
Memory-Efficient Frequent-Itemset Mining

Benjamin Schlegel
Technische Universität Dresden

Dresden, Germany

Rainer Gemulla
Max-Planck-Institut

Saarbrücken, Germany

Wolfgang Lehner
Technische Universität Dresden

Dresden, Germany

ABSTRACT
Efficient discovery of frequent itemsets in large datasets
is a key component of many data mining tasks. In-core
algorithms—which operate entirely in main memory and
avoid expensive disk accesses—and in particular the pre-
fix tree-based algorithm FP-growth are generally among the
most efficient of the available algorithms. Unfortunately,
their excessive memory requirements render them inappli-
cable for large datasets with many distinct items and/or
itemsets of high cardinality. To overcome this limitation,
we propose two novel data structures—the CFP-tree and
the CFP-array—, which reduce memory consumption by
about an order of magnitude. This allows us to process sig-
nificantly larger datasets in main memory than previously
possible. Our data structures are based on structural modi-
fications of the prefix tree that increase compressability, an
optimized physical representation, lightweight compression
techniques, and intelligent node ordering and indexing. Ex-
periments with both real-world and synthetic datasets show
the effectiveness of our approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Algorithms, Performance

1. INTRODUCTION
The goal of frequent-itemset mining is to discover sets of

items that frequently co-occur in the data. The problem
is non-trivial because datasets can be very large, consist of
many distinct items, and contain interesting itemsets of high
cardinality. Frequent-itemset mining is a key component of
many data mining tasks and has applications in areas such
as bioinformatics [30], market basket analysis [13], and Web
usage mining [22]. For example, frequent-itemset mining is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

an increasingly popular tool to support web-shop customers
in finding products of interest (“customers who bought this
item also bought . . . ”).

The need for finding frequent itemsets in ever-growing
datasets has driven a wealth of research in efficient algo-
rithms and data structures [1, 32, 14, 3]. Existing ap-
proaches can be classified into three major categories. First,
bottom-up algorithms—such as the well-known Apriori algo-
rithm [1, 3]—repeatedly scan the database to build itemsets
of increasing cardinality. They exploit monotonicity proper-
ties between frequent itemsets of different cardinalities and
are simple to implement, but they suffer from a large num-
ber of expensive database scans as well as costly generation
and storage of “candidate itemsets”. Second, top-down al-
gorithms—such as TopDown [32]—proceed the other way
around: The largest frequent itemset is built first and item-
sets of smaller cardinality are constructed afterwards, again
using repeated scans over the database. Finally, prefix-tree
algorithms operate in two phases. In the first phase, the
database is transformed into a prefix tree designed for effi-
cient mining. The second phase extracts the frequent item-
sets from this tree without further base data access. Algo-
rithms of this class require only a fixed number of database
scans, but may require large amounts of memory.

There is no“best”algorithm for frequent-itemset mining in
general, but the prefix-tree algorithm FP-growth [14] is usu-
ally considered as one of the fastest available algorithms [11].
The key advantage of FP-growth is that it requires only
two passes over the database; it is thus very I/O efficient.
The two passes are used to build an FP-tree, which can be
viewed as a compressed representation of the frequent items
and their co-occurrence in the data. Based on the initial
FP-tree, FP-growth recursively builds smaller FP-trees that
are eventually used to obtain the actual frequent itemsets.
Many optimizations to FP-growth have been proposed; see
Section 5 for a brief overview.

The main disadvantage of FP-growth is its excessive mem-
ory requirement. Even for moderately sized datasets, the
FP-tree may easily grow to billions of nodes. Recent re-
search has shown that out-of-core processing techniques,
which make use of disk-resident data structures, can handle
such large datasets in principle. For example, Buehrer [6]
proposes an approach that uses approximate hash sorting to
initially partition the database, and builds the complete FP-
tree piece by piece from these partitions. However, due to
expensive disk accesses, out-of-core processing is generally
about an order of magnitude slower than in-core processing.

In this paper, we show how to reduce the memory re-
quirements of FP-growth by about an order of magnitude.
This allows us to avoid out-of-core processing in many cases
where it is needed with existing approaches, and reduces the
cost of out-of-core processing in the remaining cases due to
favorable access patterns. Our in-core approach does not
deteriorate the runtime of the FP-growth algorithm when
the dataset is small, but leads to significant improvements
when the data is large. The key to memory efficiency are
two data structures, one for each of the phases of FP-growth.
The CFP-tree is optimized for the build phase and is based
on structural changes to the FP-tree, a highly tuned phys-
ical representation by means of a ternary tree, and vari-
ous lightweight compression techniques. The CFP-tree pro-
vides a high compression ratio with reasonably small com-
pression and decompression cost. The additional cost of
(de)compression is largely offset by better usage of memory
bandwidth. After the initial build phase, the CFP-tree is
transformed into a different data structure called the CFP-
array ;1 the cost of this transformation constitutes only a
negligible fraction of the overall FP-growth runtime. Since
different access paths are required in the mining phase, the
CFP-array uses an array-based physical representation of
the FP-tree, and employs intelligent node ordering, index-
ing, and compression. During the mining phase, the process
recurses: many more smaller“conditional”CFP-trees will be
built and transformed into CFP-arrays; this makes memory
efficiency the more crucial.

We conducted an extensive evaluation of our data struc-
tures with various datasets. We observed an order-of-
magnitude decrease in memory consumption on all the data
sets we experimented with, whether real world or synthetic.
When applied to very large datasets, the reduced memory
consumption leads to multiple order-of-magnitude perfor-
mance improvements when compared to plain FP-growth.
On large datasets, our approach outperforms the best (and
highly optimized) frequent-itemset mining algorithms of the
well-known FIMI repository [8].

The remainder of this paper is structured as follows. Sec-
tion 2 describes preliminaries: the FP-growth algorithm,
ternary-tree representations of the FP-tree, and lightweight
compression techniques. Section 3 introduces the CFP-tree
and the CFP-array. In Section 4, we report the results of
our experimental evaluation. Section 5 gives an overview of
related work, and Section 6 concludes the paper.

2. PREREQUISITES
Let I = { a1, . . . , am } be a set of items and D =

(T1, . . . , Tn) be a database of transactions, where each
transaction Ti ⊆ I consists of a set of items. The support of
an itemset I ⊆ I is the number of transactions that contain
I; an itemset is frequent if its support exceeds some mini-
mum support ξ. The goal of frequent-itemset mining is to
find all itemsets that are frequent. In this section, we briefly
review the FP-growth algorithm for frequent-itemset min-
ing, its basic data structure, the FP-tree, as well as a physi-
cal representation of the FP-tree by means of a ternary tree.
We also discuss lightweight compression techniques that will
serve as the basis for our CFP-tree.

1As discussed in Section 5, the CFP-array is a different data
structure than the similarly-named FP-array of [16].

item

1 308656

count /

2 21194 3 21860 4 16674

2 94908 3 50369 4 31647

3 39770 4 13490

4 12520

4 11117

3 3692

4 508

4 1509

nodelink parent/child links

4 1866

Figure 1: An FP-tree

2.1 FP-Growth and the FP-Tree
FP-growth is a divide-and-conquer algorithm that consists

of two recurring phases: build and mine. The build phase
transforms the database into a representation that is well-
suited for mining: the FP-tree (for frequent-pattern tree).
Figure 1 shows an FP-tree built from a FIMI dataset [8]
with minimum support of ξ = 80,000. The FP-tree is con-
structed in two passes over the database. The first pass
counts the support of each individual item; only frequent
items and their support (count values) are retained. In the
example, items 1, 2, 3, and 4 are frequent and have counts
f1 = 308,656, f2 = 116,102, f3 = 115,691, and f4 = 89,331,
respectively. The database is then scanned a second time
and the FP-tree is built. The items in each transaction are
sorted in descending order of their support; the FP-tree is
simply a prefix tree on the sorted transactions enriched with
some additional information. Apart from the item itself, this
information includes the number of times each prefix has
been encountered (count) and links for efficient navigation.
For example, leaf node (4 | 13490) represents prefix (1, 2, 4);
this prefix occurred 13,490 times in the database.

To obtain the support of a specific itemset I, we add up
the counts of the prefixes that both contain I and end with
the least frequent item in I. In order to do this efficiently,
all occurrences of a (least frequent) item are connected using
so-called nodelinks (dotted lines in Figure 1) and each node
has a link to its parent (solid lines). For example, the sup-
port for itemset { 3, 4 } is given by summing up the frequen-
cies of prefixes (1, 2, 3, 4), (1, 3, 4), (2, 3, 4), and (3, 4) (this
gives 26,011). The mine phase of FP-growth proceeds more
intelligently than just described: It repeatedly (1) picks the
least frequent item a in the tree (until empty), (2) recursively
runs FP-growth on the “conditional” FP-tree built from the
prefixes that contain a, (3) uses the result to construct all
frequent itemsets that contain a, and (4) removes a from the
FP-tree. More details about this conditioning process can
be found in [14]. For the purpose of this paper, note that
both parent links and nodelinks are only traversed in the
mine phase.

2.2 Physical Design
An important part of all prefix tree-based algorithms is the

design and implementation of the physical representation of
the tree. During the build phase, one wants to quickly find
(or create) the prefix corresponding to the current transac-
tion. In what follows, we refer to the children of a node in
the FP-tree as the direct suffixes of the node. Thus, to insert
the transaction { 2, 4 } into the FP-tree shown in Figure 1,
we have to find the node of item 2 among the direct suffixes
of the root, and then item 4 among the direct suffixes of

/

1 308656

id count left suffix right

2 94908 3 21860

3 39770 4 31647

4 13490 4 12520 3 50369

4 11117

2 21194

3 3692

4 508 4 1509

4 1866 4 16674

binary tree direct suffix

Figure 2: A ternary FP-tree

the selected node. The counts of both nodes are increased
by one. Unless implemented carefully, a significant part of
the overall runtime is spent on the search for the next node
among the direct suffixes.

In this paper, we use a physical representation based on
a ternary tree [25].2 The main idea of a ternary tree is to
arrange direct suffixes in a binary search tree; this requires
two additional left and right pointers for each node. A suf-
fix pointer connects each node with the binary tree of its
direct suffixes. Thus, a node within the ternary tree has
fields id, count, parent, nodelink, left, right, and suf-

fix. Figure 2 shows a ternary search tree for the FP-tree
of Figure 1. For readability, parent pointers and nodelinks
have been omitted. Note that left and right pointers con-
nect nodes within a level of the FP-tree; suffix pointers move
down one level.

Search in a balanced binary search tree has logarithmic
complexity, but knowledge of count values can be used to
construct near optimal search trees. Since each node has
the same size, the ternary tree also facilitates simple and
efficient memory management without fragmentation. Its
major drawback, however, is the high memory consumption:
the five pointers alone require 40 bytes per node on a 64-bit
systems. On trees with billions of nodes, this high mem-
ory requirement forces out-of-core computation and thus
severely slows down computation. It is the impetus of this
paper to drive down this memory requirement while main-
taining fast execution times.

2.3 Lightweight Compression
It will become evident later on that the FP-tree has a huge

compression potential. The challenge, of course, is to select
compression techniques that balance compression ratio and
runtime overhead accordingly. We found that entropy-based
compression as well as all bit-level compression techniques
have too high runtime overhead. This overhead is magni-
fied because the FP-tree is traversed many times. For this
reason, we focus on byte-level static encodings like null sup-
pression or variable byte encoding.

The basic idea of null suppression is to substitute null
values or successive zeros with a description of how many
zeros are omitted. Perhaps the simplest form of null sup-
pression is used to tag missing fields in a database record
using presence bits stored up front [24]. Another version of
null suppression—proposed by Westmann [31] to compress
“small integers”—removes leading zero bytes of an integer
value and instead stores the number of eliminated bytes.

2Most of our techniques can be applied to other physical
designs, such as the binary tree representation of [12].

There are two variants of this leading zero-bytes suppression.
For 32-bit integers, the first variant uses 3 bits to encode the
number of suppressed zero bytes (0–4), followed by the re-
maining (non-zero) bytes. For example, hexadecimal value
00000090 will be encoded as binary value 01110010000. The
second variant omits the first bit of the compression mask
and stores the least significant byte even when zero; it is
preferable when 0 values are encountered infrequently.

Variable byte encoding (also known as varint128 or 7-bit
encoding) works by splitting an n-bit integer into a sequence
of dn/7e 7-bit blocks. This sequence is stored in dn/7e suc-
cessive bytes, in which the lower 7 bits are used to store the
block, and the highest bit is a continuation bit which indi-
cates whether or not an additional block follows (i.e., it is
set to 0 if the sequence ends). For example, the hexadeci-
mal value 00000090 is encoded using the following 2 bytes:
1000000100010000. Compared to leading zero-byte suppres-
sion, variable byte encoding achieves better compression ra-
tios for small values (< 128) and avoids a separate com-
pression mask for storing the number of suppressed zeros.
However, variable byte encoding has usually higher decom-
pression costs for large values (≥ 128), and lookup of the
length dn/7e of a compressed value is not possible without
decompression.

Every bit or byte saved when storing each node of the
FP-tree has significant impact on the overall memory con-
sumption on large trees with billions of nodes. Since the
various static encodings differ in compression ratio and run-
time cost, we opt to employ different compression techniques
for different parts of the CFP-tree and the CFP-array. In
fact, each of the above techniques will play an important
role.

3. COMPRESSED PREFIX TREES
As mentioned previously, the CFP-tree is a variant of the

FP-tree tailored to the build phase of FP-growth. By de-
sign, most of the fields stored in a CFP-tree node have small
values so that lightweight compression is very effective. We
exploit this compression potential in an optimized ternary
representation, the ternary CFP-tree. After being built, the
CFP-tree is converted to an CFP-array, which are tailored
to the mine phase. The CFP-array draws from intelligent
node ordering, indexing, and variable byte suppression.

3.1 Compression Potential
To get some intuition about the size of an uncompressed

FP-tree and its compression potential, we exemplarily ana-
lyze the ternary-tree representation of an FP-tree built for
the Webdocs dataset of the FIMI repository [19]. With
a minimum support of 10%, the FP-tree is built from
1,661,662 transactions with an average length of 46.78 dis-
tinct items. The tree comprises 50,407,635 nodes, each con-
sisting of seven 4-byte fields (we used 32-bit pointers), and
requires 1.4GB of memory. Thus even a relatively small
dataset and a high value of minimum support may lead to
substantial memory consumption.

The in-memory representation of our example FP-tree is
summarized in Table 1. As can be seen, most of the space
is spent for storing zero bytes. We make the following ob-
servations:

• Roughly 53% of the total memory consists of zero
bytes. In most cases, four out of the seven fields in

Leading 0s → 0 1 2 3 4

item 0% 0% 2% 98% 0%
count 0% <1% <1% >99% 0%
nodelink 67% 33% <1% 0% 0%
parent 66% 34% <1% 0% 0%
suffix 65% 32% <1% 0% 3%
left <1% <1% 0% 0% 99%
right <1% <1% 0% 0% 99%

Table 1: Fields and number of leading zero bytes in
an FP-tree for the Webdocs data

each node start with 3 or 4 leading zero bytes; the re-
maining three fields have none or only one leading zero
byte.

• The item field, which stores identifiers rather than ac-
tual items, ranges from 1 to 262 so that two of the
field’s four bytes are always zero; only 2% of the nodes
actually require two bytes to store the item.

• Almost all nodes require only one byte for the count

field (but the maximum value is 1,429,525).

• Only one third of the forward-traversal pointers left,
right, and suffix are non-zero. This is because every
ternary tree with n nodes has 2n+ 1 zero pointers and
n− 1 non-zero pointers.3 In contrast, the backwards-
traversal pointer parent and the sidewards-traversal
pointer nodelink are rarely zero.

• About two-thirds of all non-zero pointers require 4
bytes of memory; most of the remaining pointers re-
quire 3 bytes. This is true even though we used a
virtual address space so that pointer values start at
zero and are tight.

We observed similar patterns in our experiments with other
datasets. As argued below, the CFP-tree improves the com-
pression potential further and is guaranteed to be effective
under mild assumptions on the data.

3.2 The CFP-tree
This section introduces the CFP-tree; its physical repre-

sentation is discussed in the next section. The main goal
of the CFP-tree is to make values as small as possible so
that the effectiveness of static encoding is maximized. The
structure of the CFP-tree is identical to the structure of
the corresponding FP-tree, but the information stored in its
nodes is different. We illustrate our discussion using the
CFP-tree shown in Figure 3; it corresponds to the FP-tree
of Figure 1.

In what follows, we only describe differences between the
FP-tree and CFP-tree. The first such difference concerns
the link structure. An analysis of FP-growth shows that the
build and mine phases require disjoint sets of links. In fact,
to build an FP-tree, only child links are necessary because
traversal during insertion is from top (root) to bottom (inner
node or leaf). Since the CFP-tree is designed for only the

3Proof: A node added to a ternary tree transforms a zero
pointer into a non-zero pointer, but also adds three new zero
pointers. The smallest ternary search tree with 1 node has
three zero pointers.

Δitem

1 131732

pcount /

2 15993 3 19994 4 16674

1 41648 2 39252 3 31647

1 27250 2 13490

1 12520

1 11117

1 31842 1509

1 508

child link

1 1866

Figure 3: A CFP-tree

build phase, we can safely omit parent links or nodelinks. As
shown in Figure 3, this leads to a significant reduction of the
number of links. Note that omitting these links is not ben-
eficial for the FP-tree itself because they are needed during
the mine phase. In contrast, the CFP-array handles parent
and nodelinks in a different fashion; they are reconstructed
(but not stored) during the transition from the CFP-tree to
the CFP-array.

The remaining differences concern the data stored in each
node. Since an item may occur many times in the FP-tree,
both the FP-tree and the CFP-tree make use of item iden-
tifiers instead of working with the actual items. A supple-
mentary dictionary is used to store the mapping between
identifiers to actual items. We assign identifiers in increas-
ing order of item frequency: The k-th most frequent item
gets identifier k. With this choice of item identifiers, fre-
quent items require less bits to store; e.g., each of the 256
most frequent identifiers can be stored in just one byte. Un-
der the assumption that item frequencies are skewed (which
makes frequent itemset mining useful), the space savings
are significant. Moreover, the value of the identifier stored
in each node is expected to be close to the identifiers stored
in its children; cf. Figure 1. This property is exploited in
the CFP-tree, which replaces the item field of the FP-tree
by a ∆item field. The ∆item field stores only the difference
of the item identifier from the respective parent node. To
obtain the actual identifier, simply accumulate the values of
all ∆item fields on the path from the root node to the node
of interest. For example, node (4 | 13490) of the FP-tree
of Figure 1 has item identifier 4. The corresponding node
in the CFP-tree of Figure 3 is labeled (2 | 13490); its item
identifier can be reconstructed by adding the ∆item fields
of nodes (1 | 131732), (1 | 41648), and (2 | 13490).

Perhaps surprisingly, delta encoding is not beneficial for
count values. Although the counts along the path from the
root to a leaf form a non-increasing integer sequence, the
count of a node is often much smaller than, and very rarely
equal to, the count of its parent; Figure 1 illustrates this
property. In fact, the delta to the parent is often greater
than the actual count value. Moreover, storage of delta
counts would lead to decreased efficiency when updating the
tree: The delta counts of a large number of nodes would have
to be modified to incorporate an insertion or update.

Instead of using deltas, the CFP-tree employs non-
cumulative count values. It replaces the count field of the
FP-tree by a pcount field (for partial count). Recall that
the insertion of a prefix into the FP-tree increases all counts
along the path corresponding to the inserted prefix by 1 (be-
cause all these paths are contained in the transaction). In-
stead, insertion into the CFP-tree increases only the pcount

Leading 0s → 0 1 2 3 4

∆item 0% 0% 0% 100% 0%
pcount 0% 0% <1% 3% 97%

Table 2: Fields and number of leading zero bytes in
the CFP-tree for the Webdocs data

field of the final node in the path. One can show that the
value of the count field of a node in an FP-tree is equal to the
sum of the pcount fields of the corresponding CFP-tree node
and all its children. Thus, for every corresponding pairs of
nodes, we have count≥pcount. For example, consider node
(1 | 41648) in Figure 3. To obtain the count of the node, take
its pcount value add the pcount values of nodes (1 | 27250),
(1 | 12520), and (2 | 13490). This gives 94,908, which equals
the count of the corresponding node in Figure 1. Note that
the sum of all non-cumulative count values of a CFP-tree is
equal to the number of transactions that generated the tree.
Often, the CFP-tree has many more nodes than transac-
tions so that the average value of the non-cumulative count
is less than 1; this makes lightweight compression extremely
effective.

Table 2 shows the distribution of leading zeros for the
fields in the CFP-tree built on the Webdocs dataset. When
compared to Table 1, one observes that the pcount field is
almost always zero, while count is never zero. This means
that there is a huge number of nodes that do not correspond
to a full transaction in the database (these nodes correspond
to subsets of transactions). We also observe that delta cod-
ing of item identifiers shows only a minor improvement on
this particular dataset. This is because the number of fre-
quent items in this dataset is very low (just 262); significant
improvements can be observed for smaller support values or
datasets with more distinct items.

3.3 The Ternary CFP-tree
The ternary CFP-tree is a highly-compressed physical rep-

resentation of the CFP-tree. It exploits the fact that the
CFP-tree contains many small values. Each node in the
ternary tree consists of compressed versions of the data fields
from the CFP-tree (∆item, pcount) and, in most cases, the
relevant pointer fields of the ternary tree (left, right, suf-
fix). We use different compression techniques for the vari-
ous fields so as to minimize the overall memory consumption.
Moreover, we reduce the number of pointers by embedding
small leaf nodes into their parents and representing “chains”
in the tree as arrays.

Since the data fields ∆item and pcount usually have very
small values, we compress them using leading zero byte sup-
pression. Recall that leading zero byte suppression makes
use of a compression mask that indicates how many zero
bytes have been omitted. The length of this mask is either
3-bit (0–4 bytes omitted) or 2-bit (0–3 bytes omitted). In
all our experiments, the pcount value was equal to zero for
the majority of the nodes in the CFP-tree; cf. Table 2. In
contrast, the ∆item field is arguably never 0. Thus, a 3-bit
compression mask pays off for pcount, while a 2-bit compres-
sion mask is sufficient for ∆item. Note that apart from in-
creased compressibility, usage of non-cumulative counts also
reduces the (de)compression overhead because only a single
pcount field has to be updated when inserting a prefix that
already exists in the tree.

Δitem pcount left suffix right

00 00 00 00 00 0000 00
uncompressed
representation
(hexadecimal)

node

3B 04 2B 00 00 006D 0000 00 00 03 00 02 00

3 0

6D2BE2 03 3B 04

compression mask (binary)

02
compressed

representation
(hexadecimal)

11 100 010

Figure 4: A CFP-tree node and its in-memory rep-
resentation

We reduced the size of each of the three pointer fields
left, right, and suffix from 64 bits to 40 bits, which is
sufficient to address 1TB of main memory. Furthermore, all
three pointer are compressed using null suppression, i.e., we
use a presence bit to indicate whether or not a pointer is null.
This amounts to 3 presence bits in total. The pointer fields
of a ternary CFP-tree with n nodes compress to a fraction
of n−1

3n
of the size of the respective fields in the ternary FP-

tree (since there are n − 1 non-zero pointers). For large n,
the size of the pointers in the ternary CFP-tree averages to
43 bits, while the size of the pointer in the ternary FP-tree
averages to 120 bits (also assuming 40-bit pointers).

To summarize, a standard node of the ternary CFP-tree is
stored as follows. The first byte holds the compression mask
for all fields (2 + 3 + 3 = 8 bits). The subsequent bytes hold
∆item and pcount field without leading zero bytes, followed
by 0–15 bytes containing the non-zero pointers. Figure 4
gives an example of ternary CFP-tree compression as dis-
cussed thus far. The first two bits of the compression mask
are set to 11 and indicate that ∆item=3 has three leading
zero bytes. The next three bits of the compression mask
are set to 100 because pcount=0. The remaining bits are
set to 010 and indicate zero values for the left and right

pointers and a non-zero value for the suffix pointer. The
compressed node requires 7 bytes in total.

In addition to standard nodes, the CFP-tree comprises
embedded leaf nodes and chain nodes. Embedded leaf nodes
are based on the observation that the smallest possible stan-
dard node requires just 3 bytes: one byte for each the com-
pression mask, the ∆item field, and the pcount field, and
zero bytes for the pointers (i.e., the node is a leaf). Since this
is less memory than required for storing a pointer, we embed
such small leaf nodes within the respective pointer field of
their parents. The first byte of the pointer field is used to
distinguish between a pointer (6=255) and an embedded leaf
node (=255); our memory manager never uses memory ad-
dresses that start with 255. All leaves with 0 ≤∆item< 256
and pcount< 16,777,216 are stored in the parent. Thus an
embedded leaf consists of a marker byte, one byte for the
value of ∆item, and three bytes for the value of pcount.
We found that in particular for datasets with small aver-
age transaction length (i.e., datasets with a CFP-tree of low
height), node embedding achieves significant memory reduc-
tion.

Interestingly, experiments on several datasets with low
minimum support suggest that often more than 90% of the
nodes in a CFP-tree follow exactly the node layout of the
example of Figure 4: a ∆item value lower than 256, a zero
pcount value, zero left and right pointers, and a suffix

pointer. Note that the suffix pointer consumes most of the
space in the node. This gives rise to a further optimization
technique in the form of chain nodes, which were originally
proposed for Patricia tries [15]. The key idea is as follows:
Whenever there is a chain of multiple nodes of the pattern
described above, we store just the item identifiers of the
nodes in the chain. To indicate the presence of such a chain
node, we set all three bits of the pcount compression mask
to one. This reduces the number of possible states of pcount
in a standard node, but forms no problem in practice4. The
remaining 5 bits of the compression mask store the num-
ber of nodes in the chain, followed by that many bytes each
containing one ∆item value. The chain node is terminated
by a suffix pointer that connects it to the child of the last
node in the chain. In total, a chain node requires m + 6
bytes for a chain of length m. For example, if six FP-tree
nodes are merged into a single chain node, then the space
consumption of each node averages to only 2 bytes.

3.4 The CFP-array
The CFP-array is a data structure optimized for the mine

phase of FP-growth. Recall that the mine phase performs
both sidewards and backward traversal and requires quick
access to the value of item and count. To provide the nav-
igational and data information, the CFP-array consists of
an array of compressed triples and a small index. One of
the key observations behind this layout is that the CFP-
array is static, i.e., built once and never changed. We can
thus safely ignore update costs. In what follows, we describe
how to build the CFP-array from a standard FP-tree. The
conversion process from a ternary CFP-tree is slightly more
involved and postponed to Section 3.5.

Consider a representation of the FP-tree as an array of
quadruples of form (item, count, parent, nodelink). An
FP-tree with n nodes corresponds to an array with exactly
n elements. Observe that the order of the FP-tree nodes in
the array does not matter, but that nevertheless each node
has a certain position in the array. The CFP-array exploits
this fact by picking a node-to-position mapping that allows
us to omit the nodelink field.

We assign positions to nodes such that for any pair of
nodes u and v with u.item<v.item, the position of u is
smaller then the position of v. This property ensures that
the item field is non-decreasing and that all nodes corre-
sponding to a particular item are clustered together; they
form consecutive subarrays within the CFP-array. Since the
purpose of the nodelink field is to connect nodes that cor-
respond to the same item, and since we gave all those items
consecutive positions and thus made them easy to find, the
nodelink field is redundant and can be omitted. Instead, we
maintain a small item index (also in the form of an array)
that maps each distinct item to its first occurence in the
CFP-array; we call this position the starting position. Side-
wards traversal is performed by processing the nodes from
the starting position onwards. The traversal ends when a
node with a different item is encountered. Observe that the
item index also contains all the information that is required
to determine the item of a node at some position i: It is
the item that with the largest starting position less than or

4The remaining seven states allow pcount values taking 0–6
bytes, which is sufficient for all datasets in which the most
frequent item occurs less than 244 times.

����

� ��	
�

���� �

� �����

� ��	
�

� ����	

� ���
�

�������	
�
� ���������	� ����������� ����������� ��������
�� ������
��� �������	
��

� ����� � �
��

1 2 3

item pos count

Figure 5: Conversion of an FP-tree to a CFP-array

equal to i. Thus, the item field could potentially be omitted
as well, but we chose not to do so for performance reasons.5.

Just as done in the CFP-tree, we increase the compres-
sion potential of static encodings by making the fields of the
CFP-array as small as possible. As before, we replace the
item field by the difference ∆item to the item identifier of
the parent. To obtain the actual identifier of a node dur-
ing a backward traversal, subtract all ∆item values on the
path from the leaf node to the node of interest (excluding its
∆item). The identifier of the leaf node itself is obtained via
the item index. To encode the parent field succinctly, we
do not store the parents global position in the CFP-array.
Define the local position of a node as its position within its
subarray, i.e., the subarray that contains all the nodes with
the same item. We replace the parent field by a ∆pos field,
which contains the delta between the local position of the
child and the local position of its parent. The conversion
of the CFP-tree into the CFP-array is performed such that
this delta encoding is very effective. The final field of each
triple is the count value. In contrast to the CFP-tree, we do
not store partial counts because we do not have direct ac-
cess to the descendants of a node, and thus cannot efficiently
reconstruct counts from partial counts.

An example FP-tree and the corresponding CFP-array are
shown in Figure 5. There are three subarrays, one for each
of the three distinct items. Node (3 | 3692) is stored in
the subarray for item 3 at local position 2 (we use 0-based
local positions). Its parent is (2 | 21194), which is stored at
position 1 in its subarray. Thus, we have ∆item = 3−2 = 1
and ∆pos = 2− 1 = 1. Note that node (2 | 21194) does not
have a parent; this is indicated by setting ∆item = item =
2.

We compress each of the three fields (∆item, ∆pos,
count) using variable byte encoding in the order specified.
We prefer this technique because it requires no separate com-
pression mask, and because both ∆item and count require
almost always just one byte (c.f. Tables 1 and 2). The field
order allows us to perform backwards traversal without de-
coding the count field; we thus avoid the expensive length
lookups associated with variable byte encodings. Note that
since each array element is stored using a variable number of
bytes, we use local positions that refer to the byte offset of a
node within its subarray in the physical representation. This
allows us to directly access a node given its local position.

5If we omit the item field, we have to reconstruct it for each
backward traversal via binary search in the item index.

3.5 Conversion
Conversion of the ternary CFP-tree to the CFP-array is

required in between every build phase and its subsequent
mine phase. We perform this transformation in two passes
over the ternary CFP-tree. The first pass is required to de-
termine the size of the CFP-array, while the second pass is
used for the actual transformation. The transformation is
not performed in-place so that the main memory has to be
large enough to hold both data structures simultaneously.
Fortunately, this does not increase the peak memory con-
sumption because (1) FP-growth will produce many more
FP-trees in the mine phase, and (2) the CFP-tree can be
discarded immediately after the conversion, i.e., before these
FP-trees are created. Therefore, the memory that stores the
CFP-tree is reused by FP-growth during the mine phase.
Furthermore—as shown in our experiments—even in cases
where the main memory is not large enough to hold both
data structures simultaneously, the performance deteriora-
tion due to thrashing is low due to favorable memory access
patterns during conversion. Our experiments indicate that
the conversion consumes only a small fraction of the overall
execution time of FP-growth.

The conversion process is illustrated in Figure 5. The size
and starting position of each subarray in the CFP-array can
be determined via a recursive depth-first traversal of the
CFP-tree. For each node, we compute the space consump-
tion of the variable byte encodings of the count, ∆pos, and
∆item fields and accumulate it individually for each item.
The transformation itself also performs a recursive depth-
first traversal, and writes each node directly into its final
position within the CFP-array. This position is easily deter-
mined from the information gathered in the first pass. The
∆pos fields are obtained via a stack that contains the path
taken from the root to the current node during the traversal.

The transformation has a good memory access behavior
because (1) each triple is written only once into the CFP-
array and, more importantly, (2) triples are written sequen-
tially within each of the n subarrays. For this reason, the
operating system must hold only n physical pages for the
CFP-array so that trashing is avoided.

4. EXPERIMENTS
We ran experiments with different algorithms for frequent-

itemset mining, and different data structures for FP-growth.
We will refer to the combination of FP-growth with the
CFP-tree and the CFP-array as CFP-growth. Our exper-
iments suggest that CFP-growth requires significantly less
main memory than plain FP-growth. The positive effect on
runtime is minor when the dataset is small, but significant
for large data. Compared to existing algorithms, we found
that our data structures make CFP-growth the algorithm
of choice for in-core processing. When the dataset is large,
CFP-growth is multiple times faster than the fastest previ-
ous algorithms.

4.1 Experimental Setup
All experiments were run on a machine with an Intel Core

i7-920 processor (2.67GHz), 6GB of physical memory, and a
64-bit Linux operation system. We implemented the ternary
CFP-tree, the CFP-array and the complete CFP-growth al-
gorithm in C++. We used the GCC compiler with stan-
dard optimization flags. Like all efficient frequent-itemset

Name # TA
Avg. Distinct

Size
card. items

Quest1 25M 100 20k 13GB (33GB)
Quest2 50M 100 20k 26GB (65GB)

Table 3: Summary of datasets

mining algorithms, we make use of a simple memory man-
ager (see Appendix A), which (1) avoids expensive malloc

calls when creating new nodes, (2) reduces the pointer size,
and (3) provides unpadded chunks of memory. For CFP-
growth, the memory manager allocates two separate chunks
of 8GB virtual memory; thrashing occurs when the actual
memory usage exceeds 6GB. The first chunk is used for stor-
ing ternary CFP-trees (one at a time), the second chunk is
used for CFP-arrays (multiple at a time).

We restrict the maximum length of a single chain node to
15; longer chains are broken into multiple chain nodes. Al-
though longer chains may have lower memory requirements,
we found that both runtime overhead as well as memory
fragmentation increase. We perform construction of new
chain nodes only when a new leaf is inserted; we do not
merge existing chain nodes. Note that chain nodes may be
split when subsequent transactions are inserted.

To evaluate the compression ratio of CFP-growth, we used
all of the real-world datasets in the FIMI repository [8]. The
FIMI repository has been created for the purpose of evaluat-
ing different frequent-itemset mining algorithms; it contains
both data and implementations. Provided datasets include
retail [5], connect [8], webdocs [19], and accidents [9]. The
size of the raw data varies from 335kB to 1.4GB.

For our performance experiments, we generated two syn-
thetic datasets generated with the IBM Quest Dataset Gen-
erator [2]. All datasets were stored in plain text files, which
follow the standard FIMI format. Each line consists of a
list of items that constitute a single transaction. The av-
erage storage space per occurrence of each item is below 6
bytes. Table 3 summarizes the characteristics of the syn-
thetic datasets. The size in brackets denotes the size of the
IBM Quest output before conversion to the FIMI file format.

An important part of the frequent-itemset mining is data
input. We implemented asynchronous double buffering, i.e.,
we work with two input buffers: one that is being processed
and one that is being loaded from disk. We found that
the build phase of the initial ternary CFP-tree is still I/O
bound.6 This would even be true if we replaced the text-
based input files by binary files, which corresponds to a file
size reduction of roughly 40%.

4.2 Compression Ratio
The purpose of this set of experiments is to evaluate the

compression ratio of our data structures on a large variety
of real world datasets.

In the first set of experiments, we measured the average
node size in bytes for both the ternary CFP-tree and the
CFP-array. The average is taken over the number of nodes
in the corresponding FP-tree; in the ternary CFP-tree, the
number of nodes may be less because multiple FP-tree nodes
may be merged into a single chain node.

6Our hard disk has a maximum bandwidth of 108MB/s
(measured using hdparm).

retail
(4MB)

connect
(9MB)

kosarak
(31MB)

accidents
(34MB)

webdocs
(1.4GB)

Quest1
(13GB)

Quest2
(26GB)

Dataset

Av
er

ag
e

no
de

 s
iz

e
(b

yt
es

)

0

1

2

3

4

5

6

7
High support Medium support Low support

small datasets large datasets

(a) Average CFP-tree node size

retail
(4MB)

connect
(9MB)

kosarak
(31MB)

accidents
(34MB)

webdocs
(1.4GB)

Quest1
(13GB)

Quest2
(26GB)

Dataset

Av
er

ag
e

no
de

 s
iz

e
(b

yt
es

)

0

1

2

3

4

5

6

7
High support Medium support Low support

small datasets large datasets

(b) Average CFP-array node size

Figure 6: Average node sizes for different datasets

We determined the node size of state-of-the-art implemen-
tations of FP-growth by investigating source code. We found
that each node requires 40 bytes of main memory in most
implementations, including [12]. During compilation, the
compiler performs alignment optimization which increases
node size to 48 bytes; this behavior can be avoided with ap-
propriate modifications of the source code. We assume such
a modification, and take 40 bytes per node as the baseline.

Figure 6(a) shows the average node size of a ternary
CFP-tree built from the retail, connect, kosarak, accidents,
webdocs, Quest1, and Quest2 datasets with various choices
of minimum support (ξhigh = 0.31%, ξmedium = 0.07%,
ξlow = 0.01%). We omit results for the other FIMI datasets,
which have similar characteristics. The ternary CFP-tree is
most effective for the webdocs dataset, which benefits heav-
ily from node chaining. On this dataset, the space consump-
tion per node averages to about 2 bytes. The lowest observed
average node size of 1.56 bytes is obtained with a minimum
support of ξ = 2.5% (not shown). This corresponds to a 25x
size reduction compared to the standard FP-tree. When the
minimum support decreases, the tree size increases and the
ternary CFP-tree branches out more. Therefore, the tree
has less or shorter chains so that the average node size in-
creases slightly. This behavior can also be observed on the
retail dataset, which exhibits the highest average node size
of 5.7 bytes. This corresponds to a 7x reduction of memory
consumption.

Results for the CFP-array are given in Figure 6(b). Here,
the average node size is dominated by the ∆pos field. This
field requires the most space in the webdocs, Quest1, and
Quest2 datasets. For all datasets, the average node size is
below 5 bytes; it is close to 4 bytes in the best cases. These
node sizes correspond to an 8x–10x reduction of memory
consumption.

4.3 Build Phase and Conversion
We next investigated the build phase of CFP-growth,

including the conversion of the ternary CFP-tree to the
CFP-array. For this set of experiments, we use the
Quest1 dataset; the datasets from the FIMI repository
are so small that no memory bottleneck arises. We com-
pare our algorithm against the best-performing FP-growth
implementation—proposed by Grahne and Zhu [12]—of the
FIMI repository. Other implementations and algorithms are
discussed in Section 4.5.

Figure 7(a) shows the time to build the ternary CFP-tree
and convert it to the CFP-array (for CFP-growth) or just
the time to build an FP-tree (for FP-growth). We varied the
minimum support ξ during the experiments, but show the
corresponding number of FP-tree nodes on the x-axis. This
presentation highlights the behavior of the algorithms under
memory pressure. We also plot the time required for scan-
ning the data. Recall that FP-growth performs two scans:
The first scan counts the frequency of each item, while the
second scan builds the prefix tree. We found that FP-growth
and CFP-growth perform similarly for small prefix trees.
The slight advantage of CFP-growth may be explained by
our usage of double buffering; adding double buffering to
the FP-growth implementation may also speed it up slightly.
Note that the extra runtime of CFP-growth for conversion
to the CFP-array is relatively small. For example, the con-
version of a ternary CFP-tree with 150M nodes requires 22s;
a single scan of the data alone takes 186s.

As the tree size increases, the build time of the FP-tree
explodes. This is because the tree size quickly exceeds the
available main memory (6GB) so that thrashing occurs; see
Figure 7(b). In fact, for a tree size of about 145M nodes, the
FP-tree required 6.5GB of main memory and took roughly
8.5h to build. In contrast, CFP-growth can process much
larger trees without thrashing. The CFP-tree and the CFP-
array together hit the main memory limit for a tree size of
roughly 950M nodes. As we go beyond this size, the runtime
of CFP-growth starts to increase more quickly but remains
acceptable. For example, a prefix tree of 1,300M nodes cor-
responds to a 2.0GB CFP-tree and a 6.0GB CFP-array. Still
CFP-growth requires only about 800s to build and convert
the tree. To see why, observe that the CFP-tree fits entirely
into main memory so that thrashing only occurs during con-
version. Memory access during conversion is almost sequen-
tial so that the amount of thrashing is expected to be quite
low. As we go to even larger tree sizes, thrashing increases
heavily. For example, to build and convert a tree of 1.75B
nodes, CFP-growth requires 4,000s.

4.4 Overall Performance
We move on to experiments that cover the overall per-

formance of FP-growth and CFP-growth. As before, we
compare our CFP-growth implementation with the best-
performing FP-growth implementation of the FIMI repos-
itory; see the next section for a comparison with other algo-

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

Number of nodes (millions)

B
ui

ld
in

g
tim

e
(s

)

one scan

two scans

CFP−tree +
CFP−arrayFP−tree [12]

(a) Tree build time

0 200 400 600 800 1000 1200 1400

0

1

2

3

4

5

6

7

Number of nodes (millions)

M
em

or
y

us
ag

e
(G

B
)

out−of−core
in−core

FP−tree [12]

CFP−tree

CFP−array

CFP−tree +
CFP−array

(b) Tree memory requirements

0 200 400 600 800 1000 1200 1400

0

1000

2000

3000

4000

Number of nodes (millions)

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

CFP−growth

FP−growth [12]

 4% 3.4% 2.8%
2.4%

2.0%
1.8%

1.6%

1.4%
 (min. support)

(c) Total execution time

0 200 400 600 800 1000 1200 1400

0

2

4

6

8

Number of nodes (millions)

M
em

or
y

us
ag

e
(G

B
) out−of−core

in−core

CFP−growth
(peak)

CFP−growth
(avg)FP−growth [12]

(peak)

(d) Total memory requirements

Figure 7: Tree build phase and Full Frequent-Itemset Mining on Quest1

rithms. In contrast to the FP-growth implementation, our
CFP-growth implementation does not perform any particu-
lar optimization of the mining step. We chose this approach
because our focus is mainly on overall memory consumption.
Note that we implemented the mining phase in a sequential
fashion; it can be easily parallelized via sharing of its data
structures (CFP-tree or CFP-array) across multiple proces-
sors.

The total execution time and memory consumption for
various values of minimum support are shown in Figures 7(c)
and 7(d), respectively. As before, the x-axis shows the tree
sizes of the initial FP-tree corresponding to the choice of
minimum support. For FP-growth we give the peak mem-
ory consumption. For CFP-growth, we instrumented the
source code to also obtain the average memory consump-
tion. As can be seen, CFP-growth outperforms FP-growth
for all problem sizes. As mentioned previously, the perfor-
mance advantage of CFP-growth for small tree sizes may
be a consequence of our use of double buffering when build-
ing the initial tree. As tree sizes increase, FP-growth ex-
ceeds the available main memory and its overall execution
time increases significantly. For example, at 135M nodes
(ξ = 3.24%), FP-growth has a peak memory consumption of
8.1GB and requires 8,696s to complete. For the same mini-
mum support, CFP-growth has a peak memory consumption
of 1.6GB and requires 438s to complete. This corresponds
to a speed-up of 20x. For larger tree sizes (smaller support),
the speed-up increases further.

CFP-growth scales well up to an initial tree size of 930M
nodes. At this point, the peak memory consumption hits the
main memory size of 6GB. Compared to FP-growth, which
reaches this size at 130M nodes, CFP-growth can perform
pure in-core processing for a 7.5x larger tree. Note that
the non-linear increase of runtime and memory consumption
of CFP-growth results from the fact that, as the minimum
support decreases, more and more itemsets become frequent.
To find these itemsets, more work has to be done and more
conditional CFP-trees have to be created and stored in main
memory.

The overall behavior of both FP-growth and CFP-growth
can be summarized as follows:

1. Best performance is achieved when all data structures
fit in main memory.

2. The performance degrades but still remains acceptable
when only the working set of the data structures fit in
main memory and the remaining data structures are
swapped to disk.

3. A strong performance degradation occurs when the
working set does not fit in memory.

The main advantage of CFP-growth is that the transitioning
from 1 to 3 occurs at a much slower pace.

●
●

●

●

� ��� ��� ��� ��� ���

�

���

����

����

����

����

�	
�������������
��������

�
��
�	
���
��
��

��
��
�

���� �!�"

���##$�%�&�'(

�)��*+�%�,(

��� �!�"�)��$�%��(

�- �.'- �.�- �./-
�.�-

�
��.��	00���

�.�-

(a) Comparison to FP-growth-based algorithms on
Quest1

� ��� ��� ��� ��� ���

�

�

�

�

	

��

��

������������������������

�
��

��
��

��
��

��
��

�
�

●

●●●

�� !��!"���
��!"���

#$%!���& '

$%!������(�)��*

#+!%,-�(�.*

$%!���& '!+����(��*

(b) Peak memory consumption of FP-growth-based algo-
rithms on Quest1

0 100 200 300 400 500

0

500

1000

1500

2000

2500

Number of nodes (millions)

E
xe

cu
tio

n
tim

e
(s

) nonordfp [23] LCM ver. 2 [29]

CFP−growthAFOPT [18]

4% 3.6% 3.2% 2.8%
2.5%

(min. support)

2.3%

(c) Comparison to FIMI algorithms on Quest1

� ��� ��� ��� ��� ���

�

���

����

����

����

����

����

�	
�������������
��������

�
��
�	
���
��
��

��
��
� ●

●

●

�� ���� ���� ����
����

�
�����	 ���

����

!"#�$�����%�&'

"()*+�,�-

.(/)0�%��'

()*112�%�3��'

(d) Comparison with most competitive algorithms on
Quest2

Figure 8: Comparison to other algorithms

4.5 Comparison With Other Algorithms
We compared CFP-growth to several alternative algo-

rithms. Fast implementations of these algorithms have been
taken from the FIMI repository [8] as well as the PAR-
SEC benchmark suite [4]. We used both the Quest1 and
Quest2 datasets. Some algorithms had very high execution
times even with the highest minimum support used in our
experiments (ξ = 4.0%); for example, we stopped Patrici-
aMine [21] after 2 hours of working at the highest support
level (it used only 1.3GB of main memory at this time). The
remaining algorithms have been used in our experiments.

In a first set of experiments, we compared CFP-growth
with the algorithms CT-pro [27], FP-growth-Tiny [20], and
FP-array [16],7 each of which improves FP-growth with cer-
tain optimizations. The execution time and peak mem-
ory consumption on the Quest1 dataset are shown in Fig-
ures 8(a) and 8(b), respectively. CFP-growth consistently
outperforms all three FP-growth variants across all choices
of minimum support. Both FP-growth-Tiny and CT-pro
consume the entire available main memory (6GB) at a min-
imum support of ξ = 3.6% (≈ 80M nodes), so that ex-
pensive out-of-core computation is necessary even when the
minimum support is large. For example, FP-growth-Tiny
required about 38 hours at this point. The FP-array im-
plementation always requires more than the available main

7The FP-array implementation has been taken from the
PARSEC benchmark suite [4].

memory because it loads the complete dataset into main
memory during the first scan. During the second (in-
memory) scan, the FP-tree is built using the memory space
of already processed input data. Our experiments indicate
that the FP-array has high costs for the first two scans as
well as the FP-tree to FP-array conversion, but it scales
better than FP-growth-Tiny and CT-pro. FP-array’s min-
ing procedure goes out-of-core at a minimum support of
ξ = 2.6%. At this point, CFP-growth is already an order of
magnitude faster.

Figure 8(c) shows the execution time of CFP-growth
and the best-performing FIMI algorithms—nonordfp [23],
LCM (ver. 2) [29] and AFOPT [18]—on the Quest1 dataset.
The nonordfp implementation required about 1,200s at the
highest minimum support of ξ = 4.0%. At the slightly
smaller value of ξ = 3.6%, the time increases drastically
to 12,000s. This is caused by the high memory require-
ments of nonordfp, which forces early out-of-core computa-
tion. LCM as well as AFOPT scale to larger trees. AFOPT
is the slowest of the remaining algorithms. LCM and CFP-
growth perform similar (with LCM being slightly faster) up
to ξ = 2.8%. From this point on, both LCM as well as
AFOPT go out-of-core and their performance degrades ac-
cordingly. CFP-growth performs in-core computation up to
ξ = 1.6% (c.f. Figure 7(d)). At that level, the CFP-tree
contains 900M nodes; this is 3x larger than the out-of-core
threshold for LCM and AFOPT.

We observe different trends in behavior on the larger
Quest2 dataset, which has twice as many transactions. The
results are shown in Figure 8(d). As before, the FP-array
implementation has high execution time even for the large
minimum support values; similar to Quest1, its mining pro-
cedure goes out-of-core at a minimum support of ξ = 2.6%.
Since the memory requirement of LCM depends directly on
the number of transactions, the algorithm breaks down much
earlier (ξ = 3.2%). This dependency on input size renders
LCM problematic for datasets with many transactions. In
contrast, AFOPT shows similar performance as in the previ-
ous experiments, but CFP-growth shows better scalability.
Comparing performance on Quest1 and Quest2 at ξ = 3.2%,
we find that AFOPT runtime increases by 50%, while the
runtime of CFP-growth increases by only 25%. This behav-
ior results from the fact that the cost of the mine phase are
similar on both datasets, but the build phase is more ex-
pensive on Quest2. As before, AFOPT goes out-of-core for
support values larger than ξ = 2.5%. At this point, CFP-
growth is significantly more efficient than both AFOPT and
LCM.

5. RELATED WORK
Recent work on prefix-tree based frequent-itemset mining

can be divided into four major areas: (1) memory reduc-
tion, (2) CPU reduction, (3) out-of-core processing, and (4)
distributed FP-growth. Many of the approaches are orthog-
onal to our work; combinations may thus provide further
improvement.

Research in (1) focuses on the reduction of the memory
requirements of FP-growth. This paper belongs to this class.
Özkural et al. propose FP-growth-Tiny [20], which does not
create conditional FP-trees and performs all work on the
initial big FP-tree. On large data, this initial tree is too
large to fit in main memory. Sucahyo et al. propose two
algorithms named CT-ITL [26] and CT-PRO [27], which
both work with a compressed FP-tree structure that avoids
repeated storage of similar subtrees. Its compression ra-
tio is less than that of CFP-growth. Note that each of the
aforementioned approaches achieves memory reduction by
removing nodes, subtrees, or even complete FP-trees. In
contrast, CFP-growth modifies the physical design of the
tree. Pietracaprina et al. [21] use a Patricia trie to rep-
resent the base data. Our chain nodes are based on this
idea, but we merge nodes slightly differently and use com-
pression techniques. The CFP-array is inspired by the core
data structure of nonordfp [23], which in the mine phase
stores the count and parent fields of all nodes in two sepa-
rate arrays. The CFP-array can be seen as refinement with
better navigational properties and lower space consumption.
nonordfp does not reduce memory in the build phase.

Approaches in class (2) adapt FP-growth to the charac-
teristics of modern hardware. These approaches focus on
small problem sizes, where memory bottlenecks are not an
issue. They all use two different data structures for the build
and mine phase of FP-growth; the separation of CFP-tree
and CFP-array was inspired by this idea. In contrast to
our approach, however, the CPU-optimized algorithms un-
roll the paths from each leaf node to the root. Therefore, the
nodes of each path are stored continuously in memory. This
procedure improves cache locality but increases the size of
the FP-tree. Examples of such approaches include the CC-
tree [10] and the FP-array [16]. Although these optimiza-

tion significantly speed up the mining process, the CC-tree
requires twice as much memory as the FP-tree [16], while
the FP-array requires roughly the same amount of memory
as regular FP-growth.

Research in out-of-core mining—class (3)—focuses on the
case where the FP-tree does not fit into main memory. One
approach is to use sampling [28]; this leads to approximate
results so that some frequent itemsets may not be found.
Buehrer [6] classifies out-of-core algorithms and proposes
I/O-conscious optimizations that reduce the overhead of
out-of-core processing. In contrast, we try to avoid out-
of-core processing to the extent possible.

Research in class (4) adapts FP-growth to parallel or dis-
tributed processing. Li et al. [17] propose a distributed FP-
growth implementation based on MapReduce. They divide
the data into sets of “group-dependent transactions,” which
form independent FP-trees. Depending on the dataset, such
a partitioning may or may not be effective. Buehrer et. al [7]
propose a parallel implementation of FP-growth that mini-
mizes I/O and communication overhead based on an efficient
tree pruning method.

6. CONCLUSION
The discovery of frequent itemsets in large datasets is a

fundamental task in data mining. Prefix-tree algorithms be-
long to the fastest of the available algorithms but have exces-
sive memory consumption. This may force out-of-core pro-
cessing, which significantly increases runtime. To address
this problem, we introduce two highly-tuned data struc-
tures: the CFP-tree and the CFP-array. Both data struc-
tures exploit a combination of structural changes to the FP-
tree and lightweight compression techniques. The resulting
reduction of memory consumption—a factor of 7x–25x in
our experiments—allows in-core processing for significantly
larger datasets. No significant overhead is imposed when
mining small datasets. Our algorithm thus constitutes an
efficient solution for in-core frequent-itemset mining on a
wide range of datasets.

7. REFERENCES
[1] R. Agrawal, T. Imieliński, and A. Swami. Mining

association rules between sets of items in large
databases. In SIGMOD, pages 207–216, New York,
NY, USA, 1993. ACM.

[2] R. Agrawal and R. Srikant. Quest synthetic data
generator. IBM Almaden Research Center.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB, pages 487–499, 1994.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
parsec benchmark suite: Characterization and
architectural implications. In PACT, October 2008.

[5] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using
association rules for product assortment decisions: A
case study. In Knowledge Discovery and Data Mining,
pages 254–260, 1999.

[6] G. Buehrer, S. Parthasarathy, and A. Ghoting.
Out-of-core frequent pattern mining on a commodity
pc. In SIGKDD, pages 86–95, New York, NY, USA,
2006. ACM.

[7] G. Buehrer, S. Parthasarathy, S. Tatikonda, T. Kurc,
and J. Saltz. Toward terabyte pattern mining: an

architecture-conscious solution. In PPoPP, pages
2–12, New York, NY, USA, 2007. ACM.

[8] Frequent Itemset Mining Implementations Repository:
http://fimi.cs.helsinki.fi/.

[9] K. Geurts, G. Wets, T. Brijs, and K. Vanhoof.
Profiling high frequency accident locations using
association rules. In Proceedings of the 82nd Annual
Transportation Research Board, Washington DC.
(USA), January 12-16, page 18pp, 2003.

[10] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim,
A. Nguyen, Y.-K. Chen, and P. Dubey.
Cache-conscious frequent pattern mining on a modern
processor. In VLDB, pages 577–588, 2005.

[11] B. Goethals and M. J. Zaki. Advances in frequent
itemset mining implementations: report on fimi’03.
SIGKDD Explorations, 6(1):109–117, 2004.

[12] G. Grahne and J. Zhu. Efficiently using prefix-trees in
mining frequent itemsets. In FIMI, 2003.

[13] J. Han. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2005.

[14] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In SIGMOD, pages
1–12, New York, NY, USA, 2000. ACM.

[15] D. E. Knuth. The Art of Computer Programming,
Volume III: Sorting and Searching. Addison-Wesley,
1973.

[16] E. Li and L. Liu. Optimization of frequent itemset
mining on multiple-core processor. In VLDB, pages
1275–1285, 2007.

[17] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y.
Chang. Pfp: parallel fp-growth for query
recommendation. In RecSys, pages 107–114, New
York, NY, USA, 2008. ACM.

[18] G. Liu, H. Lu, and J. X. Yu. Afopt: An efficient
implementation of pattern growth approach. In In
Proceedings of the ICDM workshop, 2003.

[19] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri.
Webdocs: a real-life huge transactional dataset. In
FIMI, 2004.

[20] E. Özkural and C. Aykanat. A space optimization for
fp-growth. In FIMI, 2004.

[21] A. Pietracaprina and D. Zandolin. Mining frequent
itemsets using patricia tries. In FIMI, 2003.

[22] J. R. Punin, M. S. Krishnamoorthy, and M. J. Zaki.
Web usage mining - languages and algorithms. In In
Studies in Classification, Data Analysis, and
Knowledge Organization, pages 88–112.
Springer-Verlag, 2001.

[23] B. Rácz. nonordfp: An fp-growth variation without
rebuilding the fp-tree. In FIMI, 2004.

[24] H. K. Reghbati. An overview of data compression
techniques. IEEE Computer, 14(4):71–75, 1981.

[25] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652–686, 1985.

[26] Y. G. Sucahyo and R. P. Gopalan. Ct-itl : Efficient
frequent item set mining using a compressed prefix
tree with pattern growth. In ADC, pages 95–104, 2003.

[27] Y. G. Sucahyo and R. P. Gopalan. Ct-pro: A
bottom-up non recursive frequent itemset mining

continuous memory

used memory unused memory

7-byte queue13-byte queue next-free

Figure 9: Illustration of our memory manager

algorithm using compressed fp-tree data structure. In
FIMI, 2004.

[28] H. Toivonen. Sampling large databases for association
rules. In VLDB, pages 134–145, San Francisco, CA,
USA, 1996. Morgan Kaufmann Publishers Inc.

[29] T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2:
Efficient mining algorithms for
frequent/closed/maximal itemsets. In FIMI, 2004.

[30] J. T.-L. Wang, M. J. Zaki, H. Toivonen, and
D. Shasha, editors. Data Mining in Bioinformatics.
Springer, 2005.

[31] T. Westmann, D. Kossmann, S. Helmer, and
G. Moerkotte. The implementation and performance
of compressed databases. SIGMOD Record,
29(3):55–67, 2000.

[32] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules.
Technical report, Rochester, NY, USA, 1997.

APPENDIX
A. MEMORY MANAGEMENT

We implemented a simple but effective memory manager
for CFP-growth. The memory manager is aware of the fact
that (1) our compression scheme leads to different node sizes
and that (2) node sizes may change as new transactions are
processed (e.g., count values may grow, references to new
nodes may be added). We exploit the fact that the mem-
ory footprint of a compressed node is within a fixed range,
i.e., from 7 up to 24 bytes (three 40-bit pointers; 9 byte for
∆item, pcount, and compression mask); smaller nodes are
stored as embedded nodes.

Figure 9 illustrates our memory manager. The memory is
divided into two continuous parts: used memory (consisting
of nodes and free memory chunks) and unused memory. A
next-free pointer separates these two parts. In used mem-
ory, we connect all free memory chunks of the same size with
a LIFO queue. The elements of the queue are stored directly
in the memory chunks being managed. This is possible be-
cause the queue actually contains the locations of these free
memory chunks, and only 5 bytes are needed to store such a
location. Whenever a node grows/shrinks from b1 bytes to
b2 bytes, we dequeue a b2-byte chunk from the b2-byte queue.
If no such chunk exists, we create a new b2-byte chunk at
the next-free pointer, which we subsequently increase by
b2 bytes. We then store the updated node in the so-obtained
chunk, and enqueue the node’s old b1-byte chunk to the b1-
byte queue (thereby freeing its memory).

Our memory manager avoids fragmentation but imposes
overhead whenever a node shrinks or grows. For this reason,
we made use of compression techniques that avoid fluctua-
tions of the node sizes to the extent possible.

http://fimi.cs.helsinki.fi/

	Introduction
	Prerequisites
	FP-Growth and the FP-Tree
	Physical Design
	Lightweight Compression

	Compressed Prefix Trees
	Compression Potential
	The CFP-tree
	The Ternary CFP-tree
	The CFP-array
	Conversion

	Experiments
	Experimental Setup
	Compression Ratio
	Build Phase and Conversion
	Overall Performance
	Comparison With Other Algorithms

	Related Work
	Conclusion
	References
	Memory Management

