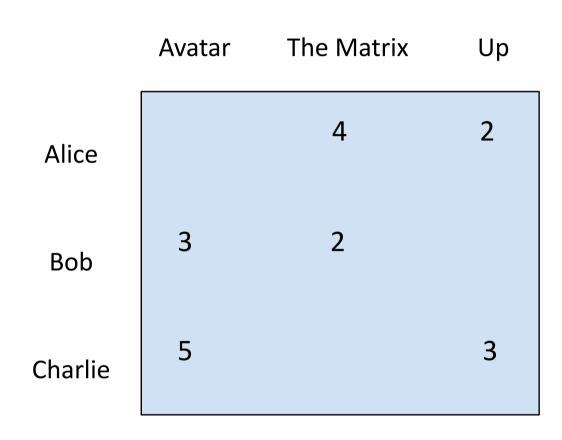
Christina Teflioudi, Faraz Makari, Rainer Gemulla



	Avatar	The Matrix	Up
Alice	?	4	2
Bob	3	2	?
Charlie	5	?	3

User factors

Movie factors

•	Alice	1.98
W	Bob	1.21
	Charlie	2.30

Avatar	The Matrix	Up
2.24	1.92	1.18

H

?	4	2
3	2	?
5	?	3

H

•	Discover	(ran	k=1)
---	----------	------	------

User factors

Movie factors

3	Alice	1.98
W	Bob	1.21
	Charlie	2.30

Minimize loss

ē	1.98	
1	1.21	
ie	2.30	

Avatar	The Matrix	Up
2.24	1.92	1.18

?	4 3.8	2 2.3
3 2.7	2 2.3	?
5 5.2	?	3 2.7

$$\min_{\mathbf{W},\mathbf{H}} \sum_{(i,j)\in Z} (\mathbf{V}_{ij} - [\mathbf{W}\mathbf{H}]_{ij})^2$$

H

•	Discover	(ran	k=1)
---	----------	------	------

User factors

Movie factors

J	Alice	1.98
W	Bob	1.21
	Charlie	2.30

Avatar	The Matrix	Up
2.24	1.92	1.18

?	4	2
4.4	3.8	2.3
3	2	?
2.7	2.3	1.4
5	?	3
5.2	4.4	2.7

Minimize loss

$$\min_{\mathbf{W},\mathbf{H}} \sum_{(i,j)\in Z} (\mathbf{V}_{ij} - [\mathbf{W}\mathbf{H}]_{ij})^2$$

Discover (rank=1)

User factors

	.
 Movie	factors

Alice 1.98 W Bob 1.21 Charlie 2.30

Avatar	The Matrix	Up
2.24	1.92	1.18

H

?	4	2
4.4	3.8	2.3
3	2	?
2.7	2.3	1.4
5	?	3
5.2	4.4	2.7

Minimize loss

$$\min_{\mathbf{W},\mathbf{H}} \sum_{(i,j)\in Z} (\mathbf{V}_{ij} - [\mathbf{W}\mathbf{H}]_{ij})^2$$
Local loss

+ Bias

+ Regularization

+ ...

- Real applications can be large
 - Millions of users, Millions of items, Billions of rating
 e.g., Netflix: >20M users, >20k movies, ≅4B ratings (projected)

- Real applications can be large
 - Millions of users, Millions of items, Billions of rating
 e.g., Netflix: >20M users, >20k movies, ≅4B ratings (projected)

Scalable algorithms are necessary.

- Real applications can be large
 - Millions of users, Millions of items, Billions of rating
 e.g., Netflix: >20M users, >20k movies, ≅4B ratings (projected)

Scalable algorithms are necessary.

- Existing MapReduce algorithms e.g., DALS, DSGD-MR
- Strength
 - Faster than sequential algorithms
 - Can handle large datasets
- Drawbacks
 - Slow
 - Synchronous
 - No use of shared memory

- Real applications can be large
 - Millions of users, Millions of items, Billions of rating
 e.g., Netflix: >20M users, >20k movies, ≅4B ratings (projected)

Scalable algorithms are necessary.

- Existing MapReduce algorithms e.g., DALS, DSGD-MR
- Strength
 - Faster than sequential algorithms
 - Can handle large datasets
- Drawbacks
 - Slow
 - Synchronous
 - No use of shared memory

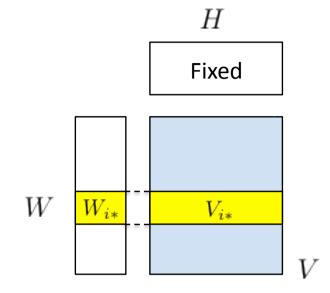
- New algorithms ASGD, DSGD++
- Strength
 - In-memory processing
 - Exploit multi-core
 - Asynchronous

Outline

- Motivation
- Algorithms
 - Distributed Alternating Least Squares
 - Distributed SGD-based algorithms
 - Asynchronous SGD
 - DSGD-MR
 - DSGD++
- Experimental Results
- Summary

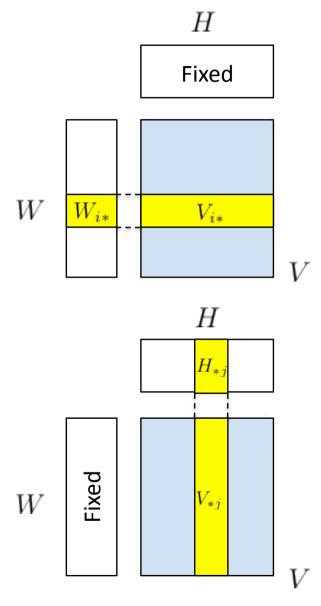
Alternate

Fix H – optimize for W



Alternate

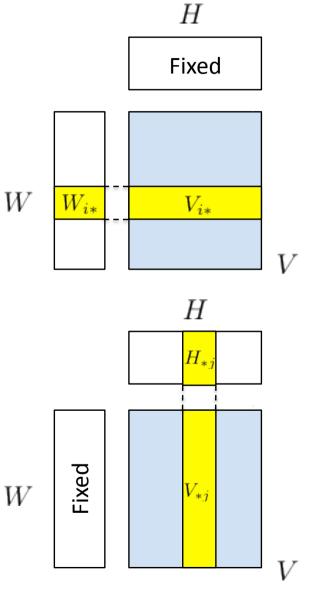
- Fix H optimize for W
- Fix W optimize for H



Alternate

- Fix H optimize for W
- Fix W optimize for H

For each user/movie: solve a least squares problem



Alternate

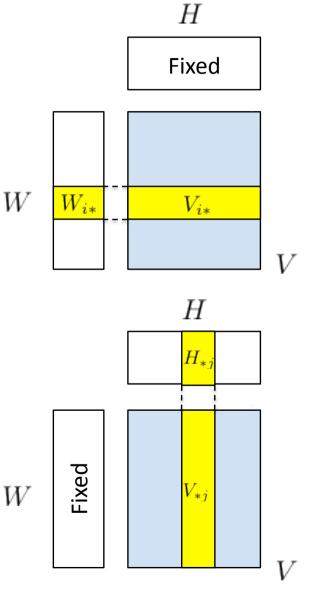
- Fix H optimize for W
- Fix W optimize for H

For each user/movie: solve a least squares problem

Distributed ALS similar to [Zhou08]

Difference: on each node multiple threads

instead of multiple processes



Alternate

- Fix H optimize for W
- Fix W optimize for H

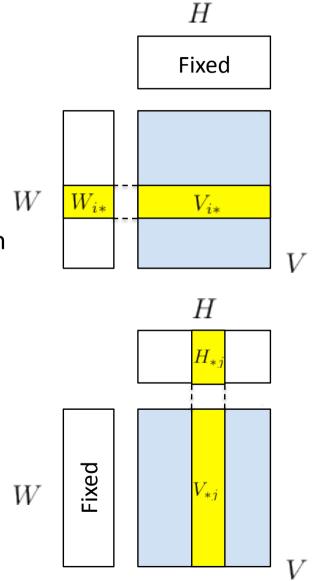
For each user/movie: solve a least squares problem

Distributed ALS similar to [Zhou08]

Difference: on each node multiple threads

instead of multiple processes

- Slow (cubic in rank)
- Memory intensive (stores data matrix twice)

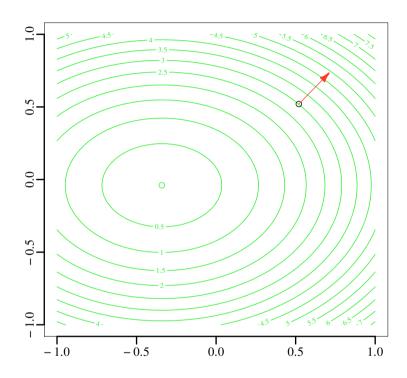


Outline

- Motivation
- Algorithms
 - Distributed Alternating Least Squares
 - Distributed SGD-based algorithms
 - Asynchronous SGD
 - DSGD-MR
 - DSGD++
- Experimental Results
- Summary

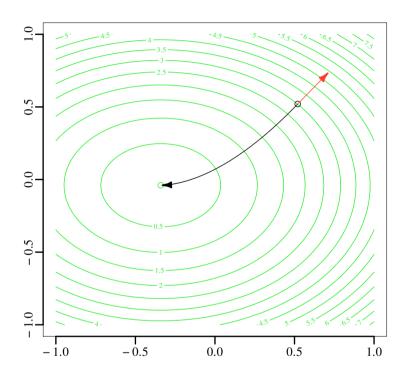
Goal: Find minimum θ^* of function L

• Pick a starting point θ_0



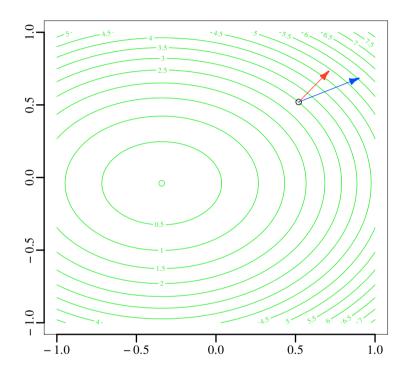
Goal: Find minimum θ^* of function L

• Pick a starting point θ_0



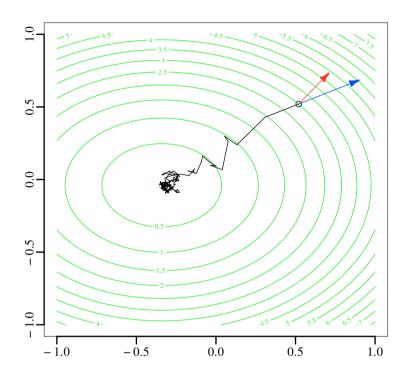
Goal: Find minimum θ^* of function L

- Pick a starting point θ_0
- Approximate gradient $\widehat{L}'(\theta_n)$



Goal: Find minimum θ^* of function L

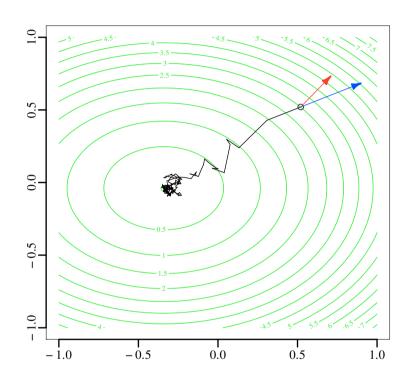
- Pick a starting point θ_0
- Approximate gradient $\widehat{L}'(\theta_n)$
- Jump "approximately" downhill



Goal: Find minimum θ^* of function L

- Pick a starting point θ_0
- Approximate gradient $\widehat{L}'(\theta_n)$
- Jump "approximately" downhill
- Stochastic difference equation

$$\theta_{n+1} = \theta_n - \varepsilon_n \widehat{L}'(\theta_{n+1})$$

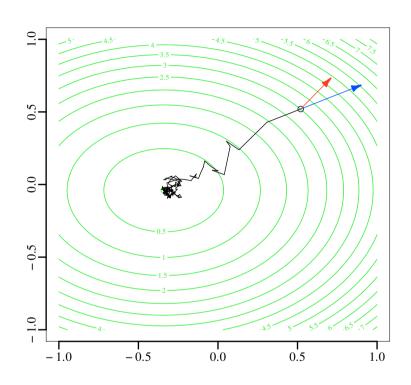


Goal: Find minimum θ^* of function L

- Pick a starting point θ_0
- Approximate gradient $\hat{L}'(\theta_n)$
- Jump "approximately" downhill
- Stochastic difference equation

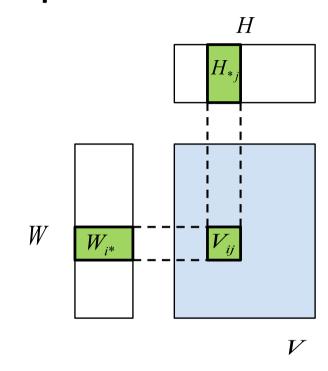
$$\theta_{n+1} = \theta_n - \varepsilon_n \widehat{L}'(\theta_{n+1})$$

Under certain conditions,
 asymptotically approximates
 (continuous) gradient descent



SGD for Matrix Completion

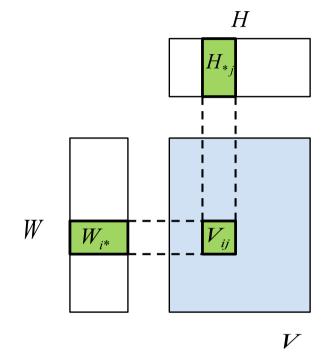
$$L = \sum_{(i,j)\in Z} (V_{ij} - [WH]_{ij})^2$$
Local loss



SGD for Matrix Completion

$$L = \sum_{(i,j)\in Z} (V_{ij} - [WH]_{ij})^2$$
Local loss

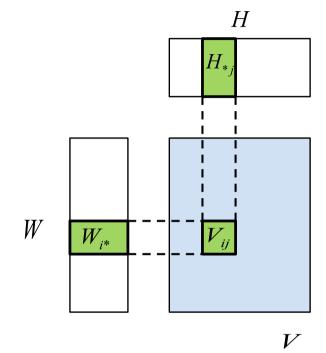
- Estimate gradient based on single training point
- Scale up by # training points N



SGD for Matrix Completion

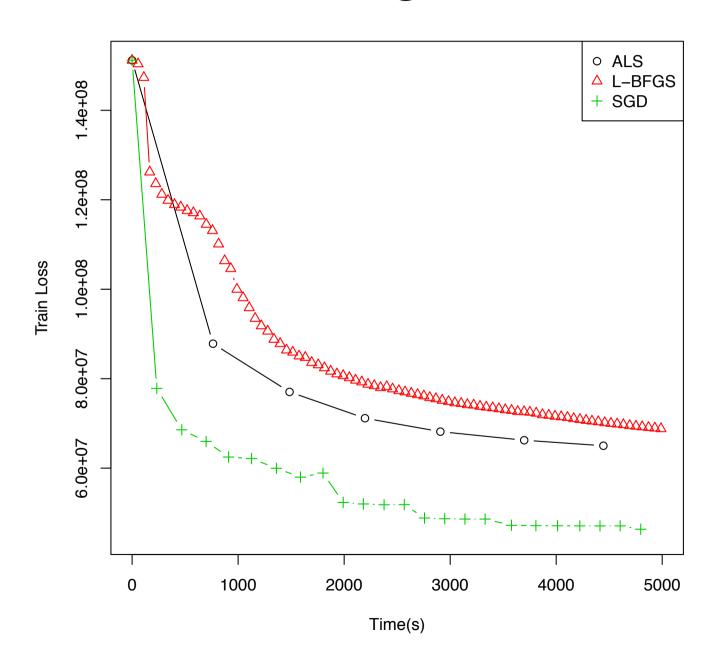
$$L = \sum_{(i,j)\in Z} (V_{ij} - [WH]_{ij})^2$$
Local loss

- Estimate gradient based on single training point
- Scale up by # training points N

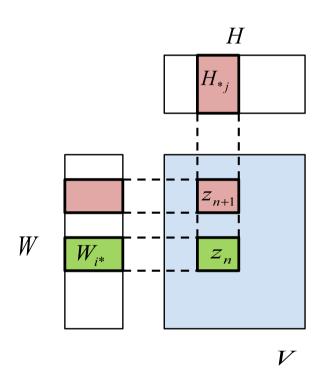


- SGD epoch:
 - 1. Pick a random training point
 - 2. Compute approximate gradient
 - 3. Update W_{i*} and H_{*i}
 - 4. Repeat *N* times

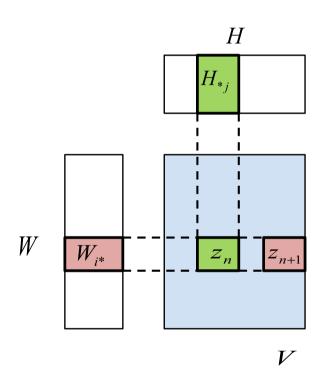
Netflix Single-Core



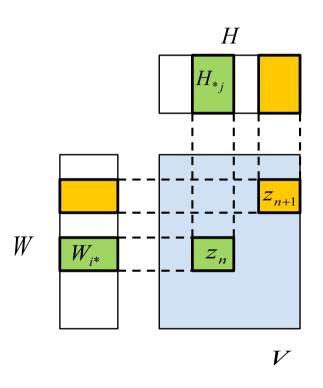
SGD steps depend on each other



SGD steps depend on each other



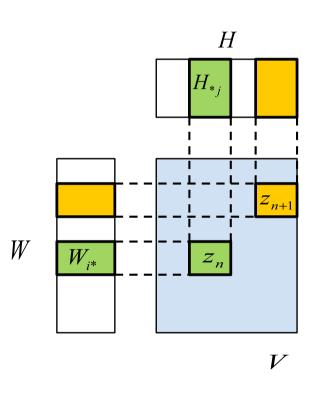
SGD steps depend on each other



But not all steps are dependent

Shared-memory, parallel SGD: Efficient and simple

SGD steps depend on each other



But not all steps are dependent

Shared-memory, parallel SGD: Efficient and simple

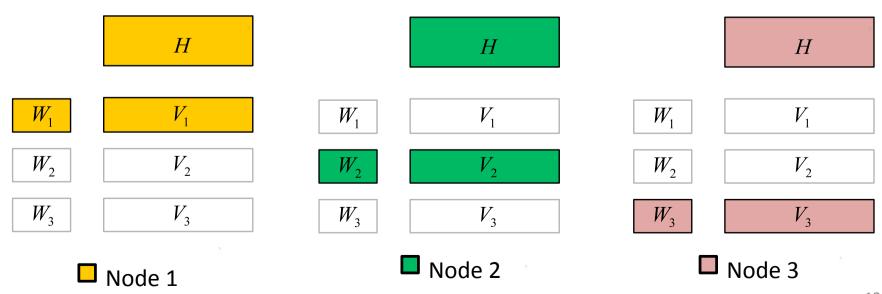
Parallel SGD slow for larger problems.

Outline

- Motivation
- Algorithms
 - Distributed Alternating Least Squares
 - Distributed SGD-based algorithms
 - Asynchronous SGD
 - DSGD-MR
 - DSGD++
- Experimental Results
- Summary

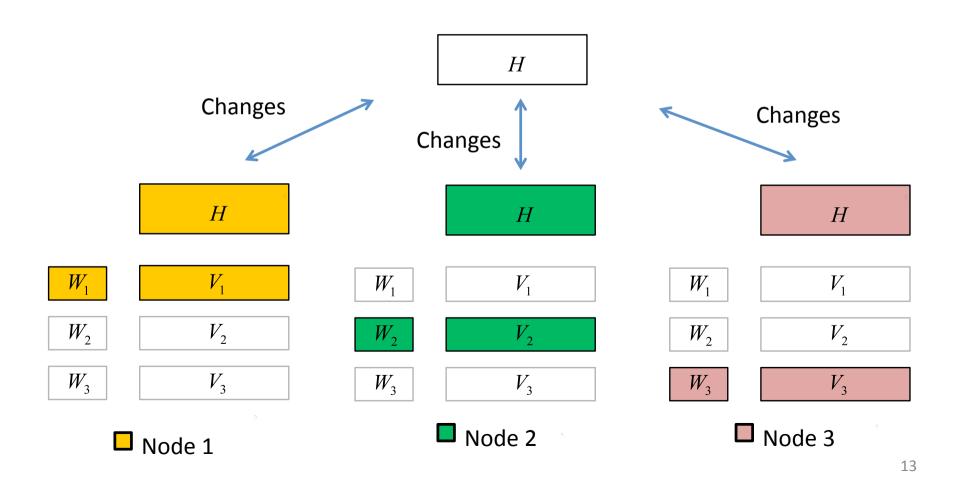
Asynchronous SGD (ASGD)

Each node works on a local copy of the movies matrix H.



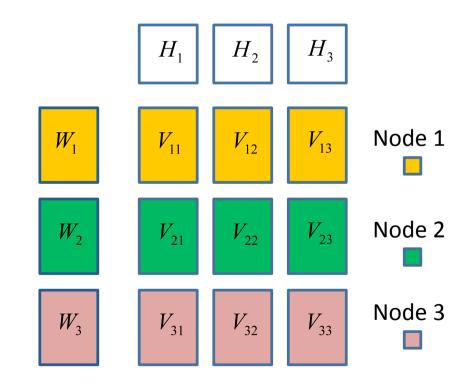
Asynchronous SGD (ASGD)

Each node works on a local copy of the movies matrix H. Local copies are synchronized continuously.



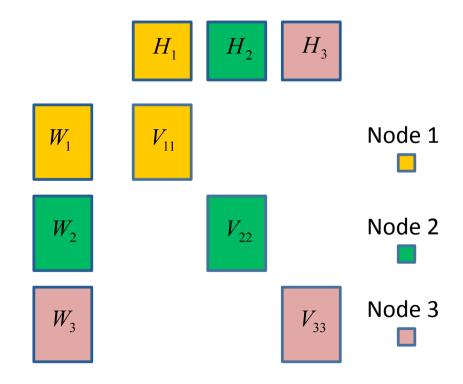
Outline

- Motivation
- Algorithms
 - Distributed Alternating Least Squares
 - Distributed SGD-based algorithms
 - Asynchronous SGD
 - DSGD-MR
 - DSGD++
- Experimental Results
- Summary

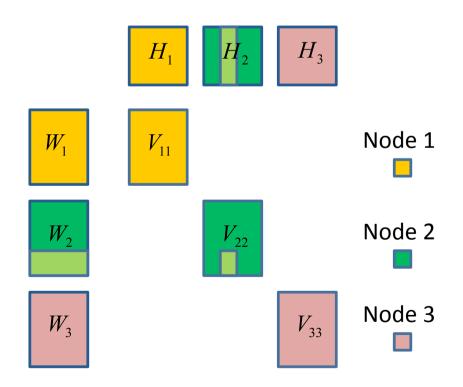


Block and distribute V

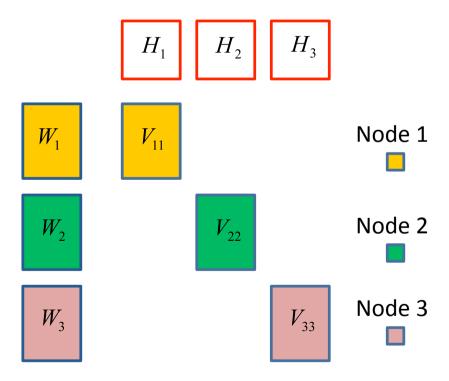
1. Pick a "diagonal"



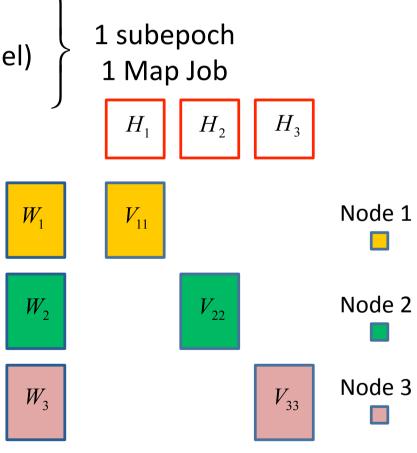
- 1. Pick a "diagonal"
- 2. Run SGD on the diagonal (in parallel)



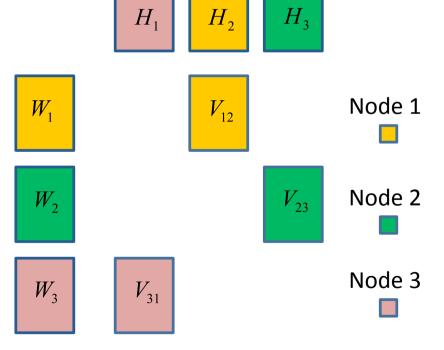
- 1. Pick a "diagonal"
- 2. Run SGD on the diagonal (in parallel)
- 3. Write back the results



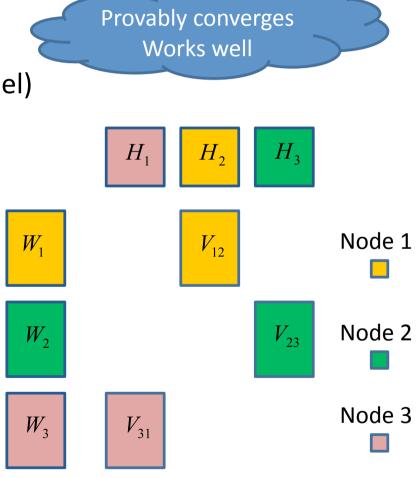
- 1. Pick a "diagonal"
- 2. Run SGD on the diagonal (in parallel)
- 3. Write back the results



- Pick a "diagonal"
- 2. Run SGD on the diagonal (in parallel)
- 3. Write back the results
- 4. Move to the next "diagonal"



- 1. Pick a "diagonal"
- 2. Run SGD on the diagonal (in parallel)
- 3. Write back the results
- 4. Move to the next "diagonal"

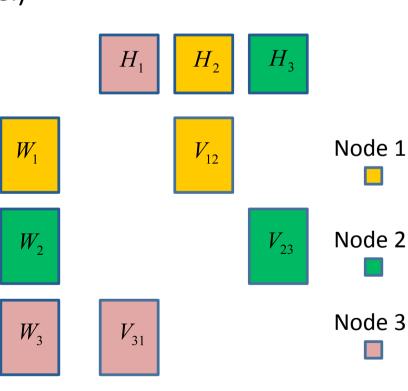


Block and distribute V

- Pick a "diagonal"
- 2. Run SGD on the diagonal (in parallel)
- 3. Write back the results
- 4. Move to the next "diagonal"

DSGD-MR drawbacks:

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



Provably converges

Works well

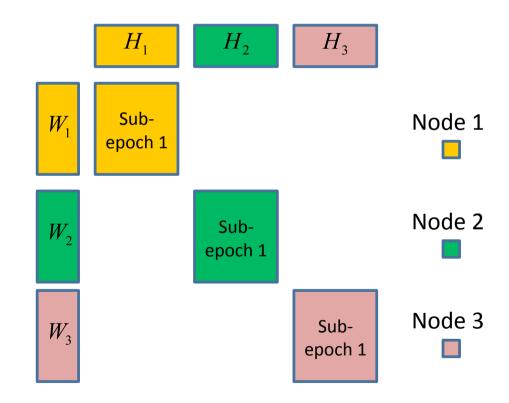
Outline

- Motivation
- Algorithms
 - Distributed Alternating Least Squares
 - Distributed SGD-based algorithms
 - Asynchronous SGD
 - DSGD-MR
 - DSGD++
- Experimental Results
- Summary

DSGD++: Direct communication between nodes

How to do better in a shared-nothing environment?

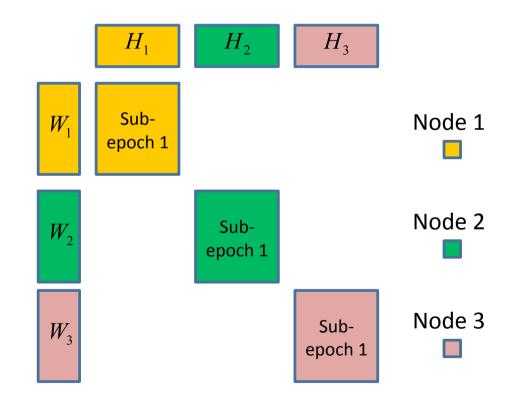
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



DSGD++: Direct communication between nodes

How to do better in a shared-nothing environment?

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



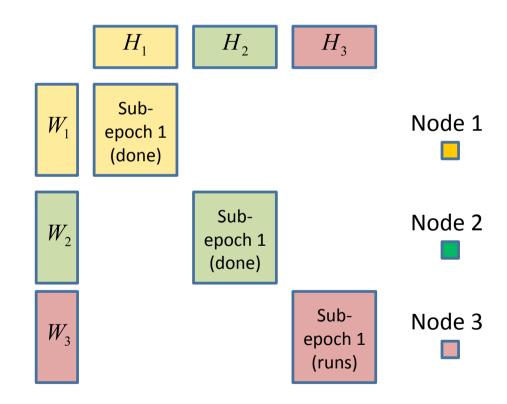
How to do better in a shared-nothing environment?

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



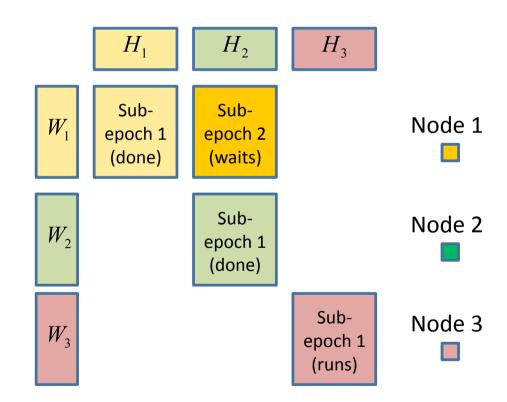
How to do better in a shared-nothing environment?

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



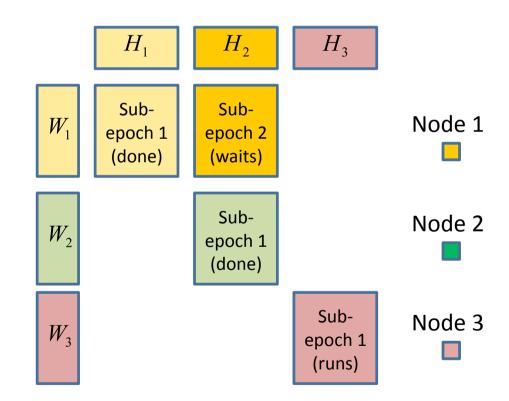
How to do better in a shared-nothing environment?

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



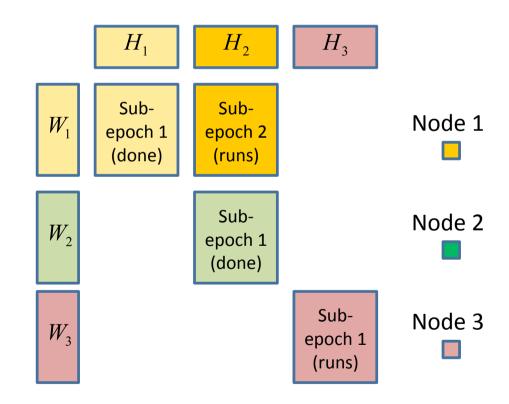
How to do better in a shared-nothing environment?

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



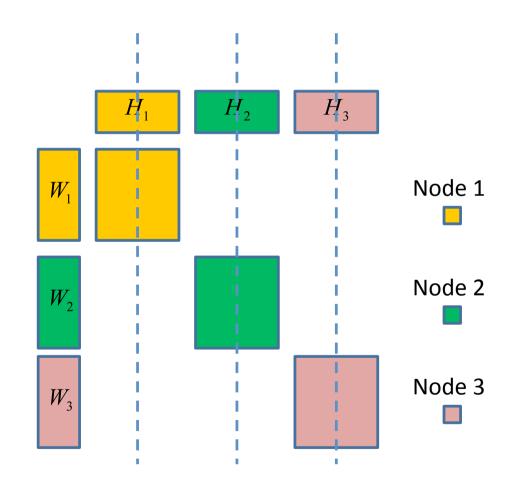
How to do better in a shared-nothing environment?

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



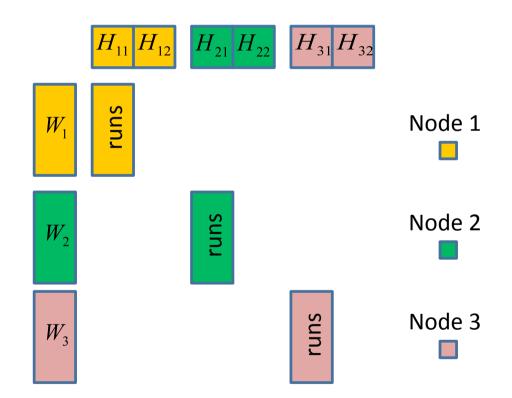
How to do better in a shared-nothing environment?

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



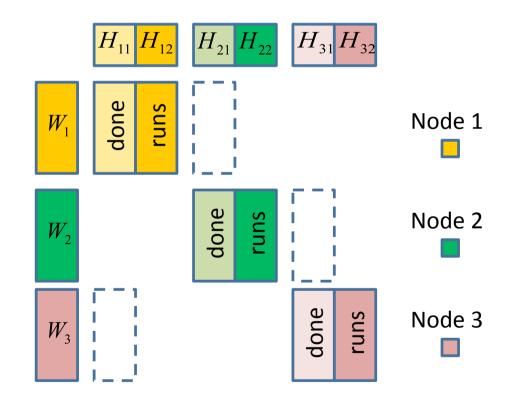
How to do better in a shared-nothing environment?

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



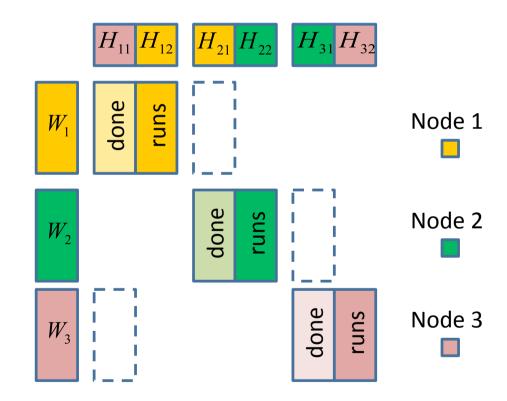
How to do better in a shared-nothing environment?

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



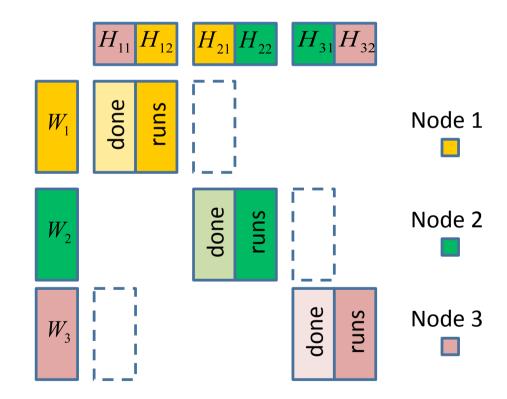
How to do better in a shared-nothing environment?

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



How to do better in a shared-nothing environment?

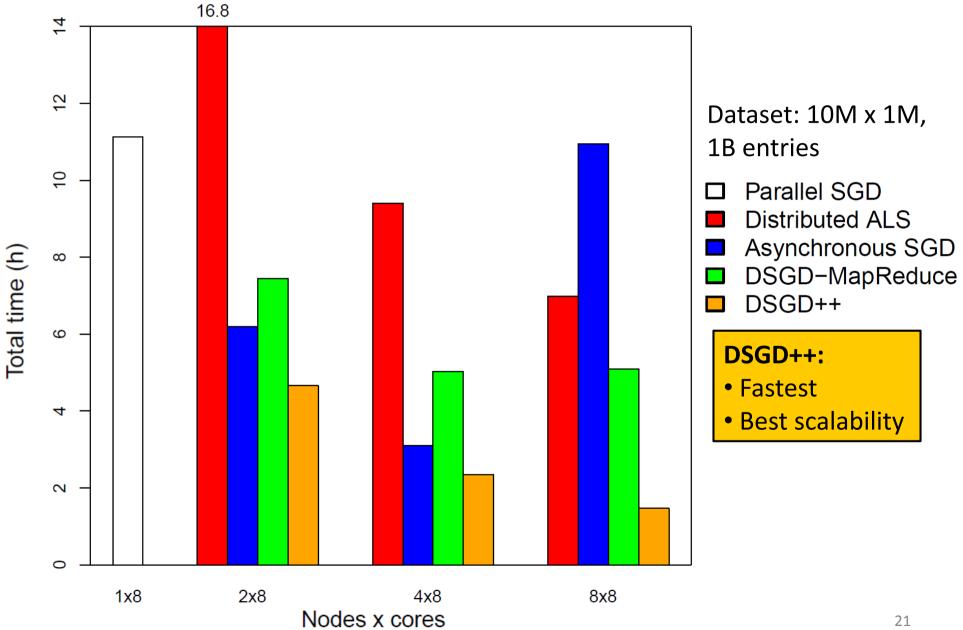
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory



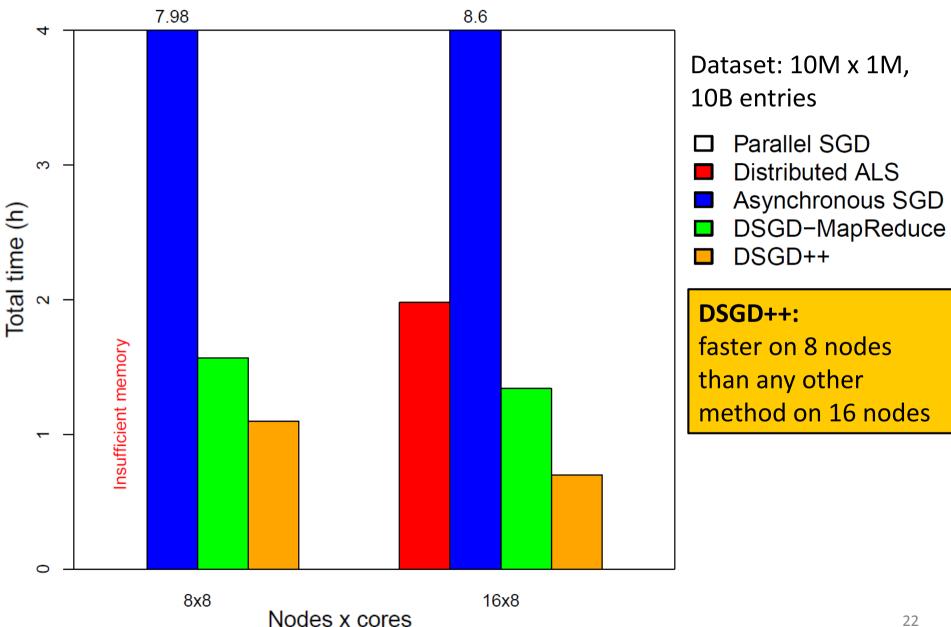
Outline

- Motivation
- Algorithms
 - Distributed Alternating Least Squares
 - Distributed SGD-based algorithms
 - Asynchronous SGD
 - DSGD-MR
 - DSGD++
- Experimental Results
- Summary

Large Data



Very Large Data



Outline

- Motivation
- Algorithms
 - Distributed Alternating Least Squares
 - Distributed SGD-based algorithms
 - Asynchronous SGD
 - DSGD-MR
 - DSGD++
- Experimental Results
- Summary

Summary

- Existing distributed algorithms for matrix completion mainly designed for MapReduce
- Distributed algorithms for a shared-nothing environment :
 - Direct communication of nodes
 - Asynchronous
 - Overlay computation and communication
 - Multi-threading
- DSGD++:
 - Scales better
 - Can reach superlinear speed-ups
 - Low memory footprint
 - 10M x 1M with 10B entries: ~40min on 16 nodes

Summary

- Existing distributed algorithms for matrix completion mainly designed for MapReduce
- Distributed algorithms for a shared-nothing environment :
 - Direct communication of nodes
 - Asynchronous
 - Overlay computation and communication
 - Multi-threading
- DSGD++:
 - Scales better
 - Can reach superlinear speed-ups
 - Low memory footprint
 - 10M x 1M with 10B entries: ~40min on 16 nodes

Thank you Questions?