The complete source code of our im-
plementations is available online [3]. Our experiments were
run on Linux and, on all platforms, compiled using GCC.
Although other compilers such as Intel’s ICC or IBM’s cell
compiler may produce better code on the respective plat-
forms, our goal was to use a single compiler available on all
platforms to facilitate comparison across platforms.

We run our experiments with both 32-bit integer keys and
64-bit floating point keys so that we can store 4 keys (k = 5)
and 2 keys (k = 3) in a single register, respectively. We
generated a synthetic dataset (the actual values do not affect
performance) and measured the number of cycles required
to find a given search key. We varied the number of keys
from 27 keys (512/1024 Byte for 32/64 bit keys) up to 225

keys (128/256 MByte for 32/64 bit keys). Each experiment
is repeated 4096 times—using search keys chosen uniformly
and at random from the set of all search keys—and results
are averaged.

All of our plots have the same layout: The number of keys
is shown in log2 scale on the x-axis, and the y-axis shows
the average number of cycles.

4.2 IBM Cell BE: PPE
The first experiment was conducted on a PPE core of the

Cell Broadband Engine in Sony’s Playstation3. The pro-
cessor is comparable to the PowerPC-970 architecture and
includes an “AltiVec unit”, which provides all of the SIMD
instructions [1, 8] required for k-ary search. It provides 32
KByte instruction cache, 32 KByte L1 cache and 512 KByte
L2 cache. Since the PPE has no SIMD instructions for 64-
bit scalars, we restricted our experiments to 32-bit integer
keys and k = 5.

Figure 6a shows the results of our PPE experiments. For
small datasets—up to 216 keys—Bin performs best. The rea-
son is that the 128-bit AltiVec unit with its vector registers
operates concurrently with the scalar integer/floating-point
registers and there is no way to directly move data between
both types of registers. Therefore, scalar replication and
the horizontal-sum instructions are expensive on the Pow-
erPC platform. As a consequence, the benefit of fewer iter-
ations (and therefore fewer instructions) of Bin[k-1], k-ary,
and k-ary-lt is outweighed by the cost of the aforementioned

elements in a perfect tree is completely determined by its
height, we conclude that there are at most three different
partition sizes at each level. We chose the approach men-
tioned in the text over this one because the former is much
simpler to implement.

0
50

10
0

20
0

number of keys

cy
cl

es
 p

er
 s

ea
rc

h
ke

y

27 29 211 213 215 217 219 221 223 225

Caches: L1 L2

(a) Cell PPE (32-bit keys)

0
2

4
6

8
10

12
14

number of keys

cy
cl

es
 p

er
 s

ea
rc

h
ke

y

25 27 29 211 213 215

(b) Cell SPE (local store, 32-bit keys)

0
5

10
15

20

number of keys

cy
cl

es
 p

er
 s

ea
rc

h
ke

y

23 25 27 29 211 213

(c) Cell SPE (local store, 64-bit keys)

Bin
Bin[k−1]
k−ary
k−ary−lt

0
10

0
20

0
30

0
40

0

number of keys

cy
cl

es
 p

er
 s

ea
rc

h
ke

y

27 29 211 213 215 217 219 221 223 225

(d) Cell SPE (32-bit keys)

0
50

10
0

20
0

number of keys

cy
cl

es
 p

er
 s

ea
rc

h
ke

y

27 29 211 213 215 217 219 221 223

(e) Cell SPE (64-bit keys)

Figure 6: Overview of Cell processor’s execution times (lower is better)

instructions. For datasets with more than 216 keys, we find
that the situation remains unchanged for Bin[k-1]; this is be-
cause it provides a constant reduction in the number of itera-
tions. In contrast, the k-ary search algorithms provide a rel-
ative reduction: They first become competitive and then, as
the dataset size hits the L2 cache size, significantly outper-
form Bin. At that point, k-ary-lt provides better scalability
than each of the alternative algorithms (2–2.5 times faster
than Bin for keys ≥ 220). This is because k-ary-lt requires
only a single memory access per iteration. To conclude,
none of the SIMDized algorithms benefit directly from the
SIMD capabilities of the PowerPC-970 processor but may
provide performance improvements due to better memory
access patterns.

4.3 IBM Cell BE: SPE
Our next set of experiments was performed on an SPE

of a Cell BE processor of Sony’s Playstation3. The archi-
tecture of an SPE is different to current x86 architectures.
The SPE is a pure SIMD processor, i.e., it supports SIMD
instructions only. Each instruction requires 128 bits regard-
less of whether it applies to two vectors or two scalars. In-
terestingly, scalar instructions require additional shuffle and
mask operations and are thus less efficient than vector in-
structions. The memory model of an SPE is also different:
Instead of caches, each SPE provides a local store of 256
KBytes of memory, which is populated by the application
developer using asynchronous DMA requests. Finally, the
SPE does support branch hints but does not provide branch
prediction. For this reason, branch-heavy code with a large
number of branch misses suffers from a significant loss in

performance.
We run two different sets of experiments on the SPE. The

first set of experiments make use of only the local store,
whereas the second set of experiments run in main memory.

For our local-store experiments, we used up to 192 KByte
of memory for the keys (up to 49,152 keys); the rest of
the memory is used for instructions and stack variables.
The results for 32-bit integer and 64-bit floating point keys
are shown in Figures 6b and 6c, respectively. This time,
Bin performs worst due to its high number of iterations
and branches. The Bin[k-1] algorithm performs better for
32-bit keys but performs similar to Bin for 64-bit keys. This
is because, for k = 3, the reduction in number of itera-
tions is insignificant. Compared to k-ary and k-ary-lt, the
Bin[k-1] algorithm requires more iterations and therefore cy-
cles. One reason for this behavior is that Bin[k-1] relies on
an (unpredictable) branch to determine the next partition.
In contrast to this, k-ary and k-ary-lt convert this control de-
pendency into a data dependency and thus completely avoid
it. Furthermore, and more importantly for large datasets,
both k-ary and k-ary-lt provide better scalability. Between
these two algorithms, k-ary-lt is superior because it requires
four times fewer memory accesses than k-ary .

Figures 6d and 6e show the execution times of the main-
memory experiments. The results are very similar to the
results for the local store, the main difference being the oc-
curence of some spikes. These spikes result from non-aligned
DMA accesses to memory; this can be potentially improved
if the implementation makes sure that the source and des-
tination addresses of each memory transfer have the same
quadword offset within a 128-byte cache line.

0
50

0
10

00
15

00

number of keys

cy
cl

es
 p

er
 s

ea
rc

h
ke

y

27 29 211 213 215 217 219 221 223 225

Caches: L1 L2 L3

(a) Core i7 (32-bit keys)

Bin
Bin[k−1]
k−ary
k−ary−lt

0
50

0
10

00
15

00

number of keys

cy
cl

es
 p

er
 s

ea
rc

h
ke

y

27 29 211 213 215 217 219 221 223

Caches: L1 L2 L3

(b) Core i7 (64-bit keys)

Figure 7: Overview of Core i7 processor’s execution times (lower is better)

0
50

0
10

00
15

00

number of keys

cy
cl

es
 p

er
 s

ea
rc

h
ke

y

27 29 211 213 215 217 219 221 223 225

Caches: L1 L2 L3

(a) Phenom (32-bit keys)

Bin
Bin[k−1]
k−ary
k−ary−lt

0
50

0
10

00
15

00

number of keys

cy
cl

es
 p

er
 s

ea
rc

h
ke

y

27 29 211 213 215 217 219 221 223

Caches: L1 L2 L3

(b) Phenom (64-bit keys)

Figure 8: Overview of Phenom processor’s execution times (lower is better)

4.4 Intel Core i7
The next set of experiments was performed on a 2.66 GHz

Intel Core i7 920 processor. This processor supports the
SSE, SSE2, SSE3 and SSE4.2 instruction sets, which can be
efficiently exploited for k-ary search.

The results of the Core i7 experiments are shown in Fig-
ures 7a and 7b. Similar to the PowerPC results, the exe-
cution times grow almost linearly (log axis) until the mem-
ory required for storing the keys exceeds the L3 cache size
(8192KB). The L1 cache (32KB) and L2 cache (256KB) have
only a small effect on the execution times. For all key sizes,
k-ary and k-ary-lt perform better than Bin and Bin[k-1].
The k-ary algorithm realizes a speedup of 1.2 (for 27 keys)
to 1.8 (225 keys) for both key sizes while k-ary-lt realizes a
speedup of 3 up to 4.5 for 32-bit keys and 2 to 2.5 for 64-bit
keys.

4.5 AMD Phenom
Our final experiments were performed on a 2.8 GHz AMD

Phenom 920. The AMD Phenom supports similar SIMD in-
structions sets as the Intel Core i7 processor but implements
the SSE4A instead of the SSE4.2 instruction set.

Figures 8a and 8b show the results for the Phenom pro-
cessor. Again, passing the L1/L2 cache size border has only
minor effects, but exceeding the L3 cache size (6144KB) has
a strong impact on the algorithms for both key sizes. In fact,
k-ary is advantageous only for large dataset (1.5 times faster
than Bin for 225 keys for both key sizes). The k-ary-lt algo-

rithm is the overall method of choice (2–3 times faster than
Bin for 32-bit keys and 1.5–2 times faster for 64-bit keys).

5. CONCLUSIONS
Current sort-based search algorithms do not utilize effi-

ciently the SIMD capabilities of modern processors. In this
paper, we presented k-ary search algorithms that improve
upon binary search by reducing the search space in each it-
eration by a factor of k > 2, thereby exploiting the data
parallelism provided by SIMD architectures. We provided
two different k-ary search algorithms, one working on sorted
arrays and one using a linearized k-ary search tree represen-
tation. Our experiments have shown that k-ary search can
provide significant performance benefits over binary search
algorithms on most architectures. To leverage these ben-
efits, k-ary search should be implemented in the standard
libraries provided for these architectures so that it can be
exploited by a large set of applications.

6. REFERENCES
[1] Cell Broadband Engine Programming Handbook.

[2] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy,
M. Hagog, Y.-K. Chen, A. Baransi, S. Kumar, and
P. Dubey. Efficient implementation of sorting on
multi-core simd cpu architecture. Proc. VLDB
Endow., 1(2):1313–1324, 2008.

[3] Code available at: wwwdb.inf.tu-dresden.de/schlegel.

http://wwwdb.inf.tu-dresden.de/schlegel

5

3

2 41 10 11

12

14

15

1613 17

18

7

6

8

9

19 20

21

23

24

2522 26

52 41 10 11 14 1613 177 8 19 20 23 2522 263 12 156 21 24189

1218 69 2 4 8 117 1321 24 16 17 22 2520 263 5 1015 19 23141

Sorted array

Complete 3-nary search tree

Linearized complete 3-nary search tree

Figure 9: The three representations for n = 26, k = 3

[4] B. Gedik, R. R. Bordawekar, and P. S. Yu. Cellsort:
high performance sorting on the cell processor. In
VLDB, pages 1286–1297. VLDB Endowment, 2007.

[5] S. Héman, N. Nes, M. Zukowski, and P. Boncz.
Vectorized data processing on the cell broadband
engine. In DAMON, pages 1–6, New York, NY, USA,
2007. ACM.

[6] Intel Corporation. Intel AVX: New Frontiers in
Performance Improvements and Energy Efficiency,
March 2008.

[7] D. E. Knuth. The Art of Computer Programming,
Volume III: Sorting and Searching. Addison-Wesley,
1973.

[8] PowerPC Microprocessor Family: Vector/SIMD
Multimedia Extension Technology Programming
Environments Manual.

[9] R. Ronny Ronen. Larrabee: a many-core
intel R©architecture for visual computing. In CF ’09:
Proceedings of the 6th ACM conference on Computing
frontiers, pages 225–225, New York, NY, USA, 2009.
ACM.

[10] K. A. Ross. Conjunctive selection conditions in main
memory. In Symposium on Principles of Database
Systems, pages 109–120, 2002.

[11] K. A. Ross. Efficient hash probes on modern
processors. ICDE, 0:1297–1301, 2007.

[12] J. Zhou and K. A. Ross. Implementing database
operations using simd instructions. In SIGMOD, pages
145–156, New York, NY, USA, 2002. ACM.

APPENDIX
In the paper, we deal with three different representations
of the dataset: a sorted-array representation, a search-tree
representation, and a linearized-tree representation. In this
section, we describe how to convert sorted-array indexes to
linearized-tree indexes and vice versa. This conversion is
useful to both derive the linearized-tree representation of a
dataset without actually building the tree and to perform
an ordered scan in the linearized-tree representation.

A. CONVERSIONS FOR PERFECT TREES
We start with a discussion of perfect trees such as the one

shown in Figure 9. We then discuss extensions to the class
of “complete” trees. We assume throughout that indexes are
1-based. For example, the sorted-array entry 9 in Figure 9
has index 1 in the linearized tree, and the linearized-tree
entry at index 4 has index 6 in the array representation.

In what follows, we consistently denote positions in the
sorted array by index i and positions in the linearized tree
by index j. Thus, our goal is to determine i given j and
vice versa. We mark functions that operate on linearized-
tree indexes with a star (∗); functions without such a star
operate on sorted-array indexes. Set H = dlogk(n + 1)e
to the height of the tree. The depth (counting from 0) of
the node containing the sorted-array entry at index i in the
search tree is given by

dh(i) =

h−1X
x=1

sgn(i mod kh−x) (1)

where sgn denotes the signum function and h is set to H.
To derive (1), we made use of the fact that sgn(i mod kh−x)
equals 1 whenever index i resides at depth x or below, and
0 otherwise. For example, in Figure 10, we have d3(9) =
0 + 0 = 0 and d3(10) = 1 + 1 = 2. Computation of dh takes
O(log n) time, but dh(i) can be tracked while traversing the
tree so that usage of (1) is rarely required (see Appendix
B). The offset (0-based) of the entry at index i in its level is
given by

oh(i) =

—
k − 1

k
· i

kh−dh(i)−1

�
, (2)

which follows from the observation that the sorted-array in-
dexes at depth dh(i) are given by akh−dh(i)−1 for a = 1, 2, . . .
and a mod k 6= 0—indexes with a mod k = 0 belong to one
of the higher levels. E.g., o3(9) =

¨
2/3 · 9/32

˝
= 0 and

o3(10) =
¨
2/3 · 10/30

˝
= 6. To determine the value of j

that corresponds to index i, set j to

fh(i) = kdh(i) + oh(i),

where kdh(i) denotes the position of the first entry at depth
dh(i) in the linearized search tree. Again, the computation
of oh(i) can be done more efficiently during a tree traversal
(Appendix B).

Using similar arguments as above, we find that the tree
depth, offset and sorted-array index of the linearized-tree
entry at index j are given by

d∗h(j) = blogk jc ,

o∗h(j) = j − kd∗h(j),

and

f∗h(j) = kh−d∗h(j)−1

—
k

k − 1
o∗h(j) + 1

�
,

respectively.

B. RANGE SCANS
In practice, it is often useful to iterate through a range of

subsequent keys. To do this, we require a function that de-
rives the index of the next-largest key given the index of the
current key. Clearly, for the sorted-array representation, the
desired index is given by nh(i) = i+1. For the linearized-tree
representation, we may use a double-conversion to obtain

n∗h(j) = fh

ˆ
f∗h(j) + 1

˜
. (3)

When performed directly, this approach is not very efficient.
In the rest of this section, we outline a more efficient ap-
proach that maintains small data structures in order to com-
pute n∗h(j) directly.

5.

3.

2. 4.1. 10.11.

12.

14.

15.

16.13. 17.

18.

7.

6.

8.

9.

19.20.

5.2. 4.1. 10.11. 14. 16.13. 17.7. 8. 19.20.3. 12. 15.6. 18.9.

12.18. 6.9. 2. 4. 8. 11.7. 13.19.20. 16.17.3. 5. 10.15. 14.1.

Sorted array

Complete 3-nary search tree

Linearized complete 3-nary search tree

Figure 10: The three representations for n = 20, k = 3

First, observe that when performing a range scan, the
arguments to fh in (3) are a sequence of increasing sorted-
array indexes—i.e., f∗h(n∗(j)) = f∗h(j) + 1—and can thus be
easily computed. For the computation of fh our main goal
is to avoid the summation and modulo computations of (1)
and the divisions of (2). To do so, we maintain the digits
of the base-k representation B(i) of i − 1, where i = f∗h(j)
is the current position in the sorted array. For example, we
have B(9) = [0, 2, 2] and B(10) = [1, 0, 0]. When read from
left to right, the base-k digits can be interpreted as the path
taken from the root of the tree to the position of node i, cf.
Figure 9. Trailing digits of value k−1 denote“unused digits”
and the number of those digits is equal to h−dh(i)−1. Since
B(i+1) can easily be computed from B(i) (see step 1 below),
this gives us an efficient way to compute dh(i+1). A similar
trick can be used to compute oh(i + 1). The idea is to store
in an array O(i) the next offset to be used in each level. E.g.,
O(9) = [1, 2, 6] and O(10) = [1, 2, 7]. The following simple
algorithm updates arrays B = B(i) and O = O(i) to values
B(i + 1) and O(i + 1):

1. Set d to H − 1, the maximum depth in the tree. Then,
as long as B[d] = k− 1, set B[d] to 0 and decrement d.
After this step has been completed, we have dh(i+1) =
d and oh(i + 1) = O[d].

2. Increment both B[d] and O[d].

The algorithm is efficient to compute and allows for quick
range scans on the linearized tree representation.

C. CONVERSIONS FOR COMPLETE
TREES

We now proceed to complete trees, see Figure 10. For-
mally, any search tree of height H = 1 is complete. For
H > 1, a search tree is complete if there exist numbers l
and r with 0 ≤ l < k, 0 ≤ r < k, and l + 1 + r = k such
that:

1. The subtrees formed by the first l successors of the root
node are perfect and have height H − 1.

2. The subtree formed by the next successor is complete
and has height H − 1 or H − 2.

3. The subtrees formed by the remaining r successors are
perfect and have height H − 2.

To simplify exposition, we refer to the largest entry (the
rightmost entry) at depth H − 1 as the fringe entry. In
Figure 10, the fringe entry is 17.

The fringe entry plays a central role for index conversion.
To see this, suppose that we construct a hypothetical perfect

tree by filling the lowest level with dummy entries (all larger
than the fringe entry). Then, all entries that are smaller
than the fringe entry (1–17) have the same position in the
linearized representations of both the complete tree and the
hypothetical tree. This is because the dummy entries do
not “fall in between” these entries. Since all the remain-
ing entries (18–20) are at depths smaller than H − 1, their
position in the linearized complete tree is identical to the
position they would have in the linearized perfect tree ob-
tained by omitting all the leaves at depth H−1. We can use
these observations to construct the conversion functions for
complete trees. Making use of the fact that the sorted-array
index of the fringe entry is given by f∗H(n), we find

gn(i) =

(
fH(i) i ≤ f∗H(n)

fH−1(i− o∗H(n)− 1) otherwise

and using similar arguments

g∗n(j) =

(
f∗H(j) f∗H(j) ≤ f∗H(n)

f∗H−1(j) + o∗H(n) + 1 otherwise.

Our algorithm for efficient range scans (Appendix B) can
be applied to perfect trees almost as is. The only change
that is required is to remove the entries at position H − 1
from both B and O as soon as the fringe entry has been
processed.

D. TREE CONSTRUCTION
Given the conversion functions, there are two simple meth-

ods to directly create the linearized representation of the
search tree. The methods differ in the amount of mem-
ory and CPU consumption. Both methods take as input a
sorted-array representation of the dataset.

The naive method makes use of a temporary array of N
elements, which eventually holds the linearized-tree. The al-
gorithm iterates over the dataset and copies each entry to its
respective position in the linearized-tree, as determined by
the gn function. (The optimizations of Appendix B apply.)

An alternative method would construct the linearized tree
in place. The idea is to treat gn as a permutation and make
use of the cycles in the permutation. We start by moving
the item at index 1 to position gn(1), then the former entry
at position gn(1) is moved to position gn(gn(1)), and so on.
The process stops when index 1 has been overwritten. Next,
the algorithm would process index 2, then index 3, and so
on. To make sure that every index is moved exactly once,
so that correctness is established, we check whether index
i has been processed before. This check can be executed
by computing gn(i), gn(gn(i)), . . . , i. If the cycle contains
an index smaller than i, we know that i has been processed
already. Otherwise, i has not been processed. The time
complexity of this algorithm is O(n2) in the worst case.

	Introduction
	Prerequisites
	Binary Search
	SIMD Instructions For Searching
	Binary Search With SIMD Instructions

	k-Ary Search
	On a k-ary Search Tree
	On a Sorted Array
	On a Linearized k-ary Search Tree
	Non-perfect Trees

	Experiments
	Experimental Setup
	IBM Cell BE: PPE
	IBM Cell BE: SPE
	Intel Core i7
	AMD Phenom

	Conclusions
	References
	Conversions For Perfect Trees
	Range Scans
	Conversions For Complete Trees
	Tree Construction

