
Distributed Matrix Completion
Christina Teflioudi, Faraz Makari, Rainer Gemulla

Max-Planck-Institut für Informatik

Saarbrücken, Germany

{chteflio,fmakari,rgemulla}@mpi-inf.mpg.de

Abstract—We discuss parallel and distributed algorithms for
large-scale matrix completion on problems with millions of rows,
millions of columns, and billions of revealed entries. We focus on
in-memory algorithms that run on a small cluster of commodity
nodes; even very large problems can be handled effectively
in such a setup. Our DALS, ASGD, and DSGD++ algorithms
are novel variants of the popular alternating least squares and
stochastic gradient descent algorithms; they exploit thread-level
parallelism, in-memory processing, and asynchronous communi-
cation. We provide some guidance on the asymptotic performance
of each algorithm and investigate the performance of both our
algorithms and previously proposed MapReduce algorithms in
large-scale experiments. We found that DSGD++ outperforms
competing methods in terms of overall runtime, memory con-
sumption, and scalability. Using DSGD++, we can factor a matrix
with 10B entries on 16 compute nodes in around 40 minutes.

Keywords-parallel and distributed matrix factorization;
stochastic gradient descent; ALS; recommender systems

I. INTRODUCTION

Low-rank matrix completion techniques have recently re-

ceived significant attention in the data mining community; they

have been successfully applied in the context of collaborative

filtering in recommender systems [1]–[9]. At its heart, matrix

completion is a variant of low-rank matrix factorization in

which the input matrix is only partially observed and potentially

noisy. In the setting of recommender systems, matrix rows

correspond to users or customers, columns to items, such as

movies or music pieces, and entries to feedback provided by

users for items (e.g., explicit feedback in the form of numerical

ratings and time of rating, or implicit feedback such as page

views). Matrix completion is an effective tool for analyzing such

dyadic data in that it discovers and quantifies the interactions

between users and items.

Large applications can involve matrices with millions of

rows, millions of columns, and billions of entries. For example,

Netflix—a company that offers movies for rental and streaming

and employs low-rank matrix completion in their recommenda-

tion engine—gathered more than five billion ratings for more

than 80k movies from its more than 20M customers [10].1

Similarly, Yahoo Music! collected billions of user ratings for

musical pieces [11]. At such massive scales, parallel and

distributed algorithms for matrix factorization are essential

to achieve reasonable performance [2], [3], [6]–[9], [12], [13].

In this paper, we study parallel and distributed algorithms

for large-scale matrix completion. We focus on in-memory

1http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.
html

algorithms that run on a small cluster of commodity nodes;

even very large factorization tasks can be handled effectively in

such a setup. In contrast, most existing distributed algorithms

for matrix factorization are designed for MapReduce [2], [3],

[9], [13]. Compared to our setting, MapReduce algorithms

have multiple drawbacks: (1) they need to repeatedly read

the input data from disk into memory, (2) they are limited

to the MapReduce programming model, and (3) they may

suffer from runtime overheads of popular implementations

such as Hadoop (which has been designed for much larger

clusters and different workloads). These drawbacks have been

recognized by the community: The next version2 of Hadoop

will allow applications to use different programming models

seamlessly (e.g., MPI3). Most Hadoop clusters, as well as the

machines offered by most cloud providers, have limited per-

node computing capability (say, 8 cores) and memory (say,

64GB). The algorithms discussed in this paper are designed

to run in such a setting and can readily be integrated into an

existing data mining infrastructure.

Popular algorithms for large-scale matrix completion are

based on alternating least-squares (ALS) [9] or stochastic

gradient descent (SGD) [5]. We review previous parallel (i.e.,

shared memory) and MapReduce versions of these algorithms.

In general, parallel algorithms are a good fit when the input

data is small enough to fit into main memory of a single

machine with a sufficiently large number of CPUs. MapReduce

algorithms can handle much larger datasets by leveraging the

aggregate memory and CPUs of multiple compute nodes. As

mentioned above, however, these algorithms induce a severe

performance penalty (even when implemented in our fast in-

memory MapReduce engine). In this paper, we propose a set of

distributed (i.e., shared nothing) algorithms that are faster, more

scalable, and less memory-intensive than existing MapReduce

algorithms. In particular, our DALS algorithm is a scalable

variant of ALS that benefits from thread-level parallelism

to speed up processing and reduce the memory footprint; it

is closely related to the distributed ALS algorithm of [9].

For SGD, we propose the asynchronous ASGD algorithm,

which is inspired by recent work on distributed LDA [15], and

the DSGD++ algorithm, which is based on the MapReduce

algorithm of [3]. Both ASGD and DSGD++ are designed to

exploit thread-level parallelism, in-memory processing, and

asynchronous communication.

2http://developer.yahoo.com/blogs/hadoop/posts/2011/02/
mapreduce-nextgen/

3http://www.mcs.anl.gov/research/projects/mpi/index.htm

2012 IEEE 12th International Conference on Data Mining

1550-4786/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDM.2012.120

935

2012 IEEE 12th International Conference on Data Mining

1550-4786/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDM.2012.120

655

The main challenges in distributed matrix completion are to

partition the data effectively across the compute cluster and

to minimize the amount of communication between different

nodes. We provide the key metrics of the input data that play a

crucial role in the performance of distributed matrix completion:

the rank of the factorization (for DALS) and the ratio of

the number of revealed entries and the number of columns

(for ASGD and DSGD++), by both asymptotic analysis and

experimental study. Finally, we compare all parallel and

distributed algorithms in an extensive set of experiments on

both real-word and synthetic datasets of varying sizes. On

large datasets, we found that DSGD++ outperforms competing

methods in terms of overall runtime, memory consumption,

and scalability. For example, DSGD++ can factor a matrix

with 10B entries on 16 compute nodes in around 40 minutes.
The remainder of this paper is organized as follows: Sec. II

reviews the matrix completion problem. In Secs. III, IV, V,

we discuss sequential, parallel, and distributed algorithms,

respectively. Our experimental findings are summarized in

Sec. VI. We conclude the paper in Sec. VII.

II. THE MATRIX COMPLETION PROBLEM

To gain understanding about applications of matrix comple-

tions, consider the “Netflix problem” [10] of recommending

movies to customers. Netflix is a company that offers tens of

thousands of movies for rental. The company has more than

20M customers, each of whom can provide feedback about

their personal taste by rating movies with 1 to 5 stars. The

feedback can be represented in a feedback matrix such as

⎛
⎝

Avatar The Matrix Up
Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3

⎞
⎠.

Each entry may contain additional data, e.g., the date of rating

or other forms of feedback such as click history. The goal of

the completion is to predict missing entries (denoted by “?”);

entries with a high predicted rating are then recommended

to users for viewing. This matrix-completion approach to

recommender systems has been successfully applied in practice;

see [5] for an excellent discussion of the underlying intuition.
Denote by the training set Z = { z1, . . . , zN } the set of

observed entries in V , where zk = (ik, jk), k ∈ [1, N], ik ∈
[1,m], and jk ∈ [1, n]. In what follows, we assume without

loss of generality that m ≥ n. Let Ni∗ and N∗j denote the

number of observed entries in row i and column j, respectively.

Finally, denote by r � min(m,n) a rank parameter. Our goal

is to find an m × r row-factor matrix W ∗ and an r × n
column-factor matrix H∗ such that V ≈ W ∗H∗, i.e., we

aim to approximate V by the low-rank matrix W ∗H∗. The

approximation is governed by an application-dependent loss

function L(W ,H); we suppress the dependence on V for

brevity. The matrix completion problem is to find the factor

matrices that give rise to the smallest loss, i.e.,

(W ∗,H∗) = argmin
W ,H

L(W ,H).

We can now view the matrix W ∗H∗ as a “completed version”

of V : unobserved entry V ij is predicted by [W ∗H∗]ij .

The loss function L measures the difference between the

observed entries in V and the corresponding entries in WH ,

but may also incorporate regularization terms, biases, implicit

feedback, temporal effects, or confidence levels. Thus our

formulation of the matrix completion problem is driven by its

application in data mining; see for example [16] for a treatment

of its theoretical foundations. The most basic loss is the squared

loss LSl(W ,H) =
∑

(i,j)∈Z(V ij − [WH]ij)
2. Table I

summarizes other popular loss functions. LL2 incorporates

L2 regularization and is closely related to the problem of

minimizing the nuclear norm of the reconstructed matrix [8].

LL2w incorporates weighted L2 regularization [9], in which the

amount of regularization depends on the number of observed

entries. This particular loss was a key ingredient in the best

performing solutions of both the Netflix competition and the

KDD-Cup 2011 [1], [5], [9].

Following [17], we say that a loss function is in summation
form if it is written as a sum of local losses Lij that occur

at only the observed elements of V , i.e., L(W ,H) =∑
(i,j)∈Z Lij(W i∗,H∗j), where W i∗ and H∗j refer to the

i-th row of W and j-th column of H , respectively. In this

paper, we focus on loss functions that admit a summation form;

this includes all of the loss functions given in Table I, in which

we also show the corresponding local losses.

III. SEQUENTIAL ALGORITHMS

We focus on algorithms based on gradient descent (e.g.,

GD, L-BFGS, SGD) and alternating projections (ALS), which

have been shown to perform best in our setting [3], [7]–[9].4

All algorithms start with some initial point (W 0,H0) and

iteratively improve it. Under appropriate conditions [14], they

asymptotically converge to a local minimum or stationary point

of L. We both summarize the basic algorithms and discuss

practical considerations.

A. Alternating Least Squares

ALS [9] alternates between optimizing for W given H ,

and optimizing for H given W . For LSl, this amounts to

computing the least squares solutions to the following systems

of linear equations

Compute W n+1: (∀i) W i∗H(i)
n = V i∗, (1)

Compute Hn+1: (∀j) W (j)
n+1H∗j = V ∗j , (2)

where the unknown variable is underlined, V i∗ (resp. V ∗j)

denotes the revealed entries in row i (column j), and H(i)
n

(resp. W
(j)
n+1) refers to the corresponding columns of Hn

(rows of W n+1). Note that the sparse matrix V is accessed

by row in Eq. (1) and by column in Eq. (2). For this reason,

ALS implementations need to store two sparse representations

of V in memory: one in row-major and one in column-major

order. We refer to the application of (1) or (2) as a W -epoch

or H-epoch, respectively; each epoch requires a single pass

over the data. We handle loss functions LL2 and LL2w as in [9].

4We exclude algorithms that require that the revealed entries in V are
distributed uniformly from our discussion. Many other algorithms have been
developed for this setting; see for example [6].

936656

TABLE I: Popular loss functions for matrix completion

Loss function Definition Local loss

LSl

∑
(i,j)∈Z(V ij − [WH]ij)

2 (V ij − [WH]ij)
2

LL2 LSl + λ
(∑

ik W 2
ik +

∑
kj H

2
kj

)
(V ij − [WH]ij)

2 + λ
∑

k(N
−1
i∗ W 2

ik +N−1
∗j H2

kj)

LL2w LSl + λ
(∑

ik Ni∗W 2
ik +

∑
kj N∗jH

2
kj

)
(V ij − [WH]ij)

2 + λ
∑

k(W
2
ik +H2

kj)

Under our running assumption that m ≥ n, an ALS epoch

then has time complexity O(Nr2 +mr3).

B. Gradient-Based Methods

For brevity, we will write L(θ) and L′(θ), where θ =
(W ,H), to denote the loss function and its gradient. Denote

by ∇WL (resp. ∇HL) the m × r (resp. r × n) matrix of

the partial derivatives of L w.r.t. to the entries in W (resp.

H). Then L′ = (∇WL,∇HL). For example, [∇WLSl]ik =
−2∑(i,j)∈Zi∗ Hkj(V ij − [WH]ij)

2, where Zi∗ denotes the

set of observed entries in row V i∗.
Gradient descent. Various gradient-based methods have

been explored in the context of matrix completion. Perhaps the

simplest algorithm is gradient descent (GD), which iteratively

takes small steps in the direction of the negative gradient:

θn+1 = θn − εnL
′(θ),

where n denotes the step number and { εn } is a sequence of

decreasing step sizes. Under appropriate conditions, GD has

a linear rate of convergence; better rates can be obtained by

using a quasi-Newton method, such as L-BFGS-B [18].

Stochastic gradient descent. Stochastic gradient descent

(SGD) is based on GD, but uses a noisy observation L̂′(θ)
of the gradient L′(θ). SGD iterates the stochastic difference

equation

θn+1 = θn − εnL̂
′(θ). (3)

We obtain a noisy gradient estimate by scaling up just one

of the local gradients [5], i.e., L̂′(θ) = NL′ij(θ) for some

(i, j) ∈ Z. The choice of training point (i, j) varies from step

to step according to a training point schedule (see below).

Note that the local gradients at point (i, j) depend only on

V ij , W i∗ and H∗j . Therefore, we need only update a single
row W i∗ and a single column H∗j in each SGD step.

Step size sequence. A simple adaptive method for selecting

the step size worked extremely well in our experiments (but

does not guarantee asymptotic convergence). We refer to one

GD step or a sequence of N SGD steps as an epoch; an epoch

roughly corresponds to a single pass over the data. Exploiting

the fact that we can compute the current loss after every epoch,

we employ a heuristic called bold driver [19]. Starting from

an initial step size ε0, we (1) increase the step size by a small

percentage (say, 5%) whenever the loss decreased after one

epoch, and (2) drastically decrease the step size (say, by 50%)

if the loss increased. Within each epoch, the step size remains

fixed. To obtain ε0, we try different step sizes on a small

sample (say, 0.1%) of Z and pick the one that works best.

Training point schedule. Common schedules for an SGD

epoch are: process Z sequentially in some fixed order (SEQ),

sample with replacement from Z (WR), and sample without

Require: A training set Z, initial values W 0 and H0

while not converged do /* step */
Prefetch (in+2, jn+2) ∈ Z for next but one step

Prefetch V in+1jn+1
, W in+1∗, H∗jn+1

for next step

W ′
in∗ ←W in∗ − εnN∇W in∗Lij(W ,H)

H∗jn ←H∗jn − εnN∇H∗jnLij(W ,H)
W in∗ ←W ′

in∗
end while

Fig. 1: The SGD++ Algorithm for Matrix Factorization

replacement from Z (WOR). In practice, WOR often outper-

forms WR in terms of number of epochs to convergence;5 SEQ

requires yet more epochs and also converges to an inferior

solution. Nevertheless, SEQ epochs are significantly faster than

WR or WOR epochs, because they have better memory locality.

To reduce this performance gap, we suggest to prefetch the

data needed in SGD step n + 2 in steps n and n − 1 into

the CPU cache (e.g., using gcc’s __builtin_prefetch
macro). We refer to SGD with prefetching as SGD++; see the

algorithm in Fig. 1. In our experiments, SGD++ was up to 15%

faster than SGD (see Sec. VI-C). If sufficient main memory

is available, an alternative approach to SGD++ is to shuffle a

copy of the data in a parallel thread [8].

C. Discussion

Within each epoch, SGD performs many quick-and-dirty

steps whereas GD or L-BFGS perform a single careful step.

For large matrices, the increased number of SGD steps leads

to much faster convergence [3]. For this reason, we focus on

SGD in our ongoing discussion. Since ALS needs to solve a

large number of linear least squares problems, it is generally

much more expensive than SGD. This computational overhead

is acceptable, however, when the rank of the factorization is

sufficiently small (say, r ≤ 50).

IV. PARALLEL ALGORITHMS

Even on only moderately large matrices, both SGD and ALS

may need a significant amount of time to converge. Fortunately,

both algorithms are easy to parallelize effectively. We describe

shared-memory algorithms that run on t concurrent threads.

A. Parallel ALS

Parallel ALS (PALS) is based on the observation that

ALS solves multiple independent least-squares problems. For

5We use “convergence” to refer to running an algorithm until some
convergence criterion is met, and “asymptotical convergence” for the actual
limit.

937657

example, when updating W according to Eq. (1), a least-

squares problem is solved for every row W i∗; these problems

are independent because the inputs V and Hn remain fixed.

Thus, we partition the rows of W evenly among the threads, so

that each thread solves m/t least-squares problems. After all

threads have finished, we proceed to updating H in the same

way. We found that PALS achieves almost linear speed-up

w.r.t. ALS.

B. Parallel SGD

To obtain a parallel version of SGD (PSGD), we follow [8]

and partition the training point schedule evenly among the

threads, i.e., each thread runs N/t SGD steps per epoch. To

avoid concurrent parameter updates, we lock row i of W
and column j of H before processing training point (i, j).
Since there are usually significantly more rows and columns

than available threads (i.e., m,n
 t), it is unlikely that

overlapping rows and columns are processed by multiple

threads at the same time so that there is little lock contention.

Niu et al. [7] also experimented with a lock-free version of

PSGD, in which inconsistent updates are allowed, but found

virtually no difference in running time for matrix completion

problems.

V. DISTRIBUTED ALGORITHMS

Distributed algorithms are designed for large-scale comple-

tion problems in which parallel algorithms are too slow to

converge and/or the input matrix and factors do not fit into

main memory of a single node. Denote by w the number of

compute nodes and by t the number of cores per node; the total

number of cores is thus given by p = wt. The main challenge

in distributed matrix completion is to effectively manage the

communication between the compute nodes.

All distributed algorithms partition the matrices V , W
and H across the compute nodes. To do so, we divide

V into mb × nb blocks—where the values of mb and nb

depend on the particular algorithm—such that each block is an

(m/mb) × (n/nb) matrix. We shuffle the rows and columns

of the data matrix before blocking; thus each block contains

N/mbnb training points in expectation. We write V bibj to refer

to the block (bi, bj) of V . The factor matrices are blocked

conformingly, i.e., W is blocked mb × 1 and H is blocked

1× nb.

A. Distributed ALS

We describe a distributed ALS algorithm (DALS) similar to

the one of Zhou et al. [9]. The algorithm assumes that each

node has sufficient memory to store a fraction of 2/w of the

entries of V , as well as a full copy of the factor matrices W
and H .

Data partitioning. Similar to ALS, the data matrix needs

to be stored twice: once in row-major (denoted V r) and once

in column-major order (denoted V c). DALS uses a w × 1
blocking for V r and a 1× w blocking for V c. Factor matrix

W is blocked conformingly to V r (i.e., w× 1), H is blocked

conformingly to V c (i.e., 1× w). Node k stores blocks V k1
r ,

V 1k
c , W k1, and H1k. This memory layout is illustrated in

Fig. 2a. Colors indicate whether the data is node-local (green),

subject to communication (yellow), or temporary (red).

Algorithm. DALS extends the main idea of PALS to a

distributed setting, i.e., every node updates a part of a factor

matrix in parallel. To update W according to (1), the k-th

node updates W k1—i.e., its local block of W—using PALS

with t threads. This requires access to V k1
r and the entire

H matrix. Note that V k1 is stored locally at node k, but H
is not. Therefore, DALS creates a local copy of H on each

node by broadcasting blocks H11, . . .H1k. Since the least-

squares problems solved by ALS are expensive, the incurred

communication cost was negligible in our experiments. The

update of H according to (2) is done along the same lines;

node k updates H1k using V 1k
c and a copy of W . Note that

DALS differs from the algorithm of [9] only in that it uses

multiple threads instead of multiple processes on each node.

This allows us to share factor matrices among threads, which

greatly reduces memory consumption.

B. Asynchronous SGD

Algorithms based on SGD are harder to distribute than ALS

because the SGD steps of Eq. (3) are not independent. In

general, we cannot simply partition the data and factors across

the cluster such that (1) each pair of nodes works on disjoint

pieces of W and H (so that nodes can run independently)

and (2) each node processes roughly the same amount of data

(so that distributed processing is effective). To see this, assume

to the contrary that there exists such a partitioning and that

some node k is responsible for training points Zk ⊆ Z. Further

suppose that (i, j) ∈ Zk. Since we use the local gradients L′ij
as estimates of the gradient L′, an SGD step on (i, j) will

update W i∗ and H∗j . Since by assumption these parameters

are not updated by any other node, all of the training points in

row i and column j must also be in Zk, i.e., (i, j) ∈ Zk =⇒
Zi∗∪Z∗j ⊆ Zk. Thus, Zk forms a submatrix of V that contains

all revealed entries of any of its rows or columns. We can

form w balanced partitions if and only if the rows and columns

of V can be permuted such that we obtain a w × w block-

diagonal matrix with a balanced number of revealed entries

in each block on the diagonal. This is not possible in general;

in fact, most (or even all) revealed entries usually concentrate

in a single block. In what follows, we discuss two different

approaches to circumvent this problem: asynchronous SGD

(this section) and distributed SGD (next sections).

Suppose that V is blocked w×1, W is blocked conformingly

w × 1, and H is blocked 1 × w. At each node k, we store

blocks V k1, W k1, and H1k. Note that this particular blocking

ensures that each update of W is node-local, whereas updates

of H are either local or remote. In the following, we refer

to H∗j as the master copy of column j; the node that stores

H∗j is referred to as master node. A naive way to implement

distributed SGD is as follows: When node k processes training

point (i, j), it locks column j at its master node, fetches H∗j ,

updates W i∗ and H∗j locally according to (3), sends the

new value of H∗j back to the master, and unlocks. This

synchronous algorithm is clearly impractical, because the SGD

938658

W k1 V k1
r

HH1k

V
1
k

c W

(a) DALS

W k1 V k1

Ĥk

ΔĤk

H1k

(b) ASGD

W k1 V k∗

H1k H1Sl(k)

(c) DSGD-MR

W (k,1) V k∗
red V k∗

blue

H
1,
2k

H
1S

l+
1
(k
)

H
1S

l−
1
(k
)

H
1S

l
(k
)

H
1,
2k
+
1

(d) DSGD++

Fig. 2: Memory layout used on node k by the distributed algorithms (t = 1). Node-local data is shown in green, master copies

in yellow, and temporary data in red.

steps of (3) are inexpensive so that most of the time is spent

in communicating columns of H .

Our asynchronous SGD algorithm (ASGD) avoids this

problem by storing a working copy Ĥk
∗j of column H∗j at

each node k. Initially, all the working copies agree with their

corresponding masters. We now run SGD on each node as

above, but update the working copy Ĥk
∗j instead of the master

when processing (i, j); this avoids synchronous communication.

However, the working copies still need to be coordinated

to ensure correctness. In the context of perceptron training,

McDonald et al. [20] proposed to average the working copies

once after every epoch. In our setting, however, nodes can

communicate continuously, which allows us to improve on this

approach by also averaging during each epoch: From time to

time, each node sends its update vector ΔĤk
∗j to the master,

where ΔĤk
∗j is given by the sum of updates to Ĥ∗j since the

last averaging. Whenever a master node has received all update

vectors ΔĤ1
∗j , . . . ,ΔĤw

∗j , it adds their average to the master

copy and broadcasts the result. Each node k then updates

its working copy and integrates all local changes that have

been accumulated meanwhile. The memory layout of ASGD

is shown in Fig. 2b.

In contrast to SGD, updates to a column of Ĥ∗j at some

node are not immediately seen by other nodes. When the delay

between updating a column and broadcasting the update is

bounded, asynchronous SGD converges to a stationary point of

L [21]. In contrast to general asynchronous SGD, we average

only a subset of the parameters (i.e., H but not W); this

idea is motivated by the work on distributed LDA in [15].

In our actual implementation, we send update vectors both

continuously during and once after every epoch. This ensures

that updates are communicated as often as possible and that

the local copies agree to the master after every epoch. The

latter property also allows us to apply the bold driver heuristic

for step size selection. Moreover, we ensure that averaging is

non-blocking, and run PSGD using t threads instead of SGD

on each node. An additional thread takes care of averaging;

this thread has low CPU utilization since the time to compute

the update vectors is swamped by communication costs.

C. Distributed SGD on MapReduce

Recall the discussion at the beginning of Sec. V-B, where

we argued that distributing SGD is hard because, in general,

we cannot write V as a w × w block-diagonal matrix with a

balanced number of revealed entries in the diagonal blocks.

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

SA SB SC SD SE SF

Fig. 3: Strata used by DSGD-MR for a 3× 3 blocking of V

The key idea of the MapReduce SGD algorithm (DSGD-MR)

of [3] is to induce such a blocking by ignoring some of the

entries in V in a principled way.

DSGD-MR. In more detail, suppose that V is blocked w×w;

node k stores blocks V k1,. . .,V kw, W k1, and H1k. This

layout is illustrated in Fig. 2c, where V k∗ refers to the k-th

row of blocks of V . Now observe that when running SGD on

some block V bibj , we need only access the matrices W bi1

and H1bj . Thus we can independently process all the blocks

on the main diagonal (i.e., V 11, . . . ,V ww): node k processes

block V kk, the required blocks W k1 and H1k are node-local.

In general, we say that two different blocks V bibj and V b′ib
′
j

are interchangeable whenever bi �= b′i and bj �= b′j , i.e., they

share neither rows nor columns. We call a set of w pairwise

interchangeable blocks a stratum, the set of all strata is denoted

by S ; see Fig. 3 for an example.

It is convenient to view a stratum as a bijective map from

a node k (or row-block index) to a column-block index bj =
S(k); e.g., SB(1) = 2, SB(2) = 3, and SB(3) = 1 in the

example of Fig. 3. DSGD-MR now repeatedly selects and

processes a stratum S ∈ S ; the selection is based on a stratum
schedule (see below). Stratum S is processed in parallel: node k
processes block V kS(k). Continuing the example with S = SB ,

node 1 processes block V 12, node 2 block V 23, and node 3

block V 31. By construction, the required blocks V kS(k) and

W k1 are node-local; block H1S(k) is fetched from node S(k)
before processing and stored back afterwards. Thus only blocks

of H are communicated by DSGD-MR. In what follows, we

refer to processing a single stratum as a subepoch and to a

sequence of w subepochs as an epoch. Note that an epoch

roughly corresponds to processing N training points: each

block contains N/w2 entries in expectation, we process w
blocks per subepoch, and there are w subepochs per epoch.

Stratum schedule. Just as the training point schedule

of SGD influences its convergence in practice, the stratum

schedule influences the convergence properties of DSGD-MR.

Formally, a stratum schedule is a sequence S1, S2, . . . of strata

from S ; DSGD-MR processes stratum Sl in the l-th subepoch.

939659

It can be shown that DSGD-MR asymptotically converges to a

stationary point of L under certain conditions on the stratum

schedule [3]. E.g., when the step size is fixed, a schedule must

satisfy the property that every training point is processed equally

often in the long run. In what follows, we focus on only the first

epoch of DSGD-MR. The simplest correct schedule processes

blocks in sequential order on each node (SEQ), i.e., we set

Sl(k) = 1 + (k + l − 2 mod w). In the example above, this

corresponds to the sequence (SA, SB , SC). An alternative is to

select a random stratum from S in each subepoch (WR); e.g.,

strata (SA, SE , SC). Finally, we may select strata randomly

but ensure that every block is processed exactly once per

epoch (WOR); e.g., (SB , SA, SC) or (SF , SE , SD). In our

experiments, we found that WOR achieves best results since

(1) every training point is processed in every epoch and (2)

the order of blocks is randomized as much as possible.

D. DSGD++

DSGD-MR has been developed for a MapReduce environ-

ment, in which nodes cannot communicate directly and data is

stored on disk. In our setting, we can improve on DSGD-MR

in multiple ways. Our DSGD++ algorithm uses a novel data

partitioning and stratum schedule, but also improves on DSGD-

MR by exploiting direct memory access and multi-threading.

Direct fetches. Denote by Sl the stratum used in the l-th
subepoch and by S−1

l (bj) the node which updates block H1bj

in subepoch l. When running subepoch l, we communicate

the blocks of H directly between the nodes in DSGD++ (i.e.,

we avoid storing back the result as in DSGD-MR). In more

detail, node k fetches the block HkSl(k) directly from node

S−1
l−1(Sl(k)), which processed it in the previous subepoch.

Overlapping subepochs. Node k starts processing block

V kSl(k) as soon as HkSl(k) has been received. This allows us

to overlap subepochs and thus compensate for varying runtimes

across the nodes: When node k starts processing its block for

subepoch l, some other nodes might still be running subepoch

l − 1.

Asynchronous communication. Observe that DSGD-MR

is separated into a communication phase (receive next block

of H) and a computation phase (process block of V). In our

setting, we overlay communication and computation as follows:

We use a w×2w blocking of V instead of a w×w blocking. In

each epoch, we conceptually partition V (and conformingly H)

at random into two matrices V red and V blue, each consisting

of w of the 2w column blocks. We then alternate between

running a subepoch on V red and V blue. This approach ensures

that the red and blue subepochs work on disjoint blocks of H
(cf. Fig. 2d). This is exploited as follows: Suppose that some

node k runs subepoch l (say, blue). Node k now simultaneously

fetches the block of H needed in the (l+1)-th subepoch (red)

from the node that processed it in the (l−1)-th subepoch (also

red). Thus communication and computation are overlayed.

Multithreading. We can exploit thread-level parallelism by

using a p× 2p blocking of V (instead of w× 2w). Each node

then stores 2tp blocks of V , t blocks of W , and 2t blocks of

H . When the block required in subepoch l (say, blue) has been

processed at the same node in subepoch l − 2 (also blue), no

communication cost is incurred (local fetch). Only if the block

is stored on some other node, we need to actually communicate

data (remote fetch).

Locality-aware scheduling. A consequence of the distinc-

tion between local and remote fetches is that different stratum

schedules have different communication cost, depending on

the (expected) number of local fetches. SEQ is significantly

more communication-efficient than WR/WOR since in every

subepoch, only a single remote fetch occurs per node (the

other t − 1 fetches are all local). However, the increased

randomization of WOR leads to better convergence properties.

We propose a locality-aware schedule (LA-WOR) that strikes a

middleground between SEQ and WOR: The idea is to randomly

group the column blocks of V red (and independently V blue)

into w groups. We then use a WOR schedule (w × w) across

groups and another WOR schedule (t× t) within each group.

For example, when w = 2 and t = 2, we may obtain the

following schedule for V red:

⎛
⎜⎜⎝

Node 1 | Node 2

S1 1 4 | 3 2
S3 4 1 | 2 3
S5 2 3 | 1 4
S7 3 2 | 4 1

⎞
⎟⎟⎠,

where rows correspond to red subepochs, columns to threads,

and entries to blocks of H red. The first group (blocks 1 and

4) is printed bold, the vertical line indicates node boundaries.

In this example, there are 10 local fetches (2+4+0+4) and 6

remote fetches.

E. Discussion

In what follows, we discuss the asymptotic performance of

the distributed methods and issues arising in practice. The key

question we try to answer is under which conditions distributed

processing is effective. To simplify analysis, we assume that (1)

computation and communication are not overlayed, (2) each

revealed entry of V and each entry of W and H requires

O(1) words of memory and O(1) time to communicate, (4)

the number t of threads per node is constant, (4) r, n ≤ m, and

(5) N = O(mr). We give bounds on the memory consumption

per node as well as computation and communication time per
node and epoch.

Memory consumption. DALS stores two copies of the input

matrix as well as a copy of the entire factor matrices in memory;

the total memory consumption is O(N/w +mr) words. For

ASGD, we only need to store entirely the smaller factor matrix

H , which gives O((N+mr)/w+nr) words. Finally, DSGD++

fully partitions the factor matrices and thus requires O((N +
mr)/w) words. We conclude that DSGD++ is most memory-

efficient, followed by ASGD, and then DALS.

Computation/communication trade-off. The overall per-

formance of the distributed methods crucially depends on the

relationship between computation and communication cost. We

say that distributed processing is effective if the computational

cost (reduced linearly by distributed processing) dominates the

communication cost (increased). Under our assumptions, DALS

requires O(mr3/w) time for computation and O(mr) time for

940660

communication. As m, r, w → ∞, computation dominates

communication if the rank of the factorization is sufficiently

large (r2 = ω(w)). In practice, we often have r > w so that we

expect DALS to be effective. For DSGD-MR, O(Nr/w) time

is required for computation and O(nr) time for communication

(since we only communicate H). Denote by N̄ = N/n the

average number of revealed entries per column of V ; N̄
measures the amount of work per column and is the key

to determine how well we can distribute SGD. To see this,

rewrite the computational cost to O(N̄nr/w) and observe that

computation dominates communication only for large values

of N̄ (i.e., N̄ = ω(w)). Thus, we expect DSGD-MR to be

effective when the data matrix is not too sparse or has few

columns. Finally, observe that DSGD++ and ASGD do not

satisfy assumption (1) above. Nevertheless, the analysis carries

over to DSGD++ directly and to ASGD under the additional

assumption that we average working copies at least once per

epoch.

Practical considerations. The asymptotic analysis above

may say little about the relative performance of the algorithms

in practice, because (1) data size and number of nodes are

finite, and (2) distributed processing may affect the number of

epochs required to converge. In what follows, we assume that

the data is small enough to fit into the memory of a single

machine. Regarding (1), DALS significantly outperformed

PALS in all our experiments, which agrees with our analysis.

Similarly, we found that the relative time for a DSGD-MR

or ASGD epoch compared to PSGD depends on N̄ , which

also agrees with the above discussion. In contrast, DSGD++

is effective even for small values of N̄ , since computation and

communication are overlayed. Regarding (2), DALS and ALS

perform identically, since they solve exactly the same least-

squares problems. Asymptotically, the same holds for the SGD-

based approaches. In practice, however, ASGD, DSGD-MR,

and DSGD++ may need more epochs to converge than PSGD:

For DSGD-MR and DSGD++, stratification reduces the amount

of randomness in training point selection, and the asynchronous

averaging of ASGD introduces delay in broadcasting updates.

Therefore, the time per epoch is not the sole indicator for overall

performance; the effect on convergence properties needs to be

taken into account as well. Our experiments below give more

insight into the relative performance of each of the algorithms.

VI. EXPERIMENTAL STUDY

We compared all algorithms in an extensive experimental

study along the following dimensions: the time per epoch

(excluding loss computation), the number of epochs required

to converge, and the total time to converge (including loss

computations). When comparing two algorithms A and B in

an experiment, we say that A is more compute-efficient than

B if it needs less time per epoch, more data-efficient if needs

less epochs to converge (and thus less scans of the input data),

and faster if it needs less total time.

A. Overview of Results

Unless stated otherwise, all algorithms converged to a

solution of similar loss (within 2% of each other). DSGD++ was

TABLE II: Summary of datasets

m n N N̄ Size L λ
Netflix 480k 18k 99M 5.5k 2.2GB LL2w 0.05
KDD 1M 625k 253M 0.4k 5.6GB LL2w 1
Syn1B-rect 10M 1M 1B 1k 22.3GB LSl -
Syn1B-sq 3.4M 3M 1B 0.3k 22.3GB LSl -
Syn10B 10M 1M 10B 10k 223.5GB LSl -

TABLE III: SGD step size sequence (Netflix, r = 50)

Bold driver Standard(1) Standard(0.6)
Epochs 40 36 42
Loss (x107) 7.936 9.267 8.469

the best-performing method on our large-scale experiments in

all configurations. It was up to 12.8x faster than DALS, up to 5x

times faster than DSGD-MR, and up to 12.3x faster than ASGD.

In fact, DSGD++ was the only method that outperformed

PSGD in some of our experiments with moderately-sized data

(and it did so by a large margin). ASGD was faster than

DSGD++ in one experiment with few nodes (and large N̄),

but its performance degrades significantly as more nodes are

added. Thus ASGD, and to a lesser extent also DSGD-MR,

was much more sensitive to communication overhead than

DSGD++ and DALS. Finally, DALS was more data-efficient

but less compute-efficient than the SGD-based methods. In

terms of total time, it was competitive only when the rank r
was small.

B. Experimental Setup

We implemented SGD, SGD++, ALS, PSGD, PALS, DSGD-

MR, DSGD++, ASGD, and DALS in C++. All distributed

algorithms used MPICH26 for communication. We used the

GNU scientific library for solving the least-squares problems

of ALS.7 We ran our experiments on an 16-node cluster; each

node was equipped with an Intel Xeon 2.40GHz processor

with 8 cores and 48GB of RAM.

Statistics of the datasets used in our experiments are

summarized in Table II. We used two real-world datasets:

The Netflix dataset consists of roughly 99M ratings (1–5) of

480k Netflix users for 18k movies; it takes 2.2GB to store in

main memory. The dataset of Track 1 of the KDD-Cup 2011

(termed KDD) consists of approximately 253M ratings of 1M

Yahoo! Music users for 625k musical pieces; it takes 5.5 GB

in memory. Note that Netflix and KDD differ significantly in

the value of N̄ (large for Netflix, small for KDD). For both

datasets, we used the official validation sets and focus on LL2w

because it performs best in practice [1], [5], [9]. We did not

tune the regularization parameter for varying choices of rank

r but used the values given in Table II throughout.

For our large-scale experiments, we generated three synthetic

datasets that differ in the choice of m, n, and N . We generated

each dataset by first creating two rank-50 matrices W ∗
m×50

and H∗
50×n with entries sampled independently from the

Normal(0, 10) distribution. We then obtained the data matrix

6http://www.mcs.anl.gov/mpi/mpich/
7In our experiments, GSL was significantly faster than LAPACK and, in

contrast to LAPACK, also supports multi-threading.

941661

TABLE IV: Impact of stratum schedules on DSGD++ (2x8)

Netflix, r = 100 KDD, r = 100
SEQ WOR LA-WOR SEQ WOR LA-WOR

Time/ep. (s) 10.47 11.5 10.61 32.13 40.8 32.62
Epochs 200 65 106 88 62 69
Total time (s) 2426 861 1300 3750 3182 2976

by sampling N random entries from W ∗H∗ and adding

Normal(0, 1) noise. Note that the resulting datasets are very

structured. We use them here to test the scalability of the

various algorithms; the matrices can potentially be factored

much more efficiently by exploiting their structure directly. To

judge the impact of the shape of the data matrix on distributed

processing, we generated two large datasets with 1B revealed

entries and identical sparsity: Syn1B-rect is a tall rectangular

matrix (high N̄ , easier to distribute), Syn1B-sq is a square

matrix (low N̄ , harder to distribute). Note that we need to learn

more parameters to factor Syn1B-rect (550M) than to factor

Syn1B-sq (320M). We also generated a very large dataset with

10B entries (Syn10B) to explore the scalability of each method;

Syn10B is significantly larger than the main memory of each

individual machine.

For all datasets, we centered the input matrix around its

mean. To investigate the impact of the factorization rank, we

experimented with ranks r = 50 and r = 100; in practice,

values of up to r = 1000 can be beneficial [9]. The starting

points W 0 and H0 were chosen by taking i.i.d. samples from

the Uniform(−0.5, 0.5) distribution; the same starting point

was used for each algorithm to ensure a fair comparison. For

all SGD-based algorithms, we selected the initial step size

based on a small sample of the data (1M entries): 0.0125 for

Netflix (r = 50), 0.025 for Netflix (r = 100), 0.00125 for

KDD (r = 50, r = 100) and 0.000625 for Syn1B and Syn10B.

Unless stated otherwise, we used the bold driver heuristic

for step size selection, which was thus fully automatic. We

used the WOR training point schedule and the WOR stratum

schedule throughout our experiments unless stated otherwise,

and ran a truncated version of SGD that clipped the entries in

the factor matrices to [−100, 100] after every SGD step. Also,

unless stated otherwise, all SGD-based algorithms make use of

SGD++. For each algorithm, we declared convergence as soon

as it reached a point within 2% of the overall best solution.

C. Sequential and Parallel Algorithms

We start with a discussion of sequential algorithms, which

form a baseline for the parallel and distributed methods.

SGD step size sequence (Table III). In this experiment, we

compared the performance of various step size sequences for

SGD on the Netflix data for r = 50. In Table III, Standard(α)
refers to a sequence of form ε0/n

α, where n denotes the

epoch and α is a parameter that controls the rate of decay;

such sequences are commonly used in stochastic approximation.

For this experiment only, we declared SGD as converged if

its improvement in loss after one epoch falls below 0.1%.

For SGD with the bold driver heuristic, we checked for

convergence only in epochs following a drop in step size. We

found that the bold driver heuristic significantly outperformed

0 200 400 600 800

8
9

10
11

12

Time (s)

L
os

s
(x

10
7)

DALS
ASGD
DSGD MR
DSGD++

(a) Netflix, r = 100

0 500 1500 2500

1.
4

1.
8

2.
2

Time (s)

L
os

s
(x

10
11

)

DALS
ASGD
DSGD MR
DSGD++

(b) KDD, r = 100

Fig. 4: Distributed algorithms on real-world datasets (4x8)

the standard sequences, even though it does not guarantee

asymptotic convergence. For example, on Netflix, all step size

sequences converged in roughly the same number of epochs,

but the bold driver sequence converged to a significantly better

factorization.

SGD, SGD++, ALS. We found that SGD++ is up to 13%

more compute-efficient than SGD (7.4 vs. 8.4min for KDD,

r = 100) so that prefetching is beneficial. When compared to

ALS, SGD++ needs up to 5 times more epochs to converge

(e.g., 31 vs. 6 epochs for Netflix, r = 50). However, SGD++

epochs are more compute-efficient so that SGD++ was faster

overall. This effect is strongest when r is high; e.g., SGD++ is

≈5.5x faster for Netflix, r = 100 (52.8 vs. 290min) but only

≈1.1x faster for r = 50 (58 vs. 66min).

PSGD, PALS. We compared PSGD with PALS on a single

node using 8 threads each (i.e., w = 1, t = 8). PALS was 7–8x

faster than ALS and is equally data-efficient. Similarly, PSGD

was 5x–6.8x faster than SGD; the speed-up was less than for

ALS because memory latency became a bottleneck. On the

KDD data (where the larger number of rows and columns

slowed down ALS), PSGD converged significantly faster (e.g.,

21 vs. 162min, r = 100).

D. Distributed Algorithms on Real Datasets

We ran the distributed algorithms on the Netflix and KDD

datasets using 2 and 4 compute nodes, each running 8 threads;

these setups are referred to as 2x8 and 4x8, respectively.

DSGD++ stratum schedule (Table IV). Recall that the

DSGD++ stratum schedule affects both the time per epoch

(governed by the fraction of local and remote fetches) and the

number of epochs to convergence (governed by the amount of

randomization). In Table IV, we compare the performance of

DSGD++ with the SEQ, WOR, and LA-WOR schedules for

the 2x8 setup. First, observe that WOR is more data-efficient

than LA-WOR, which in turn is more data-efficient than SEQ.

Similarly to the SGD training point schedule, more randomness

leads to better data-efficiency. Regarding compute-efficiency,

we found that all three approaches performed similarly on

Netflix (since N̄ is large and thus communication costs are

comparably small). In such a setting, WOR is the method of

choice. On KDD, where N̄ is small so that communication

becomes significant, LA-WOR outperformed both WOR and

SEQ. These results match our analysis of Sec. V-E; we use

the WOR schedule for a large N̄ and LA-WOR for small N̄ .

942662

1x8 2x8 4x8 8x8

Nodes x cores

T
ot

al
 t

im
e

(h
)

0
2

4
6

8
10

12
14

16.8
PSGD
DALS
ASGD
DSGD MR
DSGD++

(a) Rectangular matrix, 1B entries
(Syn1B-rect)

1x8 2x8 4x8 8x8

Nodes x cores
0

1
2

3
4

5
6

7 9.8

(b) Square matrix, 1B entries
(Syn1B-sq)

8x8 16x8

Nodes x cores

0
1

2
3

4

DALS
ASGD
DSGD MR
DSGD++

7.98 8.6

In
su

ff
ic

ie
nt

 m
em

or
y

(c) Rectangular matrix, 10B entries
(Syn10B)

2x8 4x4 8x2

Nodes x cores

0
5

10
15

20

(d) Overhead of distributed processing
(Syn1B-rect)

Fig. 5: Performance of distributed algorithms on synthetic datasets

Netflix (Fig. 4a). Even though the Netflix dataset is only

moderately large, we found that distributed processing can

speed-up the factorization significantly; e.g., DALS provided

22x–29x speed-up on 4x8 (290 vs. 10min, r = 100). First, we

observed that DSGD++ was up to 2.3x faster than DSGD-MR

and ≈3x (4.6x–6.1x) more compute-efficient than PSGD on

2 nodes (4 nodes). These superlinear speed-ups arise because

DSGD++ is more cache-friendly. However, DSGD++ was also

less data-efficient than PSGD so that DSGD++ was only 1.7x–

2.9x faster on 4 nodes overall. Second, ASGD was less compute-

efficient than DSGD++ (12.6 vs. 5.9s, r = 50), the latter due

to the cost of averaging of working copies. The data-efficiency

of ASGD dropped significantly as we increased the number

of nodes (25 epochs on 2x8, 60 epochs on 4x8, r = 50). This

happens because more working copies need to be averaged

when we use more nodes; the delay of propagating updates

thus increases. For example, we ran on average 65 rounds

of averaging per epoch on 2x8, but only 15 rounds on 4x8

(less time per epoch, more nodes to synchronize). Nevertheless,

ASGD outperformed all other methods on 2 nodes and r = 100.

Finally, DALS was the fastest method for r = 50 but was

outperformed by DSGD++ for higher ranks (5.8 vs. 10.7 min,

4x8, r = 100).

KDD (Fig. 4b). For the KDD dataset, DALS provided similar

speed-up as on the Netflix data and was the overall fastest

method for r = 50 (with 4 nodes). In contrast, the compute-

efficiency of DSGD-MR and ASGD was penalized since N̄ is

small for KDD. This effect was most pronounced for ASGD

(51min on 2 nodes, 125min on 4 nodes, r = 100). DSGD++

remained unaffected since communication and computation

are overlayed. In all cases, the distributed SGD-based methods

were less data-efficient than PSGD, which was faster overall.8

E. Large-Scale Experiments

For our large-scale experiments, we used the Syn1B-rect,

Syn1B-sq, and Syn10B datasets and varied the number of

compute nodes (2–16) and threads per node (2–8). Our results

are summarized in Fig. 5. The plots show the total time to

8This drop might be related to the specifics of the KDD dataset and our
choice of loss. For example, when using LL2, we found that DSGD++ achieved
a 3x overall speed-up on 4 nodes, r = 50, when compared to PSGD.

convergence required by each of the distributed methods and, if

possible, the parallel baselines. Note that the available memory

was insufficient to run PALS for all datasets (since it requires

two copies of the data in memory) and to run PSGD for Syn10B.

For DSGD++, we employed the LA-WOR schedule on Syn1B-

sq and Syn1B-rect, and the WOR schedule on Syn10B.

Syn1B-rect (Fig. 5a). In our first experiment, we used

Syn1B-rect on the 1x8, 2x8, 4x8, and 8x8 setups. First, we

observed that DALS did not converge to an acceptable solution

(4 orders of magnitude larger loss than all other methods); we

did not see this erratic behavior on any other dataset. In Fig. 5a,

we thus give the running time of DALS until its loss changed

by less then 0.1% in two consecutive epochs. In any case,

DALS was 44% faster per epoch on 4x8 than on 2x8, and 25%

faster on 8x8 than on 4x8. This sublinear speed-up indicates

that the time required to broadcast the factor matrices becomes

significant as we increase the number of nodes. Second, DSGD-

MR performed better than the PSGD baseline in all cases (1.5x

speed-up on 2 nodes, 2.2x on 4 nodes), but the communication

and synchronization penalties of DSGD-MR let its performance

deteriorate slightly as we went beyond 4 nodes. The former

matches our expectation: Syn1B-rect has a high value of N̄
and is thus “easy” to distribute. Third, ASGD performed better

on 2 and 4 nodes (1.8x and 3.6x faster then PSGD, resp.),

but the runtime on ASGD increased significantly when we

moved to 8 nodes. Even though ASGD was more compute-

efficient on 8 nodes (90s vs. 57s per epoch), the increased

synchronization overhead and consequently increased delay

between parameter updates drastically reduced data efficiency

(110 vs. 625 epochs). In contrast to DSGD-MR, ASGD thus

does not behave gracefully if too many nodes are used. Finally,

DSGD++ performed best in all setups. It was 2.4x faster than

PSGD on 2 nodes and 4.7x faster on 4 nodes. Similar to our

experiments on real datasets, we saw these superlinear speed-

ups due to better cache locality. The increased communication

overhead did not affect performance because of asynchronous

communication and our use of the LA-WOR schedule. On

8 nodes, the overhead of communication starts to be visible

(7.5x speed-up). Nevertheless, DSGD++ was able to factor

Syn1B-rect in 88 minutes (8 nodes); its closest competitor was

ASGD with 186 minutes (4 nodes).

943663

Syn1B-sq (Fig. 5a). On Syn1B-sq, all methods were faster

than on Syn1B-rect since there were less factors to learn.

First, we observed that DALS (now working correctly) was

consistently slower than the PSGD baseline. As before, in-

creasing the number of nodes leads to sublinear speed-up

due to increased communication overhead. Second, neither

ASGD nor DSGD-MR are able to improve on the PSGD

baseline. In fact, Syn1B-sq is our “hard” dataset (low N̄)

so that communication overheads dominate potential gains

due to distributed processing. Note that ASGD behaves more

gracefully than on Syn1B-rect for a large number of nodes.

We conjecture that the low value of N̄ decreases the effect

of delayed parameter updates since less SGD updates are

run per column and time unit (but, as before, the time per

epoch decreased and the number of epochs increased). Finally,

DSGD++ was the only method that was able to improve upon

PSGD. It achieved speed-ups of 1.6x (2 nodes), 2.3x (4 nodes),

and 3.5x (8 nodes). As expected, the speed-ups are lower

than the ones for Syn1B-rect but nevertheless significant. This

indicates that DSGD++ is the only SGD-based method that

can handle matrices with low N̄ gracefully.

Syn10B (Fig. 5c). We could not run experiments on Syn10B

using four or less nodes due to insufficient aggregate memory.

We thus only show results for 8x8 and 16x8. First, note that we

cannot run DALS even on 8 nodes since the available memory

is insufficient to store the two copies of data matrix and a

full copy of the factor matrix simultaneously (DALS would

require at least 11 nodes). On 16 nodes, DALS took 2h to

converge; the increased density of the Syn10B matrix simplifies

the completion problem so that only 11 epochs were needed to

converge. Second, all SGD-based methods were able to run on

both 8x8 and 16x8. Since these methods store the data matrix

only once and also fully partition the factor matrices, they

are more memory efficient and can thus be used on smaller

clusters. Third, DSGD-MR took 1.6h on 8x8 and 1.34h on

16x8. Thus DSGD-MR is faster on 8 nodes than DALS on 16

nodes. Next, ASGD did not converge to a satisfactory point

in this experiment (2 orders of magnitude off the best loss)

and was much slower than all other methods (as before, we

declared convergence when the loss reduced by less than 0.1%).

This is another indication that ASGD is not robust enough for

larger clusters. Finally, DSGD++ required 1.1h on 8 nodes and

0.7h on 16 nodes. Thus DSGD++ is faster on 8 nodes than

any other method on 16 nodes, and is almost twice as fast on

16 nodes than its closest competitor (DSGD-MR).

Impact of distributed processing (Fig. 5d). In our final

experiment on Syn1B-rect, we investigate the behavior of the

various algorithms as we increase the number of nodes while

keeping the overall number of processors constant (2x8, 4x4,

8x2). Since the computational cost is identical in each setup,

this allows us to directly measure the impact of distributed

processing. We observed that all approaches except ASGD

handle the increased cluster size gracefully. The runtime of

DALS increases slightly (increased cost of broadcasting), while

the runtime of DSGD++ and DSGD-MR decrease slightly

(more cache per thread). Thus even when less powerful compute

nodes are available, these methods perform well. In contrast,

the runtime of ASGD again increases sharply as we go beyond

4 nodes (see discussion above).

VII. CONCLUSION

We proposed the distributed DALS, ASGD, and DSGD++

algorithms for in-memory matrix completion on a small

cluster of commodity nodes. Our algorithms exploit thread-

level parallelism, in-memory processing, and asynchronous

communication, and scale to matrices with millions of rows,

millions of columns, and billions of entries. In our large-

scale experiments, DSGD++ performed best. It consistently

outperformed alternative approaches with respect to speed,

scalability, and memory footprint.

REFERENCES

[1] P.-L. Chen et al, “A linear ensemble of individual and blended models
for music rating prediction,” in KDDCup 2011 Workshop, 2011.

[2] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and
J. McPherson, “Ricardo: Integrating R and Hadoop,” in SIGMOD, 2010,
pp. 987–998.

[3] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale
matrix factorization with distributed stochastic gradient descent,” in
SIGKDD, 2011, pp. 69–77. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2020426

[4] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in ICDM, 2008, pp. 263–272.

[5] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” IEEE Computer, vol. 42, no. 8, pp. 30–37, 2009.

[6] L. Mackey, A. Talwalkar, and M. Jordan, “Divide-and-conquer matrix
factorization,” in NIPS, 2011.

[7] F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” in NIPS, 2011.

[8] B. Recht and C. Ré, “Parallel stochastic gradient algorithms for Large-
Scale matrix completion,” Optimization Online, 2011. [Online]. Available:
http://www.optimization-online.org/DB HTML/2011/04/3012.html

[9] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel
collaborative filtering for the Netflix Prize,” in AAIM, 2008, pp. 337–348.

[10] J. Bennett and S. Lanning, “The Netflix prize,” in KDD Cup and
Workshop, 2007.

[11] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, “The Yahoo! Music
Dataset and KDD-Cup’11,” in KDDCup 2011 Workshop, 2011.

[12] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news person-
alization: scalable online collaborative filtering,” in WWW, 2007, pp.
271–280.

[13] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang, “Distributed
nonnegative matrix factorization for web-scale dyadic data analysis on
mapreduce,” in WWW, 2010, pp. 681–690.

[14] H. J. Kushner and G. Yin, Stochastic Approximation and Recursive
Algorithms and Applications, 2nd ed. Springer, 2003.

[15] A. Smola and S. Narayanamurthy, “An architecture for parallel topic
models,” PVLDB, vol. 3, no. 1-2, pp. 703–710, 2010.

[16] E. J. Cands and B. Recht, “Exact matrix completion via convex
optimization.” Foundations of Computational Mathematics, vol. 9,
no. 6, pp. 717–772, 2009. [Online]. Available: http://dblp.uni-trier.de/db/
journals/focm/focm9.html#CandesR09

[17] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, “Map-reduce for machine learning on multicore,” in NIPS,
2006, pp. 281–288.

[18] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm
for bound constrained optimization,” SIAM J. Sci. Comput., vol. 16, no. 5,
pp. 1190–1208, 1995.

[19] R. Battiti, “Accelerated backpropagation learning: Two optimization
methods,” Complex Systems, vol. 3, pp. 331–342, 1989.

[20] R. McDonald, K. Hall, and G. Mann, “Distributed training strategies for
the structured perceptron,” in Human Language Technologies, 2010, pp.
456–464. [Online]. Available: http://www.aclweb.org/anthology-new/N/
N10/N10-1069.bib

[21] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803– 812, 1986.

944664

