Distributed Matrix Completion

Christina Teflioudi, Faraz Makari,
Rainer Gemulla

l ' I I I max planck institut
informatik

Matrix Completion

Avatar The Matrix Up
4 2
Alice
3 2
Bob
Charlie 2 :

Matrix Completion

Avatar The Matrix Up
? 4 2
Alice
3 2 ?
Bob
5 ? 3
Charlie

Matrix Completion

e Discover (rank=1)

— User factors
— Movie factors

Alice

Bob

Charlie

H
Avatar The Matrix Up
2.24 1.92 1.18
? 4 2
1.98
3 2 ?
1.21
5 ? 3

2.30

Matrix Completion

H
Avatar The Matrix Up
Discover (rank=1
() 2.24 1.92 1.18
— User factors
— Movie factors | , 4 5
Alice \1.98 3.8 2.3
W 3 2 ?
Charlie {2.30 > ’ >
ariie .
Minimize loss 5.2 2.7

Matrix Completion

Discover (rank=1)
— User factors
— Movie factors

Alice

Bob

o Charlie
Minimize loss

H
Avatar The Matrix Up
2.24 1.92 1.18
? 4 2
1981 | 44 3.8 2.3
3 2 ?
12101 27 2.3 1.4
5 ? 3
2301 | 59 4.4 2.7

Matrix Completion

H
Avatar The Matrix Up
Discover (rank=1
() 2.24 1.92 1.18
— User factors
— Movie factors 5 4 2
Alice |1.98| | 4,4 3.8 2.3
3 2 ?
Charlie {2.30 ° i X
ariie .
Minimize loss 3.2 . 2oy

+ Bias
' i — [WH], }
W.H Z M}[li) + Regularization

Local loss + .

Distributed Matrix Completion

* Real applications can be large
Millions of users, Millions of items, Billions of rating
e.g., Netflix: >20M users, >20k movies, =4B ratings (projected)

Distributed Matrix Completion

* Real applications can be large

* Millions of users, Millions of items, Billions of rating

e.g., Netflix: >20M users, >20k movies, =4B ratings (projected) 7R

Scalable algorithms are necessary. MUSI

Distributed Matrix Completion

* Real applications can be large

* Millions of users, Millions of items, Billions of rating

e.g., Netflix: >20M users, >20k movies, =4B ratings (projected) 7R

Scalable algorithms are necessary. MUSI

* Existing MapReduce algorithms
e.g., DALS, DSGD-MR

e Strength
* Faster than sequential algorithms
 Can handle large datasets

* Drawbacks
* Slow
. Synchronous
. No use of shared memory

Distributed Matrix Completion

Real applications can be large

Millions of users, Millions of items, Billions of rating

e.g., Netflix: >20M users, >20k movies, =4B ratings (projected) 7R

Scalable algorithms are necessary.

Existing MapReduce algorithms

e.g., DALS, DSGD-MR

Strength

Faster than sequential algorithms
Can handle large datasets

Drawbacks

Slow
Synchronous
No use of shared memory

New algorithms
ASGD, DSGD++
Strength

In-memory processing
Exploit multi-core
Asynchronous

Outline

Motivation

Algorithms
— Distributed Alternating Least Squares

— Distributed SGD-based algorithms
* Asynchronous SGD
* DSGD-MR
* DSGD++

Experimental Results
Summary

Alternating Least Squares (ALS)

Alternate

Fix H— optimize for W

W

H

Fixed

H', %)

Alternating Least Squares (ALS)

Alternate

Fix H— optimize for W

Fix W — optimize for H

1%

1%

H

Fixed

”', %)

H

H.,

Fixed

Alternating Least Squares (ALS)

Alternate
* Fix H— optimize for W
* Fix W —optimize for H

For each user/movie: solve a least squares problem

1%

1%

H

Fixed

”', %

H

H.,

Fixed

Alternating Least Squares (ALS)

Alternate
* Fix H— optimize for W
* Fix W —optimize for H

For each user/movie: solve a least squares problem

Distributed ALS similar to [Zhou08]
Difference: on each node multiple threads
instead of multiple processes

W

%

H

Fixed

IV, %)

H

H.,

Fixed

Alternating Least Squares (ALS)

Alternate
* Fix H— optimize for W
* Fix W —optimize for H

For each user/movie: solve a least squares problem

Distributed ALS similar to [Zhou08]
Difference: on each node multiple threads
instead of multiple processes

* Slow (cubic in rank)
* Memory intensive (stores data matrix twice)

1%

W

H

Fixed

Wi

H

H.

Fixed

Outline

Motivation

Algorithms
— Distributed Alternating Least Squares

— Distributed SGD-based algorithms
* Asynchronous SGD
* DSGD-MR
* DSGD++

Experimental Results
Summary

Stochastic Gradient Descent(SGD)

Goal: Find minimum @ of function L
* Pick a starting point 6, 3

| | !
-1.0 -0.5 0.0

!
0.5

|
1.0

Stochastic Gradient Descent(SGD)

Goal: Find minimum @ of function L
* Pick a starting point 6,

=

[
-1.0

I
-0.5

! !
0.0 0.5

|
1.0

Stochastic Gradient Descent(SGD)

Goal: Find minimum @° of function L
* Pick a starting point 6, ey
« Approximate gradient Z'(Gn)

Stochastic Gradient Descent(SGD)

Goal: Find minimum @" of function L

* Pick a starting point 6, ey
« Approximate gradient Z'(Gn)

* Jump “approximately” downbhill

Stochastic Gradient Descent(SGD)

1.0

Goal: Find minimum @ of function L

0.5

* Pick a starting point 6,
* Approximate gradient Z'(Gn)
* Jump “approximately” downbhill

-0.5
]

e Stochastic difference equation

9n+1 — Hn o gni,(enﬂ) =

Stochastic Gradient Descent(SGD)

Goal: Find minimum @" of function L
* Pick a starting point 6,

* Approximate gradient Z'(Gn)

* Jump “approximately” downbhill

e Stochastic difference equation

9n+1 — Hn o gni,(enﬂ)

 Under certain conditions,
asymptotically approximates
(continuous) gradient descent

1.0

0.5

0.0
|

-0.5
]

SGD for Matrix Completion

L= Y v, ~ 1w,

(i./)eZ

Local loss

SGD for Matrix Completion

L= Y (V,—-[WH],)

(i./)eZ

Local loss

Estimate gradient based W |-
on single training point - -

Scale up by # training points N

SGD for Matrix Completion

L= Y (V,—-[WH],)

(i./)eZ

Local loss

Estimate gradient based W |-
on single training point - -

Scale up by # training points N

SGD epoch:

1. Pick a random training point

2. Compute approximate gradient
3. Update W, and H,

4. Repeat N times

Train Loss

8.0e+07 1.0e+08 1.2e+08 1.4e+08

6.0e+07

Netflix Single-Core

o o ALS
A L-BFGS
+ SGD

P>

bt
R S S

I I I I I I
0 1000 2000 3000 4000 5000

Time(s)

Problem Structure

SGD steps depend on each other

Problem Structure

SGD steps depend on each other

Problem Structure

SGD steps depend on each other

H But not all steps are dependent
H.,,
____i___i_ Zol Shared-memory, parallel SGD:
W Tw. | [|z Efficient and simple

Problem Structure

SGD steps depend on each other

H But not all steps are dependent
H.,,
____i___i_ Zol Shared-memory, parallel SGD:
W Tw. | [|z Efficient and simple
V

Parallel SGD slow for larger problem:s.

Outline

Motivation

Algorithms
— Distributed Alternating Least Squares

— Distributed SGD-based algorithms
* Asynchronous SGD
* DSGD-MR
* DSGD++

Experimental Results
Summary

Asynchronous SGD (ASGD)

Each node works on a local copy of the movies matrix H.

H H
ié 4 W 4
VVz V2 Wz Vz
W, £ W, £ W, £

13

Asynchronous SGD (ASGD)

Each node works on a local copy of the movies matrix H.
Local copies are synchronized continuously.

H
Changes Changes
Changes \
H H
W 4 m "
VVz V2 Wz Vz
W, £ W, £ W, £

13

Outline

Motivation

Algorithms
— Distributed Alternating Least Squares

— Distributed SGD-based algorithms
* Asynchronous SGD
* DSGD-MR
* DSGD++

Experimental Results
Summary

Distributed SGD-MapReduce

Block and distribute V

15

Distributed SGD-MapReduce

Block and distribute V
1. Pick a “diagonal”

W, V, Node 1
O

Node 2
O

VV3 1/33 NOde 3

15

Distributed SGD-MapReduce

Block and distribute V
1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)

w, V, Node 1

Node 2

W, V., Node 3

15

Distributed SGD-MapReduce

Block and distribute V
1. Pick a “diagonal”

2. Run SGD on the diagonal (in parallel)

3. Write back the results

Node 1

Node 2

Node 3

15

Distributed SGD-MapReduce

Block and distribute V
1. Pick a “diagonal”

2. Run SGD on the diagonal (in parallel)

3. Write back the results

1 subepoch
1 Map Job
Hl H2 H3
Vi
Vi

Node 1

Node 2

Node 3

15

Distributed SGD-MapReduce

Block and distribute V

Moo=

B W

Pick a “diagonal”
Run SGD on the diagonal (in parallel)

Write back the results
“.y: ” Hl HZ
Move to the next “diagonal -

W, v, Node 1

Node 2

W, v, Node 3

15

Block and distribute V
1.

2.
3.
4

Distributed SGD-MapReduce

_ " . Provably converges
Pick a “diagonal Works well
Run SGD on the diagonal (in parallel)

Write back the results
“.y: ” Hl HZ
Move to the next “diagonal -

/4 V, Node 1

O

Node 2
O

w, Vi, N"Idje 3

15

Block and distribute V
1.

2.
3.
4

Distributed SGD-MapReduce

Provably converges

Pick a “diagonal” Works well
Run SGD on the diagonal (in parallel)
Write back the results

Move to the next “diagonal”

DSGD-MR drawbacks: W, v, Node 1

* Repeatedly reads/writes O
from/to disk

* Synchronous

* No overlapping of
communication and
computation O

* No shared memory

Node 2

VV3 1/31 Node 3

15

Outline

Motivation

Algorithms
— Distributed Alternating Least Squares

— Distributed SGD-based algorithms
* Asynchronous SGD
* DSGD-MR
* DSGD++

Experimental Results
Summary

DSGD++: Direct communication between nodes

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:

* Repeatedly reads/writes
from/to disk

* Synchronous

* No overlapping of
communication and
computation

* No shared memory

Sub-
epoch 1

Sub-
epoch 1

Node 1

Node 2

Node 3

17

DSGD++: Direct communication between nodes

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:

* Repeatedlyreads/writes
from/todisk

* Synchronous

* No overlapping of
communication and
computation

* No shared memory

Sub-
epoch 1

Sub-
epoch 1

Node 1

Node 2

Node 3

17

DSGD++: Overlap Subepochs

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:

* Repeatedlyreads/writes
from/todisk

* Synchronous

* No overlapping of
communication and
computation

* No shared memory

Sub-
epoch 1
(runs)

Sub-
epoch 1
(runs)

Node 1

Node 2

Node 3

DSGD++: Overlap Subepochs

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:

* Repeatedlyreads/writes
from/todisk

* Synchronous

* No overlapping of
communication and
computation

* No shared memory

H, H, H,
Sub-
VVI epoch 1 Node 1
(done) O
Sub- Node 2
Wz epoch 1 0
(done)
Sub- Node 3
W, e

poch 1
(runs) .

18

DSGD++: Overlap Subepochs

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:

* Repeatedlyreads/writes
from/todisk

* Synchronous

* No overlapping of
communication and
computation

* No shared memory

f{1 }{2]13
Sub- Sub-
I/V1 epoch 1 epoch 2
(done) (waits)
Sub-
Wz epoch 1
(done)
Sub-
WG epoch 1

(runs)

Node 1

Node 2

Node 3

DSGD++: Overlap Subepochs

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:

* Repeatedlyreads/writes
from/todisk

* Synchronous

* No overlapping of
communication and
computation

* No shared memory

f{1 fiz]13
Sub- Sub-
I/V1 epoch 1 epoch 2
(done) (waits)
Sub-
Wz epoch 1
(done)
Sub-
WG epoch 1

(runs)

Node 1

Node 2

Node 3

DSGD++: Overlap Subepochs

How to do better in a shared-nothing environment?

DSGD-MR drawbacks: H, H, H,
* Repeatedlyreads/writes
from/to-disk o= Sub-
Wil | epoch 1| | epoch2 Node 1
* Synehroneous (done) (runs) O
* No overlapping of
communication and W Sub- Node 2
. 2 epoch 1
computation (done) O
* No shared memory
Sub-
VV3 epoch 1 NOdDe 3
(runs)

18

DSGD++: Overlay computation and communication

How to do better in a shared-nothing environment?

|
|
|
DSGD-MR drawbacks: 17 1 1?73
* Repeatedly reads/writes . !
from/to-disk W, : : Node 1
* Synehroneous : | O
* No overlapping of | |
communication and : : Node 2
computation : : O
* No shared memory | :
' | Node 3
I :
: 1

19

DSGD++: Overlay computation and communication

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:

* Repeatedlyreads/writes
from/todisk

* Synchronous

* No overlapping of
communication and
computation

* No shared memory

runs

runs

Node 1

Node 2

Node 3

19

DSGD++: Overlay computation and communication

How to do better in a shared-nothing environment?

DSGD-MR drawbacks: H,,|H,, Hzl. H)| H 5,
* Repeatedlyreads/writes =
ﬁ !| I I Q (7)) I |
W sl S| ! Node 1
* Synchronous 2 o 0
I _ _I
* No overlapping of =1
communication and < . Node 2
. (@) |
computation S I : O
* No shared memory - —
Node 3

runs

19

DSGD++: Overlay computation and communication

How to do better in a shared-nothing environment?

DSGD-MR drawbacks: Hulf Hzl. .E
* Repeatedlyreads/writes Q=
from/to-disk wl||s| gl : Node 1
* Synchronous o L
I _ _I
* No-overlappingof o
communicationand & Lo Node 2
computation S o a
* No shared memory =
Node 3

runs

19

DSGD++: Overlay computation and communication

How to do better in a shared-nothing environment?

DSGD-MR drawbacks: Hy|Hy| |H 21. .E

* Repeatedlyreads/writes =
from/to-disk 4 % c | : Node 1

* Synchronous 2 o 0

. -

* No-everlappingef -
communication-and 2 | : Node 2
computation 3 P O

I |
* Noshared-memory ==
Node 3

runs

19

Outline

Motivation

Algorithms
— Distributed Alternating Least Squares

— Distributed SGD-based algorithms
* Asynchronous SGD
* DSGD-MR
* DSGD++

Experimental Results
Summary

Total time (h)

14

12

10

Large Data

16.8

Dataset: 10M x 1M,
1B entries

Parallel SGD
Distributed ALS
Asynchronous SGD
DSGD-MapReduce
DSGD++

oomB0d

DSGD++:
* Fastest
* Best scalability

1x8

2x8 4x8 8x8
Nodes x cores 21

Total time (h)

Insufficient memory

7.98

Very Large Data

8x8

Dataset: 10M x 1M,
10B entries

Parallel SGD
Distributed ALS
Asynchronous SGD
DSGD-MapReduce
DSGD++

OORBE0

DSGD++:

faster on 8 nodes
than any other
method on 16 nodes

16x8

Nodes x cores

22

Outline

Motivation

Algorithms
— Distributed Alternating Least Squares

— Distributed SGD-based algorithms

* Asynchronous SGD
 DSGD-MR
* DSGD++

Experimental Results
Summary

Summary

Existing distributed algorithms for matrix completion mainly
designed for MapReduce

Distributed algorithms for a shared-nothing environment :
— Direct communication of nodes

— Asynchronous

— Overlay computation and communication

— Multi-threading

DSGD++:

— Scales better

— Can reach superlinear speed-ups

— Low memory footprint
— 10M x 1M with 10B entries: ~40min on 16 nodes

Summary

Existing distributed algorithms for matrix completion mainly
designed for MapReduce

Distributed algorithms for a shared-nothing environment :
— Direct communication of nodes

— Asynchronous

— Overlay computation and communication

— Multi-threading

DSGD++:

Thank you
Questions?

— Scales better

— Can reach superlinear speed-ups

— Low memory footprint
— 10M x 1M with 10B entries: ~40min on 16 nodes

