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Real applications can be large

Millions of users, Millions of items, Billions of rating

e.g., Netflix: >20M users, >20k movies, =4B ratings (projected) 7R

Scalable algorithms are necessary.

Existing MapReduce algorithms

e.g., DALS, DSGD-MR

Strength

Faster than sequential algorithms
Can handle large datasets

Drawbacks

Slow
Synchronous
No use of shared memory

New algorithms
ASGD, DSGD++
Strength

In-memory processing
Exploit multi-core
Asynchronous
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Alternate
* Fix H— optimize for W
* Fix W —optimize for H

For each user/movie: solve a least squares problem

Distributed ALS similar to [Zhou08]
Difference: on each node multiple threads
instead of multiple processes

* Slow (cubic in rank)
* Memory intensive (stores data matrix twice)
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Stochastic Gradient Descent(SGD)

Goal: Find minimum @" of function L
* Pick a starting point 6,

* Approximate gradient Z'(Gn)

* Jump “approximately” downbhill

e Stochastic difference equation

9n+1 — Hn o gni,(enﬂ)

 Under certain conditions,
asymptotically approximates
(continuous) gradient descent
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L= Y (V,—-[WH],)

(i./)eZ

Local loss

Estimate gradient based W |-
on single training point - -

Scale up by # training points N

SGD epoch:

1. Pick a random training point

2. Compute approximate gradient
3. Update W, and H,

4. Repeat N times
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SGD steps depend on each other

H But not all steps are dependent
H.,,
____i___i_ Zol Shared-memory, parallel SGD:
W Tw. | [ |z Efficient and simple
V

Parallel SGD slow for larger problem:s.
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Asynchronous SGD (ASGD)

Each node works on a local copy of the movies matrix H.
Local copies are synchronized continuously.
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Block and distribute V
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Distributed SGD-MapReduce

Provably converges

Pick a “diagonal” Works well
Run SGD on the diagonal (in parallel)
Write back the results

Move to the next “diagonal”
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Summary

Existing distributed algorithms for matrix completion mainly
designed for MapReduce

Distributed algorithms for a shared-nothing environment :
— Direct communication of nodes

— Asynchronous

— Overlay computation and communication

— Multi-threading

DSGD++:

Thank you
Questions?

— Scales better

— Can reach superlinear speed-ups

— Low memory footprint
— 10M x 1M with 10B entries: ~40min on 16 nodes



