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Abstract

We study bilinear embedding models for the task of multi-
relational link prediction and knowledge graph completion.
Bilinear models belong to the most basic models for this task,
they are comparably efficient to train and use, and they can
provide good prediction performance. The main goal of this
paper is to explore the expressiveness of and the connections
between various bilinear models proposed in the literature.
In particular, a substantial number of models can be repre-
sented as bilinear models with certain additional constraints
enforced on the embeddings. We explore whether or not these
constraints lead to universal models, which can in principle
represent every set of relations, and whether or not there are
subsumption relationships between various models. We report
results of an independent experimental study that evaluates
recent bilinear models in a common experimental setup. Fi-
nally, we provide evidence that relation-level ensembles of
multiple bilinear models can achieve state-of-the art prediction
performance.

1 Introduction
Multi-relational link prediction is the task of predicting miss-
ing links in an edge-labeled graph. We focus and use the ter-
minology of knowledge base completion throughout. Large-
scale knowledge bases (KB) such as DBPedia (Lehmann et
al. 2015) or YAGO (Rebele et al. 2016) contain millions of
entities and facts, but they are nevertheless far from being
complete (Nickel et al. 2016). Given a set of entities (ver-
tices) and relations (edge labels) that hold between these
entities, the goal of multi-relational link prediction (Bordes
et al. 2013) is to determine whether or not some entity e1
links to some entity e2 via a relation R, i.e., whether the fact
R(e1, e2) is true.

Embedding models have recently received considerable
attention for knowledge base completion tasks (Bordes et
al. 2013; Nickel, Rosasco, and Poggio 2016; Trouillon et
al. 2016a). Such models embed both entities and relations
in a low-dimensional latent space such that the structure of
the knowledge base is (largely) maintained. The embeddings
are subsequently used to predict missing facts or to detect
erroneous facts.
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The perhaps most basic class of embedding models is
given by bilinear models. Such models predict a “score” for
each fact R(e1, e2) by computing a weighted sum—where
the weights depend on R—of the pairwise interactions of the
entity embeddings of e1 and e2. The scores are used to rank
(pairs of) entities according to their predicted truthfulness.
Bilinear models are comparably efficient to train and use and
they can provide good prediction performance (Trouillon and
Nickel 2017).

A large number of bilinear models has been proposed in
the literature, including RESCAL (Nickel, Tresp, and Kriegel
2011), TransE (Bordes et al. 2013), DISTMULT (Yang et al.
2014), HolE (Nickel, Rosasco, and Poggio 2016), and Com-
plEx (Trouillon et al. 2016a). There is, however, little work
on the expressiveness of and the connections between various
bilinear models. In this paper, we argue that all of the afore-
mentioned models can be seen as bilinear models subject to
certain constraints. We study whether and under which con-
ditions each model is universal in that it can represent every
possible set of relation instances (or, more precisely, entity
rankings). We also explore the size of the embeddings needed
for universality and derive upper bounds for the embedding
size needed to obtain embeddings consistent with a given
dataset. We establish a number of subsumption relationships
between various models by giving explicit constructions on
how to transform instances of one model to instances of an-
other model (sometimes with a different embedding size). A
summary of our results is given in Tab. 1.

We report on an independent experimental study that
compared various bilinear models on standard datasets in
a common experimental setup. We found that the relative
performance among the models is highly relation-dependent.
We thus propose a simple relation-level ensemble of multi-
ple bilinear models, which—according to our experiments—
significantly and consistently improved prediction perfor-
mance over individual models. In fact, we found that the
ensemble performed competitively to the state-of-the-art em-
bedding approaches, whether or not they are bilinear.

2 Multi-Relational Link Prediction
Let E andR be a set of entities and relation names. A knowl-
edge base K ⊆ E ×R× E is a collection of triples (i, k, j)
where i, j, and k refer to subject, object and relation, resp.
We denote by K = |R| ≥ 1 and N = |E| ≥ 2 the number



of entities and relations, resp. We represent knowledge base
K via a binary tensor X ∈ {0, 1}N×N×K , where xijk = 1
if and only if (i, k, j) ∈ K. By convention, vectors ai refer
to rows of matrix A (as a column vector) and scalars aij to
individual entries. Given dimensionalities r and r′, we denote
by ei,r the i-th standard basis vector, by 0r the zero vector,
and by 0r×r′ the zero matrix of the respective shape. Finally,
let diag (·) refer to a block-diagonal matrix built from the
arguments (a vector or a list of matrices).

2.1 Preliminaries
A score-based ranking model is a model m that associates
a score smk (i, j) ∈ R with each subject-relation-object
triple. Denote by Smk ∈ RN×N the corresponding scoring
matrix for relation k, i.e., [Smk ]ij = smk (i, j). Denote by
Sm ∈ RN×N×K the scoring tensor of m, i.e., the tensor
with frontal slices Sm(k) = Smk .

We are ultimately interested in rankings, not in scores. In
particular, score-based models are used to rank (pairs of)
entities by their predicted truthfulness, given a query of form
R(i, ?), R(?, j), or R(?, ?). Generally, a result with a higher
score is considered more likely to be correct. We say that
an N ×N matrix is a ranking matrix if all its entries are in{
1, 2, . . . , N2

}
and whenever there is any entry with value

s > 1, there is at least one other entry with value s − 1.
Denote by π(S) the unique ranking matrix associated with
scoring matrix S, where πij(S)

def
= [π(S)]ij is the dense

rank of sij in the multiset of the entries of S. For every pair
of tuples (i, j) ∈ N ×N and (i′, j′) ∈ N ×N , we have

sij ≤ si′j′ ⇐⇒ πij(S) ≥ πi′j′(S).

For example,

S =

(
0.2 2.4 1
−1 4 2
−3 0.2 0

)
=⇒ π(S) =

(
5 2 4
7 1 3
8 5 6

)
In a slight abuse of notation, we overload π to also ap-

ply to tensors, sets of matrices, and sets of tensors. In
particular, the ranking tensor π(S) for a score tensor S
is the N × N × K tensor produced from S by replac-
ing every frontal slice S(k) with π(S(k)). Moreover, for
any set X , set π(X) = {π(x) : x ∈ X }. Observe that
π(RN×N ) corresponds to the set of all possible ranking ma-
trices, π(RN×N×K) to all possible ranking tensors, and that
π(−P ) = P for any ranking matrix (or ranking tensor) P .

2.2 Bilinear Models
Bilinear models are models whose scoring function sk(i, j)
has form aTi Rkaj , where ai,aj ∈ Rr and Rk ∈ Rr×r are
model parameters and are referred to as the embeddings of
entities i and j as well as relation k, resp. We refer to r ∈ N
as the size of the model.

In this paper, we consider bilinear models as well as mod-
els that can be represented as bilinear models with an at most
linear increase in model size. Although some of the model
considered here may not “look” bilinear at first glance, we
show that they are closely related to bilinear models. We

denote throughout the set of all models of type t (and of size
r) and by M t (M t

r).
RESCAL (Nickel, Tresp, and Kriegel 2011). An uncon-

strained bilinear model. Each model m ∈ MRESCAL
r is pa-

rameterized by an entity matrix A ∈ RN×r and K relation
matrices R1, . . . ,RK ∈ Rr×r. We have

smk (i, j) = aTi Rkaj .

RESCAL can be seen as an extension of the low-rank matrix
factorization methods prominent in recommender systems to
more then one relation.

DISTMULT (Yang et al. 2014). Each model m ∈
MDISTMULT
r is parameterized by an entity matrix A ∈ RN×r

and a relation matrix R ∈ RK×r. We have

smk (i, j) = aTi diag (rk)aj .

DISTMULT can be seen as a variant of RESCAL that puts
a diagonality constraint on the relation matrices. Due to this
constraint, it can only model symmetric relations. The model
is equivalent to the INDSCAL tensor decomposition (Carroll
and Chang 1970).

HolE (Nickel, Rosasco, and Poggio 2016). Each model
m ∈MHolE

r is parameterized by an entity matrix A ∈ RN×r
and a relation matrix R ∈ RK×r. We have

smk (i, j) = rTk (ai ? aj),

where ? refers to the circular correlation between ai and
aj , i.e., (ai ? aj)k =

∑r
t=1 aitaj((k+t−2 mod r)+1). The

idea of using circular correlation relates to associative
memory (Nickel, Rosasco, and Poggio 2016). Hayashi and
Shimbo (2017) provide an alternative viewpoint in terms of
ComplEx, discussed next.

ComplEx (Trouillon et al. 2016a). Each model m ∈
MComplEx
r is parameterized by an entity matrix A ∈ CN×r

and a relation matrix R ∈ CN×r. We have

smk (i, j) = Re(aTi diag (rk)aj),

where Re(·) extracts the real part of a complex number
(aTi diag (rk)aj is not necessarily real). ComplEx is su-
perficially related to DISTMULT but uses complex-valued
parameter matrices.

TransE (Bordes et al. 2013). Each modelm ∈MTransE
r is

parameterized by an entity matrix A ∈ RN×r and an relation
matrix R ∈ RK×r. We have1

smk (i, j) = −‖ai + rk − aj‖22 .

In contrast to the models presented above, TransE is a
translation-based model, not a factorization-based model.
The use of translations—i.e., differences between entity
embeddings—is inspired by Word2Vec’s word analogy re-
sults (Mikolov et al. 2013). Note that TransE can also be used
with L1 norm instead of L2; we focus on the L2 variant given
above throughout.

1This definition differs from the original definition of TransE in
that we negate all scores in order to rank larger scores higher.



3 Subsumption and Expressiveness
For a given class M t

r of models, denote by Mt
r =

{Sm : m ∈M t
r } the set of scoring tensors that the model

class can represent. LetMt = ∪r∈N+Mt
r. Note that π(Mt

r)
and π(Mt) denote the set of ranking tensors that can be
represented by M t

r and M t, respectively.

3.1 Subsumption
We first explore subsumption relationships between different
model classes as well as the the size of the entity representa-
tions needed for a subsumption to hold. We assume through-
out that the number N ≥ 2 of entities and the number K ≥ 1
of relations are arbitrary but fixed.

We say that class M t2 subsumes class M t1 whenever
π(Mt1) ⊆ π(Mt2). In other words, M t2 is at least as ex-
pressive in terms of rankings as M t1 . If π(Mt1) ⊂ π(Mt2),
we say that M t2 strictly subsumes M t1 , indicating that M t2

is strictly more expressive than M t1 . Note that it is good
when M t2 is more expressive than M t1 because M t2 can
in principle express more rankings. It can also be problem-
atic, however, because efficient training and the avoidance of
overfitting become more challenging.

We first show subsumption by specifying an explicit model
transformation, then strictness via a counterexample.

Theorem 1. For all r ∈ N+, MRESCAL
2r+1 subsumes MTransE

r .

Proof. Fix some r ∈ N+. Pick any TransE model mT ∈
MTransE
r , denote by A ∈ RN×r and R ∈ RK×r the corre-

sponding parameter matrices, and by SmT the scoring tensor.
We show that π(SmT ) ∈ π(MRESCAL

2r+1 ). We do this by ex-
plicitly constructing a corresponding RESCAL model mR ∈
MRESCAL

2r+1 by specifying its parameters A′ ∈ RN×(2r+1) and
R′k ∈ R(2r+1)×(2r+1). Setting

a′i =
(
1Tr aTi aTi ai

)T
,

R′k = −

 0r×r −2 diag (rk) e1,r
2 diag (rk) −2Ir×r 0r×1

eT1,r 01×r 0

 ,
(1)

we can now verify2 that

smR

k (i, j) ≤ smR

k (i′, j′) ⇐⇒ smT

k (i, j) ≤ smT

k (i′, j′),

which implies that mT and mR agree on the ranking for each
relation, i.e., π(SmT ) = π(SmR). Since mR ∈ MRESCAL

2r+1 ,
we obtain π(SmT ) ∈ π(MRESCAL

2r+1 ) as claimed.

The proof above shows that TransE can be viewed as a
bilinear model with the constraints specified in Eq. (1).

Theorem 2. MTransE does not subsume MRESCAL
r for any

r ≥ 2.

Note that the theorem implies that there are RESCAL
models with r = 2 that cannot be expressed with any TransE
model, no matter how large its size.

2A more detailed derivation can be found in the online appendix.

Proof. Fix some r ≥ 2 and consider the RESCAL model
mR ∈MRESCAL

r specified by parameters

a′i =

{
ei,r for i ∈ { 1, 2 }
0r otherwise

,

R′k =


 1 1 0r−2

1 0 0r−2
0(r−2)×1 0(r−2)×1 0(r−2)×(r−2)

 k = 1

0r×r otherw.

We have smR
1 (1, 1) = 1, smR

1 (2, 2) = 0. Thus smR
1 (1, 1) 6=

smR
2 (2, 2) and consequently π11(SmR

(1) ) 6= π22(S
mR

(1) ). Now
pick any TransE model mT ∈MTransE, denote by A and R
its parameters, and observe that smT

k (1, 1) = smT

k (2, 2) =

−‖rk‖22. Thus π11(SmT

(1) ) = π22(S
mT

(1) ). Since this holds for
any TransE model, we conclude that π(SmR) 6∈ π(MTransE).

Nickel, Rosasco, and Poggio (2016) argued that HolE can
be viewed as a compressed version of RESCAL and implic-
itly established the subsumption relationship to RESCAL.
We present their argument formally below.
Theorem 3. MRESCAL

r subsumes MHolE
r .

Proof. From the definition of HolE, we rewrite

rTk (ai ? aj) =

d∑
t=1

rkt

d∑
u=1

aiuaj((t+u−2 mod r)+1)

= aTi Rkaj ,

where Rk =


rk1 rk2 . . . rkr
rkr rk1 . . . rk(r−1)

...
...

. . .
...

rk2 rk3 . . . rk1

.

Recently, Hayashi and Shimbo (2017) proved that
MHolE

2r+1 ⊇ M
ComplEx
r andMHolE

r ⊆ MComplEx
r . Putting this

together with Th. 3, we obtain:

Corollary 1. MRESCAL
2r+1 subsumes MComplEx

r .
Finally, since DISTMULT differs from RESCAL only in

that DISTMULT adds a diagonality constraint, we directly
obtain:
Theorem 4. MRESCAL

r subsumes MDISTMULT
r .

3.2 Universality
We say that classM t is universal if π(Mt) = π(RN×N×K),
i.e., any ranking tensor can be expressed. As with subsump-
tion, universality does by no means imply that a model class
is suitable for use in practice. If a model class is not universal,
however, care must be taken because certain relations cannot
be modeled.

A direct consequence of Th. 2 is:
Corollary 2. MTransE is not universal.

We establish the universality of RESCAL, HolE, and Com-
plEx next.



Table 1: Summary of our main results. Each row corresponds to a model of size r. All conditions are sufficient conditions. ?
means that no bound other than the universal bound is known.

Model # Parameters Universal Consistent with B Subsumption of model of size r′ when r ≥
when r ≥ when r ≥ RESCAL HolE ComplEx DISTMULT TransE

RESCAL Nr +Kr2 N min{N, 2
∑
k rrank(Bk)} r′ r′ 2r′ + 1 r′ 2r′ + 1

HolE Nr +Kr 2KN + 1 2min{KN, 2
∑
k rrank(Bk)}+ 1 ? r′ 2r′ + 1 2r′ + 1 ?

ComplEx 2Nr + 2Kr KN min{KN, 2
∑
k rrank(Bk)} ? r′ r′ r′ ?

DISTMULT Nr +Kr No No No No No r′ No
TransE Nr +Kr No No No No No No r′

Theorem 5. MRESCAL
N is universal.

Proof. Pick any ranking tensor P ∈ π(RN×N×K). Consider
the model m ∈ MRESCAL

N with parameterization A = IN
and Rk = −P(k). Then Smk = ARkA

T = −P(k) and thus
Sm = −P . Using the fact that π(−P) = P , we conclude
that P ∈ π(MRESCAL

N ).

Note that models in MRESCAL
N have very large embeddings.

It is more involved to establish whether or not MRESCAL
r is

universal for some r < N . We approach this question below
and show that r needs to be linear in N to obtain universality.
Theorem 6. MRESCAL

bN/32−1c is not universal.

The proof (given below) makes use of the notion of round-
ing rank (Neumann, Gemulla, and Miettinen 2016). Given a
rounding threshold τ ∈ R, denote by roundτ (x) = I(x ≥
τ) the rounding function (1 if x ≥ τ , else 0). We ap-
ply roundτ to matrices and tensors by rounding element-
wise. In particular, when A ∈ Rm×n is any real-valued
matrix, then roundτ (A) is the m × n binary matrix with
[roundτ (A)]ij = roundτ (aij). We assume τ = 1/2 unless
explicitly stated otherwise and write round for round1/2.
Definition 1. For τ ∈ R, the rounding rank w.r.t. τ of a
binary matrix B ∈ { 0, 1 }m×n is given by rrankτ (B) =
min { rank(A) : A ∈ Rm×n, roundτ (A) = B } .

Given a Boolean matrix B, say that a scoring matrix S is
consistent with B if

bij = 1 and bi′j′ = 0 =⇒ πij(S) < πi′j′(S). (2)
The rounding rank can be interpreted as the minimum

rank of a scoring matrix that is consistent with B. Neumann,
Gemulla, and Miettinen (2016) proved that the rounding rank
differs by at most 1 for different choices of τ and that it is
connected to the sign rank (Alon, Moran, and Yehudayoff
2016). The rounding rank can be much smaller than the ma-
trix rank in practice, which partially explains the the success
of bilinear models.

Proof (of Th. 6). Alon, Frankl, and Rödl (1985) showed that
there exist Boolean matrices in { 0, 1 }N×N with rounding
rank at least N/32 for every N . Pick any such matrix B. The
proof is by contradiction. Consider K = 1 and suppose there
exists a scoring matrix S ∈MRESCAL

bN/32−1c that satisfies Eq. (2),
i.e., sij > si′j′ whenever bij = 1 and bi′j′ = 0. Observe that
S has rank at most bN/32− 1c because it is defined by a
product involving a bN/32− 1c × bN/32− 1c matrix. But
this implies that rrank(B) ≤ N/32−1, a contradiction.

Note that the proof implies that there exists ranking ten-
sors with just two distinct ranks that cannot be expressed
by MRESCAL

bN/32−1c. Since RESCAL is an unconstrained bilinear
model, we can generalize to other model classes.

Corollary 3. No model class that only contains bilinear mod-
els of size less than N

32 is universal.

Theorem 7. MComplEx
KN and MHolE

2KN+1 are universal.

Proof. Pick any scoring tensor S ∈ RN×N×K . Trouillon
et al. (2016b) showed that for every N × N real matrix
and thus every scoring matrix Sk, there exists Ak,Dk ∈
CN×N , where Ak is unitary, Dk diagonal, and Sk =
Re(AkDkA

∗
k). Now consider the ComplEx model with

A = (A1 A2 · · · AK)

Rk = diag (0N×N , . . . ,Dk, . . . ,0N×N )

We can verify Sk = Re(ARkA
∗) for each k. Thus S ∈

MComplEx
KN and it follows that MComplEx

KN is universal. The uni-
versiality of MHolE

2KN+1 follows from the fact thatMHolE
2r+1 ⊇

MComplEx
r for every r (Hayashi and Shimbo 2017).

Finally, since DISTMULT’s relation matrix is diagonal
and thus symmetric, DISTMULT cannot model asymmetric
relations.

Theorem 8. MDISTMULT is not universal.

3.3 Consistent Ranking
Suppose we are given an N ×N ×K Boolean tensor B and
we look for a ranking tensor P that is consistent with B in
each frontal slice, i.e., pijk < pi′j′k whenever bijk = 1 and
bi′j′k = 0. In this section, we establish upper bounds on the
size3 that various bilinear models need to express a ranking
that is consistent with B, i.e., which ranks 1s above 0s. Here
we think of B as the correct completed KB; there is no hope
for a model class not consistent with B to recover the correct
KB.

Note that even if a model class is not universal, it may
still contain consistent models for all Boolean tensors. This
is not the case for DISTMULT and TransE, however. In
particular, since DISTMULT produces symmetric scoring
matrices, DISTMULT does not contain models consistent
with any Boolean tensor that has an asymmetric frontal slice.

3The expressive power of models considered here is non-
decreasing as their size grows.



For TransE, the proof of Th. 2 implies that TransE does not
contain models for Boolean tensors with both 0s and 1s on
the main diagonal of any of its frontal slices.

Theorem 9. There exists Boolean tensors B such that no
ranking tensor in π(MDISTMULT) is consistent with B.

Theorem 10. There exists Boolean tensors B such that no
ranking tensor in π(MTransE) is consistent with B.

For RESCAL, which is universal, we can make use of the
rounding-rank decomposition to obtain a tighter bound than
the one implied by its universality.

Theorem 11. For any boolean tensor B, π(MRESCAL
r ) con-

tains a ranking tensor consistent with B if

r ≥ min

{
N, 2

K∑
k=1

rrank(Bk)

}
.

Proof. The case r ≥ N follows from Th. 6. Denote by rk the
rounding rank of slice Bk of B; we explicitly construct a con-
sistent RESCAL model with r = 2

∑
k rk (as asserted). To

do so, pick any Lk,Qk ∈ RN×rk that form a rounding-rank
decomposition of Bk, i.e., for which Bk = round(LkQ

T
k ).

(By the definition of rounding rank, such matrices always
exist.) Now set

aTi = ( [L1]i: [Q1]i: · · · [LK ]i: [QK ]i:)
T

Mk =

(
0rk×rk Irk×rk
0rk×rk 0rk×rk

)
(Rk)ij = diag (02r1×2r1 , . . . ,Mk, . . . ,02rK×2rK )

We can now verify that round(ARkA
T ) = Bk, which im-

plies consistency.

Theorem 12. For any Boolean tensor B, π(MComplEx
r ) con-

tains a ranking tensor consistent with B if

r ≥ min

{
KN, 2

K∑
k=1

rrank(Bk)

}
.

Proof. The case r ≥ KN follows directly from Th. 7. To
obtain r ≥ 2

∑K
k=1 rrank(Bk), define rk, Lk, and Qk as

in the proof of Th. 11, and set Sk = LkQ
T
k . Then there

exist matrices Ak ∈ CN×2rk and Dk ∈ C2rk×2rk , with Dk

being diagonal, such that Sk = Re(AkDkA
∗
k) (Trouillon et

al. 2016b). Now define

A = (A1 A2 · · · AK)

Rk = diag (02r1×2r1 , . . . ,Dk, . . . ,02rK×2rK )

and observe that Sk = Re(ARkA
∗).

As a corollary of the above theorem, we have:

Corollary 4. For any Boolean tensor B, π(MHolE
r ) contains

a ranking tensor consistent with B if

r ≥ min

{
2KN + 1, 4

K∑
k=1

rrank(Bk) + 1

}
.

4 Training and Relation-Level Ensemble
We have seen that various prior models can be interpreted
as a bilinear models subject to certain constraints. In other
words, they are diverse with respect to their expressivity. So
far, we did not touch on how to select a suitable model for a
given dataset and from a given model class. In this section,
we briefly discuss model training in a margin-based frame-
work. We then propose a simple relation-level ensemble that
combines multiple individual models. The rationale behind
using an ensemble is that whether a model class can represent
well or be trained well on a relation depends on properties of
that relation. The ensemble thus aims to pick the best model
(or a combination of models) for each relation.

4.1 Margin-Based Training
We assume throughout that we are given a set of positive
triples T + ⊂ E ×R× E , but no negative evidence. This is
a common scenario in practice. To deal with the absence of
negative evidence, ranking-based frameworks aim to produce
a model that ranks triples in T + higher than other triples. A
common approach (Bordes et al. 2013; Nickel, Rosasco, and
Poggio 2016) is to define a set of “negative” triples for each
positive triple (i, k, j) ∈ T + by perturbing subject or object:

T −(i,k,j) =
{
(i′, k, j) | i′ ∈ E , (i′, k, j) /∈ T +

}
∪{

(i, k, j′) | j′ ∈ E , (i, k, j′) /∈ T +
}
.

This approach corresponds to a local closed-world assump-
tion (Dong et al. 2014). We now briefly summarize a com-
mon margin-based framework for training (Bordes et al.
2013). There are a number of alternatives, including logistic
loss (Riedel et al. 2013) and negative log-likelihood (Trouil-
lon et al. 2016a). Margin-based frameworks often lead to
faster training times in practice because they focus on “infor-
mative” pairs of positive and negative triples, i.e., they ignore
parts of the data that are already more or less well-represented
by the model. In particular, we minimize∑

(i+,k,j+)∈T +,

(i−,k,j−)∈T −
(i+,k,j+)

[f(i−, k, j−) + γ − f(i+, k, j+)]+
|T −(i+,k,j+)|

,

where 0 ≤ γ ∈ R+ is a margin hyperparameter, [x]+ =
max(0, x), and f depends on the model being trained. For
all models but HolE, we set f(i, k, j) = smk (i, j). For HolE,
we set f(i, k, j) = σ(smk (i, j)), where σ denotes the logis-
tic function, as suggested by the authors. In our experimen-
tal study, we also consider an additional L2 regularization
term over the model parameters. The models can be fit using
stochastic gradient descent (SGD) as in (Bordes et al. 2013;
Lin et al. 2015b). The computational cost per SGD step of
RESCAL is O(r2), of HolE O(r log n), and of all other mod-
els O(r).

4.2 Relation-Level Ensemble
The simplest way of combining multiple models is to con-
struct an ensemble at the model level (Krompaß and Tresp
2015). Our experimental study suggests that the relative per-
formance of different models is relation-dependent, however.



Table 2: Dataset statistics

Dataset # Ent. # Rel. # Train. # Valid. # Test
WN18 40,943 18 141,442 5,000 5,000
FB15K 14,951 1,345 483,142 50,000 59,071

A more promising approach is therefore to combine models
at the relation level. To the best of our knowledge, this simple
approach has not been explored previously.

Our ensemble is based on stacking. A meta learner is used
to combine the ranking matrices produced by the individual
models such that some accuracy measure is maximized. Here
we use logistic regression. To do so, we construct for each
relation a dataset that contains all of its positive triples as well
as an equal amount of negative triples obtained by randomly
perturbing each positive triple following the same strategy as
in training individual models. For logistic regression, we use
rescaled scores of the individual models as features and the
positive/negative class label as response variable. Rescaling
accounts for the variety in range of scores of different mod-
els; we rescale each feature linearly into range [0, 1] (Han,
Kamber, and Pei 2011, Sec. 3.5.2).

5 Experiments
We conducted an experimental study on two real-world
datasets, which are commonly used in prior work on KB
completion. The primary goal of our study was to provide
independent evidence for the performance of various bilinear
models under the margin-based ranking framework. We also
evaluated relation-level ensembles of such models and com-
pared the results to prior results reported in the literature (for
bilinear and other models).

5.1 Experimental Setup
All datasets, experimental results, and source code will be
made publicly available.4

Data. We used the WN18 (Bordes et al. 2014) and
FB15K (Bordes et al. 2013) datasets, which were extracted
from WordNet (Miller 1995) and Freebase (Bollacker et al.
2008), respectively. WordNet contains words and their re-
lationships. Freebase contains various facts across a large
number of relations. The two datasets are presplit into a train-
ing set, a validation set, and a test set. Table 2 summarizes
the key statistics.

Methods and training. We considered RESCAL (R),
HolE (H), and TransE (T) in our experimental study. We
reimplemented each method in C++, partly using the Intel
Math Kernel Library. We trained each model in the margin-
based ranking framework using Adagrad (Duchi, Hazan, and
Singer 2011). In each step, we sampled a positive triple at ran-
dom and obtained a negative triple by randomly perturbing
subject or object. Sampling was done without replacement
and we did not use mini-batches. When using the same hyper-
parameters, our implementation provided similar or better fits
than the original implementations provided by the authors.

4http://dws.informatik.uni-mannheim.de/en/
resources/software/tf/

Table 3: Hyperparameters settings used in our study

Dataset Model r γ η λe λr
WN18 RESCAL 200 1.0 0.10 0.10 0.01

HolE 200 0.2 0.10 0.01 0.00
TransE 200 0.5 0.01 - -

FK15k RESCAL 200 4.0 0.10 0.10 0.01
HolE 200 0.2 0.10 0.01 0.01
TransE 200 0.2 0.01 - -

Note that our study was limited in that we considered only
one particular training method; no conclusions can be drawn
about other training methods. We focused on margin-based
ranking because it led to much faster training times, making
this study more feasible. We used LIBLINEAR

for logistic regression.
Evaluation. We evaluated model performance for the tasks

of entity ranking and triple classification on the test data.
In entity ranking, we rank entities for queries of the form
R(?, e) or R(e, ?). Our evaluation closely follows Bordes
et al. (2013), and we report mean reciprocal rank (MRR),
HITS@10, and mean rank (MR) in the filtered setting, i.e.,
predictions that correspond to tuples in the training or valida-
tion datasets were discarded. In triple classification, we are
given a triple (i, k, j) and are asked to classify it as positive
or negative; we proceed as Socher et al. (2013) to produce
the set of tuples to classify. To perform classification, we
determined a score threshold σk for each relation and model;
scores larger than σk were classified positive, else negative.
We used optimal thresholds with respect to the validation set.

Model selection. Each of the models has a number of hy-
perparameters. For all models, we trained the models solely
on the training data and used the validation data solely to
tune hyperparameters. Test data was not touched for model
selection. We considered the following hyperparameter set-
tings: r ∈ {100, 200}, learning rate η ∈ {0.01, 0.1, 1},
weight of L2-regularization λe, λr ∈ {0, 0.1, 0.01} for en-
tity and relation parameters, resp., margin hyperparame-
ter γ ∈ {1, 2, 4, 8} for RESCAL, γ ∈ {0.2, 0.5, 0.7} for
HolE, and γ ∈ {0.2, 0.5, 0.7, 1.0, 1.5} for TransE.5

We performed exhaustive grid search, using 50 (2000 for
TransE) epochs (passes over the dataset) per hyperparameter
setting and model. We then retrained the best-performing
setting (w.r.t. HITS@10 on validation data) for each model
on the training data for up to 2,000 epochs. Tab. 3 reports the
hyperparameters ultimately selected.

5.2 Results
Entity ranking. Our results are summarized in Tab. 4. De-
tailed results can be found in Tab. 6, where we measured
HITS@10 per relation category and per argument to be pre-
dicted as in (Bordes et al. 2013).

For the individual models, our results indicate that model

5We used smaller margins than the ones suggested for TransE
with L1 distance (Lin et al. 2015b; Wang et al. 2014; Lin et al.
2015a). By doing this, we obtained comparable prediction perfor-
mance as TransE-L1.



Table 4: Entity ranking results of our experimental study. Best-performing entries marked bold.

Dataset WN18 FB15K
Model HITS@10 (%) MRR (%) MR HITS@10 (%) MRR (%) MR
HolE (Nickel, Rosasco, and Poggio 2016) 94.1 93.8 819 72.6 50.2 331
TransE (Bordes et al. 2013) 94.5 43.9 474 79.5 34.4 76
RESCAL (Nickel, Tresp, and Kriegel 2011) 87.8 79.9 905 59.6 38.1 247
RESCAL + TransE 94.8 87.3 510 79.7 51.1 61
RESCAL + HolE 94.4 94.0 743 79.1 57.5 165
HolE + TransE 94.9 93.8 507 84.6 61.0 67
RESCAL + HolE + TransE 95.0 94.0 507 85.1 62.8 52

Table 5: Entity ranking results as reported in the literature (not reproduced here, partly with different training methods, partly
non-bilinear models). Entries marked “-” were not reported. Entries better than any result in our study are marked bold.

Dataset WN18 FB15K
Model HITS@10 (%) MRR (%) MR HITS@10 (%) MRR (%) MR
Gaifman (Niepert 2016) 93.9 - 352 84.2 - 75
ComplEx (Trouillon et al. 2016a), r=150/200 94.7 94.1 - 84.0 69.2 -
DISTMULT (Trouillon et al. 2016a), r=150/200 93.6 82.2 902 82.4 65.4 97
R-GCN+DISTMULT (Schlichtkrull et al. 2017), r=200 96.4 81.9 - 84.2 69.6 -
ANALOGY (Liu, Wu, and Yang 2017), r=200 94.7 94.2 - 85.4 72.5 -

Table 6: Detailed entity ranking results (FB15k, HITS@10)

Task Predict subject Predict object
Relations 1:1 1:N N:1 N:N 1:1 1:N N:1 N:N
TransE 75.8 91.9 41.4 82.2 75.5 51.1 91.9 84.7
HolE 80.4 69.5 44.7 77.4 79.0 57.8 59.1 79.0
RESCAL 43.1 75.7 17.7 62.0 42.4 21.3 79.2 65.8
R+H+T 87.5 94.3 55.2 86.7 87.0 65.0 93.3 89.4

Table 7: Triple classification results (FB15K)

Model T H R R+T R+H H+T R+H+T
Accuracy 96.2 93.7 94.6 96.7 95.8 96.5 96.9

performance depends on the relation category. No single
model always performed best across all categories. HolE
and TransE generally performed better than RESCAL; here
constraints help. The relation-level ensembles generally im-
proved performance w.r.t. HITS@10 and MRR. Performance
of MR was not improved, however, mainly because this met-
ric is sensitive to low-ranked triples (which existed in HolE
and RESCAL predictions). Note that adding RESCAL to the
ensemble was helpful. Finally, the ensemble of RESCAL,
TransE, and HolE performed best w.r.t. HITS@10 on all
relation categories and for both datasets.

In Tab. 5, we compare to some recent results reported in the
literature. Note that training methods were different than the
one used in our study for some of these models, and that some
models are not bilinear. Nevertheless, a direct comparison
indicates that a relation-level ensemble of multiple bilinear
models is competitive to the state-of-the-art.

Triple classification. Tab. 7 summarizes the HITS@10
performance of each individual model and various relation-
level ensembles for triple classification on FB15k. The results

are generally in line with the results for entity ranking. A
notable exception is that RESCAL outperforms HolE here;
we conjecture that this is due to HolE’s high MR on this
dataset.

6 Related Work
We focus on recent embedding models that solely use the
KB as input. There are a number of methods that modify
TransE in one way or another: TransH (Wang et al. 2014)
and TransR (Lin et al. 2015b) improve support symmet-
ric and many-to-one relations, TransG (Xiao et al. 2015)
adds refines relation embeddings by semantic components,
and PTransE (Lin et al. 2015a) adds multiple-step rela-
tion paths. Gaifman (Niepert 2016) exploits structural fea-
tures in the form of Horn clauses to construct embeddings.
Socher et al. (2013) combined neural networks with tensors.
Schlichtkrull et al. (2017) models relational data with graph
convolutional networks. ANALOGY (Liu, Wu, and Yang
2017) is a recent bilinear model that constrains relation em-
beddings be real normal matrices. Finally, Nickel, Jiang, and
Tresp (2014) provided a rank bound for exact recovery of a
Boolean tensor with RESCAL. Our results differ in that we
consider consistency, not exact recovery.

7 Conclusion
We studied the expressive power of and subsumption relation-
ships between recent bilinear embedding models for knowl-
edge graphs. We introduced the concepts of universality and
consistency, which capture different aspects of model expres-
siveness, and provided bounds on model sizes needed for
universality or consistency with a given dataset. We argued
that using a relation-level ensembles are beneficial for multi-
relational learning. Finally, we conducted an independent
experimental study that compared various bilinear models in



a common setup.
Future work includes tightening the bounds provided here,

studying which relation types can be reportedresented by
which models, and exploring the relationship between addi-
tional models. We also expect an in-depth study of model
performance with various alternative datasets and training
methods to be insightful.
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