
Fast Integer Compression using SIMD Instructions

Benjamin Schlegel
Technische Universität Dresden

Dresden, Germany
benjamin.schlegel@tu-

dresden.de

Rainer Gemulla
IBM Almaden Research Center

San Jose, CA, USA
rgemull@us.ibm.com

Wolfgang Lehner
Technische Universität Dresden

Dresden, Germany
wolfgang.lehner@tu-

dresden.de

ABSTRACT
We study algorithms for efficient compression and decom-
pression of a sequence of integers on modern hardware. Our
focus is on universal codes in which the codeword length is a
monotonically non-decreasing function of the uncompressed
integer value; such codes are widely used for compressing
“small integers”. In contrast to traditional integer compres-
sion, our algorithms make use of the SIMD capabilities of
modern processors by encoding multiple integer values at
once. More specifically, we provide SIMD versions of both
null suppression and Elias gamma encoding. Our experi-
ments show that these versions provide a speedup from 1.5x
up to 6.7x for decompression, while maintaining a similar
compression performance.

1. INTRODUCTION
The need for efficient integer compression arises in a va-

riety of data processing tasks. Traditional database man-
agement systems use compression to reduce the I/O cost of
reading data from disk [1, 9, 11, 12]. Some of the more recent
database systems store almost all of the data in main mem-
ory [6, 10] and heavily rely on compression techniques that
provide a good compression ratio and efficient decompres-
sion. Moreover, many of the popular serialization frame-
works—including Google’s protocol buffers and Apache’s
Avro—make use of integer compression for both data and
metadata.

In all those applications, compression serves two purposes:
It decreases the space required to store the data and it de-
creases the cost required to transfer the data (e.g., across
the network, into the main memory, into the CPU cache).
Thus, within a fixed amount of time, more data can be read
or written when compression is used than when it were not
used. In order to translate these savings in data transfer
cost into faster data processing, the (de)compression algo-
rithm (1) has to be able to keep up with the amount of data
it receives, and (2) has to leave enough resources for the ac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Sixth International Workshop on Data Management on
New Hardware (DaMoN 2010), June 7, 2010, Indianapolis, Indiana.
Copyright 2010 ACM 978-1-4503-0189-3 ...$10.00.

tual computation. For this reason, efficient (de)compression
is key to good overall performance.

There are two different approaches to speed up compres-
sion algorithms. The first approach is to utilize pipelining in
order to increase the instructions per cycle (IPC) of compres-
sion algorithms. For example, Zukowski et. al [15] propose
a lightweight compression technique that avoids branches
in performance-critical computations. As a consequence,
the pipelining capabilities of modern processors are used
more efficiently. The second approach is to use the SIMD
capabilities—for Single Instruction, Multiple Data—of mod-
ern CPUs and to parallelize compression algorithms. Will-
halm et. al [13] show how to improve the performance of
bit unpacking—i.e., expanding fixed-length bit strings into
machine word length—using SIMD instructions. Unfortu-
nately, SIMD opportunities often cannot be automatically
identified by compilers because, in most cases, the compres-
sion algorithms have to be modified to avoid issues with
data organization and data alignment that plague a näıve
parallelization.

In this paper, we describe how to exploit SIMD instruc-
tions to derive parallel versions of two well-known integer
compression techniques: null suppression [11, 12] and Elias
gamma encoding [3]. Both algorithms work by assigning
short codewords to small integer values and long codewords
to large integer values; no knowledge about the actual data
distribution is required. In applications, such techniques are
used to compress datasets that consist of mostly small in-
tegers. For example, null suppression is frequently used in
database systems, both row stores [12] and column stores [1].
Elias gamma encoding is a popular choice for compress-
ing sparse bitmaps such as bloom filters [2] and bitmap in-
dexes [8], as well as integers in inverted indexes [14].

A major drawback of both null suppression and Elias
gamma encoding, however, is that even highly-tuned se-
quential implementations are expensive and lead to a sig-
nificant performance penalty. We show that by using SIMD
instructions to compress or decompress multiple integers at
once, these penalties can be reduced or completely avoided.
Our algorithms have been designed explicitly for SIMD pro-
cessing; they differ from the sequential algorithms in terms
of in-memory data structures and layout of the compressed
data. We refer to our algorithms as k-wise null suppres-
sion and k-gamma encoding, where k refers to the degree of
parallelism.

We evaluated our compression techniques on three differ-
ent processors: the Intel Core i7, the AMD Phenom, and the
PPE of an IBM Cell Broadband Engine. Our experiments

indicate that our SIMD algorithms have a compression ra-
tio that is on par with or close to the sequential algorithms
but allow for significantly faster decompression. In fact, our
algorithms can have up to 6.7x the throughput of the corre-
sponding sequential versions.

2. PREREQUISITES
The main observation exploited by universal compression

of small integers is as follows: For all small integers, most of
the space is used for storing leading zero bits. For example,
consider the binary representation of the number 100 as a
32-bit integer value:

00000000 00000000 00000000 01100100.

There are 25 leading zero bits and only 7 bits that carry
data.

In this paper, we are interested in compressing a sequence
of small integers. If the maximum value in the sequence is
known to never exceed 255, the sequence can be compressed
by only storing the least-significant byte of each element.
Knowledge of the exact distribution of the integer values
leads to even better codes. If, however, neither an upper
bound nor the distribution of integers can be provided, uni-
versal codes come to the rescue. They encode integers with
variable-length codewords: Small values have short code-
words, large values have long codewords. In the remainder
of this section, we review two prominent examples of such
codes: null suppression and Elias gamma. We focus on com-
pression of 32-bit integers; our discussion naturally extends
to longer integers.

2.1 Null Suppression
The idea behind null suppression is to substitute null val-

ues or successive zeros with a description of how many ze-
ros are omitted. There are many variants of null suppres-
sion [11]; we focus on a variant proposed by Westmann [12].
Given an integer x, we can partition the binary representa-
tion of x into a (potentially empty) sequence of leading zero
bytes and a (non-empty) sequence of effective bytes. For
x = 100 as above, we have three leading zero bytes and one
effective byte. Define the effective byte length of x as the
number l(x) = dlog256(x + 1)e of its effective bytes.

The idea behind null suppression is to encode only the
number of leading zero bytes and the effective bytes; leading
zero bytes are omitted. For a 32-bit integer, the number of
leading zero bytes is given by 4− l(x) and lies in the interval
[0, 3]. It can thus can be encoded using a 2-bit compression
mask. For example, the encoded value of 100 is

11 01100100,

where 11 denotes the compression mask and 01100100 de-
notes the effective byte. The compression ratio of null sup-
pression is quite low when compared to entropy encoding.
Integers of effective byte length 1/2/3/4 are stored using
10/18/26/34 bits, respectively. At best, the compression
ratio is therefore 10

32
≈ 31%.

2.2 Elias Gamma Encoding
Elias gamma encoding [3] also partitions the binary rep-

resentation of the integer of interest, but the partition-
ing is based on bits instead of bytes. Denote by b(x) =

dlog2(x + 1)e the effective bit length of integer x > 0.1 The
compressed code consists of a prefix of b(x) − 1 zero bits
followed by the sequence of effective bits of x. For example,
100 is encoded as

000000 1100100.

The length of the codeword is 2b(x)−1 bits. When compared
to null suppression, Elias gamma encoding provides a better
compression ratio for small numbers (up to 1

32
≈ 3%) but a

worse compression ratio for large numbers.

2.3 SIMD Instructions Sets
In the following, we distinguish between sequential algo-

rithms and SIMD algorithms. Sequential algorithms use
only scalar instructions; SIMD algorithms also exploit the
parallelism provided by the SIMD instructions sets found in
modern processors. These instructions allow concurrent pro-
cessing of k data values per instruction, where k depends on
the processor and word length. Current processors provide
128-bit SIMD registers so that four 32-bit values (integers
or floats) can be processed simultaneously. We expect fu-
ture processors to provide larger SIMD registers. For exam-
ple, Intel’s upcoming AVX instruction set supports 256-bit
SIMD registers [4].

The SIMD instructions exploited in our algorithms each
belong to one of the following three classes: (1) load and
store instructions, (2) element-wise instructions, and (3)
horizontal instructions.

Load and store instructions copy data from main memory
into a SIMD register and vice versa. Loading and storing is
restricted to continuous chunks of main memory. Therefore,
up to k load instructions and mask instructions2 are required
to load k values from non-continuous memory locations into
a single SIMD register. All SIMD-capable processors pro-
vide load and store instructions for aligned memory access.
Some processors also support unaligned access, although it
is typically slower. If unsupported, unaligned load/store in-
struction can be emulated using two aligned load/store in-
structions.

Element-wise instructions perform operations on the ele-
ments of one or more SIMD registers. Instructions of inter-
est include bit-shifting the elements in one SIMD register as
well as combining the elements in multiple SIMD registers
by applying a logical function.

Finally, horizontal instructions act across the elements of
a SIMD register. The key horizontal instruction exploited
in one of our algorithms is the byte permutation instruc-
tion (also called shuffle), which permutes the bytes of one
(SSSE3 [5]) or two (Altivec [7]) input vectors according to a
given permutation vector.

3. PARALLEL INTEGER COMPRESSION
In this section, we present SIMD versions of null suppres-

sion and Elias gamma encoding. We first discuss alternatives
for data layout and then describe the algorithms in detail.

1Elias gamma cannot encode 0. If the data contains zeros,
one may encode x + 1 instead of x.
2Some instructions sets (e.g., SSE4A, SSE4.1) provide insert
and extract instructions for loading and storing single values
of a SIMD register, in which case there is no need for mask
instructions.

load + permute

1. Horizontal data layout

2. Vertical data layout

5
0x0B0x04 0x080x00

131 9 2 6 1410 3 7 11 15 168 124

32-bit word

4-way SIMD register (k=4, 128-bit)

0x0B0x04 0x080x00

32-bit word

4-way SIMD register (k=4, 128-bit)

load

5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 875

Figure 1: Horizontal and vertical data layout (k = 4)

3.1 Layout of Compressed Data
The layout of the compressed data plays an important

role in our compression techniques. In contrast to uncom-
pressed data, codewords have a variable length and thus
require storage of length information. This poses challenges
for parallel decompression (of k codewords). First, we have
to make sure that all k codewords can be loaded efficiently
into a single SIMD register. Second, the length information
of the k codewords has to be organized in a way amenable
to parallelization.

There are two alternative ways to address the first issue:
a horizontal data layout and a vertical data layout, see Fig-
ure 1. For both layouts, we describe how to load k codewords
from memory and distribute them across the elements of a
single SIMD register for further processing. In a horizon-
tal data layout, the k codewords are stored successively in
memory. This facilitates loading (and storing) compressed
data using a single unaligned load/store instruction, but dis-
tributing the k codewords into the k elements of the SIMD
register requires data permutation. In contrast, in a vertical
data layout, each of the k codewords is stored in a differ-
ent memory word. Thus, after loading, the data is already
distributed across the k elements of the SIMD register and
data permutation is avoided. However, successive codewords
may reside in non-successive memory locations so that up
to k load/store instructions are required to access all k com-
pressed codewords.3

Parallel decompression requires knowledge of the length
information (effective byte length or effective bit length) of
all k codewords. In a horizontal data layout, the length in-
formation of k codewords should be combined and stored
before the k codewords themselves. Otherwise, parallel de-
compression is not possible because the location of the i+1th
codeword is known only after the ith codeword has been de-
compressed. For a vertical data layout, the length informa-
tion could be stored in front of each codeword. In general,
however, it is advantageous to separate length information
and codewords.

3.2 k-Wise Null Suppression
Recall that in null suppression, a 32-bit integer is com-

pressed by storing both a 2-bit compression mask and the
effective bytes of the binary representation of the integer.
To parallelize this procedure, we are working on k integers

3Scatter/gather instructions may solve this problem, but
none of the available processors supports these instructions.

0100 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Permutation mask B7

Compressed values

Uncompressed values (32-bit)
Leading zeros (10,11,01,11)→B7

Value 2 Value 3 Value 4

00 00 00 00 04 B500 B0 00 00 00 0400 00 01 1F

Value 1

0A 0B 0F 80 80 8080 80 80 80 80 8002 03 07 09

B5 B0 04 00 00 0000 00 00 00 00 0001 1F 00 04

Figure 2: Compression using the byte-shuffle in-
struction (k = 4)

Inverse permutation mask B7

Compressed values

Uncompressed values (32-bit)

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F00

Value 2 Value 3 Value 4Value 1

80 80 80 80 03 0402 05 80 80 80 0680 80 00 01

00 00 00 00 04 B500 B0 00 00 00 0400 00 01 1F

B5 B0 04 00 00 0000 00 00 00 00 0001 1F 00 04

Figure 3: Decompression using the byte-shuffle in-
struction (k = 4)

at once. Suppose that the k integers are stored in a single
SIMD register. Treating the register content as a single se-
quence of bytes, compression amounts to removing leading
zero bytes, while decompression amounts to reinserting lead-
ing zero bytes. Our algorithm is based on the observation
that both operations can be implemented with a horizontal
byte permutation instruction.

Denote by z1, z2, . . . , zk the number of leading zero bytes
of each of the k integers, respectively, where 0 ≤ zi ≤ 3
for 32-bit integers and 128-bit SIMD registers.. There are
four possible values for each zi and thus 4k possible cases
for the location of the leading zero bytes in the entire SIMD
register. The removal of these zero bytes can be seen as a
permutation that moves the effective bytes to the front and
the leading zero bytes to the end.

To efficiently perform this permutation, we make use of a
SIMD byte permutation instruction. The instruction takes
as input two SIMD registers: one containing the bytes to be
permuted and one containing a permutation mask. Com-
putation of the permutation mask is expensive, but since
there are only 4k different permutation masks of interest
(256 for k = 4), we can precompute and store them in a
permutation lookup table. The table is indexed by the com-
bined compression mask, which is formed by concatenating
the 2-bit binary representations of the zi. To determine the
total length of the compressed values, we make use of a sep-
arate length lookup table, which is indexed in the same way.
The compressed data is stored using a horizontal data lay-
out so that a single store instruction suffices for writing the
compressed codewords to memory.

The compression process is illustrated in Figure 2 for four
32-bit integers (shown in a hexadecimal representation). Ef-
fective bytes are shaded gray. Note that the least-significant
byte of the second integer is considered an effective byte—
even though it is zero—because at most three leading zero
bytes are removed. The combined compression mask B7
(hexadecimal) is given by concatenating the binary repre-
sentations of z1 = 2, z2 = 3, z3 = 1, and z4 = 3. The
corresponding permutation mask is shown at the top of Fig-
ure 2, and the result of the permutation is shown below the
uncompressed values. Note that permutation of the zero

bytes is not necessary because the permutation instruction
(of almost all instruction sets) writes zero bytes into the re-
sult vector if the corresponding entry in the permutation
mask is set to 80 (hexadecimal).

The entire compression algorithm consists of the follow-
ing three steps: (1) Use k count-leading-zeros instructions
on the k uncompressed values, then shift and combine the
results to determine the combined compression mask. (2)
Perform the corresponding permutation. (3) Store the com-
bined compression mask followed by the compressed integers
by using an unaligned store instruction. Decompression is
performed in a similar fashion, but the permutation lookup
table contains permutations that “reinsert” zero bytes. Fig-
ure 3 illustrates this process.

3.3 k-Gamma Encoding
Elias gamma requires a more substantial change of the

algorithm in order to make parallelization effective. This
is because neither a horizontal nor a vertical data layout
can efficiently handle variable-length codewords preceded by
their individual length information; see the discussion in Sec-
tion 3.1. To fix this, we modify Elias gamma encoding by
using shared length information for each block of k integers.
Within a block, each value is therefore encoded using the
same number of bits. We refer to this encoding as k-gamma
encoding.

The shared codeword length, called shared prefix, can lead
to either an increase or decrease of the compression ratio.
To see this, set k = 2 and consider the following two blocks
of integers: (7, 1) and (7, 6). The effective bit lengths of
the integers are (3, 1) and (3, 3), respectively. Elias gamma
encoding uses 6 bits for the first block and 10 bits for the
second block. In contrast, 2-gamma encoding uses the same
codeword length for each integer within a block; this code-
word length is given by the maximum effective bit length of
the integers in the block. In our example, both blocks have
a codeword length of three bits. The shared prefix (2 bits)
needs to be stored only once so that each block is encoded
using 8 bits. The relative compression ratio of Elias gamma
and k-gamma encoding thus depends on the data; see also
Section 4.1.

Our algorithm is divided into two parts: (1) Obtain the
shared length information and (2) construct the k code-
words. The implementation of both parts can be done with-
out any branches or loops; only parallel shift, load, and store
instructions are necessary. The shared codeword length is
determined using a scalar count-leading-zero instruction on
the result of a logical OR of the k integers. The codewords
are stored in a vertical layout, but the shared prefixes are
stored in a separate memory area. This has the advantage
that all memory accesses are aligned.

Each shared prefix consists of a (possibly empty) sequence
of zero bits followed by a one bit; this bit serves as separator
from the next shared prefix. In contrast to Elias gamma, us-
age of a separator bit allows us to encode 0. There are two
different ways to do this. The first way is used by k-gamma
encoding: The length of the shared prefix denotes the max-
imum number of effective bits of the k values. When k
0/1 values are encoded, the shared prefix and the k code-
words together require k + 1 bits (recall that the 0 value
has one effective bit). An alternative way, which we refer to
as k-gamma0 encoding, is to let the length of the zero bit
sequence of the shared prefix denote the maximum number

0x040x00

0x10

0x0B0x08 0x10

0x0B0x08 0x10

0x0B0x08

0x0B 0x10

0x040x00

32-bit word

4-gamma encoding

0x040x00

Effective bits
0x080x040x00

Prefix

v1p1 p2 v2 p3 v3 p4 v4

p1 p2 p3 p4

v1 v2 v3 v4

v2v1

p1-2 p3-4

v3 v4

p1-4

v1 v2 v3 v4

2-gamma encoding

1-gamma encoding

Elias gamma encoding

Shared prefix

Effective bits

Prefix & effective bits

Shared prefix

Effective bits

Shared prefix

Effective bits

Figure 4: Memory representation of Elias gamma
and k-gamma encoding of four example codewords

of effective bits of only the non-zero values. If all values
are 0, only the separator bit has to be stored and the zero
bit sequence of the shared prefix has length zero. Example
codewords for k-gamma as well as k-gamma0 encoding can
be found in the appendix.

Figure 4 illustrates the memory layout of an example
with 4 codewords for Elias gamma, 1-gamma, 2-gamma,
and 4-gamma encoding. Elias gamma encoding—shown at
the top of Figure 4—stores prefix and value of each code-
word together. k-gamma encoding stores shared prefix and
the values separately. While each value has its own pre-
fix for 1-gamma encoding, two or four values share a prefix
when 2-gamma or 4-gamma encoding, respectively, is used.
Furthermore, each of the k values of a block starts at the
same relative bit address in their memory word (e.g., v3
and v4 in words 0x00 and 0x04). In our actual implementa-
tion of k-gamma encoding, we split the memory into smaller
chunks. The codewords grow forward from the start of each
chunk and the shared prefixes grow backwards from the end
of the chunk.4

4. EXPERIMENTAL EVALUATION
We conducted a variety of experiments to gauge the per-

formance and compression ratio of both the sequential and
the SIMD versions of integer compression. We found that
parallel processing is between 1.5x and 6.7x faster than se-
quential processing.

4.1 Test Setup
Experiments were conducted on a variety of different pro-

cessors: the Intel Core i7-920 processor (2.67GHz), the AMD
Phenom (2.8GHz), and the PPE of an IBM Cell Broad-
band Engine (3.2GHz). Linux was used as operating sys-
tem. We implemented both sequential (Seq) and parallel
(SIMD) versions of null suppression and gamma encoding.
The algorithms were implemented in C and compiled using
gcc, and intrinsics were used for SIMD instructions. To en-
sure fair comparison, all implementations are hand-tuned:
Both the sequential and the SIMD versions make extensive
use of the available instruction set for efficient processing.
For null suppression (both versions), we manually unrolled
loops to avoid data dependencies by storing 4 compression
masks followed by 16 compressed integers.

4Growth is reversed for processors using the big-endian for-
mat.

0.0 0.5 1.0 1.5 2.0 2.5

0
10

20
30

40
50

60

Zipf parameter

A
ve

ra
ge

 c
om

pr
es

se
d

le
ng

th
 (

bi
ts

) uncompressed
elias gamma
4−gamma
null suppression

(a) Compression potential

Compression Decompression Aggregation

Task

B
an

dw
id

th
 (

M
B

/s
)

0
20

00
40

00
60

00

None Seq
None SIMD
Low Seq
Low SIMD
High Seq
High SIMD

(b) Null suppression/Core i7

Compression Decompression Aggregation

Task

B
an

dw
id

th
 (

M
B

/s
)

0
20

0
40

0
60

0
80

0
10

00

(c) Null suppression/Cell PPE

Compression Decompression Aggregation

Task

B
an

dw
id

th
 (

M
B

/s
)

0
50

0
15

00
25

00

4259 5811

(d) Gamma encoding/Phenom

Compression Decompression Aggregation

Task

B
an

dw
id

th
 (

M
B

/s
)

0
50

0
15

00
25

00
35

00

5388 6396

(e) Gamma encoding/Core i7

Compression Decompression Aggregation

Task

B
an

dw
id

th
 (

M
B

/s
)

0
10

0
20

0
30

0
40

0

665 796

(f) Gamma encoding/Cell PPE

Figure 5: Experimental results

We generated synthetic datasets consisting of 32-bit inte-
gers in the interval [1, 232 − 1]. The integers follow a Zipf
distribution with Zipf parameter z. A parameter of z = 0
corresponds to a uniform distribution (no compression possi-
ble), while parameter values of z > 1 represent distributions
that are heavily skewed towards small integers. Figure 5(a)
illustrates the expected codeword length for the different
compression algorithms and varying values of z. As can be
seen, compression is beneficial for datasets that consist of
sufficiently many small integers (z > 0.75). In this region,
parallel Elias gamma has a slightly lower compression ratio
than the sequential version. Our experiments indicate that
this small loss in compression ratio is offset by large gains
in decompression performance.

We generated two datasets of 32MB for each compression
algorithm: a dataset with low compression potential and a
dataset with high compression potential. We then measured
the bandwidth—i.e., the amount of uncompressed data that
can be processed per second—of three different tasks: (1)
compression, (2) decompression, and (3) decompression with
aggregation. The first and the second task involve loading
uncompressed/compressed values from main memory and
storing of compressed/uncompressed values back into main
memory, respectively. The third task reads compressed val-
ues from main memory and sums them up, i.e., it does not
put the uncompressed data back into main memory.

4.2 k-wise Null Suppression
As mentioned previously, we manually unrolled the loops

of both versions of null suppression to avoid data dependen-

cies. This is done as follows: the compression masks of b
blocks of 4 integers are combined and stored consecutively
up front. We measured no noticeable effect on the perfor-
mance of the sequential algorithm, but the parallel algorithm
performs best for b = 4 consecutive compression masks fol-
lowed by 16 compressed integers. Thus we used b = 4 for all
our experiments.

As a baseline for comparison, we measured the bandwidth
of all three tasks when working on uncompressed integers.
The compression and decompression tasks then reduce to
a simple memcpy operation. We implemented a sequential
memcpy operation, which was a few percent faster than the
corresponding library function, as well as a parallel memcpy
function using SIMD instructions. Similarly, the decompres-
sion and aggregation task reduces to an array sum. The
sequential version of this task was the only function that
was automatically parallelized by the gcc compiler; we thus
explicitly deactivated the SIMD instruction sets to enforce
sequential processing.

For null suppression, we set zlow = 0.8 and zhigh = 1.25
for the datasets with low and high compression potential, re-
spectively (cf. Figure 5(a)). The corresponding compression
ratios are 95% and 38%.

Figure 5(b) shows the bandwidth in MB/s achieved on
the Intel i7 processor. Each group of bars corresponds to
one task, and each individual bar corresponds to a specific
version of the algorithm (“Seq” or “SIMD”) and a specific
dataset (“low”, “high”, or “none” for the baseline). As can
be seen, parallel compression is only slightly faster than se-
quential compression; this is due to the sequential count-

Table 1: Compression ratios

zlow zhigh
unsorted sorted unsorted sorted

Elias gamma 61.6% 61.6% 8.7% 8.7%
4-gamma 73.2% 37.1% 11.0% 6.1%
4-gamma0 74.0% 37.3% 11.1% 4.3%

leading-zero instructions in the code. Parallel decompres-
sion is between 1.5x to 1.7x faster than sequential decom-
pression. In this task, a lot of time is spend on storing the
decompressed results into main memory. This overhead is
avoided in the aggregation task, in which the parallel ver-
sion reaches a speedup of up to 3.6x and is almost as fast
(low compression ratio) or faster (high compression ratio) as
working on uncompressed data.

The results for the Cell PPE are shown in Figure 5(c).
Here, parallel compression is slightly less efficient than se-
quential compression so that, in practice, one should always
use the sequential version. For decompression, the paral-
lel version is 1.7x to 1.8x faster than the sequential version.
Higher speed up is achieved for the aggregation task, where
the parallel version is between 2.3x and 3.8x faster than the
sequential version.

No experiments have been performed on the Phenom pro-
cessor because it does not provide a SIMD byte permutation
instruction.

4.3 Gamma Encoding
In the second set of experiments, we compared Elias

gamma and 4-gamma encoding (both versions). Since
gamma encoding has a different compression ratio than null
suppression, we used different data distributions and set
zlow = 1.1 and zhigh = 1.75. For Elias gamma, which cannot
encode zero values, we increase every value by one before en-
coding (not included in execution time measurement). This
increase is not necessary for k-gamma encoding.

Table 1 lists the compression ratios of all three algo-
rithms (the best compression ratio for each dataset is
highlighted). Elias gamma achieves better compression
ratios than 4-gamma encoding for the original datasets.
If the datasets are sorted, however, 4-gamma encoding
achieves better compression ratios than Elias gamma encod-
ing. Clustering of similar values improves the compression
ratio of k-gamma encoding because the shared prefix more
closely matches the actual effective bit lengths. Compar-
ing 4-gamma and 4-gamma0, the former has slightly better
compression ratios for unsorted datasets and datasets with
low compression potential, while the latter achieves better
compression ratios for sorted, highly compressible datasets.

Our bandwidth measurements have been performed on
the unsorted datasets using the Elias gamma algorithm and
the 4-gamma algorithm. The results for the Intel i7 proces-
sor are shown in Figure 5(e). Bitwise processing has a high
impact on bandwidth. Depending on the dataset, sequen-
tial compression reaches at most half the memcpy baseline,
while sequential decompression reaches at most a quarter
of the memcpy bandwidth. Compression is faster because it
requires only one instead of two store operations and less
shift instructions. Compression with 4-gamma encoding is
between 1.75x and 2.35x faster than the sequential version.
Parallel decompression is about 2x faster. As before, the

best bandwidth improvements are achieved in the aggrega-
tion task, where the parallel version reaches a speedup of
4.1x.

Figure 5(f) shows the results on the Cell PPE. Similar
to the Intel i7 results, compression is almost always faster
than decompression for the same reasons. In more detail,
parallel compression is about 1.7x to 2.4x faster than se-
quential compression. Interestingly, for the high potential
dataset, the compression task of 4-gamma encoding is about
1.2x faster than the compression task of null suppression (cf.
Figure 5(c)) and is roughly as fast as the memcpy baseline.
This is mainly caused by the reduced sequential fraction
of the 4-gamma compression function; only one instead of
four count-leading zero instructions are required. Neverthe-
less, decompression using 4-gamma encoding is slower than
decompression using k-wise null suppression, but it is still
3.6x to 3.8x faster than decompression using sequential Elias
gamma. Finally, the highest speedup is achieved for the ag-
gregation task; 4-gamma encoding is 5.5x to 6.7x faster than
Elias gamma.

The results for the Phenom processor are similar, see Fig-
ure 5(d). We achieved the following speedups with 4-gamma
encoding: for the compression task 1.7x to 2.2x, for the de-
compression task 2.2x to 2.4x, and for the aggregation task
4.1x to 4.4x.

5. SUMMARY
We presented k-wise null suppression and k-gamma encod-

ing, which are parallel integer compression techniques that
utilize the SIMD capabilities of modern processors. Our
experiments indicate that parallelization is highly effective.
Compared to sequential versions, a speedup of 1.5x up to
6.7x is achieved. We expect further performance gains from
wider SIMD registers, which will be supported in future pro-
cessor generations. Today, our parallel versions are on par
with uncompressed processing in many cases. This makes
our algorithms attractive in practice, particularly for appli-
cations that require a large amounts of memory and a high
memory bandwidth.

6. REFERENCES

[1] Abadi, D., Madden, S., and Ferreira, M.
Integrating compression and execution in
column-oriented database systems. In SIGMOD (New
York, NY, USA, 2006), ACM, pp. 671–682.

[2] Cohen, S., and Matias, Y. Spectral bloom filters. In
SIGMOD (2003), ACM, p. 252.

[3] Elias, P. Universal codeword sets and representations
of the integers. IEEE Trans. Inform. Theory (1975),
pp. 194 – 203.

[4] Intel Corporation. Intel AVX: New Frontiers in
Performance Improvements and Energy Efficiency,
March 2008.

[5] Intel Inc. Intel 64 and IA-32 Architectures Software
Developer’s Manual, December 2009.

[6] Legler, T., Lehner, W., and Ross, A. Data
mining with the sap netweaver bi accelerator. In
VLDB (2006), pp. 1059–1068.

[7] Motorola. AltiVec Technology Programming
Interface Manual, 1999.

[8] Pagh, R., and Satti, S. R. Secondary indexing in
one dimension: beyond b-trees and bitmap indexes. In
PODS (2009), pp. 177–186.

[9] Raman, V., and Swart, G. How to wring a table
dry: entropy compression of relations and querying of
compressed relations. In VLDB (2006), VLDB
Endowment, pp. 858–869.

[10] Raman, V., Swart, G., Qiao, L., Reiss, F.,
Dialani, V., Kossmann, D., Narang, I., and
Sidle, R. Constant-time query processing. In ICDE
(Washington, DC, USA, 2008), IEEE Computer
Society, pp. 60–69.

[11] Roth, M. A., and Horn, S. J. V. Database
compression. SIGMOD Record 22, 3 (1993), 31–39.

[12] Westmann, T., Kossmann, D., Helmer, S., and
Moerkotte, G. The implementation and
performance of compressed databases. SIGMOD Rec.
29, 3 (2000), 55–67.

[13] Willhalm, T., Popovici, N., Boshmaf, Y.,
Plattner, H., Zeier, A., and Schaffner, J.
Simd-scan: Ultra fast in-memory table scan using
on-chip vector processing units. PVLDB 2, 1 (2009),
385–394.

[14] Witten, I., Moffat, A., and Bell, T. Managing
gigabytes: compressing and indexing documents and
images. Morgan Kaufmann, 1999.

[15] Zukowski, M., Héman, S., Nes, N., and Boncz,
P. A. Super-scalar ram-cpu cache compression. In
ICDE (2006), p. 59.

APPENDIX
In this section, we give example codewords for k-gamma
encoding and k-gamma0 encoding for k=2. Table 2 shows
input values x1 and x2, the corresponding codewords v1 and
v2 and the shared prefix p1−2 (including the separator bit).
Note the difference in encoding input blocks that consist of
only zero-or-one values.

Table 2: Example codewords
(a) k-gamma

x1 x2 p1−2 v1 v2

0 0 1 0 0
1 0 1 1 0
1 1 1 1 1
2 0 01 10 00
2 1 01 10 01
2 2 01 10 10
3 0 01 11 00
3 1 01 11 01
3 2 01 11 10
3 3 01 11 11
4 0 001 100 000

(b) k-gamma0

x1 x2 p1−2 v1 v2

0 0 1
1 0 01 1 0
1 1 01 1 1
2 0 001 10 00
2 1 001 10 01
2 2 001 10 10
3 0 001 11 00
3 1 001 11 01
3 2 001 11 10
3 3 001 11 11
4 0 0001 100 000

	Introduction
	Prerequisites
	Null Suppression
	Elias Gamma Encoding
	SIMD Instructions Sets

	Parallel Integer Compression
	Layout of Compressed Data
	k-Wise Null Suppression
	k-Gamma Encoding

	Experimental Evaluation
	Test Setup
	k-wise Null Suppression
	Gamma Encoding

	Summary
	References

