Distributed Matrix Completion

Christina Teflioudi, Faraz Makari, Rainer Gemulla
Matrix Completion

<table>
<thead>
<tr>
<th></th>
<th>Avatar</th>
<th>The Matrix</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Bob</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Charlie</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Matrix Completion

<table>
<thead>
<tr>
<th></th>
<th>Avatar</th>
<th>The Matrix</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>?</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Bob</td>
<td>3</td>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>Charlie</td>
<td>5</td>
<td>?</td>
<td>3</td>
</tr>
</tbody>
</table>
Matrix Completion

- Discover (rank=1)
 - User factors
 - Movie factors

\[
W
\]

\[
V
\]

\[
H
\]

<table>
<thead>
<tr>
<th></th>
<th>Avatar</th>
<th>The Matrix</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>2.24</td>
<td>1.92</td>
<td>1.18</td>
</tr>
<tr>
<td>Bob</td>
<td>3</td>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>Charlie</td>
<td>5</td>
<td>?</td>
<td>3</td>
</tr>
</tbody>
</table>
Matrix Completion

- Discover (rank=1)
 - User factors
 - Movie factors

- Minimize loss

\[
\min_{W, H} \sum_{(i,j) \in Z} (V_{ij} - [WH]_{ij})^2
\]
Matrix Completion

- Discover (rank=1)
 - User factors
 - Movie factors

- Minimize loss

\[
\min_{W, H} \sum_{(i, j) \in Z} (V_{ij} - [WH]_{ij})^2
\]
Matrix Completion

- Discover (rank=1)
 - User factors
 - Movie factors

- Minimize loss

\[
\min_{W,H} \sum_{(i,j) \in Z} \left(V_{ij} - [WH]_{ij} \right)^2
\]

Discover

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
<th>Charlie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.98</td>
<td>1.21</td>
<td>2.30</td>
</tr>
</tbody>
</table>

Ratings

<table>
<thead>
<tr>
<th></th>
<th>Avatar</th>
<th>The Matrix</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.24</td>
<td>1.92</td>
<td>1.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alice</th>
<th>4.4</th>
<th>3.8</th>
<th>2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>?</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bob</th>
<th>?</th>
<th>4</th>
<th>2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>?</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>4.4</td>
<td>2.7</td>
</tr>
</tbody>
</table>

+ Bias
+ Regularization
+ ...
Distributed Matrix Completion

• Real applications can be large
 • Millions of users, Millions of items, Billions of rating
 e.g., Netflix: >20M users, >20k movies, ≅4B ratings (projected)
Distributed Matrix Completion

- Real applications can be large
 - Millions of users, Millions of items, Billions of rating
 - e.g., Netflix: >20M users, >20k movies, ≈4B ratings (projected)

Scalable algorithms are necessary.
Distributed Matrix Completion

• Real applications can be large
 • Millions of users, Millions of items, Billions of rating
 e.g., Netflix: >20M users, >20k movies, ≈4B ratings (projected)

Scalable algorithms are necessary.

• Existing MapReduce algorithms
e.g., DALS, DSGD-MR

• Strength
 • Faster than sequential algorithms
 • Can handle large datasets

• Drawbacks
 • Slow
 • Synchronous
 • No use of shared memory
Distributed Matrix Completion

• Real applications can be large
 • Millions of users, Millions of items, Billions of rating
 e.g., Netflix: >20M users, >20k movies, ≈4B ratings (projected)

Scalable algorithms are necessary.

• Existing MapReduce algorithms
e.g., DALS, DSGD-MR
• Strength
 • Faster than sequential algorithms
 • Can handle large datasets
• Drawbacks
 • Slow
 • Synchronous
 • No use of shared memory

• New algorithms
 ASGD, DSGD++
• Strength
 • In-memory processing
 • Exploit multi-core
 • Asynchronous
Outline

• Motivation
• Algorithms
 – Distributed Alternating Least Squares
 – Distributed SGD-based algorithms
 • Asynchronous SGD
 • DSGD-MR
 • DSGD++
• Experimental Results
• Summary
Alternating Least Squares (ALS)

Alternate

• Fix H – optimize for W
Alternating Least Squares (ALS)

Alternate

- Fix H – optimize for W
- Fix W – optimize for H
Alternating Least Squares (ALS)

Alternate

- Fix H – optimize for W
- Fix W – optimize for H

For each user/movie: solve a least squares problem
Alternate Least Squares (ALS)

Alternate

- Fix H – optimize for W
- Fix W – optimize for H

For each user/movie: solve a least squares problem

Distributed ALS similar to [Zhou08]
Difference: on each node multiple threads instead of multiple processes
Alternating Least Squares (ALS)

Alternate

• Fix H – optimize for W
• Fix W – optimize for H

For each user/movie: solve a least squares problem

Distributed ALS similar to [Zhou08]
Difference: on each node multiple threads instead of multiple processes

• Slow (cubic in rank)
• Memory intensive (stores data matrix twice)
Outline

• Motivation
• Algorithms
 – Distributed Alternating Least Squares
 – Distributed SGD-based algorithms
 • Asynchronous SGD
 • DSGD-MR
 • DSGD++
• Experimental Results
• Summary
Stochastic Gradient Descent (SGD)

Goal: Find minimum θ^* of function L

- Pick a starting point θ_0
Stochastic Gradient Descent (SGD)

Goal: Find minimum θ^* of function L

- Pick a starting point θ_0
Stochastic Gradient Descent (SGD)

Goal: Find minimum θ^* of function L

- Pick a starting point θ_0
- Approximate gradient $\hat{L}'(\theta_n)$
Stochastic Gradient Descent (SGD)

Goal: Find minimum θ^* of function L

- Pick a starting point θ_0
- Approximate gradient $\hat{L}'(\theta_n)$
- Jump “approximately” downhill
Stochastic Gradient Descent (SGD)

Goal: Find minimum θ^* of function L

• Pick a starting point θ_0
• Approximate gradient $\tilde{L}'(\theta_n)$
• Jump “approximately” downhill
• Stochastic difference equation

$$\theta_{n+1} = \theta_n - \epsilon_n \tilde{L}'(\theta_{n+1})$$
Stochastic Gradient Descent (SGD)

Goal: Find minimum θ^* of function L
- Pick a starting point θ_0
- Approximate gradient $\hat{L}'(\theta_n)$
- Jump “approximately” downhill
- Stochastic difference equation
 $$\theta_{n+1} = \theta_n - \epsilon_n \hat{L}'(\theta_{n+1})$$
- Under certain conditions, asymptotically approximates (continuous) gradient descent
SGD for Matrix Completion

\[L = \sum_{(i,j) \in Z} (V_{ij} - [WH]_{ij})^2 \]

Local loss
SGD for Matrix Completion

\[L = \sum_{(i,j) \in Z} (V_{ij} - [WH]_{ij})^2 \]

Local loss

- Estimate gradient based on **single** training point
- Scale up by \# training points \(N\)
SGD for Matrix Completion

\[L = \sum_{(i,j) \in Z} (V_{ij} - [WH]_{ij})^2 \]

- Estimate gradient based on **single** training point
- Scale up by \# training points \(N \)

- SGD epoch:
 1. Pick a random training point
 2. Compute approximate gradient
 3. Update \(W_{i*} \) and \(H_{*j} \)
 4. Repeat \(N \) times
Netflix Single-Core

![Graph showing train loss over time for ALS, L-BFGS, and SGD algorithms.](graph.png)
Problem Structure

SGD steps depend on each other
SGD steps depend on each other
SGD steps depend on each other

Problem Structure

But not all steps are dependent

Shared-memory, parallel SGD: Efficient and simple
SGD steps depend on each other

But not all steps are dependent

Shared-memory, parallel SGD:
Efficient and simple

Parallel SGD slow for larger problems.
Outline

• Motivation
• Algorithms
 – Distributed Alternating Least Squares
 – Distributed SGD-based algorithms
 • Asynchronous SGD
 • DSGD-MR
 • DSGD++
• Experimental Results
• Summary
Asynchronous SGD (ASGD)

Each node works on a local copy of the movies matrix H.

[Diagram showing nodes and matrices]
Asynchronous SGD (ASGD)

Each node works on a local copy of the movies matrix H. Local copies are synchronized continuously.
Outline

• Motivation
• Algorithms
 – Distributed Alternating Least Squares
 – Distributed SGD-based algorithms
 • Asynchronous SGD
 • DSGD-MR
 • DSGD++
• Experimental Results
• Summary
Distributed SGD-MapReduce

Block and distribute V
Distributed SGD-MapReduce

Block and distribute V

1. Pick a “diagonal”
Distributed SGD-MapReduce

Block and distribute V

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
Distributed SGD-MapReduce

Block and distribute V

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Write back the results
Block and distribute V

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Write back the results
Distributed SGD-MapReduce

Block and distribute V

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Write back the results
4. Move to the next "diagonal"
Block and distribute V

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Write back the results
4. Move to the next “diagonal”

Provably converges
Works well
Distributed SGD-MapReduce

Block and distribute V
1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Write back the results
4. Move to the next “diagonal”

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
Outline

• Motivation
• Algorithms
 – Distributed Alternating Least Squares
 – Distributed SGD-based algorithms
 • Asynchronous SGD
 • DSGD-MR
 • DSGD++
• Experimental Results
• Summary
DSGD++: Direct communication between nodes

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
DSGD++: Direct communication between nodes

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
DSGD++: Overlap Subepochs

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
DSGD++: Overlap Subepochs

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
DSGD++: Overlap Subepochs

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory

Node 1

Node 2

Node 3
DSGD++: Overlap Subepochs

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
DSGD++: Overlap Subepochs

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
DSGD++: Overlay computation and communication

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
DSGD++: Overlay computation and communication

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
DSGD++: Overlay computation and communication

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:

- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
DSGD++: Overlay computation and communication

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
DSGD++: Overlay computation and communication

How to do better in a shared-nothing environment?

DSGD-MR drawbacks:
- Repeatedly reads/writes from/to disk
- Synchronous
- No overlapping of communication and computation
- No shared memory
Outline

• Motivation
• Algorithms
 – Distributed Alternating Least Squares
 – Distributed SGD-based algorithms
 • Asynchronous SGD
 • DSGD-MR
 • DSGD++
• Experimental Results
• Summary
DSGD++:
• Fastest
• Best scalability

Dataset: 10M x 1M, 1B entries

- Parallel SGD
- Distributed ALS
- Asynchronous SGD
- DSGD-MapReduce
- DSGD++

DSGD++:
• Fastest
• Best scalability
Very Large Data

Dataset: 10M x 1M, 10B entries

- Parallel SGD
- Distributed ALS
- Asynchronous SGD
- DSGD–MapReduce
- DSGD++

DSGD++: faster on 8 nodes than any other method on 16 nodes.
Outline

• Motivation

• Algorithms
 – Distributed Alternating Least Squares
 – Distributed SGD-based algorithms
 • Asynchronous SGD
 • DSGD-MR
 • DSGD++

• Experimental Results

• Summary
Summary

• Existing distributed algorithms for matrix completion mainly designed for MapReduce

• Distributed algorithms for a shared-nothing environment:
 – Direct communication of nodes
 – Asynchronous
 – Overlay computation and communication
 – Multi-threading

• DSGD++:
 – Scales better
 – Can reach superlinear speed-ups
 – Low memory footprint
 – 10M x 1M with 10B entries: ~40min on 16 nodes
Summary

• Existing distributed algorithms for matrix completion mainly designed for MapReduce

• Distributed algorithms for a shared-nothing environment:
 – Direct communication of nodes
 – Asynchronous
 – Overlay computation and communication
 – Multi-threading

• DSGD++:
 – Scales better
 – Can reach superlinear speed-ups
 – Low memory footprint
 – 10M x 1M with 10B entries: ~40min on 16 nodes