LEMP: Fast Retrieval of Large Entries in a Matrix Product

Christina Teflioudi ${ }^{1}$ Rainer Gemulla ${ }^{2}$ Olga Mykytiuk
${ }^{1}$ Max Planck Institute for Computer Science Saarbrücken, Germany
${ }^{2}$ Mannheim University
Mannheim, Germany

May 4, 2015

Recommender Systems

- Problem
- Set of users
- Set of items (movies, books, jokes, products, stories, ...)
- Feedback (ratings, purchase, click-through, tags, ...)
- Predict the preference of each user for each item

Latent Factor Models

Recommender Systems

- Given
- A query matrix \mathbf{Q}

Recommender Systems

- Given
- A query matrix \mathbf{Q}
- A probe matrix \mathbf{P}

Adam
Bob
Charlie
Dennis $\left(\begin{array}{cc}3.2 & -0.4 \\ 3.1 & -0.2 \\ 0 & 1.8 \\ -0.4 & 1.9 \\ \mathbf{Q}^{T}\end{array}\right)$

Recommender Systems

- Given
- A query matrix \mathbf{Q}
- A probe matrix \mathbf{P}
- A threshold $\theta>0$
- Find good recommendations

Adam
Bob
Charlie
Dennis $\left(\begin{array}{cc}3.2 & -0.4 \\ 3.1 & -0.2 \\ 0 & 1.8 \\ -0.4 & 1.9 \\ \mathbf{Q}^{T}\end{array}\right)$

Recommender Systems

- Given
- A query matrix \mathbf{Q}
- A probe matrix \mathbf{P}
- A threshold $\theta>0$
- Find good recommendations
- All entries in $\mathbf{Q}^{T} \mathbf{P}$ that are $\geq \theta$

Recommender Systems

- Given
- A query matrix \mathbf{Q}
- A probe matrix \mathbf{P}
- A threshold $\theta>0$
- Find good recommendations
- All entries in $\mathbf{Q}^{T} \mathbf{P}$ that are $\geq \theta$
- Each entry is an inner product $\mathbf{q}^{T} \mathbf{p}=\sum_{i=1}^{r} q_{i} p_{i}$

				$00^{\text {a }}$		人i
		$\left(\begin{array}{l}1.6 \\ 0.6\end{array}\right.$	1.3 0.8	0.7 2.7		0.4 2.2
Adam	$\left(\begin{array}{ll}3.2 & -0.4 \\ 3.4\end{array}\right.$	4.9	3.8	1.2	2.1	0.4
Bob	$\left(\begin{array}{ll}3.1 & -0.2\end{array}\right.$	4.8	3.9	1.6	2.5	0.8
Charlie	$\left(\begin{array}{ll}0 & 1.8\end{array}\right.$	1	1.4	4.9	5.0	4.0
Dennis	$\left(\begin{array}{cc}-0.4 & 1.9\end{array}\right)$	0.5	1	4.9	4.9	4.0
	$\mathbf{Q}^{\text {T }}$			$\mathbf{Q}^{T} \mathbf{P}$		

Problem Statement

Maximum Inner Product Search
Find pairs of vectors with large inner products
Given

- a query vector \mathbf{q}^{T} (from matrix \mathbf{Q}^{T})
- a set \mathbf{P} of probe vectors (the matrix \mathbf{P})
- a threshold $\theta>0$

Find

- all vectors \mathbf{p} such that $\mathbf{q}^{\top} \mathbf{p} \geq \theta$

Naive Solution

- Compute full matrix product $\mathbf{Q}^{T} \mathbf{P}$
- Determine which entries are $\geq \theta$
- Complexity O (mnr)
- Usually
- m, n : order of millions
- $10<r<500$
- Example
- $\mathrm{m}=10$ millions
- $\mathrm{n}=1$ million
- \#entries = 10 trillion
- Avg. Inner Product Time $=100$ nsec

- Runtime > 11 days
- Can we do better than that?

When is an inner product large?

$$
\mathbf{q}^{\top} \mathbf{p}=\|\mathbf{q}\|\|\mathbf{p}\| \cos \angle(\mathbf{q}, \mathbf{p}) \geq \theta,-1 \leq \cos \angle(\mathbf{q}, \mathbf{p}) \leq 1
$$

When is an inner product large?

$$
\mathbf{q}^{\top} \mathbf{p}=\|\mathbf{q}\|\|\mathbf{p}\| \cos \angle(\mathbf{q}, \mathbf{p}) \geq \theta,-1 \leq \cos \angle(\mathbf{q}, \mathbf{p}) \leq 1
$$

Length $(\\|\mathbf{q}\\|\\|\mathbf{p}\\|)$	short $(<\theta)$	medium $(\approx \theta)$
Angle ($\cos \angle(\mathbf{q}, \mathbf{p}))$	small positive large positive	
Suitable method		

When is an inner product large?

$$
\mathbf{q}^{\top} \mathbf{p}=\|\mathbf{q}\|\|\mathbf{p}\| \cos \angle(\mathbf{q}, \mathbf{p}) \geq \theta,-1 \leq \cos \angle(\mathbf{q}, \mathbf{p}) \leq 1
$$

Length $(\\|\mathbf{q}\\|\\|\mathbf{p}\\|)$	short $(<\theta)$	medium $(\approx \theta)$	long $(>\theta)$
Angle ($\cos \angle(\mathbf{q}, \mathbf{p}))$			
Suitable pall positive large positive method	Prune		

When is an inner product large?

$$
\mathbf{q}^{T} \mathbf{p}=\|\mathbf{q}\|\|\mathbf{p}\| \cos \angle(\mathbf{q}, \mathbf{p}) \geq \theta,-1 \leq \cos \angle(\mathbf{q}, \mathbf{p}) \leq 1
$$

long
$(\gg \theta)$

When is an inner product large?

$$
\mathbf{q}^{\top} \mathbf{p}=\|\mathbf{q}\|\|\mathbf{p}\| \cos \angle(\mathbf{q}, \mathbf{p}) \geq \theta,-1 \leq \cos \angle(\mathbf{q}, \mathbf{p}) \leq 1
$$

Length $(\\|\mathbf{q}\\|\\|\mathbf{p}\\|)$	short $(<\theta)$	medium $(\approx \theta)$
Angle $(\cos \angle(\mathbf{q}, \mathbf{p}))$	small positive large positive	small positive Iarge positive
Suitable		
method		
:---:		

long
$(\gg \theta)$

When is an inner product large?

$$
\mathbf{q}^{\top} \mathbf{p}=\|\mathbf{q}\|\|\mathbf{p}\| \cos \angle(\mathbf{q}, \mathbf{p}) \geq \theta,-1 \leq \cos \angle(\mathbf{q}, \mathbf{p}) \leq 1
$$

Length
$(\|\mathbf{q}\|\|\mathbf{p}\|)$

Angle $(\cos \angle(\mathbf{q}, \mathbf{p}))$

Suitable
method
short
$(<\theta)$

Prune
medium
$(\approx \theta)$

Cosine Similarity
Search $\theta^{\prime}=\frac{\theta}{\|\mathbf{q}\|\|\mathbf{p}\|}$
long
$(\gg \theta)$

When is an inner product large?

$$
\mathbf{q}^{\top} \mathbf{p}=\|\mathbf{q}\|\|\mathbf{p}\| \cos \angle(\mathbf{q}, \mathbf{p}) \geq \theta,-1 \leq \cos \angle(\mathbf{q}, \mathbf{p}) \leq 1
$$

$\xrightarrow[(\|\mathbf{q}\|\|\mathbf{p}\|)]{\text { Length }}$

Angle $(\cos \angle(\mathbf{q}, \mathbf{p}))$

Suitable method
short
$(<\theta)$

Prune
medium
$(\approx \theta)$

Cosine Similarity
Search $\theta^{\prime}=\frac{\theta}{\|\mathbf{q}\|\|\mathbf{p}\|}$
long
$(\gg \theta)$

Naive-like retrieval

Main idea: bucketize by length

- Partition \mathbf{P} in buckets with vectors of similar length
- Index buckets suitably

Main idea: bucketize by length

- Partition \mathbf{P} in buckets with vectors of similar length
- Index buckets suitably
- For each query vector and bucket
- Determine local threshold
- Prune bucket if possible

Local threshold on cosine similarity:

$$
\theta_{b}(\mathbf{q})=\frac{\theta}{\|\mathbf{q}\| l_{b}}
$$

Main idea: bucketize by length

- Partition \mathbf{P} in buckets with vectors of similar length
- Index buckets suitably
- For each query vector and bucket
- Determine local threshold
- Prune bucket if possible
- Otherwise, select best retrieval method

Local threshold on cosine similarity:

$$
\theta_{b}(\mathbf{q})=\frac{\theta}{\|\mathbf{q}\|_{b}}
$$

Discussion

LEMP

- Prunes whole buckets
- Selects a suitable retrieval algorithm per query and bucket
- Can leverage existing methods
- Cache-friendly

Bucket-level retrieval

Choose among a variety of algorithms

- Fagin's Threshold Algorithm ($r<10$)
- All pairs similarity search family $(1000<r)$
- Space-partitioning trees $(r<10)$

Our vectors are

- Not necessarily sparse
- Real values
- Medium dimensionality ($10<r<500$)

Two new algorithms

- COORD
- INCR

INCR: Main Idea

- \mathbf{q}, \mathbf{p} qualify if $\|\mathbf{q}\|\|\mathbf{p}\|\left(\sum_{i=1}^{r} \bar{q}_{i} \bar{p}_{i}\right) \geq \theta$

$\\|\mathbf{q}\\|$	$\overline{\mathbf{q}}_{1}$	$\overline{\mathbf{q}}_{2}$	$\overline{\mathbf{q}}_{3}$	$\overline{\mathbf{q}}_{4}$	\ldots	$\overline{\mathbf{q}}_{r}$
$\\|\mathbf{p}\\|$	$\overline{\mathbf{p}}_{1}$	$\overline{\mathbf{p}}_{2}$	$\overline{\mathbf{p}}_{3}$	$\overline{\mathbf{p}}_{4}$	\ldots	$\overline{\mathbf{p}}_{r}$

INCR: Main Idea

- \mathbf{q}, \mathbf{p} qualify if $\|\mathbf{q}\|\|\mathbf{p}\|\left(\sum_{i=1}^{r} \bar{q}_{i} \bar{p}_{i}\right) \geq \theta$
- Assume you have a budget of $\phi=3$ multiplications for the $\sum_{i=1}^{r} \bar{q}_{i} \bar{p}_{i}$

$\\|\mathbf{q}\\|$	$\overline{\mathbf{q}}_{1}$	$\overline{\mathbf{q}}_{2}$	$\overline{\mathbf{q}}_{3}$	$\overline{\mathbf{q}}_{4}$	\ldots	$\overline{\mathbf{q}}_{r}$
$\\|\mathbf{p}\\|$	$\overline{\mathbf{p}}_{1}$	$\overline{\mathbf{p}}_{2}$	$\overline{\mathbf{p}}_{3}$	$\overline{\mathbf{p}}_{4}$	\ldots	$\overline{\mathbf{p}}_{r}$

INCR: Main Idea

- \mathbf{q}, \mathbf{p} qualify if $\|\mathbf{q}\|\|\mathbf{p}\|\left(\sum_{i=1}^{r} \bar{q}_{i} \bar{p}_{i}\right) \geq \theta$
- Assume you have a budget of $\phi=3$ multiplications for the $\sum_{i=1}^{r} \bar{q}_{i} \bar{p}_{i}$
- Goal: decide after seeing $\phi=3$ coordinates:

$\\|\mathbf{q}\\|$	$\overline{\mathbf{q}}_{1}$	$\overline{\mathbf{q}}_{2}$	$\overline{\mathbf{q}}_{3}$	$\overline{\mathbf{q}}_{4}$	\ldots	$\overline{\mathbf{q}}_{r}$
$\\|\mathbf{p}\\|$	$\overline{\mathbf{p}}_{1}$	$\overline{\mathbf{p}}_{2}$	$\overline{\mathbf{p}}_{3}$	$\overline{\mathbf{p}}_{4}$	\ldots	$\overline{\mathbf{p}}_{r}$

INCR: Main Idea

- \mathbf{q}, \mathbf{p} qualify if $\|\mathbf{q}\|\|\mathbf{p}\|\left(\sum_{i=1}^{r} \bar{q}_{i} \bar{p}_{i}\right) \geq \theta$
- Assume you have a budget of $\phi=3$ multiplications for the $\sum_{i=1}^{r} \bar{q}_{i} \bar{p}_{i}$
- Goal: decide after seeing $\phi=3$ coordinates: $\|\mathbf{q}\|\|\mathbf{p}\|\left(\sum_{i=1}^{3} \bar{q}_{i} \bar{p}_{i}+\right.$ UpperBoundFor $\left.\left(\sum_{i=4}^{r} \bar{q}_{i} \bar{p}_{i}\right)\right) \geq \theta$

$\\|\mathbf{q}\\|$	$\overline{\mathbf{q}}_{1}$	$\overline{\mathbf{q}}_{2}$	$\overline{\mathbf{q}}_{3}$	$\overline{\mathbf{q}}_{4}$	\ldots	$\overline{\mathbf{q}}_{r}$
$\\|\mathbf{p}\\|$	$\overline{\mathbf{p}}_{1}$	$\overline{\mathbf{p}}_{2}$	$\overline{\mathbf{p}}_{3}$	$\overline{\mathbf{p}}_{4}$	\ldots	$\overline{\mathbf{p}}_{r}$

INCR: Main Idea

- \mathbf{q}, \mathbf{p} qualify if $\|\mathbf{q}\|\|\mathbf{p}\|\left(\sum_{i=1}^{r} \bar{q}_{i} \bar{p}_{i}\right) \geq \theta$
- Assume you have a budget of $\phi=3$ multiplications for the $\sum_{i=1}^{r} \bar{q}_{i} \bar{p}_{i}$
- Goal: decide after seeing $\phi=3$ coordinates: $\|\mathbf{q}\|\|\mathbf{p}\|\left(\sum_{i=1}^{3} \bar{q}_{i} \bar{p}_{i}+\operatorname{UpperBoundFor}\left(\sum_{i=4}^{r} \bar{q}_{i} \bar{p}_{i}\right)\right) \geq \theta$
- In practice
- ϕ is automatically tuned
- the ϕ coordinates do not have to be consecutive

$\\|\mathbf{q}\\|$	$\overline{\mathbf{q}}_{1}$	$\overline{\mathbf{q}}_{2}$	$\overline{\mathbf{q}}_{3}$	$\overline{\mathbf{q}}_{4}$	\ldots	$\overline{\mathbf{q}}_{r}$
$\\|\mathbf{p}\\|$	$\overline{\mathbf{p}}_{1}$	$\overline{\mathbf{p}}_{2}$	$\overline{\mathbf{p}}_{3}$	$\overline{\mathbf{p}}_{4}$	\ldots	$\overline{\mathbf{p}}_{r}$

INCR
\square

INCR

\square

id \sum UB

INCR

- Pick coordinates (largest $\left|\bar{q}_{i}\right|$ first)

INCR

- Pick coordinates (largest $\left|\bar{q}_{i}\right|$ first)
- Scan indexes and update " \sum " and "UB" quantities

INCR

- Pick coordinates (largest $\left|\bar{q}_{i}\right|$ first)
- Scan indexes and update " \sum " and "UB" quantities
- Prune vectors for which
$\|\mathbf{q}\|\|\mathbf{p}\|\left(\sum+U B\right)<\theta$

INCR

- Pick coordinates (largest $\left|\bar{q}_{i}\right|$ first)
- Scan indexes and update " \sum " and "UB" quantities
- Prune vectors for which $\|\mathbf{q}\|\|\mathbf{p}\|\left(\sum+U B\right)<\theta$
- No need to scan the whole lists! Bounds exist

Discussion

INCR

- Computes partial inner products
- Uses simple index - cheap to construct
- Scans part of the index - does not necessarily scan from top
- Sequential memory access pattern, fast

How fast is it? (Top-1 movie per user)

Summary

Large inner-product search

- Matrix factorization common technique in data mining
- Large entries in matrix products are usually of particular interest

The LEMP algorithm

- Bucketizes vectors by length
- Prunes buckets whenever possible
- For the remaining buckets: selects efficient retrieval algorithms
- Consistently fastest bucket method: INCR

Summary

Large inner-product search

- Matrix factorization common technique in data mining
- Large entries in matrix products are usually of particular interest

The LEMP algorithm

- Bucketizes vectors by length
- Prunes buckets whenever possible
- For the remaining buckets: selects efficient retrieval algorithms
- Consistently fastest bucket method: INCR

Thank you!
 Questions?

Performance of bucket algorithms

IE-SVD ${ }^{T}$

Do we need to scan the whole lists?

Do we need to scan the whole lists?

COORD: bounds

- Find for each coordinate \bar{p}_{f} of $\overline{\mathbf{p}}$ an upper and lower bound $\left[L_{f}, U_{f}\right]$ such that $\bar{p}_{f} \notin\left[L_{f}, U_{f}\right] \Rightarrow \overline{\mathbf{q}}^{\top} \overline{\mathbf{p}}<\theta_{b}(\mathbf{q})$

Algorithm selection

