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What is data mining?
“Data mining is the process of discovering knowledge or patterns
from massive amounts of data.” (Encyclopedia of Database
Systems)

Rock Gold Tools Miners

Data Knowledge Software Analysts

Estimated $100 billion industry around managing and analyzing data.

4 / 36Data, Data everywhere. The Economist, 2010.

http://www.economist.com/node/15557443


What is data mining?
“Data mining is the process of discovering knowledge or patterns
from massive amounts of data.” (Encyclopedia of Database
Systems)
• Science

I The Sloan Digital Sky Survey gathered 140TB of information
I NASA Center for Climate Simulation stores 32PB of data
I 3B base pairs exist in the human genome
I LHC registers 600M particle collisions per second, 25PB/year

• Social/business data
I 1M customer transactions are performed at Walmart per hour
I 4.6B mobile-phone subscriptions worldwide
I 300M active Twitter users write 500M tweets per day
I 100M Netflix customers view and rate hundreds of thousands of

movies
I 300h of videos uploaded every minute on YouTube

• Government, health care, news, stocks, books, web search, . . .
• Often: less data than in these extreme cases, but still “massive”

5 / 36Data, Data everywhere. The Economist, 2010.

http://www.economist.com/node/15557443


What is data mining?
“Data mining is the process of discovering knowledge or patterns
from massive amounts of data.” (Encyclopedia of Database
Systems)
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Prediction

Clustering

Outlier detection

“Regnet es am Siebenschläfertag, der
Regen sieben Wochen nicht weichen mag.”
(German folklore)

Pattern mining



What is data mining?
“Data mining is the process of discovering knowledge or patterns
from massive amounts of data.” (Encyclopedia of Database
Systems)

Knowledge discovery process
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Focus of this lecture





Womb
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• mater (Latin) = mother
• matrix (Latin) = pregnant animal
• matrix (Late Latin) = womb

also source, origin
• Since 1550s: place or medium where

something is developed
• Since 1640s: embedding or enclosing

mass

Online Etymology Dictionary

http://www.etymonline.com/index.php?term=matrix


Rectangular arrays of numbers

• “Rectangular arrays” known in ancient China (rod calculus,
estimated as early as 300BC)

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


• Term “matrix” coined by J.J. Sylvester

in 1850
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https://en.wikipedia.org/wiki/Rod_calculus
https://en.wikipedia.org/wiki/James_Joseph_Sylvester


System of linear equations
Three sheafs of a good crop, two sheafs of a mediocre crop, and one sheaf
of a bad crop are sold for 39 dou. Two sheafs of good, three mediocre, and
one bad are sold for 34 dou; and one good, two mediocre, and three bad are
sold for 26 dou. What is the price received for each sheaf of a good crop,
each sheaf of a mediocre crop, and each sheaf of a bad crop?
Chiu-chang Suan-shu (Nine Chapters on Arithmetic), ≈ 200BC

• Systems of linear equations can be written as matrices

3x + 2y + z = 39
2x + 3y + z = 34
x + 2y + 3z = 26

→

3 2 1 39
2 3 1 34
1 2 3 26


• and then be solved using linear algebra methods3 2 1 39

5 1 24
12 33

 =⇒

x
y
z

 =

9.25
4.25
2.75
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Set of data points
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x y

−3.84 −2.21
−3.33 −2.19
−2.55 −1.47
−2.46 −1.25
−1.49 −0.76
−1.67 −0.39
−1.3 −0.59
...

...
1.59 0.78
1.53 1.02
1.45 1.26
1.86 1.18
2.04 0.96
2.42 1.24
2.32 2.03
2.9 1.35





Linear maps

• Linear maps from R3 to R
f1(x , y , z) = 3x + 2y + z

f2(x , y , z) = 2x + 3y + z

f3(x , y , z) = x + 2y + 3z
f4(x , y , z) = x

• Linear map f1 written as a matrix

(
3 2 1

) x
y
z

 = f1(x , y , z)

• Linear map from R3 to R4
3 2 1
2 3 1
1 2 3
1 0 0


x
y
z

 =


f1(x , y , z)
f2(x , y , z)
f3(x , y , z)
f4(x , y , z)
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Original data
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Graphs
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Adjacency matrix



Objects and attributes
Anna, Bob, and Charlie went shopping
• Anna bought butter and bread
• Bob bought butter, bread, and beer
• Charlie bought bread and beer


Bread Butter Beer

Anna 1 1 0
Bob 1 1 1
Charlie 0 1 1


Customer transactions


Data Matrix Mining

Book 1 5 0 3
Book 2 0 0 7
Book 3 4 6 5


Document-term matrix


Avatar The Matrix Up

Alice 4 2
Bob 3 2
Charlie 5 3


Incomplete rating matrix


Jan Jun Sep

Saarbrücken −1 11 10
Helsinki −6.5 10.9 8.7
Cape Town 15.7 7.8 8.7


Cities and monthly temperatures

Many different kinds of data fit this object-attribute viewpoint.
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What is a matrix?

• A means to describe computation
I Rotation
I Rescaling
I Permutation
I Projection
I · · ·

 Linear operators

• A means to describe data
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Rows Columns Entries

Objects Attributes Values
Equations Variables Coefficients
Data points Axes Coordinates
Vertices Vertices Edges

...
...

...

A
tt
rib

ut
e
j

a11 a12 · · · a1j · · ·
a21 a22 · · · a2j · · ·
...

...
. . .

...
. . .

Object i ai1 ai2 · · · aij · · ·


...

...
. . .

...
. . .



In data mining, we make use of both viewpoints simultaneously.
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Key tool: Matrix decompositions
A matrix decomposition of a data matrix D is given by three
matrices L, M , R such that

D = LMR,

where
• D is an m × n data matrix,
• L is an m × r1 matrix,
• M is an r1 × r2 matrix,
• R is an r2 × n matrix, and
• r1 and r2 are integers ≥ 1.
• Often r1 = r2 = r ≥ 1
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Why matrix decompositions?

• Decompositions as just defined are not really helpful
I Suppose we set r = r1 = r2 = n, L = D, M = R = I n (the n × n

identity matrix)
I Then D = LMR = DI nI n = D
I But this does not provide insight

• To make decompositions useful, we want the decomposition to
satisfy certain (carefully chosen) properties or contraints

• For example: we may want r to be small
I Each object is represented by n numbers in D
I Each object is represented by r numbers in L

(called embedding or distributed representation)
I If r < n, we performed some form of compression

• Another example: we may want factors to have
certain properties
I Compare: integer factorization
I 391 = 17 · 13

19 / 36
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Approximate matrix decompositions
A approximate matrix decomposition of data matrix D is given
by three matrices L, M , R such that

D ≈ LMR = D̂,

where each matrix has conforming dimensions (as before).
• We often look at approximate decompositions

I Data is noisy anyway
I Approximation may remove noise
I Allows to focus on global (small r) or local (large r) patterns
I Often more insightful
I More efficient to compute

• ≈ defined by some loss function L(D, D̂)
I E.g., squared error
I Low means good approximation, high means bad
I Finding the best approximation (smallest loss) can be hard

• We often say “matrix decomposition” when we actually mean
“approximate matrix decomposition”
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Some matrix decompositions

• There are many different decompositions, each enforcing
different constraints and serving a different purpose
I Singular value decomposition (SVD)
I k-means (crisp or fuzzy)
I Non-negative matrix factorization (NMF)
I Semi-discrete decomposition (SDD)
I Boolean matrix decomposition (BMF)
I Independent component analysis (ICA)
I Matrix completion
I Probabilistic matrix factorization
I Tensor decompositions
I . . .

• Picking the right one for the problem (if any) at hand is hard,
experience helps
• Decompositions are not always easy (and often hard) to compute
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Example: Singular value decomposition

D50×2
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Example: k-Means

© 1999 Macmillan Magazines Ltd

letters to nature

NATURE | VOL 401 | 21 OCTOBER 1999 | www.nature.com 789

PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.
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subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.
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Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

d̂
T

i = lTi R

k-means factors correspond to prototypical faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

dT
i (original)



Example: Non-negative matrix factorization

d̂
T

i = lTi R

NMF factors correspond to parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

dT
i (original)

Lee and Seung, 1999.
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Example: Latent Dirichlet allocation
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R
(topic×word)

L
(doc×topic)

Blei et al. Latent dirichlet allocation. JMLR, 2003.

http://dl.acm.org/citation.cfm?id=944937


What can we do with matrix decompositions?

• Separate data from multiple processes
• Remove noise from the data
• Remove redundancy from the data
• Reveal latent structure and similarities in the data
• Cluster the data
• Fill in missing entries
• Find local patterns
• Reduce space consumption
• Reduce computational cost
• Aid visualization
• ...

Matrix decompositions can make data mining algorithms
more effective. They may also provide insight into the
data by themselves.
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Factor interpretion of matrix decompositions
Assume that M is r × r and diagonal. Consider object i .
• Row of R = part (or piece), called latent factor (“latent object”)
• Entry of M = weight of corresponding part
• Row of MR = weighted part
• Row of L =representation of object via weighted parts,

called embedding or distr. representation
(r pieces of information)

• r forces “compactness” (often r < n)

27 / 36

Each object can be viewed as a combina-
tion of r (weighted) “latent objects” (or
“prototypical objects”). Similarly, each at-
tribute can be viewed as a combination of r
(weighted) “latent attributes.”
(e.g., latent attribute = “body size”; latent ob-
ject relates body size to real attributes such as
“height”, “weight”, “shoe size”)

dT
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Example: Weather data (r = 1)
1.00 -2.55

0.62
0.69
0.83
0.90
0.88
0.98
1.09
1.14
1.16
1.24
1.21
1.27

9.05 16.55 26.73 18.75 17.81

Jan Apr Jul Oct Year
Stockholm -0.70 8.60 21.90 9.90 10.00

Minsk -2.10 12.20 23.60 10.20 10.60
London 7.90 13.30 22.80 15.20 14.80

Budapest 1.20 16.30 26.50 16.10 15.00
Paris 6.90 14.70 24.40 15.80 15.50

Bucharests 1.50 18.00 28.80 18.00 16.50
Barcelona 12.40 17.60 27.50 21.50 20.00

Rome 11.90 17.70 30.30 21.40 20.40
Lisbon 14.80 19.80 27.90 22.50 21.50
Athens 12.90 20.30 32.60 23.10 22.30

Valencia 16.10 20.20 29.10 23.60 22.30
Malta 16.10 20.00 31.50 25.20 23.20

D
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Example: Weather data (r = 1), reconstruction
1.00 -2.55

0.62
0.69
0.83
0.90
0.88
0.98
1.09
1.14
1.16
1.24
1.21
1.27

9.05 16.55 26.73 18.75 17.81

Jan Apr Jul Oct Year
Stockholm 5.65 10.33 16.68 11.70 11.11

Minsk 6.21 11.36 18.35 12.87 12.23
London 7.55 13.80 22.28 15.63 14.85

Budapest 8.11 14.83 23.94 16.80 15.96
Paris 7.96 14.56 23.52 16.50 15.67

Bucharests 8.91 16.30 26.32 18.47 17.54
Barcelona 9.88 18.06 29.17 20.46 19.44

Rome 10.28 18.80 30.35 21.30 20.23
Lisbon 10.47 19.15 30.92 21.70 20.61
Athens 11.21 20.50 33.11 23.23 22.07

Valencia 10.92 19.96 32.24 22.62 21.48
Malta 11.47 20.98 33.88 23.77 22.58

D̂
(RMSE: 2.66) 29 / 36



Example: Weather data (r = 2), reconstruction
1.00

1.00

0.62 1.69
0.69 2.11
0.83 0.00
0.90 1.52
0.88 0.30
0.98 1.59
1.09 -0.66
1.14 -0.31
1.16 -1.09
1.24 -0.35
1.21 -1.26
1.27 -1.12

9.05 16.55 26.73 18.75 17.81
-4.14 0.27 2.32 -0.89 -0.69

Jan Apr Jul Oct Year
Stockholm -1.34 10.79 20.59 10.20 9.95

Minsk -2.52 11.94 23.23 10.99 10.77
London 7.54 13.80 22.28 15.63 14.85

Budapest 1.82 15.24 27.46 15.45 14.91
Paris 6.71 14.65 24.22 16.23 15.46

Bucharests 2.31 16.74 30.02 17.05 16.44
Barcelona 12.61 17.88 27.64 21.05 19.90

Rome 11.55 18.71 29.64 21.57 20.44
Lisbon 15.00 18.85 28.39 22.67 21.36
Athens 12.65 20.41 32.31 23.54 22.31

Valencia 16.14 19.62 29.31 23.74 22.36
Malta 16.10 20.67 31.29 24.76 23.35

D̂
(RMSE: 0.60) 30 / 36



Example: Weather data (r = 2), plot
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Example: Netflix prize data

(≈ 500k users, ≈ 17k movies, ≈ 100M ratings)

47AuGuSt 2009

Our winning entries consist of more than 100 differ-
ent predictor sets, the majority of which are factorization 
models using some variants of the methods described here. 
Our discussions with other top teams and postings on the 
public contest forum indicate that these are the most popu-
lar and successful methods for predicting ratings. 

Factorizing the Netflix user-movie matrix allows us 
to discover the most descriptive dimensions for predict-
ing movie preferences. We can identify the first few most 
important dimensions from a matrix decomposition and 
explore the movies’ location in this new space. Figure 3 
shows the first two factors from the Netflix data matrix 
factorization. Movies are placed according to their factor 
vectors. Someone familiar with the movies shown can see 
clear meaning in the latent factors. The first factor vector 
(x-axis) has on one side lowbrow comedies and horror 
movies, aimed at a male or adolescent audience (Half Baked, 
Freddy vs. Jason), while the other side contains drama or 
comedy with serious undertones and strong female leads 
(Sophie’s Choice, Moonstruck). The second factorization 
axis (y-axis) has independent, critically acclaimed, quirky 
films (Punch-Drunk Love, I Heart Huckabees) on the top, 
and on the bottom, mainstream formulaic films (Armaged-
don, Runaway Bride). There are interesting intersections 
between these boundaries: On the top left corner, where 
indie meets lowbrow, are Kill Bill and Natural Born Kill-
ers, both arty movies that play off violent themes. On the 
bottom right, where the serious female-driven movies meet 

preferences might cause a one-time 
event; however, a recurring event is 
more likely to reflect user opinion. 

The matrix factorization model 
can readily accept varying confidence 
levels, which let it give less weight to 
less meaningful observations. If con-
fidence in observing r

ui
 is denoted as 

c
ui
, then the model enhances the cost 

function (Equation 5) to account for 
confidence as follows: 

min
* * *, ,p q b

( , )u i ∈
∑

κ

c
ui
(r

ui
 - µ - b

u
 - b

i
 

- p
u

Tq
i
)2 + λ (|| p

u
 ||2 + || q

i
 ||2  

 + b
u

2 + b
i
2)  (8) 

For information on a real-life ap-
plication involving such schemes, 
refer to “Collaborative Filtering for 
Implicit Feedback Datasets.”10 

netfLix PRize 
comPetition 

In 2006, the online DVD rental 
company Netflix announced a con-
test to improve the state of its recommender system.12 To 
enable this, the company released a training set of more 
than 100 million ratings spanning about 500,000 anony-
mous customers and their ratings on more than 17,000 
movies, each movie being rated on a scale of 1 to 5 stars. 
Participating teams submit predicted ratings for a test set 
of approximately 3 million ratings, and Netflix calculates 
a root-mean -square error (RMSE) based on the held-out 
truth. The first team that can improve on the Netflix algo-
rithm’s RMSE performance by 10 percent or more wins a 
$1 million prize. If no team reaches the 10 percent goal, 
Netflix gives a $50,000 Progress Prize to the team in first 
place after each year of the competition. 

The contest created a buzz within the collaborative fil-
tering field. Until this point, the only publicly available data 
for collaborative filtering research was orders of magni-
tude smaller. The release of this data and the competition’s 
allure spurred a burst of energy and activity. According to 
the contest website (www.netflixprize.com), more than 
48,000 teams from 182 different countries have down-
loaded the data. 

Our team’s entry, originally called BellKor, took over 
the top spot in the competition in the summer of 2007, 
and won the 2007 Progress Prize with the best score at the 
time: 8.43 percent better than Netflix. Later, we aligned 
with team Big Chaos to win the 2008 Progress Prize with a 
score of 9.46 percent. At the time of this writing, we are still 
in first place, inching toward the 10 percent landmark.
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figure 3. The first two vectors from a matrix decomposition of the Netflix Prize 
data. Selected movies are placed at the appropriate spot based on their factor 
vectors in two dimensions. The plot reveals distinct genres, including clusters of 
movies with strong female leads, fraternity humor, and quirky independent films. 
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Other interpretions

• Geometric interpretation
I Transformation of n-dimensional space in r -dimensional space
I Row of R = new axes
I Row of L = new coordinates (embeddings)

• Component interpretation
I D is viewed as consisting of r layers (of same shape as D)
I k-th layer described by l kmkkrTk
I D =

∑
k l kmkkrTk

• Graph interpretation
I D is thought of as a bipartite graph with object and attribute

vertexes
I Edge weights measure association b/w objects and attributes
I Decomposition thought of as a tripartite graph with row,

waypoint, and column vertexes

All interpretations are useful (more later).
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Outline

1. What is data mining?

2. What is a matrix?

3. Why data mining and matrices?

4. Summary
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Lessons learned

• Data mining = from data to knowledge
→ Prediction, clustering, outlier detection, patterns

• Matrices are common representation of datasets
→ Linear maps, data points, sets, graphs, relational data, . . .

• Often: rows = objects, columns = attributes

• Matrix decompositions reveal structure in the data
→ D ≈ LMR

• Many different decompositions with different applications
→ SVD, k-means, NMF, SDD, BMF, ICA, completion, ...

• Factor interpretation: objects described by “prototypical objects”
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Suggested reading

• Skillicorn, Ch. 1: Data Mining

• Skillicorn, Ch. 2: Matrix Decompositions
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Data Mining and Matrices
02 – Vectors & Matrices

Prof. Dr. Rainer Gemulla

Universität Mannheim
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Outline

1. Vectors

2. Matrices

3. Summary
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1. Vectors

2. Matrices

3. Summary
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Vector
A vector is
• A 1D array of numbers
• A geometric entity with magnitude and direction
• A matrix with exactly one row or column

I Called row vector and column vector, resp.
I Transpose vT transposes a row vector into a

column vector and vice versa

• A (latent) object or attribute

4 / 39



Year

Stockholm 9.95
Minsk 10.77
London 14.85
Budapest 14.91
Paris 15.46

Bucharests 16.44
Barcelona 19.90
Rome 20.44
Lisbon 21.36
Athens 22.31
Valencia 22.36
Malta 23.35
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Vector norm
The norm of vector defines its magnitude. Let
v =

(
v1 v2 · · · vn

)T .
• Euclidean norm: ‖v‖ =

√∑n
i=1 v

2
i

I Corresponds to intuitive notion of length in Euclidean space

• Lp norm for 1 ≤ p ≤ ∞: ‖v‖p = (
∑n

i=1 |vi |
p)1/p

I L1 norm = sum of absolute values
(Manhattan distance from origin)

I L2 norm = Euclidean norm
(bird-fly distance from origin)

I L∞ norm = maximum absolute value
I The Lp norms never increase as p increases, i.e.,

‖v‖p+a ≤ ‖v‖p for a ≥ 0

• Properties of vector norms
I ‖v‖ > 0 when v 6= 0 and ‖v‖ = 0 iff v = 0
I ‖av‖ = |a| ‖v‖ (absolute scalability)
I ‖v 1 + v 2‖ ≤ ‖v 1‖+ ‖v 2‖ (triangle inequality)

5 / 39
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Norms and distances
The distance between two vectors u, v ∈ Rn can be quantified
with norm ‖u − v‖.

• Stockholm, s =
( Jan Apr Jul Oct Year

−0.70 8.60 21.90 9.90 10.00
)

• Minsk, m =
(
−2.10 12.20 23.60 10.20 10.60

)
• Athens, a =

(
12.90 20.30 32.60 23.10 22.30

)
L1 s m a
s 0.00 7.60 61.50

m 7.60 0.00 56.70
a 61.50 56.70 0.00

L2 s m a
s 0.00 4.27 27.60

m 4.27 0.00 25.98
a 27.60 25.98 0.00

L∞ s m a
s 0.00 3.60 13.60

m 3.60 0.00 15.00
a 13.60 15.00 0.00
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Dot product (algebraic definition)
The dot product of two vectors u, v ∈ Rn is given by

u · v =
n∑

i=1

uivi .

• Also known as scalar product or inner product
• We’ll often use matrix product notation and write uTv
• Properties (with a, b ∈ R)

I u · v = v · u
I (au) · v = a(u · v)
I (au + bv) ·w = (au) ·w + (bv) ·w

• Many uses, many interpretations
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With dot products, we can ...

• Compute the (squared) Euclidean norm

v · v =
n∑

i=1

v2
i = ‖v‖2

• Normalize a vector to length 1 (then a unit vector)

v̂ = v/ ‖v‖
• Determine the value of a coordinate

vi = v · e i ,

where e i denotes the i-th standard basis vector (i.e., [e i ]j = 1 if
i = j else 0)
• Compute the sum of the elements of a vector

v · 1n =
n∑

i=1

vi ,

where 1n is the all-ones vector of dimensionality n
• ... 8 / 39



Dot product: Weighted sum
The elements of one vector are interpreted as weights for the
elements of the other vector.

Example: Anna goes shopping

Item Bread Butter Pizza
Price/piece 1e 0.50e 3e
Quantity bought 1 2 5

• How much does Anna pay?

• Prices can be interpreted as “weights”: p =
(
1 0.5 3

)T
• Quantities are n =

(
1 2 5

)T
• Total is p · n = 1 · 1 + 0.5 · 2 + 3 · 5 = 17
• Similarly: Can interpret quantities as weights for prices

9 / 39



Dot product: Expected value
One vector corresponds to probabilities, the other one to a random
variable.

Example: Bob is gambling

Outcome Jackpot Win Loss
Probability 0.1 0.2 0.7
Amount won 5e 1e -2e

• How much does Bob win in expectation? (Should he play?)

• Probabilities p =
(
0.1 0.2 0.7

)T
I A non-negative vector that sums to one (‖p‖1 = 1) is called a
probability vector

I Corresponds to a probability distribution over a finite set of
outcomes

• Amounts won x =
(
5 1 −2

)T
I Corresponds to a random variable; associates a real value with

each outcome

• Expected value p · x = 0.1 · 5 + 0.2 · 1 + 0.7 · (−2) = −0.7
10 / 39



Dot product: Sample variance
Denote by ū = 1

n

∑
i ui the mean of u. If we treat the entries of u

as samples from some distribution, then the unbiased sample
variance is given by

s2 =
1

n − 1

n∑
i=1

(ui − ū)2 =
‖u − ū‖2

n − 1
=

(u − ū) · (u − ū)

n − 1
,

where ū denotes the sample mean vector, i.e., [ū]i = ū for
1 ≤ i ≤ n.
• Example

I u =
(
10 11 12

)T
I ū = 11, ū =

(
11 11 11

)T
I u − ū =

(
−1 0 1

)T
I s2 = 1, ‖u‖2 = 365

• Variances are thus closely related to norms; the key difference is
centering and averaging
• When we center data before analyzing it, dot products are

proportional to variances (u · u) or covariances (u · v)
11 / 39



Dot product: Sets and intersections
The indicator vector of a subset T of a set S = { s1, . . . , sn } is
the vector x such that xi = 1 if si ∈ T and xi = 0 if si /∈ T . If u
and v are indicator vectors for subsets U,V ⊆ S , resp., then
u · v = |U ∩ V |.

• S = {France,Germany,Denmark,Poland }
• Anna visited France, Germany, and Poland: u =

(
1 1 0 1

)T
• Bob visited Germany, Denmark, and Poland: v =

(
0 1 1 1

)T
• Number of countries visited by both:

u · v = 1 · 0+ 1 · 1+ 0 · 1+ 1 · 1 = 2 = |{Germany,Poland }|
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Dot product (geometric definition)
An alternative geometric definition of the dot product of two
vectors u, v ∈ Rn is

u · v = ‖u‖ ‖v‖ cos θ,

where −π ≤ θ ≤ π denotes the angle between u and v .

0.1 0.3 0.5 0.7 0.9
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0
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Why is this?
Let’s focus on the 2D case. Recall the law of cosines:

c2 = a2 + b2 − 2ab cos θ.

Now set u = B − C and v = A− C and observe
that v − u = A− B.

cos θ =
a2 + b2 − c2

2ab
=
‖u‖2 + ‖v‖2 − ‖v − u‖2

2 ‖u‖ ‖v‖

=
u · u + v · v − (v − u) · (v − u)

2 ‖u‖ ‖v‖

=
u · u + v · v − v · v + 2u · v − u · u

2 ‖u‖ ‖v‖

=
u · v
‖u‖ ‖v‖

14 / 39
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Dot product: Test for orthogonality
Two nonzero vectors u, v ∈ Rn are orthogonal iff u · v = 0.
• Since 0 = u · v = ‖u‖ ‖v‖ cos θ and ‖u‖ , ‖v‖ > 0, we have

cos θ = 0
• And this means that the angle is 90 degrees

0

u

v

θ
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Dot product: Cosine similarity (1)
The angle between u and v is another way to measure the
similarity between two vectors. The cosine similarity of u and v is
given by

cos(u, v) =
u · v
‖u‖ ‖v‖

.

• −1 ≤ cos(u, v) ≤ 1
• Vectors that point in roughly the same direction
→ small angle → cosine similarity ≈ 1
• Vectors that point in roughly opposite directions
→ large angle → cosine similarity ≈ −1
• Vectors that are roughly orthogonal
→ roughly right angle → cosine similarity ≈ 0
• Popular in IR to determine the similarity between a document

and a query
16 / 39



Dot product: Cosine similarity (2)
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Dot product: Pearson correlation
The sample Pearson correlation coefficient is a measure of
linear correlation. It is given by

rx ,y =
(x − x̄) · (y − ȳ)

‖x − x̄‖ ‖y − ȳ‖
.

• Numerator proportional to the sample covariance
• Denominator proportional to sample standard deviations
• Closely related to cosine similarity but performs centering

I This is sometimes desired
I And sometimes a bad idea (e.g., example last slide)
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Dot product: Similarity
The dot product itself can also be seen as a measure of similarity
or compatibility. Recall

u · v = ‖u‖ ‖v‖ cos θ.

Example: Shopping transactions
• Like in previous example, vectors u and v correspond to persons
• Elements correponds to frequencies of buying each product
• We can think of the direction of a vector as “preference”

I Which products are being bought?
I cos θ large when u and v have similar interest

• We can think of the magnitude of a vector as “strength”
I How much is being bought?
I ‖u‖ ‖v‖ large when both persons buy a lot

• If u · v is large, u and v have similar shopping behaviour and
buy a lot
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Dot product: Projection
The vector projection of v onto u is given by

proju(v) =
u · v
‖u‖︸ ︷︷ ︸
scalar

projection

u
‖u‖

=
u · v
‖u‖2

u

• The scalar projection
describes how far v points
in the direction u
• The vector projection

is a vector pointing this far
in the direction of u

20 / 39

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

0

u
v

proju(v)

θ



Outline

1. Vectors

2. Matrices

3. Summary
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Notation
Let A ∈ Rm×n be a real m × n matrix. We write
• aij or Aij (both scalars) for the value of entry (i , j)

• aj or A∗j (both column vectors) for the j-th column of A
• ai (column vector) or Ai∗ (row vector) for the i-th row of A
Thus

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



=
(
A∗1 A∗2 · · · A∗n

)
=


A1∗
A2∗
...

Am∗
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Full matrix ring (addition)
The set of all matrices in Rn×n form a ring, the full matrix ring.

• Addition and substraction are element-wise

[A + B]ij = aij + bij

[A− B]ij = aij − bij

• The additive identity is the n × n zero matrix 0n×n
• The additive inverse is −A with [−A]ij = −aij
• In general [cA]ij = caij for c ∈ R (scalar multiplication)
• Addition is associative and commutative
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Full matrix ring (multiplication)

• For multiplication, we take dot products

[AB]ij = ai · bj =
n∑

k=1

aikbkj

• The multiplicative identity is
the n × n identity matrix I n

I n =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


• Multiplication is associative, but not commutative

(AB 6= BA in general)
• Multiplication distributes over addition (A(B + C ) = AB + AC

and (B + C )A = BA + CA)
• Multiplication does not always have an inverse (division)

24 / 39

CA

B

aT
i

bj

cij



Rectangular matrices

• We generally have rectangular matrices A ∈ Rm×n

• We can only add and substract matrices of the same dimensions
(Am×n + Bm×n)
• We can only multiply matrices with a matching inner dimension

I We can multiply A ∈ Rm×r with B ∈ Rr×n (inner dimension is r)
I Gives an m × n matrix (outer dimensions)
I [AB]ij = ai · bj =

∑r
k=1 aikbkj

CA

B

aT
i

bj

cij
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Interpretation for matrix multiplication (1)
When we multiply A and B, we compute all dot products between
rows of A and columns of B.
• We can apply any of the interpretations of the dot product
• E.g., weighted sum

I m supermarkets, r products, n persons
I aik = price of product k at supermarket i
I bkj = quantity of product k bought by person i
I [AB]ij = how much the j-th person would pay

when buying at the i-th supermarket
• E.g., covariance

I If all columns of Am×n are centered
(
∑

k aik = 0), then 1
m−1A

TA ∈ Rn×n

is the sample covariance matrix
I [ 1

m−1A
TA]ii holds the sample variance

of column i
I [ 1

m−1A
TA]ij holds the sample covariance

between columns i and j
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Interpretation for matrix multiplication (2)
We can also interpret rows i of AB as a linear combination of the
rows of B with the coefficients coming from A

[AB]i∗ = ai1B1∗ + ai2B2∗ + · · ·+ airB r∗,

and, similarly, the columns of AB as linear combinations of the
columns of A

[AB]∗j = b1jA∗1 + b2jA∗2 + · · ·+ brjA∗r .
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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A (each square is a column) B∗j [AB]∗j
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Interpretation for matrix multiplication (3)
We can view matrix AB as the sum of the r component matrices
obtained by multiplying the k-th column of A and the k-th row of
B:

AB = A∗1B1∗ + A∗2B2∗ + · · ·+ A∗rB r∗

• Components A∗kBk∗ are outer products (m × n matrices)
• Note: when u ∈ Rm and v ∈ Rn, the matrix product

I uTv corresponds to a dot product (a scalar), m = n required
I uvT corresponds to an outer product (an m × n matrix)

• In our supermarket example
I Components correspond to products
I Entry (i , j) of k-th component indicates how much the j-th person

would pay for product k when buying at the i-th supermarket

C=
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Transposes
The matrix transpose AT switches rows and columns, i.e.,

[AT ]ij = aji .

The following properties hold
• (AT )T = A
• (A + B)T = AT + BT

• (cA)T = cAT

• (AB)T = BTAT
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Summing and scaling
Let A ∈ Rm×n. Denote by 1n the all-ones vector of dimensionality
n. For s ∈ Rn, denote by diag (s) the n× n matrix with the entries
of s on the main diagonal:

diag (s) =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sn


• A1n computes the row sums of A
• 1TmA computes the column sums of A
• A diag (c) scales each column j of A by cj , c ∈ Rn

• diag (r) A scales each row i of A by ri , r ∈ Rm
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Matrices as linear maps

• A matrix A ∈ Rm×n is a linear map from Rn to Rm

I If x ∈ Rn, then y = Ax ∈ Rm is the image of x
I y =

∑n
j=1 ajxj , i.e., a linear combination of the columns of A

• If A ∈ Rm×r and B ∈ Rr×n, then AB maps from Rn to Rm

I Product AB corresponds to composition of linear maps A and B
• Square matrix A ∈ Rn×n is invertible (= nonsingular) iff there

is matrix B ∈ Rn×n such that AB = I
I Matrix B is the inverse of A, denoted A−1

I If A is invertible, then AA−1 = A−1A = I
I AA−1x = A−1Ax = x

I Non-square matrices do not have (general) inverses but can have
left or right inverses: AR = I or LA = I

• The transpose of A ∈ Rm×n is a linear map AT : Rm → Rn

I (AT )ij = Aji

I Generally, transpose is not the inverse (AAT 6= I )
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Matrix norms

• Matrix norms measure the magnitude of the matrix
I Magnitude of the values in the matrix
I Magnitude of the image

• Operator norms measure how large the image of an unit vector
can get
I Induced by a vector norm
I For p ≥ 1, ‖A‖p = max{‖Ax‖p | ‖x‖p = 1}
I ‖A‖1 = maximum sum of absolute values of a column
I ‖A‖∞ = maximum sum of absolute values of a row
I Spectral norm: ‖A‖2 = largest singular value of A (more later)

• The Frobenius norm is the vector-L2 norm applied to matrices
(treating them as a vector)
I ‖A‖F =

√∑m
i=1
∑n

j=1 a
2
ij

I Note: ‖A‖F 6= ‖A‖2 (but sometimes Frobenius norm is referred to
as L2 norm)
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Matrix rank and linear independence

• A vector u ∈ Rn is linearly dependent on set of vectors
V = {v i} ⊂ Rn if u can be expressed as a linear combination of
vectors in V
I u =

∑
i aiv i for some a1, . . . , an ∈ R

I Set V is linearly dependent if some v i ∈ V is linearly dependent
on V \ {v i}

I If V is not linearly dependent, it is linearly independent
• The column rank of matrix A is the maximum number of

linearly independent columns of A
• The row rank of A is the maximum number of linearly

independent rows of A
• The Schein rank of A is the least integer r such that A = LR

for some L ∈ Rm×r and R ∈ Rr×n

I Equivalently, the least r such that A is a sum of r vector outer
products

• All these ranks are equivalent
I E.g., matrix has rank 1 iff it is an outer product of two (non-zero)

vectors
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Matrices as systems of linear equations

• A matrix can hold the coefficients of a system of linear
equations (c.f. Chinese Nine Chapters on Arithmetic)

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

⇔


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1

x2
...
xn

 =


b1

b2
...
bm



• If the coefficient matrix A is invertible, the system has exact
solution x = A−1b
• If m < n the system is underdetermined and can have an

infinite number of solutions
• If m > n the system is overdetermined and (usually) does not

have an exact solution
• The least-squares solution is the vector x that minimizes
‖Ax − b‖22 (cf. linear regression)
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Special types of matrices

• The diagonals of matrix A go from top-left to bottom-right
I The main diagonal contains the elements aii
I The k-th upper diagonal contains the elements ai,(i+k)
I The k-th lower diagonal contains the elements a(i+k),i)
I The anti-diagonals go from top-right to bottom-left

• Matrix is diagonal if all its non-zero values are in a diagonal
(typically main diagonal)
I Bi-diagonal matrices have values in two diagonals, etc.

• Matrix A is upper (right) triangular if all of its non-zeros are
in or above the main diagonal
I Lower (left) triangular matrices have all non-zeros in or below

main diagonal
I Upper left and lower right triangular matrices: replace diagonal

with anti-diagonal
• A square matrix P is permutation matrix if each row and each

column of P has exactly one 1 and rest are 0s
I If P is a permutation matrix, PA permutes the order of the rows

and AP the order of the columns of A
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Orthogonal matrices

• A set V = {v i} ⊂ Rn is orthogonal if all vectors in V are
mutually orthogonal
I v · u = 0 for all v 6= u ∈ V
I If all vectors in V also have unit norm (‖v‖2 = 1), V is
orthonormal

• A square matrix A is orthogonal if its columns are a set of
orthonormal (!) vectors or equivalently
I Its rows are orthonormal
I ATA = I n
I A−1 = AT

• An m × n matrix A is
I column-orthogonal if columns are a set of orthonormal vectors

(only possible if m ≥ n); then AT is left inverse (ATA = I n)
I row-orthogonal if rows are a set of orthonormal vectors (only

possible if m ≤ n); then AT is right inverse (AAT = Im)
• If A and B are orthogonal, so is AB

I Similarly: column-orthogonality and row-orthogonality is preserved
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Lessons learned

• Many uses, many interpretations
I Vectors
I Matrices
I Dot products
I Matrix products

• Magnitudes and distances are measured by norms
• Basic concepts of linear algebra
• Special types of matrices: diagonal, triangular, orthogonal
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Suggested reading

• Any (elementary) linear algebra text book
I Carl Meyer

Matrix Analysis and Applied Linear Algebra
Society for Industrial and
Applied Mathematics, 2000
http://www.matrixanalysis.com

• Wolfram MathWorld articles

• Wikipedia articles
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The SVD is the Swiss Army knife of matrix decompositions.

—Diane O’Leary, 2006
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Definition

Theorem
For each A ∈ Rm×n, there are orthogonal matrices Um×m, V n×n,
and a diagonal matrix Σm×n with values
σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0 on the main diagonal such that
A = UΣV T .

• UΣV T is called the singular value decomposition (SVD) of A
• Values σi are the singular values of A
• Columns of U are the left singular vectors of A
• Columns of V are the right singular vectors of A

A

=

U Σ

V T
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Characterization of the four fundamental subspaces
The fundamental theorem of linear algebra states that every
matrix A ∈ Rm×n induces four fundamental subspaces:
• The column space (range, image) of dimension rank (A) = r

I The set of all possible linear combinations of columns of A
• The nullspace (kernel) of dimension n − r

I The set of all vectors x ∈ Rn for which Ax = 0

• The row space (coimage) of dimension r

• The left nullspace (cokernel) of dimension m − r

Explicit bases for these subspaces can be obtained from the SVD:
• Column space: the first r columns of U
• Null space: the last (n − r) columns of V
• Row space: the first r columns of V
• Left null space: the last (m − r) columns of U
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The four fundamental subspaces

Figure 1. The action of A: Row space to column space, nulispace to zero. 

Other writers made a further suggestion. They proposed a lower level textbook, 
recognizing that the range of students who need linear algebra (and the variety of 
preparation) is enormous. That new book contains Figures 1 and 2-also Figure 0, 
to show the dimensions first. The explanation is much more gradual than in this 
paper-but every course has to study subspaces! We should teach the important 
ones. 

The Second Figure: Least Squares Equations 
If b is not in the column space, Ax = b cannot be solved. In practice we still 

have to come up with a "solution." It is extremely common to have more equations 
than unknowns-more output data than input controls, more measurements than 
parameters to describe them. The data may lie close to a straight line b = C + Dt. 
A parabola C + Dt + Et2 would come closer. Whether we use polynomials or 
sines and cosines or exponentials, the problem is still linear in the coefficients 
C, D, E: 

C +Dt=bX CA + Dt+Et=bb 

*'or 
C+ Dtm = bm C+Dtm+Et X= bm 

There are n = 2 or n = 3 unknowns, and m is larger. There is no x = (C, D) or 
x = (C, D, E) that satisfies all m equations. Ax = b has a solution only when the 
points lie exactly on a line or a parabola-then b is in the column space of the m 
by 2 or m by 3 matrix A. 

The solution is to make the error b - Ax as small as possible. Since Ax can 
never leave the column space, choose the closest point to b in that subspace. This 
point is the projection p. Then the error vector e = b - p has minimal length. 

To repeat: The best combination p = AX is the projection of b onto the column 
space. The error e is perpendicular to that subspace. Therefore e = b - AX is in 
the left nullspace: 

AT(bI Ac,) =O or AT4 b=ATb. 

Calculus reaches the same linear equations by minimizing the quadratic llb - Axt2. 
The chain rule just multiplies both sides of Ax = b by AT. 

850 THE FUNDAMENTAL THEOREM OF LINEAR ALGEBRA [November 

This content downloaded from 134.155.87.90 on Wed, 17 Sep 2014 06:36:18 AM
All use subject to JSTOR Terms and Conditions

The action of A. Row space to column space, nullspace to zero.
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Pseudo-inverse

Problem.
Given A ∈ Rm×n and b ∈ Rm, find x ∈ Rn minimizing ‖Ax − b‖2.

• If A is invertible, the solution is A−1Ax = A−1b ⇔ x = A−1b
• A pseudo-inverse A+ captures some properties of inverse A−1

• The Moose–Penrose pseudo-inverse of A is a matrix
A+ ∈ Rn×m satisfying the following criteria
I AA+A = A (but it is possible that AA+ 6= I )
I A+AA+ = A+ (cf. above)
I (AA+)T = AA+ (AA+ is symmetric)
I (A+A)T = A+A (as is A+A)

• If A = UΣV T is the SVD of A, then A+ = VΣ+UT

I Σ+ replaces each σi > 0 by 1/σi and transposes

Theorem.
An optimum solution for the above problem is x = A+b.
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Pseudo inverse (illustration)

The SVD expresses A as a combination of r rank-one matrices: 

A = UYVT = UiT+ +UOTVrT (here A- [[1 2]) 

The Fourth Figure: The Pseudoinverse 
The SVD leads directly to the "pseudoinverse" of A. This is needed, just as the 

least squares solution x was needed, to invert A and solve Ax = b when those 
steps are strictly speaking impossible. The pseudoinverse A+ agrees, with A1 
when A is invertible. The least squares solution of minimum length (having no 
nullspace component) is x + =A +b. It coincides with X when A has full column 
rank r = n-then ATA is invertible and Figure 4 becomes Figure 2. 

A + takes the column space back to the row space [4]. On these spaces of equal 
dimension r, the matrix A is invertible and A + inverts it. On the left nullspace, 
A+ is zero. I hope you will feel, after looking at Figure 4, that this is the one 
natural best definition of an inverse. Despite those good adjectives, the SVD and 
A+ is too much for an introductory linear algebra course. It belongs in a second 
course. Still the picture with the four subspaces is absolutely intuitive. 

/rw \ /olumn \ 
/ space \A+ p - x + 5\space 

X 
7 

+ 

nnullspace 
spa 

Figure 4. The inverse of A (where possible) is the pseudoinverse A +. 

The SVD gives an easy formula for A +, because it chooses the right bases. Since 
Avi = ului, the inverse has to be A+ui = vi/oi. Thus the pseudoinverse of l 
contains the reciprocals 1/1oi. The orthogonal matrices U and VT are inverted by 
UT and V. All together, the pseudoinverse of A = UYIVT isA+= VI + UT. 

Example (continued) 

A+= -[2 l] [1/ ?] [o -3 l] = 1 3] 
d5 O O 4/ 50 2 6. 

Always A+A is the identity matrix on the row space, and zero on the nullspace: 

A +A= [ 10 20 =projection onto the line through i. 320 40T [2L 

This content downloaded from 134.155.87.90 on Wed, 17 Sep 2014 06:36:18 AM
All use subject to JSTOR Terms and Conditions

The inverse of A is (where possible) the pseudo-inverse A+.
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Truncated SVD

• The rank of the matrix is the number of its non-zero singular
values
I Easy to see by writing A =

∑min{n,m}
j=1 σju jvT

j

• The truncated SVD only takes the first k columns of U and V
and the main k × k submatrix of Σ
I Ak =

∑k
j=1 σju jvT

j = UkΣkV T
k

I rank(Ak) = k (if σk > 0)
I Uk and V k are not orthogonal anymore, but they are
column-orthogonal

• If k = min{m, n}, then Ak = A; called thin SVD
• If k = rank(A), then Ak = A; called compact SVD
• If k < rank(A), then Ak is low-rank approximation of A

Ak

=

Uk

Σk V T
k
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SVD and matrix norms
Let A = UΣV T be the SVD of A. Then
• ‖A‖2F =

∑min{n,m}
i=1 σ2

i

• ‖A‖2 = σ1
I Remember: σ1 ≥ σ2 ≥ · · · ≥ σmin{n,m} ≥ 0

• Therefore ‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2

• Sq. Frobenius norm of truncated SVD is ‖Ak‖2F =
∑k

i=1 σ
2
i

I And of the “approximation error” ‖A− Ak‖2F =
∑min{n,m}

i=k+1 σ2
i

The Eckart–Young theorem

Let Ak be the rank-k truncated SVD of A. Then Ak is the rank-k
matrix closest to A in the Frobenius sense. That is

‖A− Ak‖F ≤ ‖A− B‖F for all rank-k matrices B.
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Eigendecompositions

• An eigenvector of a square matrix A is a vector v such that A
only changes the magnitude of v
I I.e. Av = λv for some λ ∈ R
I Such λ is an eigenvalue of A
I Try it!

• The eigendecomposition of A is A = Q∆Q−1

I The columns of Q are the eigenvectors of A
I Matrix ∆ is a diagonal matrix with the eigenvalues

• Not every (square) matrix has eigendecomposition
I If A is of form BBT , it always has eigendecomposition

• The SVD of A is closely related to the eigendecompositions of
AAT and ATA
I The left singular vectors are the eigenvectors of AAT

I The right singular vectors are the eigenvectors of ATA
I The singular values are the square roots of the eigenvalues of both

AAT and ATA

12 / 52
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Factor interpretation

• The most common way to interpret SVD is to consider the
columns of U (or V )
I Let A be objects-by-attributes and UΣV T its SVD
I If two rows have similar values in a column of U , these objects are

somehow similar
I If two columns have similar values in a row of V T , these attributes

are somehow similar
I In both cases, first entries often matter most → truncated SVD

3.2. Interpreting an SVD 55

−0.25−0.2−0.15−0.1−0.0500.050.10.150.20.25

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

U1

U
2

Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,

© 2007 by Taylor and Francis Group, LLC

• Example: people’s ratings
of different wines
• Scatterplot of first and

second column of U
I left: likes wine
I right: doesn’t like
I up: prefers red wine
I bottom: prefers white vine

• Conclusion: winelovers like
red and white, others care
more
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Example: Weather data (k = 2)
1.00

1.00

0.62 1.69
0.69 2.11
0.83 0.00
0.90 1.52
0.88 0.30
0.98 1.59
1.09 -0.66
1.14 -0.31
1.16 -1.09
1.24 -0.35
1.21 -1.26
1.27 -1.12

9.05 16.55 26.73 18.75 17.81
-4.14 0.27 2.32 -0.89 -0.69

Jan Apr Jul Oct Year
Stockholm -0.70 8.60 21.90 9.90 10.00

Minsk -2.10 12.20 23.60 10.20 10.60
London 7.90 13.30 22.80 15.20 14.80

Budapest 1.20 16.30 26.50 16.10 15.00
Paris 6.90 14.70 24.40 15.80 15.50

Bucharests 1.50 18.00 28.80 18.00 16.50
Barcelona 12.40 17.60 27.50 21.50 20.00

Rome 11.90 17.70 30.30 21.40 20.40
Lisbon 14.80 19.80 27.90 22.50 21.50
Athens 12.90 20.30 32.60 23.10 22.30

Valencia 16.10 20.20 29.10 23.60 22.30
Malta 16.10 20.00 31.50 25.20 23.20

D
(RMSE: 0.60) 15 / 52



Thin SVD of Weather data (U)

U =



1 2 3 4 5
Stockholm 0.18 0.41 0.61 0.28 −0.32
Minsk 0.19 0.51 0.08 −0.54 0.40
London 0.24 0.00 0.20 −0.15 0.04
Budapest 0.25 0.37 −0.39 0.18 −0.10
Paris 0.25 0.07 0.05 −0.25 −0.22

Bucharests 0.28 0.39 −0.49 0.30 0.08
Barcelona 0.31 −0.16 −0.01 0.33 −0.26
Rome 0.32 −0.07 0.30 0.10 0.07
Lisbon 0.33 −0.27 −0.23 −0.27 −0.46
Athens 0.35 −0.08 0.10 −0.23 −0.09
Valencia 0.34 −0.31 −0.12 −0.21 0.17
Malta 0.36 −0.27 0.12 0.37 0.59
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Thin SVD of Weather data (Σ)

Σ =


1 2 3 4 5

1 147.55 0.00 0.00 0.00 0.00
2 0.00 20.09 0.00 0.00 0.00
3 0.00 0.00 4.25 0.00 0.00
4 0.00 0.00 0.00 1.77 0.00
5 0.00 0.00 0.00 0.00 0.32
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Thin SVD of Weather data (V )

V =


1 2 3 4 5

Jan 0.22 −0.85 0.31 −0.30 0.21
Apr 0.40 0.06 −0.74 −0.52 0.17
Jul 0.64 0.47 0.54 −0.16 0.21
Oct 0.45 −0.18 −0.25 0.78 0.30
Year 0.43 −0.14 −0.03 0.05 −0.8
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Example: Weather data (k = 2), SVD
147.54

20.09

0.18 0.41
0.19 0.51
0.24 0.00
0.25 0.37
0.25 0.07
0.28 0.39
0.31 -0.16
0.32 -0.07
0.33 -0.27
0.35 -0.08
0.34 -0.31
0.36 -0.27

0.22 0.40 0.64 0.45 0.43
-0.85 0.06 0.47 -0.18 -0.14

Jan Apr Jul Oct Year
Stockholm -0.70 8.60 21.90 9.90 10.00

Minsk -2.10 12.20 23.60 10.20 10.60
London 7.90 13.30 22.80 15.20 14.80

Budapest 1.20 16.30 26.50 16.10 15.00
Paris 6.90 14.70 24.40 15.80 15.50

Bucharests 1.50 18.00 28.80 18.00 16.50
Barcelona 12.40 17.60 27.50 21.50 20.00

Rome 11.90 17.70 30.30 21.40 20.40
Lisbon 14.80 19.80 27.90 22.50 21.50
Athens 12.90 20.30 32.60 23.10 22.30

Valencia 16.10 20.20 29.10 23.60 22.30
Malta 16.10 20.00 31.50 25.20 23.20

D
(RMSE: 0.60) 19 / 52



Example: Weather data (r = 2), SVD plot

0.20 0.25 0.30 0.35

−
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2
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0
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2
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u
2
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Bucharests

Barcelona

Rome

Lisbon

Athens

Valencia
Malta
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Orthogonal matrices and rotations

• Orthogonal matrices are rotation matrices
• Consider orthogonal matrix Q
• Inner products are retained: (Qx)T (Qy) = xTQTQy = xTy
• Thus Euclidean norms also retained: ‖Qx‖ = ‖x‖
• Implies that all angles are retained

• In 2D: Qθ =

(
cos θ − sin θ
sin θ cos θ

)
I Consider vector(

x
y

)
= xe1 + ye2

I Qθ

(
x
y

)
= x [Qθ]∗1 + y [Qθ]∗2

• Thus: the columns of Q
form “new axes” for rotation Qv

• Similarly: rows of Q
form “new axes” for rotation vTQ
(rotates backwards)

21 / 52
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Geometric interpretation (1)

D50×2
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Geometric interpretation (2)

• Let UΣV T be the SVD of
M
• SVD shows that every

linear mapping y = Mx
can be considered as a
series of rotation,
stretching, and rotation
operations
I Matrix V T performs the

first rotation y 1 = V Tx
I Matrix Σ performs the

stretching y 2 = Σy 1
I Matrix U performs the

second rotation y = Uy 2

23 / 52Wikipedia user Georg-Johann
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Dimension of largest variance (1)

IR&DM, WS'11/12 IX.1&2-17 January 2012

Example

34

CHAPTER 8. DIMENSIONALITY REDUCTION 180

variance uTΣΣΣu. Since we know that u1, the dominant eigenvector of ΣΣΣ maximizes the
projected variance, we have

MSE(u1) = var(D)− uT
1 ΣΣΣu1 = var(D)− uT

1 λ1u1 = var(D)− λ1

Thus, the principal component u1 which is the direction that maximizes the projected
variance, is also the direction that minimizes the mean squared error.

X1

X2

X3

u1

Figure 8.2: Best 1D or Line Approximation

Example 8.3: Figure 8.2 shows the first principal component, i.e., the best one di-
mensional approximation, for the three dimensional Iris dataset shown in Figure 8.1a.
The covariance matrix for this dataset is given as

ΣΣΣ =




0.681 −0.039 1.265

−0.039 0.187 −0.320
1.265 −0.320 3.092




The largest eigenvalue is λ1 = 3.662, and the corresponding dominant eigenvector
is u1 = (−0.390, 0.089,−0.916)T . The unit vector u1 thus maximizes the projected
variance, which is given as J(u1) = α = λ1 = 3.662. Figure 8.2 plots the principal
component u1. It also shows the error vectors εi , as thin gray line segments.

DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.

• The singular vectors give the
dimensions of the variance in the
data
I The first singular vector is the

dimension of the largest variance
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Dimension of largest variance (2)

IR&DM, WS'11/12 IX.1&2-17 January 2012

Example

34

CHAPTER 8. DIMENSIONALITY REDUCTION 184

X1

X2

X3

u1

u2

(a) Optimal 2D Basis

X1

X2

X3

(b) Non-Optimal 2D Basis

Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =



−0.390
0.089

−0.916


 u2 =



−0.639
−0.742
0.200




The projection matrix is given as

P2 = U2U
T
2 =



| |
u1 u2
| |



(

— uT1 —
— uT2 —

)
= u1u

T
1 + u2u

T
2

=




0.152 −0.035 0.357

−0.035 0.008 −0.082
0.357 −0.082 0.839


+




0.408 0.474 −0.128
0.474 0.551 −0.148
−0.128 −0.148 0.04




=



0.560 0.439 0.229

0.439 0.558 −0.230
0.229 −0.230 0.879




DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.

• The singular vectors give the
dimensions of the variance in the
data
I The first singular vector is the

dimension of the largest variance
I The second singular vector is the

orthogonal dimension of the second
largest variance

I First two dimensions span a
hyperplane

• From Eckart–Young we know that if
we project the data to the spanned
hyperplanes, the distance of the
projection is minimized
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SVD and linear regression (1)
Consider the 2-dimensional case.
• When fitting a linear regression model, we want to predict the

value of one distinguished variable (the response variable) given
the others (the explanatory variable)
• Say y is the response variable, x the explanatory variable
• We obtain a coefficient vector

β =
(
β0 β1

)T ∈ R2, consisting
of offset β0 and slope β1

• Prediction is ŷ = β ·
(
1 x

)T ,
the error is (y − ŷ)2

(least squares)
• Goal is to minimize

this error, i.e., ‖y − ŷ‖2
• Set X =

(
1 x

)
,

then β = X+y
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SVD and linear regression (2)

• Contrast this to the rank-1 truncated SVD of A =
(
x y

)
• We obtain a vector u1, a scaling coefficent σ1, and a vector v1

• Let’s look at the line described by v1 (roughly corresponds to β)
• Reconstructed data is A1 = u1σ1vT

1 ; all points lie on the line
• There is no distinguished response variable;

we minimize distance to line instead;
i.e., ‖A− A1‖F .
• This is different from regression
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SVD and linear regression (3)
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Component interpretation

• Recall that we can write
A = UΣV T =

∑r
i=1 σiu ivT

i =
∑r

i=1 Ai

I Ai = σiv iuT
i

• This explains the data as a sums of (rank-1) layers
I The first layer explains the most
I The second corrects that by adding and removing smaller values
I The third corrects that by adding and removing even smaller values
I . . .

• The layers don’t have to be very intuitive
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Problem

• Most data mining applications do not use full SVD, but
truncated SVD
I To concentrate on “the most important parts”

• But how to select the rank k of the truncated SVD?
I What is important, what is unimportant?
I What is structure, what is noise?
I Too small rank: all subtlety is lost
I Too big rank: all smoothing is lost

• Typical methods rely on singular values in a way or another
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Guttman–Kaiser criterion and captured energy

• Perhaps the oldest method is the Guttman–Kaiser criterion:
I Select k so that for all i > k , σi < 1
I Motivation: all components with singular value less than unit are

uninteresting
• Another common method is to select enough singular values

such that the sum of their squares is 90% of the total sum of
the squared singular values
I The exact percentage can be different (80%, 95%)
I Motivation: The resulting matrix “explains” 90% of the (sq.)

Frobenius norm of the matrix

• Problem: Both of these methods are based on arbitrary
thresholds and do not consider the “shape” of the data
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Cattell’s Scree test

• The scree plot plots the squared singular values in decreasing
order
I The plot looks like a side of the hill, hence the name

• The scree test is a subjective decision on the rank based on the
shape of the scree plot
• The rank should be set to a point where

I there is a clear drop in the magnitudes of the values values; or
I the values start to even out

• Problem: Scree test is subjective, and many data don’t have
any clear shapes to use (or have many)
I Automated methods have been developed to detect the shapes

from the scree plot

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

34 / 52



Entropy-based method

• Consider the relative contribution of each singular value to the
overall (sq.) Frobenius norm
I Relative contribution of σk is fk = σ2

k/
∑

i σ
2
i

• We can treat these as probabilities and define the (normalized)
entropy of the singular values as

E = − 1
log
(
min{n,m}

) min{n,m}∑
i=1

fi log fi

I The basis of the logarithm doesn’t matter
I We assume that 0 · ∞ = 0
I Low entropy (close to 0): the first singular value has almost all

mass
I High entropy (close to 1): the singular values are almost equal

• The rank is selected to be the smallest k such that
∑k

i=1 fi ≥ E

• Problem: Why entropy?
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Random flip of signs

• Multiply every element of the data A randomly with either 1 or
−1 to get Ã
I The Frobenius norm doesn’t change (‖A‖F = ‖Ã‖F )
I The spectral norm does change (‖A‖2 6= ‖Ã‖2)

I How much this changes depends on how much “structure” A has

• We try to select k such that the residual matrix contains only
noise
I The residual matrix contains the last m − k columns of U ,

min{n,m} − k singular values, and last n − k rows of V T

I If A−k is the residual matrix of A after rank-k truncated SVD, and
Ã−k is obtained from A−k by randomly flipping signs, we select
rank k to be such that (‖A−k‖2 − ‖Ã−k‖2)/ ‖A−k‖F is small

• Problem: How small is small?
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Normalization

• SVD is sensitive to data scaling
• Data should usually be normalized before SVD is applied

I If one attribute is height in meters and another weights in grams,
weight seems to carry much more importance in data about
humans

I If data is all positive, the first singular vector just explains where in
the positive quadrant the data is

• The z-scores are attributes whose values are transformed by
I Centering them to 0

I Remove the mean of the attribute’s values from each value
I Normalizing the magnitudes

I Divide every value with the standard deviation of the attribute
• Notice that the z-scores assume that

I all attributes are equally important
I attribute values are approximately normally distributed

• Values that have larger magnitude than importance can also be
normalized by first taking logarithms (from positive values) or
cubic roots
• The effects of normalization should always be considered
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Relationship to PCA (1)

• Truncated SVD can also be used to battle the curse of
dimensionality
I All points are far from each other in very high dimensional spaces
I High dimensionality slows down data mining algorithms
I If we use the truncated SVD, every object is represented by its row

in Uk (k values instead of n)
I If k � n, we performed dimensionality reduction

• SVD is closely related to principal components analysis
(PCA)
I Key difference is “centering” of the data

1. Center each column of A to obtain M
2. Compute the sample covariance matrix S = MTM/(m − 1)
3. Compute the eigendecomposition S = QΛQT s.t. Q orthogonal

I The columns of Q are called principal components
I The corresponding eigenvalues in Λ are the component weights
I Try it!
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Relationship to PCA (2)

• Relationship between SVD and PCA
I Q = eigenvectors of MTM/(m − 1), Λ = corresponding

eigenvalues
I Let M = UΣV T be the SVD of M
I The SVD of M/

√
m − 1 is then U(Σ/

√
m − 1)V T

I From slide 12, we know that Q = V
I From slide 12, we know that Σ2/(m − 1) = Λ

• PCA associates each data object with a set of scores
I One per principal component
I m × n “score matrix” given by MQ
I We have: MQ = (UΣV T )V = UΣ
I Usually we only take first k-components: MQk = UkΣk

I Also known as the Karhunen–Loève transform (KLT) of the
rows of M
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Relationship to PCA (3)

M50×2 = U2 Σ2 V T
2 = QT

2
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What is the difference between the PCA and the SVD of A ( 6= M)?
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Relationship to PCA (4)

• Assumptions of PCA
I Linearity: The data set is a linear combination of the (retained)

components.
I Large variances indicate important structure: PCA scores may or

may not be suitable for subsequent tasks (e.g., classification).
I Components are orthogonal

• Recall that [MTM/(m − 1)]ij holds the sample covariance
between attributes i and j (i.e., columns A∗i and A∗j)
I When each row of M is an i.i.d. observation of some underlying

distribution, then MTM/(m − 1) is an unbiased estimator of the
covariance matrix of that distribution
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Relationship to PCA (5)

• For our example data, M is a 50× 2 matrix
• Here is its sample covariance matrix

MTM/(m−1) =
2.1

1.16

1.16

0.72

• And here the sample covariance matrix of the PCA scores

(MQ)T (MQ)/(m−1) =
2.76

0

0

0.06

• This is “by construction”
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Relationship to PCA (6)

• Only information used by PCA is sample means and covariances
I Data assumed i.i.d. from a multivariate normal distribution
I Mean and covariance parameters are estimated from data (and

ordered)
I We obtain distribution N (0,Λ) after rotation

(with correct estimates and assuming normality assumption holds)
• We already established that fk = σ2

k/
∑

i σ
2
i can be seen as the

relative contribution of a singular value to the sq. Frobenius
norm
• We also know that σ2

k/(m − 1) = λk
• Implies that fk can also be seen as the fraction of the total
variance explained by the k-th principal component
I Interpretation only valid when data is centered (!)
I In a Scree plot, one may plot fk (or their cumulative sum) instead

of the σ2
k

• To make sure PCA is adequate, ensure that data “looks”
normally distributed (or transform it to look normal)
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Removing noise

• Very common application of SVD is to remove the noise from
the data

• This works simply by taking the truncated SVD from the
(normalized) data
I The big problem is to select the rank of the truncated SVD

• Example:
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• Original data
I Looks like 1-dimensional with some noise

• The right singular vectors show the directions
I The first looks like the data direction
I The second looks like the noise direction

• The singular values confirm this

45 / 52



Visualization

• Truncated SVD with k = 2, 3 allows us to visualize the data
I We can plot the projected data points after 2D or 3D PCA
I Or we can plot the scatter plot of two or three singular vectors
I Or we color data points based on their entries in a singular vector
I ...

3.2. Interpreting an SVD 55

−0.25−0.2−0.15−0.1−0.0500.050.10.150.20.25

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

U1

U
2

Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,
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Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =



−0.390
0.089

−0.916


 u2 =



−0.639
−0.742
0.200




The projection matrix is given as

P2 = U2U
T
2 =



| |
u1 u2
| |



(

— uT1 —
— uT2 —

)
= u1u

T
1 + u2u

T
2

=




0.152 −0.035 0.357

−0.035 0.008 −0.082
0.357 −0.082 0.839


+




0.408 0.474 −0.128
0.474 0.551 −0.148
−0.128 −0.148 0.04




=



0.560 0.439 0.229

0.439 0.558 −0.230
0.229 −0.230 0.879
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Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.
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Latent semantic analysis

• The latent semantic analysis (LSA) is an information retrieval
method that uses SVD
• The data: a term-document matrix A

I Values are (weighted) term frequencies
I Typically tf-idf values (the frequency of the term in the document

divided by the global frequency of the term)

• The truncated SVD Ak = UkΣkV T
k of A is computed

I Matrix Uk associates documents to “topics”
I Matrix V k associates “topics” to terms
I If two rows of Uk are similar, the corresponding documents “talk

about same things”
• A query q can be answered by considering its term vector q

I q is projected to qk = qVΣ−1 (called: fold in)
I qk is compared to rows of U and most similar rows are returned

• Later more (when we consider NMF and LDA)

47 / 52Landauer & Dumais, 1997
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Algorithms for SVD

• In principle, the SVD of A can be computed by computing the
eigendecomposition of AAT

I This gives us left singular vectors and squares of singular values
I Right singular vectors can be solved: V T = Σ−1UTA
I Bad for numerical stability!

• Full SVD can be computed in time O
(
nmmin{n,m}

)
I Matrix A is first reduced to a bidiagonal matrix
I The SVD of the bidiagonal matrix is computed using iterative

methods (similar to eigendecompositions)
• Methods that are fast in practice exist

I Especially for truncated SVD
• Efficient implementation of an SVD algorithm requires

considerable work and knowledge
I Luckily (almost) all numerical computation packages and programs

implement SVD
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Lessons learned

• SVD is the Swiss Army knife of (numerical) linear algebra
→ Ranks, kernels, norms, inverses, ... . . .

• SVD is also very useful in data analysis
→ Dimensionality reduction, noise removal, visualization, . . .

• Truncated SVD is best low-rank factorization of the data in
terms of Frobenius norm

• Selecting the correct rank for truncated SVD is still a problem

• Interpretation of results can be challenging
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Suggested reading

• Skillicorn, Ch. 3
• Meyer, Ch. 5.12
• Gene H. Golub & Charles F. Van Loan: Matrix Computations,

3rd ed. Johns Hopkins University Press, 1996
I Excellent source for the algorithms and theory, but very dense
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Recap: Singular Value Decomposition

• SVD is useful in data analysis
→ Noise removal, visualization, dimensionality reduction, . . .

• Provides a means to understand the hidden structure in the data

We may think of Ak and its factor matrices as a low-rank model
of the data:
• Used to capture the important aspects of the data

(cf. principal components)
• Ignores the rest
• Truncated SVD is best low-rank factorization of the data in

terms of Frobenius norm
• Truncated SVD Ak = UkΣkV T

k of A thus satisfies

‖A− Ak‖F = min
rank(B)=k

‖A− B‖F
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Incomplete data

• If all entries of the data matrix are available, computing a
low-rank model is easy
• We now look at the case of partially observed data

I Many data mining methods cannot handle missing data well
I Need for imputation

• Our goal is to build a low-rank model...
I ...and ultimately approximately recover the full matrix
I Cannot be done in general; assumptions needed
I Ongoing research topic, large body of results

• Some reasons for missing entries
I Failure in data acquisition processes
I Expensive to obtain all entries
I Some entries cannot be measured
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Recommender systems

• Problem
I Set of users
I Set of items (movies, books, jokes, products, stories, ...)
I Feedback (ratings, purchase, click-through, tags, ...)
I Sometimes: metadata (user profiles, item properties, ...)

• Goal: Predict preferences of users for items
• Ultimate goal: Create item recommendations for each user
• Example


Avatar The Matrix Up

Alice ? 4 2
Bob 3 2 ?

Charlie 5 ? 3
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Collaborative filtering

• Key idea: Make use of past user behavior
• No domain knowledge required
• No expensive data collection needed
• Allows discovery of complex and unexpected patterns
• Widely adopted: Amazon, TiVo, Netflix, Microsoft
• Key techniques: neighborhood models, latent factor models


Avatar The Matrix Up

Alice ? 4 2
Bob 3 2 ?

Charlie 5 ? 3



Leverage past behavior of other users and/or on other items.
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A simple baseline

• m users, n items, m × n rating matrix D
• Revealed entries Ω = { (i , j) | rating dij is revealed }, N = |Ω|
• Baseline predictor: bij = µ+ bi + bj

I µ = 1
N

∑
(i,j)∈Ω dij is the overall average rating

I bi is a user bias (user’s tendency to rate low/high)
I bj is an item bias (item’s tendency to be rated low/high)

• Least squares estimates: argminb∗

∑
(i ,j)∈Ω(dij − µ− bi − bj)

2

D Avatar Matrix Up
(1.01) (0.34) (−1.32)

Alice ? 4 2
(0.32) (4.5) (3.8) (2.1)

Bob 3 2 ?
(−1.34) (2.8) (2.2) (0.5)

Charlie 5 ? 3
(0.99) (5.2) (4.5) (2.8)

m = 3
n = 3
Ω = { (1, 2), (1, 3), (2, 1), . . . }
N = 6
µ = 3.17

b12 = 3.17 + 0.32 + 0.34 = 3.8
b32 = 3.17 + 0.99 + 0.34 = 4.5

Baseline does not account for
personal tastes.
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When does a user like an item?

• Neighborhood models (kNN):
When the user likes similar items
I Find the top-k most similar items the user has rated
I Combine the ratings of these items (e.g., average)
I Requires a similarity measure (e.g., Pearson correlation coefficient)

is similar to

Unrated by Bob Bob rated 4
→ predict 4

• Latent factor models (LFM):
When similar users like similar items
I More holistic approach
I Users and items are placed in the

same “latent factor space”
I Position of a user and an item

related to preference (via dot products)
9 / 57
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vector q
i
 ∈  f, and each user u is associ-

ated with a vector p
u
 ∈  f. For a given item 

i, the elements of q
i
 measure the extent to 

which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of p

u
 measure the extent of 

interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
q

i
T p

u
, captures the interaction between user 

u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
r

ui
, leading to the estimate 
 
r̂ui  

= q
i
T p

u
. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
q

i
, p

u
 ∈  f. After the recommender system 

completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (p

u
 and q

i
), the system 

minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i ∈

∑
κ

(r
ui
 - q

i
Tp

u
)2 + λ(|| q

i
 ||2 + || p

u
 ||2)  (2) 

Here, κ is the set of the (u,i) pairs for which r
ui
 is known 

(the training set). 
The system learns the model by fitting the previously 

observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant λ controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

a Basic matRix factoRization modeL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 
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Intuition behind latent factor models (2)

• Does user u like item v?
• Quality: measured via direction from origin (cos∠(u, v))

I Same direction → attraction: cos∠(u, v) ≈ 1
I Opposite direction → repulsion: cos∠(u, v) ≈ −1
I Orthogonal direction → oblivious: cos∠(u, v) ≈ 0

• Strength: measured via distance from origin (‖u‖ ‖v‖)
I Far from origin → strong relationship: ‖u‖ ‖v‖ large
I Close to origin → weak relationship: ‖u‖ ‖v‖ small

• Overall preference: measured via dot product (u · v)
u · v = ‖u‖ ‖v‖ u · v

‖u‖ ‖v‖ = ‖u‖ ‖v‖ cos∠(u, v)

I Same direction, far out → strong attraction: u · v large positive
I Opposite direction, far out → strong repulsion: u · v large negative
I Orthogonal direction, any distance → oblivious: : u · v ≈ 0

But how to select dimensions and where to place items and users?
Key idea: Pick dimensions that explain the known data well.
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Latent factor models (simple form)

• Given rank r , find m × r matrix L and r × n matrix R such that

dij ≈ [LR]ij for (i , j) ∈ Ω

• Least squares formulation

min
L,R

∑
(i ,j)∈Ω

(dij − [LR]ij)
2

• Example (r = 1)
R

Avatar The Matrix Up
(2.24) (1.92) (1.18)

L

Alice ? 4 2
(1.98) (4.4) (3.8) (2.3)
Bob 3 2 ?

(1.21) (2.7) (2.3) (1.4)
Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)
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SVD and missing values
Input data Rank-10 truncated SVD

10% of input data Rank-10 truncated SVD

13 / 57
SVD treats missing entries as 0.



Latent factor models and missing values
Input data Rank-10 LFM

10% of input data Rank-10 LFM

14 / 57
LFMs “ignore” missing entries.



Example: Netflix prize data

(≈ 500k users, ≈ 17k movies, ≈ 100M ratings)

47AuGuSt 2009

Our winning entries consist of more than 100 differ-
ent predictor sets, the majority of which are factorization 
models using some variants of the methods described here. 
Our discussions with other top teams and postings on the 
public contest forum indicate that these are the most popu-
lar and successful methods for predicting ratings. 

Factorizing the Netflix user-movie matrix allows us 
to discover the most descriptive dimensions for predict-
ing movie preferences. We can identify the first few most 
important dimensions from a matrix decomposition and 
explore the movies’ location in this new space. Figure 3 
shows the first two factors from the Netflix data matrix 
factorization. Movies are placed according to their factor 
vectors. Someone familiar with the movies shown can see 
clear meaning in the latent factors. The first factor vector 
(x-axis) has on one side lowbrow comedies and horror 
movies, aimed at a male or adolescent audience (Half Baked, 
Freddy vs. Jason), while the other side contains drama or 
comedy with serious undertones and strong female leads 
(Sophie’s Choice, Moonstruck). The second factorization 
axis (y-axis) has independent, critically acclaimed, quirky 
films (Punch-Drunk Love, I Heart Huckabees) on the top, 
and on the bottom, mainstream formulaic films (Armaged-
don, Runaway Bride). There are interesting intersections 
between these boundaries: On the top left corner, where 
indie meets lowbrow, are Kill Bill and Natural Born Kill-
ers, both arty movies that play off violent themes. On the 
bottom right, where the serious female-driven movies meet 

preferences might cause a one-time 
event; however, a recurring event is 
more likely to reflect user opinion. 

The matrix factorization model 
can readily accept varying confidence 
levels, which let it give less weight to 
less meaningful observations. If con-
fidence in observing r

ui
 is denoted as 

c
ui
, then the model enhances the cost 

function (Equation 5) to account for 
confidence as follows: 

min
* * *, ,p q b

( , )u i ∈
∑

κ

c
ui
(r

ui
 - µ - b

u
 - b

i
 

- p
u

Tq
i
)2 + λ (|| p

u
 ||2 + || q

i
 ||2  

 + b
u

2 + b
i
2)  (8) 

For information on a real-life ap-
plication involving such schemes, 
refer to “Collaborative Filtering for 
Implicit Feedback Datasets.”10 

netfLix PRize 
comPetition 

In 2006, the online DVD rental 
company Netflix announced a con-
test to improve the state of its recommender system.12 To 
enable this, the company released a training set of more 
than 100 million ratings spanning about 500,000 anony-
mous customers and their ratings on more than 17,000 
movies, each movie being rated on a scale of 1 to 5 stars. 
Participating teams submit predicted ratings for a test set 
of approximately 3 million ratings, and Netflix calculates 
a root-mean -square error (RMSE) based on the held-out 
truth. The first team that can improve on the Netflix algo-
rithm’s RMSE performance by 10 percent or more wins a 
$1 million prize. If no team reaches the 10 percent goal, 
Netflix gives a $50,000 Progress Prize to the team in first 
place after each year of the competition. 

The contest created a buzz within the collaborative fil-
tering field. Until this point, the only publicly available data 
for collaborative filtering research was orders of magni-
tude smaller. The release of this data and the competition’s 
allure spurred a burst of energy and activity. According to 
the contest website (www.netflixprize.com), more than 
48,000 teams from 182 different countries have down-
loaded the data. 

Our team’s entry, originally called BellKor, took over 
the top spot in the competition in the summer of 2007, 
and won the 2007 Progress Prize with the best score at the 
time: 8.43 percent better than Netflix. Later, we aligned 
with team Big Chaos to win the 2008 Progress Prize with a 
score of 9.46 percent. At the time of this writing, we are still 
in first place, inching toward the 10 percent landmark.
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figure 3. The first two vectors from a matrix decomposition of the Netflix Prize 
data. Selected movies are placed at the appropriate spot based on their factor 
vectors in two dimensions. The plot reveals distinct genres, including clusters of 
movies with strong female leads, fraternity humor, and quirky independent films. 
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Latent factor models (summation form)

• Least squares formulation prone to overfitting
• More general summation form:

L =
∑

(i ,j)∈Ω

Lij(l i , r j) + R(L,R),

I L is global loss
I l i and r j are user and item parameters, resp.
I Lij is local loss, e.g., Lij = (dij − [LR]ij)

2

I R is regularization term, e.g., R = λ(‖L‖2F + ‖R‖2F )

• As before, goal is to solve minL,R L(L,R)

• Loss function can be more sophisticated
I Improved predictors (e.g., include user and item bias)
I Additional feedback data (e.g., time, implicit feedback)
I Regularization terms (e.g., weighted depending on amount of

feedback)
I Available metadata (e.g., demographics, genre of a movie)
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Example: Netflix prize data

Root mean square error of predictions
COVER FE ATURE

computer 48

M
atrix factoriza-
tion techniques 
have become a 
dominant meth-
odology within 

collaborative filtering recom-
menders. Experience with 
datasets such as the Netflix Prize 
data has shown that they deliver 
accuracy superior to classical 
nearest-neighbor techniques. At 
the same time, they offer a com-
pact memory-efficient model 
that systems can learn relatively 
easily. What makes these tech-
niques even more convenient is 
that models can integrate natu-
rally many crucial aspects of the 
data, such as multiple forms of 
feedback, temporal dynamics, 
and confidence levels. 
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the mainstream crowd-pleasers, is The Sound of Music. 
And smack in the middle, appealing to all types, is The 
Wizard of Oz. 

In this plot, some movies neighboring one another typi-
cally would not be put together. For example, Annie Hall 
and Citizen Kane are next to each other. Although they 
are stylistically very different, they have a lot in common 
as highly regarded classic movies by famous directors. 
Indeed, the third dimension in the factorization does end 
up separating these two. 

We tried many different implementations and pa-
rameterizations for factorization. Figure 4 shows how 
different models and numbers of parameters affect the 
RMSE as well as the performance of the factorization’s 
evolving implementations—plain factorization, adding 
biases, enhancing user profile with implicit feedback, and 
two variants adding temporal components. The accuracy 
of each of the factor models improves by increasing the 
number of involved parameters, which is equivalent to 
increasing the factor model’s dimensionality, denoted by 
numbers on the charts. 

The more complex factor models, whose descriptions 
involve more distinct sets of parameters, are more accu-
rate. In fact, the temporal components are particularly 
important to model as there are significant temporal ef-
fects in the data. 
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figure 4. Matrix factorization models’ accuracy. The plots show the root-mean-square 
error of each of four individual factor models (lower is better). Accuracy improves when 
the factor model’s dimensionality (denoted by numbers on the charts) increases. In 
addition, the more refined factor models, whose descriptions involve more distinct  
sets of parameters, are more accurate. For comparison, the Netflix system achieves 
RMSE = 0.9514 on the same dataset, while the grand prize’s required accuracy is  
RMSE = 0.8563.
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The matrix completion problem
Complete these matrices!

1 1 1 1 1
1 1 1 1 1
1 1 ? 1 1
1 1 1 1 1
1 1 1 1 1




1 1 1 1 1
1 ? ? ? ?
1 ? ? ? ?
1 ? ? ? ?
1 ? ? ? ?


Matrix completion is impossible without additional assumptions!

Let’s assume that underlying full matrix is “simple” (here: rank 1).
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


When/how can we recover a low-rank matrix from a sample of its entries?
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Rank minimization

Definition (rank minimization problem)

Given an n × n data matrix D and an index set Ω of revealed
entries. The rank minimization problem is

minimize rank(X )
subject to dij = xij (i , j) ∈ Ω

X ∈ Rn×n.

• Seeks for “simplest explanation” fitting the data
• If unique and sufficient samples, recovers D (i.e., X = D)
• NP-hard

Time complexity of existing rank minimization algorithms dou-
ble exponential in n (and also slow in practice).
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Nuclear norm minimization

• Denote by σ =
(
σ1 σ2 . . . σn

)T the singular values of X
• rank(X ) = |{σk > 0 }| =

∑n
k=1 Iσk>0 = ‖σ‖0

• Nuclear norm: ‖X‖∗ =
∑n

k=1 σk = ‖σ‖1
• Nuclear norm can be seen as approximation to rank

Definition (nuclear norm minimization)

Given an n × n data matrix D and an index set Ω of revealed
entries. The nuclear minimization problem is

minimize ‖X‖∗
subject to dij = xij (i , j) ∈ Ω

X ∈ Rn×n.

• A convex relaxation of rank minimization
• Nuclear norm is convex function

(thus local optimum is global optimum)
21 / 57

Can be optimized (more)
efficiently via semidefi-
nite programming.



Why nuclear norm minimization? (1)
Let’s look at two-dimensional vectors first.
• Border of blue area = L1 unit ball
• Red lines = L0 “unit ball” → axes except 0
• L0 unit ball intersects L1 unit ball at extreme points

• 1-sparse vectors of 
Euclidean norm 1

• Convex hull is the 
 unit ball of the l1 norm

1

1

-1

-1

Sparsity
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Why nuclear norm minimization? (2)
Let’s find a solution to the problem Φx = y .
• Underdetermined system with infinitely many solution
• We usually pick one that has certain structure
• E.g. sparsity: min ‖x‖0 s.t. Φx = y

I Example solution: x1 = y/φ1, x2 = 0 → L0 = 1
• Approximation: minimize L1

I Recall: ‖x‖1 =
∑ |xi |

I Increasing L1 norm can be seen as
“inflating” the L1 unit ball

I Minimum L1 norm
= minimum inflation

I Achieved at intersection
with x1 or x2 axis
(whatever is smaller)
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Why nuclear norm minimization (3)
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Whereas the rank function is equal to the number of non-
vanishing singular values, the nuclear norm equals their 
sum. The nuclear norm is to the rank functional what the 
convex 1 norm is to the 0 norm in the area of sparse signal 
recovery. The main point here is that the nuclear norm is a 
convex function and can be optimized efficiently via semi-
definite programming.14

There are many norms one could define for a given 
matrix. The operator norm is the largest singular value. 
The Frobenius norm is equal to the square root of the sum 
of the squares of the entries. This norm is akin to the stan-
dard Euclidean norm on a real vector space. Why should the 
nuclear norm provide lower rank solutions than either of 
these two more commonly studied norms?

One can gain further intuition by analyzing the geometric 
structure of the nuclear norm ball. The unit nuclear norm 
ball is precisely the convex hull of the rank 1 matrices of unit 
Frobenius norm. The nuclear norm minimization problem 
(2.3) can be interpreted as inflating the unit ball until it 
just touches the affine space Xij = Mij. Such an intersection 
will occur at an extreme point of the nuclear norm ball, and 
these extreme points are sparse convex combinations of 
rank 1 matrices. That is, the extreme points of the nuclear 
norm ball have low rank. This phenomenon is depicted 
graphically in Figure 1. There, we plot the unit ball of the 
nuclear norm for matrices parametrized as

The extreme points of this cylindrical object are the rank 1 
matrices with unit Frobenius norm. The red line in this figure 
is a “random,” one-dimensional, affine subspace which, as 
expected, intersects the nuclear norm ball at a rank 1 matrix.

As further motivation, an interesting connection exists 
between the nuclear norm and popular algorithms in 

data-mining and collaborative filtering. In these fields, 
researchers commonly aim to find an explicit factorization 
X = lrT that agrees with the measured entries. Here l and r 
are n × k matrices. Since there are many possible such factor-
izations that might agree with the observations, a common 
approach searches for matrices l and r that have Frobenius 
norm as small as possible, that is, the solution of the optimi-
zation problem

  (2.4)

where we are minimizing with respect to l ∈ Rn×k, r ∈ Rn×k, 
and X ∈ Rn×n, and ⋅F denotes the Frobenius norm. 
Surprisingly, the optimization problem (2.4) is equivalent 
to minimization of the nuclear norm subject to the same 
equality constraints provided k is chosen to be larger than 
the rank of the optimum of the nuclear norm problem (2.3).30

To get an intuition for this equivalence, take any matrix X 
of rank k. Suppose the SVD is X = USvT. If we set  and 

, we see that

because  for all j. Thus, the optimal solution 
of (2.3) is suboptimal for (2.4). The full equivalence can be 
seen via an appeal to semidefinite programming and can be 
found in Recht et al.30

The main advantage of this reformulation (2.4) is to sub-
stantially decrease the number of decision variables from n2 
to 2nr. For large problems, this leads to a significant reduc-
tion in computation time, such that very large instances can 
be solved on a desktop computer. On the other hand, the for-
mulation (2.4) is nonconvex and thus potentially has local 
minima that are not globally optimal. Nonetheless, this fac-
tored approximation (2.4) of the nuclear norm is one of the 
most successful stand-alone approaches to solving the Net-
flix Prize problem.16, 24 Indeed, it was one of the foundational 
components of the winning team’s prediction engine.

2.1. Main results
As seen in our first example (2.1), it is impossible to recover 
a matrix which is equal to 0 in nearly all of its entries unless 
we see all the entries of the matrix. This is particularly likely 
if the singular vectors of a matrix M have most of their mass 
concentrated in a few coordinates. For instance, consider 
the rank 2 symmetric matrix M given by

where the singular values are arbitrary. Then, this matrix 
vanishes everywhere except in the top-left 2 × 2 corner, and 
one would basically need to see all the entries of M to be 
able to recover this matrix exactly. There is an endless list 
of examples of this sort. Hence, we arrive at the notion that 
the singular vectors need to be sufficiently spread across 

figure 1. unit ball of the nuclear norm for symmetric 2 × 2 matrices. 
The red line depicts a random one-dimensional affine space. such a 
subspace will generically intersect a sufficiently large nuclear norm 
ball at a rank one matrix.
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• Consider SVD of D = UΣV T

• Unit nuclear norm ball = convex
combination (σk) of rank-1
matrices of unit Frobenius norm
(U∗kV T

∗k)
• Extreme points have low rank

(in figure: rank-1 matrices of
unit Frobenius norm)
• Nuclear norm minimization:

inflate unit ball as little as
possible to reach dij = xij

• Solution lies at extreme point of
inflated ball → (hopefully) low
rank
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Relationship to LFMs

• Recall regularized LFM (L is m × r , R is r × n):

min
L,R

∑
(i ,j)∈Ω

(dij − [LR]ij)
2 + λ(‖L‖2F + ‖R‖2F )

• View as matrix completion problem by enforcing dij = [LR]ij :

minimize 1
2

(
‖L‖2F + ‖R‖2F

)
subject to dij = xij (i , j) ∈ Ω

LR = X .

• One can show: for r chosen larger than rank of nuclear norm
optimum, equivalent to nuclear norm minimization
• For some intuition, suppose X = LR = UΣV T at optimum L

and R: 1
2

(
‖L‖2F + ‖R‖2F

)
≤ 1

2

(∥∥UΣ1/2
∥∥2
F

+
∥∥Σ1/2V T

∥∥2
F

)
= 1

2
∑n

i=1
∑r

k=1(u2
ikσk + v2

ikσk)
=
∑r

k=1 σk = ‖X‖∗
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When can we hope to recover D? (1)
Assume D is the 5× 5 all-ones matrix (rank 1).

1 1 1 1 1
1 ? ? ? ?
1 ? ? ? ?
1 ? ? ? ?
1 ? ? ? ?




1 ? ? 1 ?
? ? 1 ? ?
? 1 ? ? 1
1 ? 1 ? ?
? 1 1 ? ?


Ok Ok

1 1 1 1 ?
1 1 ? ? ?
1 ? ? ? ?
1 ? ? 1 ?
1 ? ? ? ?




1 ? ? ? ?
? 1 ? ? ?
? ? 1 ? ?
? ? ? 1 ?
? ? ? ? 1


Not unique Not unique

(column missed) (insufficient samples)

Sampling strategy and sample size matter.
26 / 57



When can we hope to recover D? (2)
Consider the following rank-1 matrices and assume 50% revealed
entries. 

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



1 1 2 1 1
1 1 2 1 1
2 2 4 2 2
1 1 2 1 1
1 1 2 1 1


Ok (“incoherent”) Ok (“incoherent”)
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Bad (“coherent”) Bad (“coherent”)
→ first row required → (1, 1)-entry required

Properties of D matter.
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When can we hope to recover D? (3)
Exact conditions under which matrix completion “works” is active
research area:
• Which sampling schemes? (e.g., random, WR/WOR, active)
• Which sample size?
• Which matrices? (e.g., “incoherent” matrices)
• Noise (e.g., independent, normally distributed noise)

Theorem (Candès and Recht, 2009)

Let D = UΣV T . If D is incoherent in that

max
ij

u2
ij ≤

µB
n

and max
ij

v2
ij ≤

µB
n

for some µB = O(1), and if rank(D) ≤ µ−1
B n1/5, then

O(n6/5r log n) random samples without replacement suffice to
recover D exactly with high probability.
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Overview
Latent factor models in practice
• Millions of users and items
• Billions of ratings
• Sometimes quite complex models

Many algorithms have been applied to large-scale problems
• Gradient descent and quasi-Newton methods
• Coordinate-wise gradient descent
• Stochastic gradient descent
• Alternating least squares

30 / 57



Continuous gradient descent

• Find minimum θ∗ of function L

• Pick a starting point θ0

• Compute gradient L′(θ0)

• Walk downhill
• Differential equation

∂θ(t)

∂t
= −L′(θ(t))

with boundary cond. θ(0) = θ0

• Under certain conditions

θ(t)→ θ∗
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Discrete gradient descent

• Find minimum θ∗ of function L

• Pick a starting point θ0

• Compute gradient L′(θ0)

• Jump downhill
• Difference equation

θn+1 = θn − εnL′(θn)

• Under certain conditions,
approximates CGD in that

θn(t) = θn + “steps of size t”

satisfies the ODE as n→∞
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Recap: Gradient computation

• You know: gradient computations for functions on one input;
e.g.,

f (x) = x2

∇x f (x) = 2x

• For functions with multiple inputs, there are multiple partial
derivatives

f (l , r) = (d − lr)2

∇l f (l , r) = −2(d − lr)r

∇r f (l , r) = −2(d − lr)l
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Matrix calculus (1)

• We focus on functions from Rn → R
• Let θ =

(
l r

)T
• Then

f (θ) = (d − lr)2

∇l f (θ) = −2(d − lr)r

∇r f (θ) = −2(d − lr)l

• We can write this in matrix form

∇θT f =
(
−2(d − lr)r −2(d − lr)l

)
= −2(d − lr)

(
r l

)
• The resulting matrix is called the Jacobian matrix of f

J f = −2(d − lr)
(
r l

)
• Note: The Jacobian is a matrix of functions of θ
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Matrix calculus (2)

• To recap

J f
def
= ∇xT f

def
=
(
∇x1f ∇x2f · · · ∇xn f

)
• The following rules hold

∇xT c =
(
0 0 · · · 0

)
∇xT cTx = cT

∇xT xTc = cT

∇xT xTx = 2xT

∇xT xTAx = xT (A + AT ),

where constants c , c , and A do not depend on x
• Also: multiplicative rule, product rule, chain rule, . . .
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Gradient computation for LFMs
Set θ = (L,R), L(θ) = L(L,R), and write

L(θ) =
∑

(i,j)∈Ω

Lij(l i , r j)

L′(θ) =
∑

(i,j)∈Ω

L′ij(l i , r j)

∇likL(θ) =
∑

(i ′,j)∈Ω

∇likLi ′j(l i ′ , r j)

=
∑

j∈{ j′|(i,j′)∈Ω }

∇likLij(l i , r j)

since ∇likLi ′j(l i ′ , r j) = 0 for i 6= i ′

Local gradient of entry (i , j) ∈ Ω nonzero only for row l i and
column r j .
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Example gradient computation
Simplest form of LFM (unregularized)

Lij(l i , r j) = (dij − lTi r j)2

Gradient computation

∇likLij(l i , r j) = −2(dij − lTi r j)rkj
∇rkjLij(l i , r j) = −2lik(dij − lTi r j)

∇lTi
Lij(l i , r j) = −2(dij − lTi r j)rTj

∇rTj
Lij(l i , r j) = −2lTi (dij − lTi r j)
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Gradient descent for LFMs

GD epoch
1. Compute gradient

I Initialize zero matrices L∇ and R∇
I For each entry (i , j) ∈ Ω, update gradients

l∇i ← l∇i +∇l iLij(l i , r j)

r∇j ← r∇j +∇r jLij(l i , r j)

I After this step

l∇i =
∑

j∈{ j′|(i,j′)∈Ω }

∇l iLij(l i , r j)

as desired (r∇j analog)

2. Update parameters

L← L− εnL∇

R ← R − εnR∇ 38 / 57

D

L

R

dijl i

r j



Stochastic gradient descent

• Find minimum θ∗ of function L

• Pick a starting point θ0

• Approximate gradient L̂′(θ0)

• Jump “approximately” downhill
• Stochastic difference equation

θn+1 = θn − εnL̂′(θn)

• Under certain conditions,
asymptotically approximates
(continuous) gradient descent
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Stochastic gradient descent for LFMs
• Set θ = (L,R) and use

L(θ) =
∑

(i,j)∈Ω

Lij(l i , r j)

L′(θ) =
∑

(i,j)∈Ω

L′ij(l i , r j)

L̂′(θ, z) = NL′iz jz (l iz , r jz ),

where N = |Ω| and z = (iz , jz) ∈ Ω

• SGD epoch (with or without replacement)
1. Pick a random entry z ∈ Ω (with or without replacement)
2. Compute approximate gradient L̂′(θ, z)
3. Update parameters

θn+1 = θn − εnL̂′(θn, z)

4. Repeat N times
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Comparison

• Per epoch, assuming O(r) gradient computation per element

GD SGD

Algorithm Deterministic Randomized
Gradient computations 1 N
Gradient types Exact Approximate
Parameter updates 1 N
Time O(rN) O(rN)
Space O((m + n)r) O((m + n)r)

• Why stochastic?
I Fast convergence to vicinity of optimum
I Randomization may help escape local minima
I Exploitation of “repeated structure”
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Example: Netflix data, unregularized
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GD/SGD in practice (1)
Step size (or learning rate) sequence { εn } needs to be chosen
carefully; widely studied, many options:
• Large → good initially (move quickly), bad later on (juggle

around optimum)
• Keep step size throughout or reduce it gradually

I E.g., constant (useful for online learning)
I E.g., εn = a/(b + n) for some constants a, b
I E.g., pick εn ≤ 1/L(∇f ) if f has bounded gradient

• Bold driver heuristic: After every epoch
I Increase step size slightly when loss decreased (by, say, 5%)
I Decrease step size sharply when loss increased (by, say, 50%)
I Not provably correct, but works well in practice

• Pick initial step size based on sample
• Line search: optimize the step size directly

εn = argmin
ε

L(θn − εL′(θn))
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GD/SGD in practice (2)

• SGD is a common learning algorithm
I E.g., training neural networks
I Related to incremental gradient descent and online learning

• Many variants exist; e.g.,
I Use more than one example per step (mini-batch)
I Polyak averaging
I Momentum
I Adaptive, per-parameter step sizes (AdaGrad, RMSprop,

AdaDelta, Adam)
I . . .

• And it can (often) be parallelized; e.g.,
I Hogwild
I Vowpal Wabbit (for regression problems)
I DSGD++ (for latent factor models)

E.g.: 10M×1M, 10B observed entries, ≈ 1h on 8 machines
I . . .
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http://epubs.siam.org/doi/abs/10.1137/0330046
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Variants of latent factor models

• In practice, the basic latent factor model is often modified in an
application-dependent way

• We discuss two variants here
I How to handle implicit feedback?

(All observed entries are 1.)
I How to make use of additional contextual information?

(E.g., attributes for users and items.)

• There are many other variants; e.g.
I Bayesian variants (partly discussed later)
I Combination of explicit and implicit feedback
I Additional constraints (e.g., non-negativity of factors)
I . . .

• Picking the right model requires thought, experience, and
experimentation
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Implicit feedback

• Implicit feedback is an indicator for preference
I Which product pages do users look at?
I Which movies do users watch?
I How much time do users spend on a news article?

• Absence of implicit feedback is not necessarily an indicator for
non-preference

• In the basic latent factor model, we used explicit feedback,
which contains
I Positive evidence (a user gave an item a high rating)
I Negative evidence (a user gave an item a low rating)

• If we only have implicit feedback
I We may think of the implicit feedback as positive evidence
I But we do not have negative evidence
I This implies that the basic latent factor model won’t work
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Implicit feedback and the basic LFM

• A matrix of implicit feedback (1=present, ?=absent)
? 1 1 ?
1 ? ? 1
1 1 ? ?
? ? 1 1
? ? 1 ?


• Its completion by an (unregularized) LFM

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


• That’s not helpful!
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How to handle implicit feedback

• One option is to build a different model
I E.g., a nearest-neighbor model

• We can also learn variant of an LFM
I Good approach if low-rank assumption applies

• How? Move from “predicting values” to “ranking values”
I Ranking is per row (e.g, the items for each user) or per column
I Goal is not to predict the preference of a user for an item, but to

rank items such that high-preference items appear early on

• Key idea is to find a ranking that
I Tends to rank items with implicit feedback before items without
I Is simple (e.g., can be described with a low-rank matrix)
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Bayesian personalized ranking (intuition)

• Goal is to learn a personalized ordering >i for each user i
I Consider a user i , an item j1 and an item j2
I Idea: j1 >i j2 if user i prefers item j1 over item j2
I Assumption: If user i provided implicit feedback for j1 but not for

j2, then he prefers j1 over j2
I We want to learn >i for all pairs of items
I Ordering should be total, antisymmetric, and transitive

• The BPR model
I Associate each triple (i , j1, j2) with a score x̂ij1j2 ∈ R

I Score is


positive if j1 is preferred by user i
negative if j2 is preferred by user i
0 if oblivious

I Model probability that i prefers j1 over j2 as

p(j1 >i j2) = σ(x̂ij1j2),

where σ(x) = 1/(1 + exp(−x)) ∈ [0, 1] is the logistic function
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BPR for latent factor models

• Use low-rank matrix factorization to model scores

x̂ij1j2 = lTi r j1 − lTi r j2 ,

where as before L and R are factor matrices

• Construct database D ⊆ [m]× [n]× [n] of “observed orderings”
I (i , j+, j−) ∈ D if user i has implicit feedback for j+ but not for j−
I Can be large, but does not really need to be constructed

• Under certain assumptions, maximum likelihood estimate for L
and R is

argmax
L∈Rm×r ,R∈Rr×n

∏
(i ,j+,j−)∈D

p(j+ >i j
−)

= argmax
L∈Rm×r ,R∈Rr×n

∑
(i ,j+,j−)∈D

log p(j+ >i j
−)

• We can use stochastic gradient ascent to find the estimates
I Gradient estimate obtained by sampling a single triple
I In practice, add regularization
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BPR in action

52 / 57Rendle et al., 2009
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Contextual information

• We often have additional information; e.g.,
I Demographics of users (age, sex, city, . . . )
I Information about items (e.g., genre, actors, directors, . . . )

• How to exploit this additional information with LFM models?
1. Build a separate model and combine predictions (stacking)
2. As above, but but learn model parameters jointly
3. Extend LFMs to directly incorporate context

• A popular approach for (3) are factorization machines
I Open source implementation: libfm
I Can be combined with BPR
I Advertisement: also useful for extracting relations from

natural-language text
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Factorization machines (intuition)

• Rows = observed entries
• Columns = information about observed entry

I Which user rated which item? In what context?
I Must be constructable at prediction time for unobserved entries (!)

• Associate a latent feature vector with each column
I Prediction ≈ sum of pairwise inner products of weighted feature vectors
I As before, learn latent features using SGD to fit observed data

54 / 57Rendle, 2010
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Lessons learned

• Collaborative filtering methods learn from past user behavior
I Latent factor models are best-performing single approach
I Many variants exist
I In practice, often combined with other methods

• Users and items are represented in common latent factor space
I Holistic matrix-factorization approach
I Similar users/item placed at similar positions
I Low-rank assumption = few “factors” influence user preferences

• Close relationship to matrix completion problem
I Reconstruct a partially observed low-rank matrix
I Many applications

• SGD is simple and practical algorithm to solve LFMs in
summation form
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Suggested reading

• Y. Koren, R. Bell, C. Volinsky
Matrix factorization techniques for recommender systems
IEEE Computer, 42(8), p. 30–37, 2009
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5197422

• E. Candès, B. Recht
Exact matrix completion via convex optimization
Communications of the ACM, 55(6), p. 111–119, 2012
http://doi.acm.org/10.1145/2184319.2184343

• https://en.wikipedia.org/wiki/Matrix_calculus

• And references in the above articles and slides
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Non-negative datasets
Some datasets are intrinsically non-negative:
• Counters

(e.g., no. occurrences of each word in a text document)
• Quantities

(e.g., amount of each ingredient in a chemical experiment)
• Intensities

(e.g., intensity of each color in an image)

The corresponding data matrix D has only non-negative values.
• Decompositions such as SVD may involve negative values in

factors and components
• Negative values describe the absence of something
• Often no natural interpretation

Goal: Find a decomposition that is more natural to non-negative data.
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Example (SVD)
Consider the following “bridge” matrix and its compact SVD:
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Negative values can make interpretation unnatural or difficult.
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Non-negative matrix factorization (NMF)

Definition (Non-negative matrix factorization, basic form)

Given a non-negative matrix D ∈ Rm×n
+ , a non-negative matrix

factorization of rank k is

D ≈ LR,

where L ∈ Rm×r
+ and R ∈ Rr×n

+ are both non-negative.

• Additive decomposition: factors and components non-negative
→ No cancellation effects
• Rows of R can be thought as “parts”
• Row of D obtained by mixing (or “assembling”) parts as

described in L
• Smallest r such that D = LR exists is called non-negative

rank of D

rank(D) ≤ rank+(D) ≤ min {m, n }
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Example (NMF)
Consider the following “bridge” matrix and its rank-2 NMF:
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Non-negative matrix decomposition encourage a more natural,
part-based representation and (sometimes) sparsity.
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Decomposing faces (SVD)

[LR]i∗ = lTi R
[UΣV T ]i∗ = uT

i Σ V T

SVD factors can be hard to interpret.
7 / 48
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Lee and Seung, 1999.

http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html


Decomposing faces (NMF)

[LR]i∗ = lTi R

NMF factors correspond to parts of faces.
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Lee and Seung, 1999.

http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html


Decomposing digits (NMF)

D R

NMF factors correspond to parts of digits and “background”.

9 / 48Cichocki et al., 2009.
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Some applications

• Text mining (more later)
• Bioinformatics
• Microarray analysis
• Mineral exploration
• Neuroscience
• Image understanding
• Air pollution research
• Chemometrics
• Spectral data analysis
• Linear sparse coding
• Image classification
• Clustering
• Neural learning process
• Sound recognition
• Remote sensing
• Object characterization
• . . .

10 / 48Cichocki et al., 2009.
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Gaussian NMF

• Gaussian NMF is the most basic form of non-negative
factorizations:

minimize ‖D − LR‖2F
s. t. L ∈ Rm×r

+

R ∈ Rr×n
+

• Truncated SVD minimizes the same objective (but without
non-negativity constraints)
• Many other variants exist

I Different objective functions (e.g., KL-divergence)
I Additional regularizations (e.g., L1-regularization)
I Different constraints (e.g., orthogonality of R)
I Different compositions (e.g., 3 matrices)
I multi-layer NMF, semi-NMF, sparse NMF, tri-NMF, symmetric

NMF, orthogonal NMF, non-smooth NMF (nsNMF), overlapping
NMF, convolutive NMF (CNMF), k-Means, . . .
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k-Means can be seen as a variant of NMF

[LR]i∗ = lTi R

k-Means factors correspond to prototypical faces.
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Additional constraint: L contains exactly
one 1 in each row, rest 0

Lee and Seung, 1999.
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NMF is not unique

• Factors are not “ordered”
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• One way of ordering: decreasing Frobenius norm of components
(i.e., order by ‖l krTk ‖F = ‖l k‖ ‖rk‖)
• Factors/components are not unique
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Additional constraints or regularization can encourage uniqueness.
13 / 48



NMF is not hierarchical

• Rank-2 NMF
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• Best rank-k approximation may differ significantly from best
rank-(k − 1) approximation
• Rank influences sparsity & interpretability
• Optimum choice of rank is not well-studied (often requires
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NMF is difficult
We focus on minimizing L(L,R) = ‖D − LR‖2F .
• For varying m, n, and r , problem is NP-hard
• When rank(D) = 1 (or r = 1), can be solved in polynomial time

1. Take first non-zero column of D as Lm×1
2. Determine R1×n entry by entry (using the fact that d j = Lr1j)

• Problem is not convex
I Local optimum may not correspond to global optimum
I Generally little hope to find global optimum

• But: Problem is biconvex
I For fixed R, f (L) = ‖D − LR‖2F is convex

f (L) =
∑

i‖d
T
i − lTi R‖2F (chain rule)

∇lik f (L) = −2(dT
i − lTi R)r k (product rule)

∇2
lik f (L) = 2rTk r k ≥ 0 (convex in lik ; can show: also in L)

I For fixed L, f (R) = ‖D − LR‖2F is convex
I Allows for efficient algorithms

16 / 48Vavasis, 2009
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General framework

• Gradient descent generally slow
• Stochastic gradient descent often also slow
• Key approach: alternating minimization

1: Pick starting point L0 and R0
2: while not converged
3: Keep R fixed, optimize L
4: Keep L fixed, optimize R

• Update steps 3 and 4 easier than full problem
• Also called alternating projections or (block) coordinate descent
• Starting point

I Random
I Multi-start initialization: try multiple random starting points, run

a few epochs, continue with best
I Based on SVD
I . . .
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Example
Ignore non-negativity for now. Consider the regularized
least-square error:

L(L,R) = ‖D − LR‖2F +
λ

2
(‖L‖2F + ‖R‖2F )

By setting m = n = r = 1, D = (1) and λ = 0.1, we obtain

L(l , r) = (1− lr)2 + 0.05(l2 + r2)

l
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L
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∇rL = −2l(1− lr) + 0.1r
Local optima:(√

19
20 ,
√

19
20

)
,
(
−
√

19
20 ,−

√
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Stationary point: (0,0)
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Example (Alternating Least Squares, ALS)

• L(l , r) = (1− lr)2 + 0.05(l2 + r2)

• l ← minl L = r
r2+0.05

• r ← minr L = l
l2+0.05

• Step l r

0 2 2
1 0.49 2
2 0.49 1.68
3 0.58 1.68
4 0.58 1.49
...

...
...

100 0.97 0.97

• Converges to
local minimum
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Example (Alternating Least Squares, ALS)

• L(l , r) = (1− lr)2 + 0.05(l2 + r2)

• l ← minl L = r
r2+0.05

• r ← minr L = l
l2+0.05

• Step l r

0 2 0
1 0 0
2 0 0
...

...
...

• Converges to
stationary point
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Alternating non-negative least squares (ANLS)

• Uses non-negative least squares approximation of L and R:

argmin
L∈Rm×r

+

‖D − LR‖2F and argmin
R∈Rr×n

+

‖D − LR‖2F

• Equivalently: find non-negative least squares solution to LR = D
• Common (bad!) hack: Solve unconstrained least squares

problems and “remove” negative values. E.g., when columns
(rows) of L (R) are linearly independent, set

L = [DR+]ε and R = [L+D]ε

where
I R+ = RT (RRT )−1 is the pseudo-inverse of R
I L+ = (LTL)−1LT is the pseudo-inverse of L
I [a]ε = max { ε, a } for ε = 0 or some small constant (e.g., ε = 10−9)

• Difficult to analyze due to non-linear update steps
• Often slow convergence to a “bad” local minimum (better when

regularized or good NLS solver used)
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Example (ANLS, common bad hack)

• f (l , r) = (1− lr)2 + 0.05(l2 + r2) and set ε = 10−9

• l ←
[

r
r2+0.05

]
ε

• r ←
[

l
l2+0.05

]
ε

• Step l r

0 2 2
1 0.49 2
2 0.49 1.68
3 0.58 1.68
4 0.58 1.49
...

...
...

100 0.97 0.97

• Converges to
local minimum

22 / 48

l

r

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

ll

l l

ll

ll

ll
ll
ll
ll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll



Example (ANLS, common bad hack)

• L(l , r) = (1− lr)2 + 0.05(l2 + r2) and set ε = 10−9

• l ←
[

r
r2+0.05

]
ε

• r ←
[

l
l2+0.05

]
ε

• Step l r

0 2 0
1 1 · 10−9 0
2 1 · 10−9 2 · 10−8

3 4 · 10−7 2 · 10−8

4 4 · 10−7 8 · 10−6

...
...

...
100 0.97 0.97

• Converges to
local minimum
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Hierarchical alternating least squares (HALS)

• Optimize just one component, then next component, and so on
• Let D(k) be the residual matrix (error) when k-th component is

removed:

D(k) = D − LR + l krTk = D −
∑
k ′ 6=k

l k ′rTk ′

• HALS optimizes ‖D(k) − l krTk ‖2F for k = 1, 2, . . . , r , 1, . . .
(thus: optimize only k-th component)
• E.g., in each iteration, set (once or multiple times):

lTk ←
1

‖rk‖2F

[
D(k)rk

]
ε

and rTk ←
1
‖l k‖2F

[
lTk D(k)

]
ε

• D(k) can be incrementally maintained → fast implementation

D(k+1) = D(k) + l krTk − l k+1rTk+1

• Good performance in practice
• Converges to stationary point when initialized with positive

matrix and sufficiently small ε
24 / 48Cichocki, 2007
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Multiplicative updates

• Gradient descent step with step size ηkj

rkj ← rkj + ηkj([LTD]kj − [LTLR]kj)

• Setting ηkj =
rkj

[LTLR]kj
, we obtain the multiplicative update rules

L← L ◦ DRT

LRRT
and R ← R ◦ LTD

LTLR
,

where multiplication (◦) and division are element-wise
• Does not necessarily find optimum L (or R), but can be shown

to never increase loss
• Faster than ANLS (no NLS problems solved), easy to implement

and parallelize
• Zeros in factors are problematic (never changed, division by 0)

L← L ◦ [DRT ]ε

LRRT + ε
and R ← R ◦ [LTD]ε

LTLR + ε

25 / 48Lee and Seung, 2001. Cichocki et al., 2006.

http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1661352


Example (multiplicative updates)

• L(l , r) = (1− lr)2 + 0.05(l2 + r2)

• l ← l [1r−0.05l ]ε
lr2+ε

• r ← r [l1−0.05r ]ε
l2r+ε

• Step l r

0 2 2
1 0.48 2
2 0.48 1.66
3 0.59 1.66
4 0.58 1.45
...

...
...

100 0.97 0.97

• Converges to
local minimum

26 / 48

l

r

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

ll

l l

l l

ll

ll
ll
ll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll



Outline

1. Non-Negative Matrix Factorization

2. Algorithms

3. Probabilistic Latent Semantic Analysis

4. Summary
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Topic modeling

• Consider a document-word matrix constructed from some corpus

P̃ =


air water pollution power democrat republican

doc 1 3 2 8 4 0 0
doc 2 1 4 12 2 0 0
doc 3 0 0 0 4 10 11
doc 4 0 0 0 3 8 5
doc 5 1 1 1 1 1 1


• Documents seem to talk about two “topics”

1. Environment (with words air, water, pollution, power)
2. Congress (with words democrat, republican, power)

• Note: “power” is polysemous (electrical power, political power)

Can we automatically detect topics in documents?
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Let’s try SVD

• Rank-2 truncated SVD of example matrix
air wat pol pow dem rep air wat pol pow dem rep

3

1

0

0

1

2

4

0

0

1

8

12

0

0

1

4

2

4

3

1

0

0

10

8

1

0

0

11

5

1

0.17

0.18

0.81

0.52

0.1

0.56

0.78

−0.22

−0.13

0.07

18.4

0

0

15.69

0.04

0.16

0.06

0.28

0.2

0.89

0.32

0.17

0.67

−0.2

0.63

−0.19

P̃ ≈ Ũ2 Σ̃2 Ṽ
T
2

• Can see clear topic-driven differences for documents in ũ1 and ũ2

• Similarly for words in ṽ1 and ṽ2

• Hard to interpret
• Called latent semantic analysis

29 / 48Landauer and Dumais, 1997
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Let’s try NMF

• Rank-2 NMF of example matrix
air wat pol pow dem rep air wat pol pow dem rep

3

1

0

0

1

2

4

0

0

1

8

12

0

0

1

4

2

4

3

1

0

0

10

8

1

0

0

11

5

1

1.96

2.19

0

0

0.41

0

0

4.55

2.91

0.44

1.1

0

1.54

0

4.61

0

1.45

0.94

0

2.4

0

2.15

P̃ ≈ L̃ R̃
• Can see clear topic-driven differences in L̃ and R̃
• Easier to interpret: large value → relevant for topic
• Decomposition is sparse
• Related to probabilistic latent semantic analysis (pLSA)

I An even more interpretable factorization
I Assumptions are well-understood
I Example of a topic model

• Polysemy of “power” hinted at by its use in multiple topics
• Topic distributions often much more complex
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A probabilistic viewpoint

• Let’s normalize P̃ such that the entries sum to unity
air wat pol pow dem rep

3

1

0

0
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4

0

0

1

8

12

0

0

1

4

2

4

3

1

0

0

10

8

1

0

0

11

5

1

P̃

air wat pol pow dem rep

0.04

0.01

0

0

0.01

0.02

0.05

0

0

0.01

0.1

0.14

0

0

0.01

0.05

0.02

0.05

0.04

0.01

0

0

0.12

0.1

0.01

0

0

0.13

0.06

0.01

P
• Put all words in an urn, draw, and denote by D and W the

result. The probability to draw word w from document d is
given by

P(D = d ,W = w) = pdw

• Matrix P can represent any such probability distribution
• pLSA tries to find a distribution that is “close” to P but exposes

information about topics
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Probabilities: Shortcut notation
Let X and Y be discrete random variables with possible values
Val(X ) and Val(Y ). Let x ∈ Val(X ) and y ∈ Val(Y ).

Expression Shortcut notation

P(X = x) P(x)
P(X = x ,Y = y) P(x , y)
P(X = x | Y = y) P(x | y)
∀x .P(X = x) = f (x) P(X ) = f (X )
∀x .∀y .P(X = x | Y = y) = f (x , y) P(X | Y ) = f (X ,Y )

• P(x), P(x , y), P(x | y) are numbers (= probabilities)
• P(X ) and P(X | Y ) are functions (= probability distributions)
• Can be thought of as functions from Val(X )→ [0, 1] or

Val(X )× Val(Y )→ [0, 1], respectively
• fy (X ) = P(X | y) is often referred to as conditional

probability distribution (CPD)
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Probabilities: Important properties
P(A ∪ B) = P(A) + P(B)− P(A ∩ B) (inclusion-exclusion)

P(Ā) = 1− P(A)

If B ⊇ A, P(B) = P(A) + P(B \ A) ≥ P(A)

P(X ,Y ) = P(Y | X )P(X ) (product rule)

P(X ) =
∑
y

P(X , y) (sum rule, discrete)

P(X ) =

∫
y
P(X , y) (sum rule, continuous)

P(X | Y ) =
P(Y | X )P(X )

P(Y )
(Bayes theorem)

E [aX + b] = aE [X ] + b (linearity of expectation)
E [X + Y ] = E [X ] + E [Y ]

EY [EX [X | Y ]] = E [X ] (law of total expectation)
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Probabilistic latent semantic analysis (pLSA)

Definition (pLSA, NMF formulation)

Given a rank r , find matrices L, Σ, and R such that

P ≈ LΣR

where
• Lm×r is a column-stochastic matrix,
• Σr×r is a non-negative, diagonal matrix that sums to unity, and
• R r×n is a row-stochastic matrix.

• Column-stochastic = each column is probability vector = each
column is non-negative and sums to 1
• ≈ is usually taken to be the (generalized) KL divergence
• Regularization or “tempering” may be necessary to avoid

overfitting
34 / 48Hofmann, 2001.
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Example

• pLSA factorization of example matrix
air wat pol pow dem rep air wat pol pow dem rep

0.04
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0.14

0

0

0.01
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0.04

0.01

0

0

0.12

0.1

0.01

0

0

0.13

0.06

0.01

0.43

0.48

0

0

0.09

0

0

0.58

0.37

0.06

0.48

0

0

0.52

0.13

0

0.18

0

0.53

0

0.17

0.17

0

0.44

0

0.39

P ≈ L Σ R
• Rank r corresponds to number of topics
• σz corresponds to overall relative frequency of topic z
• ldz corresponds to contribution of document d to topic z
• rzw corresponds to frequency of word w in topic z
• pLSA constraints allow for probabilistic interpretation

P(d ,w) ≈ [LΣR]dw =
∑

z σz ldz rzw =
∑

z P(z)P(d | z)P(w | z)

• pLSA model assumes conditional independence, i.e., it assumes
that words and documents are conditionally independent given a
topic → restricted space of distributions

35 / 48



Another example
Concepts (10 of 128) extracted from Science Magazine articles (12K)

“Topics” (also: concepts, aspects) described by distributions of words.

36 / 48Hofmann, 2004.
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pLSA geometry

• Rewrite probabilistic formulation

P(d ,w) =
∑
z

P(z)P(d | z)P(w | z)

P(w | d) =
∑
z

P(w | z)P(z | d)

• Generative process
1. Pick a document

according to P(d)
2. Select a topic

acc. to P(z | d)
3. Select a word

acc. to P(w | z)

37 / 48Hofmann, 2001.
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Example

• pLSA factorization of example matrix, rewritten formulation
air wat pol pow dem rep air wat pol pow dem rep
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P(w | d) ≈ P(z | d) P(w | z)
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Approximate dist. P(w , z = 1 | d) P(w , z = 2 | d)

• This formulation more directly exposes topic distribution of
documents (more in assignment)

• Next: Applications & a suitable definition of “≈”
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Applications of pLSA

• Topic modeling
• Clustering documents
• Clustering terms
• Information retrieval

I Treat query q as a “new” document
I Using the second formulation of the previous slide, determine

P(z | q), keeping P(w | z) fixed (called “fold in” the query)
I In more detail, find P(z | q) such that

P(w | q) ≈
∑

z P(w | z)P(z | q)
I Retrieve documents with similar topic

mixture (= P(z | d))
I Can deal with synonymy and polysemy

• Better generalization performance
than LSA (=SVD), esp. with tempering
• Full Bayesian treatment:

Latent Dirichlet Allocation (LDA)

39 / 48Hofmann, 2001.
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Kullback-Leibler divergence (1)

• Let P̃ be the unnormalized word-count data and denote by N
total number of words

• Probability of seeing P̃ when drawing N words with replacement

P(P̃) ∝
m∏

d=1

n∏
w=1

P(d ,w)p̃dw

• Conditional probability P(P̃ | L,Σ,R) of seeing the data given a
pLSA model is as above with P(d ,w) given by

P(d ,w | L,Σ,R) = [LΣR]dw

• pLSA maximizes this probability = likelihood L(P̃ | L,Σ,R) of
data given model
• Equivalent to maximizing the log-likelihood logL(P̃ | L,Σ,R)
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Kullback-Leibler divergence (2)
Let P̂ = LΣR.

logL(P̃ | P̂) ∝
m∑

d=1

n∑
w=1

p̃dw log p̂dw

∝
m∑

d=1

n∑
w=1

pdw log p̂dw

= −
m∑

d=1

n∑
w=1

pdw log
1

p̂dw︸ ︷︷ ︸
Cross entropy H(P, P̂)

= −
m∑

d=1

n∑
w=1

pdw log
pdw
p̂dw︸ ︷︷ ︸

Kullback-Leibler divergence DKL(P‖P̂)

+cP

• Takeaway: maximizing the log-likelihood ≡ minimize cross
entropy ≡ minimizing the Kullback-Leibler divergence

41 / 48Gaussier and Goutte, 2005.
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Background: Entropy

• Consider any discrete contribution over values { a1, . . . , an }
• We can represent this distribution using a probability vector

p ∈ Rn, where value ai is associated with probability pi
• Suppose Anna selects a random value A according to p, i.e.,
P(A = ai ) = pi
• She wants to tell Bob which value she selected

I Anna and Bob agree upfront on a codeword (bitstring) for each
value ai

I On average, how many bits does Anna have to send to Bob so
that he can determine the value of A?

• Answer: at best H(p) bits, where H(p) is the Shannon entropy

H(p) =
n∑

i=1

pi log
1
pi

I pi = probability that Anna selects value ai
I log 1

pi
= number of bits of codeword for ai
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Background: Cross entropy and KL divergence

• Let’s modify the game a bit
I Suppose Anna cheats and gives Bob the wrong distribution q
I They use an optimal code for q, i.e., codeword for ai has log 1

qi
bits

I But Anna later selects values according to p, not q
I How many bits are sent on average?

• Answer: cross entropy of p and q

H(p,q) =
n∑

i=1

pi log
1
qi

I pi = probability that Anna selects value ai
I log 1

qi
= number of bits of codeword for ai

• On average, how many additional bits are now sent?
• Answer: Kullback-Leibler divergence

DKL(p‖q)
def
= H(p,q)− H(p) =

n∑
i=1

pi log
pi
qi
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Kullback-Leibler divergence (3)

• KL divergence is a measure of “difference” between distributions
• In our setting, we have

DKL(P‖P̂) =
∑
d ,w

pdw log
pdw
p̂dw

• Interpretation: expected number of extra bits for encoding a
value drawn from P using an optimum code for distribution P̂
• DKL(P‖P̂) ≥ 0
• DKL(P‖P) = 0
• In general, DKL(P‖P̂) 6= DKL(P̂‖P)

• NMF-based pLSA algorithms often minimize the generalized
KL divergence (exercise)

DGKL(P̃‖ ˜̂P) =
∑
d ,w

(
p̃dw log

p̃dw
˜̂pdw
− p̃dw + ˜̂pdw

)
,

where ˜̂P = L̃R̃
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Multiplicative updates for GKL (w/o tempering)

• We first find a decomposition P̃ ≈ L̃R̃, where L̃ and R̃ are
non-negative matrices
I E.g., using multiplicative update rules

L̃← L̃ ◦ P̃
L̃R̃

R̃
T

diag(1r/(R̃1n))

R̃ ← R̃ ◦ diag(1r/(1T
mL̃)T )L̃

T P̃
L̃R̃

I GKL is non-increasing under these update rules

• Normalize by rescaling columns of L̃ and rows of R̃ to obtain

L = L̃ diag(1r/(1T
mL̃)T ) (colums of L sum to 1)

R = diag(1r/(R̃1n))R̃ (rows of R sum to 1)

Σ̃ = diag((1T
mL̃)T ◦ (R̃1n)) (scaling factors)

Σ = Σ̃/
∑

z Σ̃zz (Σ sums to 1)

45 / 48Lee and Seung, 2001.
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Outline

1. Non-Negative Matrix Factorization

2. Algorithms

3. Probabilistic Latent Semantic Analysis

4. Summary
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Lessons learned

• Non-negative matrix factorization (NMF) appears natural for
non-negative data

• NMF encourages parts-based decomposition, interpretability,
and (sometimes) sparseness

• Many variants, many applications

• Usually solved via alternating minimization algorithms
I Alternating non-negative least squares (ANLS)
I Projected gradient local hierarchical ALS (HALS)
I Multiplicative updates

• pLSA is a well-known approach to topic modeling
I Can be seen as an NMF
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Literature

• David Skillicorn
Understanding Complex Datasets: Data Mining with Matrix
Decompositions (Chapter 8)
Chapman and Hall, 2007

• Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi
Amari
Nonnegative Matrix and Tensor Factorizations: Applications to
Exploratory Multi-way Data Analysis and Blind Source
Separation
Wiley, 2009

• Yifeng Li and Alioune Ngom
The NMF MATLAB Toolbox
http://cs.uwindsor.ca/ li11112c/nmf
• Renaud Gaujoux and Cathal Seoighe

NMF R package
http://cran.r-project.org/web/packages/NMF/index.html
• References given at bottom of slides
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Graph mining

• Graphs everywhere, e.g.
I Internet
I World wide web
I Social networks
I Protein-protein interactions
I Similarity graphs

• Goals of graph mining
I As data mining: classification, clustering, outliers, patterns
I Output often also one or more graphs
I Interesting subgraphs (e.g., communities, near-cliques, clusters)
I Interesting vertices (e.g., influential bloggers, PageRank, outliers)
I Web mining (e.g., topic predicition, classification)
I Web usage mining (e.g., frequent subgraphs, patterns)
I Recommender systems (e.g., movie recommendation)
I Knowledge bases (e.g., link prediction)
I ...

Spectral analysis of matrices associated with graphs is an important
tool in graph mining. Our focus: spectral clustering and link analysis.
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A graph is a matrix is a graph

• Let G = (V ,E ) be a (weighted) graph
• Vertices V = { v1, . . . , vn }
• Edge (i , j) ∈ E has positive weight wij (or 1 if graph is

unweighted)
• Convention: absent edges (i , j) /∈ E have weight wij = 0
• Adjacency matrix W is n × n matrix with entries wij

• Undirected graph =⇒ W symmetric (W = W T )

• (Out-)degree of vertex i given by di =
∑

j wij = wT
i 1

• Degree matrix D is n × n diagonal matrix with dii = di

v1

v2

v3

v4

v5


0 0 0 0 0
1 0 1 1 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0



0 0 0 0 0
0 3 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1


G W D
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Outline

1. Graph-Based Clustering

2. Similarity Graphs

3. Background: Eigendecomposition

4. Graph Laplacian

5. Spectral Clustering

6. Summary
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k-Means example (1)
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k-Means cannot detect non-convex clusters well.
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k-Means example (2)
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k-Means is sensitive to skew in cluster sizes.
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A better clustering
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In this clustering, points within a cluster are close to their neigh-
bors, but not necessarily to all the points in the cluster.
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Graph-based clustering

1. Given a dataset, construct a similarity graph modeling local
neighborhood relationships

2. Partition the similarity graph using suitable graph cuts
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Similarity graph Clustering
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Discussion

• Clustering
1. Points within a cluster should be similar
2. Points in different clusters should be dissimlar

• k-Means is global
1. All points within a cluster should be similar (close)
2. Points in different clusters should be dissimilar (far apart)

• Graph-based clustering is local
1. Neighboring points within a cluster should be similar (close)
2. Points in different clusters should be dissimilar (far apart)
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Another example (1)
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Graphs in machine learning (5)
Another example for misleading global distances:

Global distances can be misleading.
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Another example (2)
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Graphs in machine learning (6)
Now idea:
• Only rely on local information provided by similarity

• Construct graph based on this local information

• Machine learning algorithm should discover global structure by
itself

Distances to neighbors may capture structure better.

11 / 58



Which cut? (1)

• G = (V ,E ): Undirected, weighted similarity graph
• Cut = partitioning of vertices into two partitions A ⊂ V and

Ā = V \ A
• For us: A and Ā correspond to clusters
• Minimum cut is cut that minimizes weight

cut(A, Ā) =
∑

i∈A,j∈Ā

wij

• Can be solved efficiently (in P)
• Often not useful in practice, e.g., may separate a single vertex
→ Need to balance cut weight and cluster sizes
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Which cut? (2)

• Minimum ratio cut (penalize different sizes w.r.t. vertices)

RatioCut(A, Ā) =

(
1
|A| +

1
|Ā|

) ∑
i∈A,j∈Ā

wij

• Minimum normalized cut (penalize different sizes
w.r.t. degrees)

Ncut(A, Ā) =

(
1

vol(A)
+

1
vol(Ā)

) ∑
i∈A,j∈Ā

wij ,

where vol(A) =
∑

i∈A di
• Both problems are NP-hard

Spectral clustering is a relaxation of RatioCut or Ncut, is simple
to implement, and can be solved efficiently.
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Which cut? (3)

• Recall clustering objectives
1. Points in same cluster should be similar

(maximize within-cluster similarity)
2. Points in different clusters should be dissimilar

(minimize between-cluster similarity)

• (1) = vol(A) and vol(Ā) are both large
• (2) = minimize cut(A, Ā)

• cut, RatioCut, and Ncut all implement (2)
• Only Ncut additionally implements (1)
• Ncut captures both goals → usually good choice
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Outline

1. Graph-Based Clustering

2. Similarity Graphs

3. Background: Eigendecomposition

4. Graph Laplacian

5. Spectral Clustering

6. Summary
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Similarity graph

• In graph-based clustering, we first need to construct a similarity
graph
I Need notion of similarity and a way to construct an appropriate

graph based on that similarity
I How to do this depends on domain
I Generally difficult
I Can significantly affect results

• E.g., similarity for documents
I Similarity of words in documents
I Similarity of words in documents with tf/idf weighting
I Similarity of topic distribution of documents
I . . .

• Here:
I How to obtain a similarites from Euclidean data
I How to construct a similarity graph from similarities
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From distances to similarities

• Sometimes: Need to “convert” distances to similarities
• Large distance δij ⇐⇒ small similarity wij (and vice versa)
• Simplest choice: reciprocal (problematic, unbounded)

wij =
1
δij

• Common choice for Euclidian data: Gaussian kernel (in [0, 1])

wij = exp(−δ2ij/(2σ2)),

where δij is Euclidean distance (‖x i − x j‖)
• Parameter σ controls what is considered local

(large σ = large neighborhood)
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From distances to similarities (examples)
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σ = 0.01 σ = 0.4 σ = 3
(too small) (good) (too large)
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Full graph

• Connect all pairs of vertices
• Weigh edges by similarity
• Generally expensive, not feasible for large datasets
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ε-Neighborhood graph

• Pick neighborhood size ε
• Connect vertices of distance ≤ ε
• Unweighted or weighted by similarity
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ε too small ε good Skewed clusters: ε too
large for red, too small
for black
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Nearest neighbor graphs

• Pick number k of neighbors
• Directed k-nearest neighbor graph

I Add directed edge (i,j) if j is among k closest neighbors of i
I But: need undirected graph for well-defined similarities

• (Symmetric) k-nearest neighbor graph
I Connect (i , j) if (i , j) or (j , i) in directed k-NN graph (OR)
I Each node has at least k , but potentially more than k “neighbors”

• Mutual k-nearest neighbor graph
I Connect (i , j) if (i , j) and (j , i) in directed k-NN graph (AND)
I Each node has at most k , but potentially less than k “neighbors”

• Weigh edges by similarity

directed 2-NN symmetric 2-NN mutual 2-NN
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k-Nearest neighbor graph (examples)
Symmetric k-NN graph
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k = 1 (too small) k = 10 (good) Skewed, k = 10 (good)

Mutual k-NN graph
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Discussion (1)

• Construction of similarity graph non-trivial and not
well-understood

• Clustering results sensitive to choice of graph
• Which similarity function?

I Should capture similarity of most-similar objects well
(other edges pruned by neighborhood graphs anyway)

I Gaussian kernel common choice for Euclidean data
I Generally application-dependent

• Which graph?
I Fully connected graph often too large + requires suitable similarity

function, dense graph
I ε-neighborhood graph cannot deal well with clusters of different

densities
I k-NN graph can connect points in regions with different densities
→ Generally recommended choice, sparse graph

I Mutual k-NN graph is somewhere in between
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Discussion (2)

• Which parameters? (ε or k , σ)
I ε or k should be small so that graph is sparse
I But large enough to ensure that similarity graph is connected (or

at least has fewer components than desired clusters)
I Otherwise: clustering sizes arbitrarily unbalanced, sensitive to

outliers
I k-NN: try various values (start with, e.g., k = O(log(n))
I Mutual k-NN: no good heuristics known
I ε-N: around length of longest edge in minimal spanning tree

(problematic with outliers or clusters that are far apart)
I σ: no. neighbors with similarity significantly larger than 0 “neither

too small nor too large” (e.g., mean distance to k-th nearest
neighbor, or using minimal spanning tree)

Skilled data miners do not run out of jobs.
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Outline

1. Graph-Based Clustering

2. Similarity Graphs

3. Background: Eigendecomposition

4. Graph Laplacian

5. Spectral Clustering

6. Summary
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Eigenvectors and eigenvalues

• A non-zero vector v ∈ Rn is an eigenvector of A ∈ Rn×n if

Av = λv

• λ is the corresponding eigenvalue
• The eigenvalues are the roots of the characteristic polynomial

pA(λ) = det(A− λI )

• We can factor pA(λ) as

pA(λ) = (λ− λ1)n1 · · · (λ− λN)nN ,

where
∑

i ni = n
I ni is called the algebraic multiplicity of λi
I There are 1 ≤ mi ≤ ni linearly independent eigenvectors associated

with eigenvalue λi
I mi is called the geometric multiplicity of λi
I Note: Some eigenvectors can be complex

• Collection of eigenvalues is called spectrum of A
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Eigendecomposition

• The eigendecomposition of A ∈ Rn×n is given by

A = QΛQ−1,

where
I Q is square and has eigenvectors as its columns
I Λ is diagonal and has eigenvalues on its diagonal

• Does not always exist; if it does, A is called diagonalizable
• Some properties

I When A is symmetric, there exists an eigendecomposition where
Q is real and orthogonal

I A = BBT = (UΣV T )(UΣV T )T = UΣ2UT

I E.g., A = BTB = (UΣV T )T (UΣV T ) = VΣ2V T

I E.g., A = QΛQ−1, then tr(A) = tr(Λ) =
∑

i λi
I rank (A) = number of non-zero eigenvalues (counting multiplicity)
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Outline

1. Graph-Based Clustering

2. Similarity Graphs

3. Background: Eigendecomposition

4. Graph Laplacian

5. Spectral Clustering

6. Summary
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Graph Laplacian

Definition
Let G be an undirected graph with positive edge weights. Denote
by W the (weighted) adjacency matrix of G , and by D the degree
matrix of G . Then

L = D −W

is called the (unnormalized) graph Laplacian of G .

Note that self edges (wii > 0) do not affect the graph Laplacian.

v1 v2 v3
1 1

1 0 0
0 2 0
0 0 1

 0 1 0
1 0 1
0 1 0

  1 −1 0
−1 2 −1
0 −1 1


G D W L

Graph Laplacians are the main tool for spectral clustering, but they
have many other uses too (e.g., label propagation, graph drawing).
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Properties of the graph Laplacian (1)

Theorem

For every vector x ∈ Rn, f (x) = xTLx =
1
2

n∑
i=1

n∑
j=1

wij(xi − xj)
2.

• x assigns a real value to each vertex
• f (x) is a quadratic form and small when “similar” vertices

(which are connected with high-weight edges) take similar values

Proof.

xTLx = xTDx − xTWx =
n∑

i=1

dix
2
i −

n∑
i=1

n∑
j=1

wijxixj

=
1
2

(
n∑

i=1

dix
2
i − 2

n∑
i=1

n∑
j=1

wijxixj +
n∑

j=1

djx
2
j

)

=
1
2

(
n∑

i=1

n∑
j=1

wij(x
2
i − 2xixj + x2

j )

)
=

1
2

n∑
i=1

n∑
j=1

wij(xi − xj)
2
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Properties of the graph Laplacian (2)

xTLx =
1
2

∑
i ,j

wij(xi − xj)
2

1 1 1
1 1

xTLx = 0

-1 0 1
1 1

xTLx = 2

1 -2 1
1 1

xTLx = 18
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Properties of the graph Laplacian (3)
A matrix An×n is called positive semi-definite if xTAx ≥ 0 for
any x ∈ Rn.

Theorem
L is symmetric and positive semi-definite.

• Implies that f (x) = xTLx is a convex function
• Implies that L = PPT for some P (oriented incidence matrix)

Proof. Since D and W are symmetric, so is L. Since xTLx ≥ 0
(see slide 30) for all x ∈ Rn, L is positive semi-definite.
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Properties of the graph Laplacian (4)

Theorem
The smallest eigenvalue of L is zero, the corresponding eigenvector
is the constant one vector 1.

1 1 1
1 1

λ3 = 0

Proof. The row sums satisfy L1 = 0 = 01 by construction. For
smallest, see next slide.
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Properties of the graph Laplacian (5)

Theorem
All eigenvalues are non-negative and real-valued, i.e.,
λ1 ≥ . . . ≥ λn−1 ≥ λn = 0.

Proof. All eigenvalues of a symmetric matrix are real. If Lv = λv ,
then vTLv = λ ‖v‖2 ≥ 0 and thus λ ≥ 0.
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Connected graphs

Theorem
If G is connected, then eigenvalue 0 has multiplicity 1, i.e.,
λn−1 > 0.

1 1 1
1 1 1 0 -1

1 1

λ3 = 0 λ2 = 1 > 0

Proof. Recall that 1 is an eigenvector of L with eigenvalue 0.
Suppose that 0 6= v 6= c1 is an eigenvector of L with eigenvalue λ.
Since G is connected, this implies that there are two neighboring
vertices i ′ and j ′ such that vi ′ 6= vj ′ . Now

λ ‖v‖2 = vTLv =
1
2

∑
i ,j

wij(vi − vj)
2 ≥ wi ′j ′(vi ′ − vj ′)

2 > 0

so that λ > 0.
35 / 58



Connected components

Theorem
The multiplicity k of eigenvalue 0 is equal to the number of
connected components G1, . . . ,Gk of G . The corresponding
eigenspace is spanned by the indicator vectors 1Gi

(value 1 for
vertices in Gi , value 0 otherwise).

Proof. Let L1, . . . ,Lk be the graph Laplacian of the connected
components. Order w.l.o.g. the vertices by their component so that

L =


L1

L2
. . .

Lk

 .

Since L is block-diagonal, the spectrum of L is given by the union
of the spectra of the Li . The corresponding eigenvectors are the
eigenvectors of Li , filled with 0 at positions of other blocks.
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Connected components (example)

L =



1 −1 0
−1 2 −1
0 −1 1

1 −1 0
−1 2 −1
0 −1 1


1 1 1 0 0 0

1 1 1 1

λ6 = 0

0 0 0 1 1 1
1 1 1 1

λ5 = 0

1 0 -1 0 0 0
1 1 1 1

λ4 = 1
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Algorithm

• Algorithm to construct k clusters
1. Construct similarity graph W
2. Compute its (unnormalized) graph Laplacian L
3. Compute the last k eigenvectors un, . . . ,un−k+1 of L

(i.e., having k smallest eigenvalues)
4. Construct n × k matrix U =

(
un un−1 · · · un−k+1

)
5. Cluster the rows of U using k-means

• Simple, easy to implement
• Main trick: represent (or “embed”) each vertex into Rk

(= rows of U)
• Change of representation enhances clustering properties in the

data

Why does this work? Why are we interested in the
smallest eigenvalues?

40 / 58



Unnormalized spectral clustering (example, 1)
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Similarity graph Spectral clustering (k = 2)
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Unnormalized spectral clustering (example, 2)
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Unnormalized spectral clustering (example)
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Why does spectral clustering work? (1)

• Consider the minimum ratio cut problem (k = 2)

min
A⊂V

RatioCut(A, Ā) = min
A⊂V

∑
i∈A,j∈Ā

wij

(
1
|A| +

1
|Ā|

)

• Given A, set x ∈ Rn such that

xi =

{√
|Ā|/|A| if vi ∈ A

−
√
|A|/|Ā| if vi ∈ Ā

• Easy to show
1. xTLx = n · RatioCut(A, Ā)

2.
n∑

i=1

xi = 0 so that x ⊥ 1

3. ‖x‖2 = n
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Why does spectral clustering work? (2)

• Minimum ratio cut can be rewritten as
minimize xTLx
subject to x ⊥ 1

‖x‖ =
√
n

x takes form defined in previous slide

• Still NP-hard; relax by dropping discreteness constraint

minimize xTLx
subject to x ⊥ 1

‖x‖ =
√
n

• By Rayleigh-Ritz theorem: solution is eigenvector corresponding
to second-smallest eigenvalue (appropriately normalized)
• uT

n−1Lun−1 = uT
n−1λn−1un−1 = nλn−1

• Thus: λn−1 ≤ minA⊂V RatioCut(A, Ā)
• Similar arguments for k > 2: solutions of relaxation

= eigenvectors un−1, . . . ,un−k+1 (see exercise)
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Why does spectral clustering work? (3)

• Recall

xi =

{√
|Ā|/|A| if vi ∈ A

−
√
|A|/|Ā| if vi ∈ Ā

in the constrained solution
• Need to obtain clustering from un−1

I Generally does not satisfy the discreteness constraints
I Simple heuristic: use sign as cluster indicator (threshold=0)
I Optimal: pick threshold that minimizes RatioCut (optimal

thresholding)
I k-means often used in practice (also works well for k > 2)

• In general, no guarantees to obtain good solution
• But: popular because simple, standard linear algebra problem

that tends to work well in practice
• Approximation of balanced graph cuts (up to constant factor)

still hard
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Cockroach graph

• Example where spectral clustering performs particularly bad
• Minimum ratio cut 8/n
• Spectral clustering ratio cut: 1
• Spectral clustering is O(n) times worse

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

Minimum ratio cut

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

Ratio cut with spectral clustering and sign heuristic
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Discussion (1)

• Computation of eigenvectors
I Graph can be very large
I But Laplacian is sparse
I Efficient algorithms for finding the eigendecomposition of such

matrices exist
• Number k of clusters

I Difficult problem
I Standard approaches can be used
I Eigengap heuristic: choose k such that eigenvalue λ1, . . . , λn−k

large, eigenvalues λn−k+1, . . . , λn small
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Discussion (2)
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0
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Histogram of the sample
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Eigenvalues

Figure 4: Three data sets, and the smallest 10 eigenvalues of Lrw. See text for more details.

noisy or overlapping the clusters are, the less effective is this heuristic. We can see that for the
second data set where the clusters are more “blurry”, there is still a gap between the 4th and 5th
eigenvalue, but it is not as clear to detect as in the case before. Finally, in the last data set, there
is no well-defined gap, the differences between all eigenvalues are approximately the same. But on
the other hand, the clusters in this data set overlap so much that many non-parametric algorithms
will have difficulties to detect the clusters, unless they make strong assumptions on the underlying
model. In this particular example, even for a human looking at the histogram it is not obvious
what the correct number of clusters should be. This illustrates that, as most methods for choosing
the number of clusters, the eigengap heuristic usually works well if the data contains very well
pronounced clusters, but in ambiguous cases it also returns ambiguous results.

Finally, note that the choice of the number of clusters and the choice of the connectivity parameters
of the neighborhood graph affect each other. For example, if the connectivity parameter of the
neighborhood graph is so small that the graph breaks into, say, k0 connected components, then
choosing k0 as the number of clusters is a valid choice. However, as soon as the neighborhood
graph is connected, it is not clear how the number of clusters and the connectivity parameters of
the neighborhood graph interact. Both the choice of the number of clusters and the choice of the
connectivity parameters of the graph are difficult problems on their own, and to our knowledge
nothing non-trivial is known on their interactions.

8.4 The k-means step

The three spectral clustering algorithms we presented in Section 4 use k-means as last step to
extract the final partition from the real valued matrix of eigenvectors. First of all, note that there
is nothing principled about using the k-means algorithm in this step. In fact, as we have seen
from the various explanations of spectral clustering, this step should be very simple if the data
contains well-expressed clusters. For example, in the ideal case if completely separated clusters we
know that the eigenvectors of L and Lrw are piecewise constant. In this case, all points xi which
belong to the same cluster Cs are mapped to exactly the sample point yi, namely to the unit vector
es ∈ Rk. In such a trivial case, any clustering algorithm applied to the points yi ∈ Rk will be able
to extract the correct clusters.

24

49 / 58



Outline

1. Graph-Based Clustering

2. Similarity Graphs

3. Background: Eigendecomposition

4. Graph Laplacian

5. Spectral Clustering
5.1 Unnormalized Spectral Clustering
5.2 Normalized Spectral Clustering
5.3 Variants

6. Summary

50 / 58



Normalized graph Laplacians

Definition
There are two common normalizations of the graph Laplacian:

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw = D−1L = I −D−1W

• Normalization is performed w.r.t. degree
• Lsym is symmetric, Lrw is not

 1 −1 0
−1 2 −1
0 −1 1

  1 −1/
√
2 0

−1/
√
2 1 −1/

√
2

0 −1/
√
2 1

  1 −1 0
−0.5 1 −0.5
0 −1 1


L Lsym Lrw
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Normalized spectral clustering

• Normalized graph Laplacians have similar spectral properties
• Normalized spectral clustering (using Lrw)

1. Construct similarity graph W
2. Compute its normalized graph Laplacian Lrw
3. Compute the last k eigenvectors un, . . . ,un−k+1 of Lrw

(i.e., having k smallest eigenvalues)
4. Construct n × k matrix U =

(
un un−1 · · · un−k+1

)
5. Cluster the rows of U using k-means

• Normalized spectral clustering is a relaxation of Ncut

• Better behaved from statistical point of view

The normalized spectral clustering algorithm
above is often method of choice.
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Some examples

53 / 58Ng et al., 2001

https://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm
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Some variants of spectral clustering

• p-spectral clustering
I Use

∑
i,j wij |xi − xj |p

I Standard spectral clustering is obtained for p = 2
I As p → 1, we obtain provably better (Cheeger) cuts

• Constrained spectral clustering
I Way to incorporate domain knowledge and side information
I Intuitively, obtained clustering must satisfy some

application-defined constraints
I E.g., must-link and cannot-link constraints (i.e., provide vertex

pairs that must or must not end up in same cluster)
I E.g., partial labels (i.e., provide labels for some vertexes)
→ graph-based semi-supervised learning (tutorial)

• Active area of research

55 / 58
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Lessons learned

• Graphs can be represented by matrices (and vice versa)
I Adjacency matrix
I Degree matrix
I Walk matrix
I Graph Laplacian

• Spectral properties of these matrices relate to properties of the
graph

• Spectral clustering
I Find non-convex clusters in similarity graphs
I Good clustering ≈ good graph cut (RatioCut or Ncut)
I Related to smallest eigenvectors of graph Laplacian
I Many useful variants
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Literature

• David Skillicorn
Understanding Complex Datasets: Data Mining with Matrix
Decompositions (Chapter 4)
Chapman and Hall, 2007

• Ulrike von Luxburg
A Tutorial on Spectral Clustering
Statistics and Computing, 17(4), 2007
http://www.kyb.mpg.de/publications/attachments/
Luxburg07_tutorial_4488%5B0%5D.pdf
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What is a tensor?
A tensor is a multi-way extension of a matrix.
• A multi-dimensional array
• A multi-linear map

Scalars Vectors Matrices Stacked matrices · · ·

1



1
2
3






1 4 7
2 5 8
3 6 9






9 9 9
9 0 9
9 9 9






1 4 7
2 5 8
3 6 9






1 2 5
2 3 6
3 4 7
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Why tensors?

• Tensors can be used when matrices are not enough

• A matrix can represent a binary relation (or function)
I Entities and attributes
I Vertices and edges

• A tensor can represent an n-ary relation (or function)
I A relationship between n sets of “things”
I E.g. Subject-predicate-object data

• A tensor can represent a set of binary relations (or functions)
I Vertices and typed edges (“colored”)
I E.g., images (rows and columns) for a set of persons

• A tensor can represent a sequence of binary (or n-ary) relations
(or functions)
I Objects and their attributes over time
I But: using tensors for time series should be approached with care
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Two examples

CT scans Knowledge bases

(a)

σA

ai aj

Xijk

σ Rk

σR

1..N
1..N

1..M

(b)

Figure 1: Graphical representations of RESCAL. (a) Illustration of data representation and factorization in RESCAL. (b)
Graphical model of the RESCAL factorization in plate notation. Observed variables are shaded gray.

3.1 Modeling Semantic Web Data
Let a relational domain consist of n entities and m dyadic

relation types. Using RESCAL, such data is modeled as a
three-way tensor X of size n× n×m, where the entries on
two modes of the tensor correspond to the combined enti-
ties of the domain of discourse and the third mode holds the
m different types of relations. A tensor entry Xijk = 1 de-
notes the fact that the relation k-th Relation(i-th entity, j-th
entity) exists. Otherwise, for non-existing or unknown rela-
tions, Xijk is set to zero. This way, RESCAL approaches the
problem of learning from positive examples only, by assum-
ing that missing triples are very likely not true, an approach
that makes sense in a high-dimensional but sparse domain.
Figure 1a shows an illustration of this modeling method.
Each frontal slice Xk = X:,:,k of X can be interpreted as the
adjacency matrix of the relational graph for the respective
relation k.

Creating such a tensor representation for RDF(S) data
is straightforward. The entities are given by the set of
all resources, classes and blank nodes in the data, while
the set of relations consists of all predicates that include
entity-entity relationships. For each existing triple (i-th

entity, k-th predicate, j-th entity), the correspond-
ing entry Xijk is set to one, otherwise it is set to zero. Since
the original RESCAL model assumes that two of the three
modes are defined by entities, this procedure is constrained
to resources. However, much of the information in the LOD
cloud is given as literal values. For this reason, we present
an efficient extension to RESCAL in Section 3.5, such that
attributes of entities, i.e. literal values, can be included in
the factorization.

It is also important to note that in this modeling of RDF(S)
data, we do not draw a distinction between ontological knowl-
edge (i.e. RDFS in the T -Box) and instance data (the A-
Box). Instead, for a given domain, classes and instances of
these classes are modeled equally as entities in the tensor X .
Furthermore, all predicates from the T -Box and the A-Box
form the slices Xk of X . This way, ontological knowledge is
represented similarly to instance data by an appropriate en-
try Xijk = 1, such that facts about instances as well as data
from ontologies are integrated simultaneously in one tensor
representation. In doing so, ontologies are handled like soft
constraints, meaning that the additional information present
in an ontology guides the factorization to semantically more

reasonable results, but doesn’t impose hard constraints on
the model. Consequently, our modeling has aspects of both
a pure data-centric and an ontology-driven Semantic Web
approach.

3.2 Factorizing Semantic Web Data
Given a tensor X of size n × n × m that has been con-

structed as described in Section 3.1, RESCAL computes a
factorization of X , such that each frontal slice Xk of X is
factorized into the matrix product

Xk ≈ ARkAT , for k = 1, . . . , m

where A is a n × r matrix, Rk is a full, asymmetric r × r
matrix and r is a user-given parameter that specifies the
number of latent components or factors. The factor-matrices
A and Rk are computed by solving the optimization problem

min
A,R

floss(A, R) + freg(A, R) (1)

where

floss(A, R) =
1

2

(∑

k

‖Xk −ARkAT ‖2F
)

(2)

and freg is the regularization term

freg(A, R) = λA‖A‖2F + λR

∑

k

‖Rk‖2F (3)

which is included to prevent overfitting of the model.
RESCAL can be regarded as a latent-variable model for

multi-relational data. Let ai denote the i-th row of A. Then,
(1) explains observed variables, i.e. Xijk, through latent fea-
ture vectors ai, aj and Rk. Figure 1b illustrates this in-
terpretation as a graphical model in plate notation. In this
model, ai and aj are representations of the i-th and j-th en-
tity by latent components, i.e. the columns of A, which have
been derived by the factorization to explain the observed
variables.3 Furthermore, an additional interpretation of A
is as an embedding of the entities into a latent-component

3For instance, in the US presidents example, a latent-
variable model could try to explain observed data such as
party membership via the latent components conservative
politician, liberal politician, conservative party, liberal party
etc. Unfortunately, in many cases, including RESCAL, the
invented latent components are not easily interpretable.

WWW 2012 – Session: Creating and Using Links between Data Objects April 16–20, 2012, Lyon, France
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Terminology

• We say a tensor is an N-way array
I E.g., a matrix is a 2-way array

• In the literature, one also finds
I N-dimensional tensor

(confusing: is a 3-dimensional vector a 1-dimensional tensor?)
I rank-N tensor

(but: we have a different use for the word rank)

• A 3-way tensor
I Has three modes: rows, columns, and tubes
I Can be I -by-J-by-K -dimensional
I Also used: M-by-N-by-K or I1-by-I2-by-I3

• Notation
I Tensors: X , Y , Z, . . .
I Sizes: I , J, K , . . .
I Indexes: i , j , k , . . .
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Fibers

• We can extract subarrays by suitable indexing operations
• If we fix all dimensions, we obtain a scalar (e.g., xijk)
• If we fix all but one dimension, we obtain a fiber

I Convention: fibers are extracted as column vectors

x :jk x i :k x ij :

Mode-1 fibers Mode-2 fibers Mode-3 fibers
(columns) (rows) (tubes)
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Slices

• If we fix all but two dimensions, we obtain a slice
I Convention: slices are extracted as matrices
I Rows correspond to first omitted dimension, columns to second

X i :: X :j : X ::k (or X k)

Horizontal slices Lateral slices Frontal slices

10 / 61



Example

X =

(
5 7
6 8

)
(
1 3
2 4

) →
(
1 3
2 4

) (
5 7
6 8

)

• Column x :11 =

(
1
2

)
, row x1:1 =

(
1
3

)
, tube x11: =

(
1
5

)

• Frontal slice X ::1 =

(
1 3
2 4

)

• Lateral slice X :1: =

(
1 5
2 6

)

• Horizontal slice X 1:: =

(
1 5
3 7

)
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Matricization

• We can often express tensor operations using suitable matrices
I Allows use of standard linear algebra packages
I We’ll repeatedly need this, so we discuss it first
I In particular: matricization, Kroenecker product, Khatri-Rao

product, Hadamard product

• Tensor matricization (flattening, unfolding) unfolds an N-way
tensor into a matrix
I Mode-n matricization X (n) arranges the mode-n fibers as

columns of a matrix
I As many rows as size of n-th mode
I As many columns as the product of the sizes of the other modes
I Cumbersome to express formally: If X is an I1 × I2 × . . .× In

tensor, then X (n) contains xi1i2···iN at position (in, j), where

j = 1+
N∑

k=1

(ik − 1)Jk [k 6= n] with Jk =
k−1∏

m=1

Im[m 6= n]

I Different authors may use different orders (!)
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Example

X =

(
5 7
6 8

)
(
1 3
2 4

) →
(
1 3
2 4

)

︸ ︷︷ ︸
X 1

(
5 7
6 8

)

︸ ︷︷ ︸
X 2

• Column x :11 =

(
1
2

)
, row x1:1 =

(
1
3

)
, tube x :11 =

(
1
5

)

• X (1) =

(
1 3 5 7
2 4 6 8

)
=
(
X 1 X 2

)

• X (2) =

(
1 2 5 6
3 4 7 8

)

• X (3) =

(
1 2 3 4
5 6 7 8

)
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Kronecker matrix product

• Rescales one matrix with each element of another matrix
• m1 × n1 and m2 × n2 matrices give m1m2 × n1n2 matrix

A⊗ B =




a11B a12B · · · a1n1B
a21B a22B · · · a2n1B
...

...
. . .

...
am11B am12B · · · am1n1B




• For example,

(
1 3
2 4

)
⊗
(
1 1 1
1 1 1

)
=




1 1 1 3 3 3
1 1 1 3 3 3
2 2 2 4 4 4
2 2 2 4 4 4
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Khatri-Rao matrix product

• Column-wise Kroenecker product
I Rescales the columns of one matrix with each element in the

respective column of another matrix
I Number of columns must match

• m1 × n and m2 × n matrices give m1m2 × n matrix

A�B =
(
a1 ⊗ b1 a2 ⊗ b2 · · · an ⊗ bn

)

=




a11b1 a12b2 · · · a1nbn

a21b1 a22b2 · · · a2nbn
...

...
. . .

...
am11b1 am12b2 · · · am1nbn




• For example,

(
1 3
2 4

)
�
(
1 100
10 1000

)
=




1 300
10 3000
2 400
20 4000
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Hadamard matrix product

• Element-wise product
I Rescales every entry of one matrix with the corresponding entry of

another matrix
I Number of rows and columns must match

• Two m × n matrices give m × n matrix

A ∗ B =




a11b11 a12b12 · · · a1nb1n
a21b21 a22b22 · · · a2nb2n

...
...

. . .
...

am1bm1 am2bm2 · · · amnbmn




• For example,
(
1 3
2 4

)
∗
(
1 100
10 1000

)
=

(
1 300
20 4000

)
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Some identities

(A⊗ B)(C ⊗D) = AC ⊗ BD

(A⊗ B)† = A† ⊗ B†

A�B �C = (A�B)�C = A�(B �C )

(A�B)T (A�B) = ATA ∗ BTB

(A�B)† = (ATA ∗ BTB)†(A�B)T

• Here A† denotes the pseudo-inverse of A
• Using these equations may save considerable space and time;

e.g.
I Let A,B be n × k matrices with n� k
I A�B is an n2 × k matrix
I (A�B)T (A�B), ATA, BTB and ATA ∗ BTB are k × k

matrices
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Outer product

• Tensors require extensions to the standard linear algebra
operations for matrices

• We’ll discuss those in turn whenever needed
• A multi-way vector outer product is a tensor where each

element is the product of corresponding elements in the vectors

X = a ◦ b ◦ c ⇐⇒ xijk = aibjckTENSOR DECOMPOSITIONS AND APPLICATIONS 459

Fig. 2.3 Rank-one third-order tensor, X = a ◦ b ◦ c. The (i, j, k) element of X is given by xijk =
aibjck.

this term is challenged by Comon et al. [49], who instead prefer just “symmetric”) if
its elements remain constant under any permutation of the indices. For instance, a
three-way tensor X ∈ RI×I×I is supersymmetric if

xijk = xikj = xjik = xjki = xkij = xkji for all i, j, k = 1, . . . , I.

Tensors can be (partially) symmetric in two or more modes as well. For example,
a three-way tensor X ∈ RI×I×K is symmetric in modes one and two if all its frontal
slices are symmetric, i.e.,

Xk = XT
k for all k = 1, . . . ,K.

Analysis of supersymmetric tensors, which can be shown to be bijectively related
to homogeneous polynomials, predates even the work of Hitchcock [106, 105], which
was mentioned in the introduction; see [50, 49] for details.

2.3. Diagonal Tensors. A tensor X ∈ RI1×I2×···×IN is diagonal if xi1i2···iN 	= 0
only if i1 = i2 = · · · = iN . Figure 2.4 illustrates a cubical tensor with ones along the
superdiagonal.

Fig. 2.4 Three-way tensor of size I × I × I with ones along the superdiagonal.

2.4. Matricization: Transforming a Tensor into a Matrix. Matricization, also
known as unfolding or flattening, is the process of reordering the elements of an N -way
array into a matrix. For instance, a 2×3×4 tensor can be arranged as a 6×4 matrix or
a 3× 8 matrix, and so on. In this review, we consider only the special case of mode-n
matricization because it is the only form relevant to our discussion. A more general
treatment of matricization can be found in Kolda [134]. The mode-n matricization of
a tensor X ∈ RI1×I2×···×IN is denoted by X(n) and arranges the mode-n fibers to be

• Observe: a ◦ b = abT
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Example

• a =
(
1 2 3

)T

• b =
(
1 2 4

)T

• c =
(
1 10

)T

• X = a ◦ b ◦ c is a 3× 3× 2 tensor
• The frontal slices are then

X 1 = (a ◦ b)c1 = (abT )c1 =



1 2 4
2 4 8
3 6 12




X 2 = (a ◦ b)c2 = (abT )c2 =



10 20 40
20 40 80
30 60 120
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Rank-1 tensors

• A matrix decomposition represents the given matrix as the
product of two (or more) factor matrices

• The rank of a matrix M is the
I Number of linearly independent rows (row rank)
I Number of linearly independent columns (column rank)
I Minimum number of rank-1 matrices needed to be summed up to

get M (Schein rank)
I All definitions are equivalent

• Let’s first look at rank-1 tensors
I A rank-1 matrix is an outer product of two vectors
I We define: An N-way tensor is a rank-1 tensor if it can be

written as an outer product of N vectors
I E.g., the tensor on the previous slide
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The CP decomposition

TENSOR DECOMPOSITIONS AND APPLICATIONS 463

Table 3.1 Some of the many names for the CP decomposition.

Name Proposed by
Polyadic form of a tensor Hitchcock, 1927 [105]
PARAFAC (parallel factors) Harshman, 1970 [90]
CANDECOMP or CAND (canonical decomposition) Carroll and Chang, 1970 [38]
Topographic components model Möcks, 1988 [166]
CP (CANDECOMP/PARAFAC) Kiers, 2000 [122]

X

c1 c2

aR

b1

a1

b2

a2

bR

cR

≈ + + · · ·+

Fig. 3.1 CP decomposition of a three-way array.

The CP decomposition factorizes a tensor into a sum of component rank-one
tensors. For example, given a third-order tensor X ∈ RI×J×K , we wish to write it as

(3.1) X ≈
R∑

r=1

ar ◦ br ◦ cr,

where R is a positive integer and ar ∈ RI , br ∈ RJ , and cr ∈ RK for r = 1, . . . , R.
Elementwise, (3.1) is written as

xijk ≈
R∑

r=1

air bjr ckr for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K.

This is illustrated in Figure 3.1.
The factor matrices refer to the combination of the vectors from the rank-one

components, i.e., A =
[
a1 a2 · · · aR

]
and likewise for B and C. Using these

definitions, (3.1) may be written in matricized form (one per mode; see section 2.4):

X(1) ≈ A(CB)T,(3.2)

X(2) ≈ B(CA)T,

X(3) ≈ C(BA)T.

Recall that  denotes the Khatri–Rao product from section 2.6. The three-way model
is sometimes written in terms of the frontal slices of X (see Figure 2.2):

Xk ≈ AD(k)BT, where D(k) ≡ diag(ck:) for k = 1, . . . ,K.

Analogous equations can be written for the horizontal and lateral slices. In general,
though, slicewise expressions do not easily extend beyond three dimensions. Following
Kolda [134] (see also Kruskal [141]), the CP model can be concisely expressed as

X ≈ �A,B,C� ≡
R∑

r=1

ar ◦ br ◦ cr.

• The CP decomposition approximates X by summing up R
rank-1 tensors
• R is called the size of the CP decomposition
• Can also be written using N factor matrices: X = JA,B,CK

I For each mode, create a matrix with the corresponding vectors of
each rank-1 component as columns

I E.g., A =
(
a1 a2 · · · aR

)

I We have xijk ≈
∑R

r=1 airbjrckr
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The many names of the CP decomposition

Name Proposed by

Polyadic Form of a Tensor Hitchcock, 1927
PARAFAC (Parallel Factors) Harshman, 1970
CANDECOMP or CAND (Canonical decomposition) Carroll and Chang, 1970
Topographic Components Model Möcks, 1988
CP (CANDECOMP/PARAFAC) Kiers, 2000

• Chemometrics, psychometrics, phonetics, sensor data processing,
telecommunications, neuroscience, medical data, text mining,
social network analysis, image compression, computer vision, . . .
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Example: TOPHITS

• Builds a web pages-by-web pages-by-anchor text tensor to study
the link structure and link topics of web pages
I wijk is the number of times page i links to page j using term k

• The CP decomposition of this tensor behaves akin to HITS
I In size-1 CP, a gives hub scores, b gives authority scores, and c

gives term weights
I In size-R CP, the data is split up into multiple topics, each with its

own hubs, authorities, and term weights
I Helps to avoid topic drift, not restricted to focused subgraphs

• Used a higher-order power method to compute the CPAuthorities

SCORE HOST

1st Singular Vector

0.97 www.ibm.com
0.24 www.alphaworks.ibm.com
0.08 www-128.ibm.com
0.05 www.developer.ibm.com
0.02 www.research.ibm.com

2nd Singular Vector

0.99 www.lehigh.edu
0.11 www2.lehigh.edu
0.06 www.lehighalumni.com
0.06 www.lehighsports.com

3rd Singular Vector

0.75 java.sun.com
0.38 www.sun.com
0.36 developers.sun.com
0.24 see.sun.com
0.16 www.samag.com
0.13 docs.sun.com
0.12 blogs.sun.com
0.08 sunsolve.sun.com
0.08 www.sun-catalogue.com
0.08 news.com.com

4th Singular Vector

0.60 www.pueblo.gsa.gov
0.45 www.whitehouse.gov
0.35 www.irs.gov
0.31 travel.state.gov
0.22 www.gsa.gov
0.20 www.ssa.gov
0.16 www.census.gov
0.14 www.govbenefits.gov
0.13 www.kids.gov
0.13 www.usdoj.gov

6th Singular Vector

0.97 mathpost.asu.edu
0.18 math.la.asu.edu
0.17 www.asu.edu
0.04 www.act.org
0.03 www.eas.asu.edu

Figure 6. HITS results

Figure 7. Number of power method iterations
per PARAFAC factor

Topics Authorities

SCORE TERM SCORE HOST

1st Principal Factor

0.23 java 0.86 java.sun.com
0.18 sun 0.38 developers.sun.com
0.17 platform 0.16 docs.sun.com
0.16 solaris 0.14 see.sun.com
0.16 developer 0.14 www.sun.com
0.15 edition 0.09 www.samag.com
0.15 download 0.07 developer.sun.com
0.14 info 0.06 sunsolve.sun.com
0.12 software 0.05 access1.sun.com

0.05 iforce.sun.com

2nd Principal Factor

0.20 no-anchor-text 0.99 www.lehigh.edu
0.16 faculty 0.06 www2.lehigh.edu
0.16 search 0.03 www.lehighalumni.com
0.16 news
0.16 libraries
0.16 computing
0.12 lehigh

3rd Principal Factor

0.15 no-anchor-text 0.97 www.ibm.com
0.15 ibm 0.18 www.alphaworks.ibm.com
0.12 services 0.07 www-128.ibm.com
0.12 websphere 0.05 www.developer.ibm.com
0.12 web 0.02 www.redbooks.ibm.com
0.11 developerworks 0.01 www.research.ibm.com
0.11 linux
0.11 resources
0.11 technologies
0.10 downloads

4th Principal Factor

0.26 information 0.87 www.pueblo.gsa.gov
0.24 federal 0.24 www.irs.gov
0.23 citizen 0.23 www.whitehouse.gov
0.22 other 0.19 travel.state.gov
0.19 center 0.18 www.gsa.gov
0.19 languages 0.09 www.consumer.gov
0.15 u.s 0.09 www.kids.gov
0.15 publications 0.07 www.ssa.gov
0.14 consumer 0.05 www.forms.gov
0.13 free 0.04 www.govbenefits.gov

6th Principal Factor

0.26 president 0.87 www.whitehouse.gov
0.25 no-anchor-text 0.18 www.irs.gov
0.25 bush 0.16 travel.state.gov
0.25 welcome 0.10 www.gsa.gov
0.17 white 0.08 www.ssa.gov
0.16 u.s
0.15 house
0.13 budget
0.13 presidents
0.11 office

Figure 8. TOPHITS results

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05) 

1550-4786/05 $20.00 © 2005 IEEE 
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Tensor rank

• The rank of a tensor is the minimum number of rank-1 tensors
needed to represent the tensor exactly
I Given by the exact CP decomposition of size R = rank (X ), also

called rank decomposition
I Generalizes the notion of Schein rank for matrices

TENSOR DECOMPOSITIONS AND APPLICATIONS 463

Table 3.1 Some of the many names for the CP decomposition.

Name Proposed by
Polyadic form of a tensor Hitchcock, 1927 [105]
PARAFAC (parallel factors) Harshman, 1970 [90]
CANDECOMP or CAND (canonical decomposition) Carroll and Chang, 1970 [38]
Topographic components model Möcks, 1988 [166]
CP (CANDECOMP/PARAFAC) Kiers, 2000 [122]

X

c1 c2

aR

b1

a1

b2

a2

bR

cR

≈ + + · · ·+

Fig. 3.1 CP decomposition of a three-way array.

The CP decomposition factorizes a tensor into a sum of component rank-one
tensors. For example, given a third-order tensor X ∈ RI×J×K , we wish to write it as

(3.1) X ≈
R∑

r=1

ar ◦ br ◦ cr,

where R is a positive integer and ar ∈ RI , br ∈ RJ , and cr ∈ RK for r = 1, . . . , R.
Elementwise, (3.1) is written as

xijk ≈
R∑

r=1

air bjr ckr for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K.

This is illustrated in Figure 3.1.
The factor matrices refer to the combination of the vectors from the rank-one

components, i.e., A =
[
a1 a2 · · · aR

]
and likewise for B and C. Using these

definitions, (3.1) may be written in matricized form (one per mode; see section 2.4):

X(1) ≈ A(CB)T,(3.2)

X(2) ≈ B(CA)T,

X(3) ≈ C(BA)T.

Recall that  denotes the Khatri–Rao product from section 2.6. The three-way model
is sometimes written in terms of the frontal slices of X (see Figure 2.2):

Xk ≈ AD(k)BT, where D(k) ≡ diag(ck:) for k = 1, . . . ,K.

Analogous equations can be written for the horizontal and lateral slices. In general,
though, slicewise expressions do not easily extend beyond three dimensions. Following
Kolda [134] (see also Kruskal [141]), the CP model can be concisely expressed as

X ≈ �A,B,C� ≡
R∑

r=1

ar ◦ br ◦ cr.

• Tensors behave differently than matrices
I Much more complicated on the one hand
I (Some) nicer properties on the other hand
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Tensor rank oddities (1)

• The rank of a (real-valued) tensor can be different over reals
and over complex numbers.

Tensor Over R Over C

X 1 =

(
1 0
0 1

)
A =

(
1 0 1
0 1 −1

)
A = 1√

2

(
1 1
−i i

)

X 2 =

(
0 1
−1 0

)
B =

(
1 0 1
0 1 1

)
B = 1√

2

(
1 1
i −i

)

C =

(
1 1 0
−1 1 1

)
C =

(
1 1
−i i

)

• Determining the rank is NP-hard
I No “straightforward” algorithm known

• Over reals, the rank can be larger than the largest dimension
I rank (X ) ≤ min { IJ, IK , JK } ofr I × J × K tensor
I Better bounds known only for few special cases
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Tensor rank oddities (2)

• For matrices, the Eckart-Young theorem tells us that
I We can determine a best low-rank approximation
I Factors of best rank-k approximation are part of best higher-rank

approximations

• There are tensors of rank R that can be approximated arbitrarily
well with tensors of rank R ′ < R
I Such tensors are called degenerate
I There are no best low-rank approximations for degenerate tensors
I The smallest such R ′ is called the border rank of the tensor

• There are tensors for which the factors of the best rank-one
approximation are not part of the best rank-2 approximation
I Cannot find factors sequentially (but must find them

simultaneously)
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Tensor rank oddities (3)

• The rank decomposition is often essentially unique
I Finally some good news!
I Not true for matrices (SVD is essentially unique only due to its

additional constraints)

• Essentially unique = only scaling and permutations allowed

• Holds under “mild conditions”
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How to compute the CP decomposition?

• Here we discuss the alternating least squares (ALS) approach
I Popular method
I Simple to understand and implement
I Not guaranteed to converge to minimum or stationary point
I Objective merely decreases over iterations (until converged)
I Can take many iterations until convergence
I Final solution heavily dependent on starting point

• Many alternative methods have been proposed (and are being
proposed)
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ALS for CP

• Our goal is to optimize minA,B,C ‖X − JA,B,CK‖F
• Method is as before

1. Fix B and C and solve for A
2. Solve for B, then solve for C
3. Repeat until convergence

• To implement this method, we rewrite the CP decomposition

X (1) ≈ A(C �B)T

X (2) ≈ B(C �A)T

X (3) ≈ C (B �A)T

• Now we can “read off” the solution; e.g.

min
A
‖X (1) − A(C �B)T‖F

A = X (1)((C �B)T︸ ︷︷ ︸
R × JK

)†

A = X (1)(C �B)(CTC ∗ BTB︸ ︷︷ ︸
R × R

)†
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Variants of the CP decomposition
Many variants of the CP decomposition have been proposed; e.g.,
• Explicit modeling of component weights; e.g.,

X ≈ Jλ;A,B,CK =
R∑

r=1

λr ar ◦ br ◦ c r ,

where λ ∈ RR and the columns of A, B, and C have unit norm
• Non-negative CP decomposition (NNCP)
• Tensor completion (to handle missing entries)
• PARAFAC2 decomposition: jointly factor K matrices such that

X k ≈ UkSkV T , where V T is shared for all matrices (shared
subspace learning)
• The INDSCAL decomposition
• . . .
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Xk Uk
VT

Sk

≈

Fig. 5.1 Illustration of PARAFAC2.

PARAFAC2 is not unique without additional constraints. For example, if T is an
R×R nonsingular matrix and Fk is an R×R diagonal matrix for k = 1, . . . ,K, then

UkSkV
T = (UkSkT

−1F−1
k )Fk(VTT)T = GkFkW

T

is an equally valid decomposition. Consequently, to improve the uniqueness proper-
ties, Harshman [92] imposed the constraint that the cross product UT

kUk is constant
over k, i.e., Φ = UT

kUk for k = 1, . . . ,K. Thus, with this constraint, PARAFAC2 can
be expressed as

(5.3) Xk ≈ QkHSkV
T, k = 1, . . . ,K.

Here, Uk = QkH, where Qk is of size Ik ×R and constrained to be orthonormal and
H is an R × R matrix that does not vary by slice. The cross-product constraint is
enforced implicitly since

UT
kUk = HTQT

kQkH = HTH = Φ.

5.2.1. Computing PARAFAC2. Algorithms for fitting PARAFAC2 either fit the
cross-products of the covariance matrices [92, 118] (indirect fitting) or fit (5.3) to the
original data itself [126] (direct fitting). The indirect fitting approach finds V, Sk,
and Φ corresponding to the cross-products

XT
kXk ≈ VSkΦSkV

T, k = 1, . . . ,K.

This can be done by using a DEDICOM decomposition (see section 5.4) with positive
semidefinite constraints on Φ. The direct fitting approach solves for the unknowns
in a two-step iterative approach by first finding Qk from a minimization using the
SVD and then updating the remaining unknowns, H, Sk, and V, using one step of a
CP-ALS procedure. See [126] for details.

PARAFAC2 is (essentially) unique under certain conditions pertaining to the
number of matrices (K), the positive definiteness of Φ, full column rank of A, and
nonsingularity of Sk [100, 215, 126].

5.2.2. PARAFAC2 Applications. Bro, Andersson, and Kiers [31] use PARAFAC2
to handle time shifts in resolving chromatographic data with spectral detection. In
this application, the first mode corresponds to elution time, the second mode to wave-
length, and the third mode to samples. The PARAFAC2 model does not assume paral-
lel proportional elution profiles but rather that the matrix of elution profiles preserves

http://dl.acm.org/citation.cfm?id=2968986


The INDSCAL decomposition (definition)

• Recall: CP decomposition decomposes a 3-way tensor X using
three factor matrices A, B, and C
I X ≈ JA,B,CK
I Or element-wise: xijk ≈

∑R
r=1 airbjrckr

• The INDSCAL decomposition decomposes a 3-way tensor X
into two factor matrices A and C
I Matrix A is used for first two modes
I X ≈ JA,A,CK
I Or element-wise: xijk ≈

∑R
r=1 airajrckr

I X must be an I × I × K tensor, i.e., the first two modes must
have the same dimensionality

• Observe that reconstructed frontal slices are symmetric
(i.e., JA,A,CKijk = JA,A,CKjik)
I If we know that the frontal slices of X are symmetric, INDSCAL

won’t destroy this structure
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The INDSCAL decomposition (why?)

• INDSCAL stands for “Individual Differences in Scaling”
I Useful to analyze multiple symmetric matrices referring to the

same objects
I Distance, similarity, covariance, Laplacian matrices, . . .
I Recently also applied to knowledge bases (under the name

DistMult)

• Assume K subjects each ranked the similarity of I objects
I This gives us K similarity matrices, each I × I
I INDSCAL assumes that similarity decisions for each subject

depends on a set of latent factors (A), and that those factors are
weighted differently by different subjects (C )

• Best method for computing INDSCAL still open; common hack:
I Compute normal CP and hope that A and B converge
I Then force A and B equal and update C one more time
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Psychological data: “How similar are these countries?”
300 PSYCHOMETRIK& 

RUSSIA 

YUGOSLAVIA 

COMMUNIST 

C&A 

CUBA 

ECONOMICALLY 
DEVELOPED 

DIM 2 

FRANCE 

EGYPT 

,CONGO 

UNDERDEVELOPED 

FIGURE 11 

U~A 

JA~ 
ISRAEL 

NONCOMMUNIST 
DIM I 

BRAZIL 
IN~)IA 

The one-two plane of the group stimulus space for 12 nations (data due to Wish). 
Dimensions one and two were interpreted by Wish as political alignment (communist- 
noncommunist) and economic development (economically developed-underdeveloped) 
respectively. 

different in philosophy from the approach discussed here. Kruskal has two 
approaches. The first assumes each subject to have a different monotone 
function (relating distances to similarity or dissimilarity judgments) but 
constrains them to have identically the same configuration (no degrees of 
freedom for weighting of dimensions or the like are allowed). The second 
assumes all subjects to have the same monotone function, but allows each 
his own idiosyncratic configuration. These two represent two extremes of a 
continuum (or, perhaps, of two continua) of which there are, of course, many 
intermediate points. McGee's approach covers at least some of these inter- 
mediate points. McGee allows for either the case in which each subject has 
his own monotone function, or all are constrained to have the same. He then 
introduces a parameter that monitors the degree to which the configurations 
for different subjects are constrained to be similar. At one extreme, these 
configurations must be identical; at the other there is no constraint at all 
on how similar they must be. At intermediate values of this parameter, they 
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must be "intermediately" similar. ]VIcGee's approach, however, says nothing 
explicitly about how these configurations may depart from identity (the 
criterion of departure is simply a "sum of squared coordiante differences" 
criterion, which monitors degree, but not direction of departure from identity). 

The Tucker-Messick procedure, which has already been touched on, 
also makes no explicit assumption about communality of dimensions among 
different subjects. We shall discuss this in more detail at a later point. For 
the moment, let us consider the work of two other investigators, both of 
whom have dealt with essentially the same model as the present authors. 

Horan [1969] is the first author to publicly propose the model we have 
assumed here. Horan devised a method to solve for what we call the "group 
stimulus space" (he calls it the "normal attribute space") under the assump- 
tions of our model. Horan's method is based on the observation that, if the 
model stated in our equation (2) is correct then, 

(12) r,a(,~12 L~ik  J = ?J)~t X i t  ~ X,k,) 2 
i=1 i=1 

so that the root mean square of the distances (over individuals) will be ordinary 

WEST 

c .A 

COMMUNIST 
RUSSIAe 

YUGOSLAVIA 

CN?NA 

FR.~NCE 

CONGO 

u;A 

NONCOMMUNIST 

ISR=AEL 

DIM I 

JA 'AN 
INDIA EAST 

FZOURE 12 
The one-three plane of the group stimulus space for the Wish d a t a  o n  12 nations. 

Wish interpreted dimension three as a geography dimension (East-West). 
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POLITICAL ALIGNMENT 
FmUR~. 13 

The oneotwo plane of the subject space for the Wish nation data. D, H and M stand 
for  "dove", "hawk" and "moderate" (as determined by subjects' self report) vis ~ vis 
attitudes on Vietnam war. 45 degree line divides "doves" from "hawks", with "moderates" 
on both sides. 

Euclidean distances in a space with coordinates y~ given by 
y .  , /~  (13) 

where 

(14) w., = m ,-1 

Thus, Horan shows, if the data are sufficiently strong to estimate ratio 
scaled distances, averaging the data via root mean squares will produce 
distances between points in a space which includes all the requisite dimen- 
sions. The individual spaces will then be related to this "common space" 
by at most a linear transformation. 

The problem with this, from our point of view, is that there is nothing 
in Horan's averaging procedure to guarantee that  the "common space" 
as derived from it wiU be described in terms of the correct orientation of 
axes. Since his procedure reduces al] the distances to a common set of Euclid- 
ean distances, and then applies a scaling procedure to produce a space from 
these distances, the rotationally invariant property of Euclidean distances 
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Tensor n-mode product

• Let X be an N-way tensor of size I1 × I2 × · · · × IN , U a matrix
of size J × In, and v vector of size In

• The n-mode vector product X ×n v of X with v computes
the inner product of each mode-n fiber with v
I Result is tensor of order N − 1; size I1 × · · · × In−1 × In+1 × · · · × IN
I Element-wise: [X ×n v ]i1···in−1in+1···iN =

∑In
in=1 xi1i2···iN vin

• The n-mode (matrix) product X ×n U of X with U
multiplies each mode-n fiber with U (from the left)
I Result is tensor of order N; size I1 × · · · × In−1 × J × In+1 × · · · × IN
I In terms of unfolding: Y = X ×n U ⇐⇒ Y(n) = UX (n)

I Or element-wise: [X ×n U]i1···in−1jin+1···iN =
∑In

in=1 xi1i2···iN ujin
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Example

X =

(
5 7
6 8

)
(
1 3
2 4

) →
(
1 3
2 4

)

︸ ︷︷ ︸
X 1

(
5 7
6 8

)

︸ ︷︷ ︸
X 2

• X ×3

(
1
1

)
=

(
6 10
8 12

)
X ×3



1 0
0 1
1 1


 =

(
6 10
8 12

)
(

5 7
6 8

)
(

1 3
2 4

)

• X ×1

(
1
1

)
=

(
3 11
7 15

)
X ×1



1 0
0 1
1 1


 =




5 7
6 8
11 15







1 3
2 4
3 7
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Rewriting the CP decomposition

• Useful identities
I X ×n I In = X
I X ×m A×n B = X ×n B ×m A for m 6= n
I X ×n A×n B = X ×n (BA)

• We can rewrite a size-R CP decomposition as

JA,B,CK = IR ×1 A×2 B ×3 C

I IR is the R × R × R identity tensor
(superdiagonal, 1s on the superdiagonal)

• What happens if we use another tensor instead of IR?
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The Tucker decomposition

• The Tucker3 decomposition decomposes a 3-way tensor as

X ≈ G ×1 A×2 B ×3 C
I X is I × J × K
I G is a P × Q × R tensor, called the core tensor
I A, B, C are I × P, J × Q, and K × R, resp.

• We write JG;A,B,CK for short and obtain

X ≈ JG;A,B,CK =
P∑

p=1

Q∑

q=1

R∑

r=1

gpqr ap ◦ bq ◦ c rTENSOR DECOMPOSITIONS AND APPLICATIONS 475

A

B

X

G

C

≈

Fig. 4.1 Tucker decomposition of a three-way array.

Elementwise, the Tucker decomposition in (4.1) is

xijk ≈
P∑

p=1

Q∑

q=1

R∑

r=1

gpqr aip bjq ckr for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K.

Here P , Q, and R are the number of components (i.e., columns) in the factor matrices
A, B, and C, respectively. If P,Q,R are smaller than I, J,K, the core tensor G can be
thought of as a compressed version ofX. In some cases, the storage for the decomposed
version of the tensor can be significantly smaller than for the original tensor; see Bader
and Kolda [17]. The Tucker decomposition is illustrated in Figure 4.1.

Most fitting algorithms (discussed in section 4.2) assume that the factor matrices
are columnwise orthonormal, but this is not required. In fact, CP can be viewed as a
special case of Tucker where the core tensor is superdiagonal and P = Q = R.

The matricized forms (one per mode) of (4.1) are

X(1) ≈ AG(1)(C⊗B)T,

X(2) ≈ BG(2)(C⊗A)T,

X(3) ≈ CG(3)(B⊗A)T.

These equations follow from the formulas in sections 2.4 and 2.6; see [134] for further
details.

Though it was introduced in the context of three modes, the Tucker model can
be and has been generalized to N -way tensors [113] as

(4.2) X = G×1 A(1) ×2 A(2) · · · ×N A(N) = �G ;A(1),A(2), . . . ,A(N)�

or, elementwise, as

xi1i2···iN =

R1∑

r1=1

R2∑

r2=1

· · ·
RN∑

rN=1

gr1r2···rN a
(1)
i1r1

a
(2)
i2r2
· · · a(N)

iN rN

for in = 1, . . . , In, n = 1, . . . , N.

The matricized version of (4.2) is

X(n) = A(n)G(n)(A
(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1))T.
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Some remarks

• Core tensor can be thought of a compressed version of X
• Many degrees of freedom

I Parameters P, Q, and R
I Properties of A, B, and C (often taken to be orthogonal)
I CP decomposition is special case (G superdiagonal, P = Q = R)

• Not unique

JG;A,B,CK = JG×1U×2V ×3W ;AU−1,BV−1,CW−1K
I Used to “simplify” core (e.g., many zeros, all-orthogonal, . . . )

• Can be generalized to N-way tensors
• Can be computed using ALS with matricized forms

X (1) ≈ AG (1)(C ⊗ B)T

X (2) ≈ BG (2)(C ⊗ A)T

X (3) ≈ CG (3)(B ⊗ B)T

I If factor matrices are column-orthogonal, update
G ← X ×1 AT ×2 BT ×3 CT
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Higher-order SVD

• Tucker’s “Method I” for computing the decomposition
I Idea is to first find components that capture variation in each

mode (independently of the other modes)
I Set A = U1 = leading P left singular vectors of X (1)
I Set B = U2 = leading Q left singular vectors of X (2)
I Set C = U3 = leading R left singular vectors of X (3)
I Set core tensor G = X ×1 UT

1 ×2 UT
2 ×3 UT

3

• Today known as higher-order SVD (HOSVD)
• If P, Q, and R are smaller than rank of their corresponding

matricized forms, we obtain a truncated HOSVD
TENSOR DECOMPOSITIONS AND APPLICATIONS 477

A

B

X

G

C

≈

Fig. 4.2 Truncated Tucker decomposition of a three-way array.

procedure HOSVD(X,R1,R2, . . . , RN )
for n = 1, . . . , N do

A(n) ← Rn leading left singular vectors of X(n)

end for
G← X×1 A(1)T ×2 A(2)T · · · ×N A(N)T

return G,A(1),A(2), . . . , A(N)

end procedure

Fig. 4.3 Tucker’s “Method I” for computing a rank-(R1, R2, . . . , RN ) Tucker decomposition, later
known as the HOSVD.

first method. Today, this method is better known as the higher-order SVD (HOSVD)
from the work of De Lathauwer, De Moor, and Vandewalle [63], who showed that the
HOSVD is a convincing generalization of the matrix SVD and discussed ways to more
efficiently compute the leading left singular vectors of X(n). When Rn < rankn(X)
for one or more n, the decomposition is called the truncated HOSVD. In fact, the
core tensor of the HOSVD is all-orthogonal, which has relevance to truncating the
decomposition; see [63] for details.

The truncated HOSVD is not optimal in terms of giving the best fit as measured
by the norm of the difference, but it is a good starting point for an iterative ALS algo-
rithm. In 1980, Kroonenberg and De Leeuw [140] developed an ALS algorithm called
TUCKALS3 for computing a Tucker decomposition for three-way arrays. (They also
had a variant called TUCKALS2 that computed the Tucker2 decomposition of a three-
way array.) Kapteyn, Neudecker, and Wansbeek [113] later extended TUCKALS3 to
N -way arrays for N > 3. De Lathauwer, De Moor, and Vandewalle [64] proposed
more efficient techniques for calculating the factor matrices (specifically, computing
only the dominant singular vectors of X(n) and using an SVD rather than an eigen-
value decomposition or even just computing an orthonormal basis of the dominant
subspace) and called it the higher-order orthogonal iteration (HOOI); see Figure 4.4.
If we assume that X is a tensor of size I1×I2×· · ·×IN , then the optimization problem
that we wish to solve is

(4.3)

min
G,A(1),...,A(N)

∥∥∥ X− �G ;A(1),A(2), . . . ,A(N)�
∥∥∥

subject to G ∈ RR1×R2×···×RN ,

A(n) ∈ RIn×Rn and columnwise orthogonal for n = 1, . . . , N.
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Discussion

• SVD of X (n) gives n-mode singular vectors (Un) and n-mode
singular values

• Indeed, many useful properties of the SVD transfer over
I Factors and slices of core tensor are ordered

(Frobenius norm of slice = corresponding n-mode singular value)
I Essentially unique
I Core tensor is all-orthogonal

(inner product between pairs of slices = 0)

• Core tensor cannot be made superdiagonal in general

• Truncated HOSVD is not optimal w.r.t. reconstruction error
I But it holds

‖X − X̂‖2 ≤ sum of squares of truncated singular values

I Good starting point for ALS (or other methods)
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Example: TensorFaces

• Data: 7943-pixel B&W photographs of 28 people in 5 poses
under 3 illumination setups performing 3 different expressions
I 28× 5× 3× 3× 7943 tensor (10M elements)

Multilinear Analysis of Image Ensembles: TensorFaces 453

2. Solve for the core tensor as follows

Z = D ×1 UT
1 ×2 UT

2 . . . ×n UT
n . . . ×N UT

N . (15)

5 TensorFaces: Multilinear Analysis of Facial Images

As we stated earlier, image formation depends on scene geometry, viewpoint, and il-
lumination conditions. Multilinear algebra offers a natural approach to the analysis of
the multifactor structure of image ensembles and to addressing the difficult problem of
disentangling the constituent factors or modes.

(a)

(b)

Fig. 3. The facial image database (28 subjects × 45 images per subject). (a) The 28 subjects shown
in expression 2 (smile), viewpoint 3 (frontal), and illumination 2 (frontal). (b) The full image set
for subject 1. Left to right, the three panels show images captured in illuminations 1, 2, and 3.
Within each panel, images of expressions 1, 2, and 3 are shown horizontally while images from
viewpoints 1, 2, 3, 4, and 5 are shown vertically. The image of subject 1 in (a) is the image situated
at the center of (b).
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• Data: 7943-pixel B&W photographs of 28 people in 5 poses
under 3 illumination setups performing 3 different expressions
I 28× 5× 3× 3× 7943 tensor (10M elements)Multilinear Analysis of Image Ensembles: TensorFaces 455

(a)

people↓ viewpoints→ people↓ illuminations→ people↓ expressions→

...
...

...

(b) (c) (d)

Fig. 4. Some of the basis vectors resulting from the multilinear analysis of the facial image data
tensor D. (a) The first 10 PCA eigenvectors (eigenfaces), which are contained in the mode matrix
Upixels, and are the principal axes of variation across all images. (b,c,d) A partial visualization of
the product Z ×5 Upixels, in which the core tensor Z transforms the eigenvectors Upixels to yield a
5-mode, 28 × 5 × 3 × 3 × 7943 tensor of eigenmodes which capture the variability across modes
(rather than images). Some of the first few eigenmodes are shown in the three arrays. The labels at
the top of each array indicate the names of the horizontal and vertical modes depicted in that array.
Note that the basis vector at the top left of each panel is the average over all people, viewpoints,
illuminations, and expressions (the first column of eigenmodes (people mode) is shared by the
three arrays).

The advantage of multilinear analysis is that the core tensor Z can transform the
eigenimages present in the matrix Upixels into eigenmodes, which represent the principal
axes of variation across the various modes (people, viewpoints, illuminations, expres-
sions) and represents how the various factors interact with each other to create an image.
This is accomplished by simply forming the product Z ×5 Upixels. By contrast, PCA ba-
sis vectors or eigenimages represent only the principal axes of variation across images.
To demonstrate, Fig. 4 illustrates in part the results of the multilinear analysis of the
facial image tensor D. Fig. 4(a) shows the first 10 PCA eigenimages contained in Upixels.

Upix (=U5) contains the eigenfaces
(SVD of pixels-by-picture matrix)
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(a)

people↓ viewpoints→ people↓ illuminations→ people↓ expressions→

...
...

...

(b) (c) (d)

Fig. 4. Some of the basis vectors resulting from the multilinear analysis of the facial image data
tensor D. (a) The first 10 PCA eigenvectors (eigenfaces), which are contained in the mode matrix
Upixels, and are the principal axes of variation across all images. (b,c,d) A partial visualization of
the product Z ×5 Upixels, in which the core tensor Z transforms the eigenvectors Upixels to yield a
5-mode, 28 × 5 × 3 × 3 × 7943 tensor of eigenmodes which capture the variability across modes
(rather than images). Some of the first few eigenmodes are shown in the three arrays. The labels at
the top of each array indicate the names of the horizontal and vertical modes depicted in that array.
Note that the basis vector at the top left of each panel is the average over all people, viewpoints,
illuminations, and expressions (the first column of eigenmodes (people mode) is shared by the
three arrays).

The advantage of multilinear analysis is that the core tensor Z can transform the
eigenimages present in the matrix Upixels into eigenmodes, which represent the principal
axes of variation across the various modes (people, viewpoints, illuminations, expres-
sions) and represents how the various factors interact with each other to create an image.
This is accomplished by simply forming the product Z ×5 Upixels. By contrast, PCA ba-
sis vectors or eigenimages represent only the principal axes of variation across images.
To demonstrate, Fig. 4 illustrates in part the results of the multilinear analysis of the
facial image tensor D. Fig. 4(a) shows the first 10 PCA eigenimages contained in Upixels.

Some visualizations of G ×5 Upix
(decreasing “importance” from top to bottom / left to right)
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Example: TensorFaces

• Data: 7943-pixel B&W photographs of 28 people in 5 poses
under 3 illumination setups performing 3 different expressions
I 28× 5× 3× 3× 7943 tensor (10M elements)458 M.A.O. Vasilescu and D. Terzopoulos

expres. 1 & illum. 2 expres. 1 & view 3 illum. 2 & view 3
people↓ viewpoints→ people↓ illuminations→ people↓ expressions→

...
...

...

(a) (b) (c)

Fig. 7. This 28 × 5 × 3 × 3 × 7943 tensor Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels defines 45
different basis for each combination of viewpoints, illumination and expressions. These basis have
28 eigenvectors which span the people space. The topmost row across the three panels depicts
the average person, while the eigenvectors in the remaining rows capture the variability across
people in the various viewpoint, illumination, and expression combinations. (a) The first column
is the basis spanning the people space in viewpoint 1, illumination 2 and expression 1, the second
column is the basis spanning the people space in viewpoint 2, illumination 2 and expression 1,
etc. (b) The first column is the basis spanning the people space in viewpoint 1, illumination 1 and
expression 1, the second column is the basis spanning the people space in viewpoint 1, illumination
2 and expression 1, etc. (c) The first column is the basis spanning the people space in viewpoint
3, illumination 2 and expression 1, the second column is the basis spanning the people space in
viewpoint 3, illumination 2 and expression 2, etc.

Similarly, we can define a person specific set of eigenvectors that span all the images.
Fig. 6(a–c) illustrates the effect of multiplying the eigenvectors of Fig. 4(b–d) by Upeople

to obtain the 5 × 3 × 3 × 7943 tensor of eigenvectors Z ×1 Upeople ×5 Upixels. These new
eigenvectors are now person-specific. The figure shows all of the eigenvectors for slice 1
of the tensor, associated with subject 1 in Fig. 3(a). The eigenvectors shown capture the
variations across the distribution of images of this particular subject over all viewpoints,
expressions, and illuminations. Fig. 6(d–e) shows portions of slices 2 and 3 through the
tensor (the upper 3×3 portions of arrays analogous to that in (a) of the figure are shown),
showing some of the eigenvectors specific to subject 2 and to subject 3, respectively.

An important advantage of multilinear analysis is that it maps all images of a person,
regardless of viewpoint, illumination and expression, to the same coefficient vector,

Some visualizations of G ×2 Upos ×3 U ill ×4 Uexp ×5 Upix. The
rows show the componets w.r.t. people. The columns refer to

different viewpoints, illuminations, and expressions.
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The Tucker2 decomposition

• Recall: Tucker3 decomposition decomposes 3-way tensor X into
three factor matrices A, B, and C , and a core tensor G
• The Tucker2 decomposition decomposes a 3-way tensor into

core and two factor matrices
I Equivalently: third factor matrix is taken as the identity matrix
I If data tensor is I × J × K , then core is P × Q × K

X
G

A
B

⇡
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Why Tucker2?

• Use Tucker2 if you don’t want to “compress” one of the modes
I E.g., too small dimension (e.g., 500× 300× 3)
I E.g., want to handle this mode separately
I For example, if third mode is time, we might first do Tucker2 and

then analyze the slices {G k } over time

• Tucker2 is slightly simpler than Tucker3
I We have X k = AG kBT for each frontal slice k
I When using ALS, we can update each frontal slice separately

during update of G

• Forms basis for RESCAL and DEDICOM (up next)
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The RESCAL decomposition

• The RESCAL decomposition combines Tucker2 and INDSCAL
• Given an I -by-I -by-K tensor X and a rank R, find an I × R

factor matrix A and an R × R × K core tensor R such that

X ≈R×1 A×2 A

• I.e., minimize

K∑

k=1

‖X k − ARkAT‖2F .

• In practice, add regularization to avoid overfitting
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RESCAL and subject–object–predicate data (1)

• Proposed with subject–object–predicate data in mind
I Designed for settings with few relations
I E.g., YAGO knowledge base: < 100 relations, millions of entities

• Used for
I Link prediction (by looking at X̂ )
I Assessment of entity similarity (by looking at A)
I Assessment of relation similarity (by looking at R)
I Currently a hot research area; many methods can be seen as

constrained variants of RESCALA Three-Way Model for Collective Learning on Multi-Relational Data

latent components in the k-th predicate.

The factor matrices A and Rk can be computed by solving
the regularized minimization problem

min
A,Rk

f(A,Rk) + g(A,Rk) (2)

where

f(A,Rk) =
1

2

(∑

k

‖Xk −ARkAT ‖2F

)
(3)

and g is the following regularization term

g(A,Rk) =
1

2
λ

(
‖A‖2F +

∑

k

‖Rk‖2F

)
(4)

which is included to prevent overfitting of the model.

An important aspect of (1) for collective learning and what
distinguishes it from other tensor factorizations like CP or
even BCTF is that the entities of the domain have a unique
latent-component representation, regardless of their occur-
rence as subjects or objects in a relation, as they are repre-
sented both times by the matrix A. The effect of this mod-
elling becomes more apparent by looking at the element-
wise formulation of (3), namely

f(A,Rk) =
1

2

∑

i,j,k

(
Xijk − aTi Rkaj

)2

Here, ai and aj denote the i-th and j-th row of A and
thus are the latent-component representations of the i-
th and j-th entity. By holding aj and Rk fixed, it
is clear that the latent-component representation ai de-
pends on aj as well as the existence of the triple (i-th
entity, k-th predicate, j-th entity) repre-
sented by Xijk. Moreover, since the entities have a unique
latent-component representation, aj holds also the infor-
mation which entities are related to the j-th entity as sub-
jects and objects. Consequently, all direct and indirect re-
lations have a determining influence on the calculation of
ai. Just as the entities are represented byA, each relation is
represented by the matrix Rk, which models how the latent
components interact in the respective relation and where
the asymmetry of Rk takes into account whether a latent
component occurs as a subject or an object.

For a short illustration of this mechanism, consider the
example shown in Figure 2. The latent-component rep-
resentations of Al and Lyndon will be similar to each
other in this example, as both representations reflect that
their corresponding entities are related to the object Party
X. Because of this, Bill and John will also have sim-
ilar latent-component representations. Consequently, the
product aTBillRpartyaPartyX will yield a similar value to

Bill

Party X

party

Al

vicePresidentOf

party

John

party

Lyndon

vicePresidentOf

party

Figure 2: Visualization of a subgraph of the relational graph for
the US presidents example. The relation marked red is unknown.

aTJohnRpartyaPartyX and as such the missing relation can be
predicted correctly. Please note that this information prop-
agation mechanism through the latent components would
break if Bill and John would have different representa-
tions as subjects and objects.

4.2. Connections to other Tensor Factorizations

The model specified in (1) can be considered a relaxed
version of DEDICOM or equivalently, an asymmetric ex-
tension of IDIOSCAL. The rank-r DEDICOM decom-
position of a three-way tensor X is given as: Xk ≈
ADkRDkA

T , for k = 1, . . . ,m. Here,A is a n×r matrix
that contains the latent components andR is an asymmetric
r × r matrix that models the global interactions of the la-
tent components. The diagonal r×r matrixDk models the
participation of the latent components in the k-th predicate.
Thus, DEDICOM is suitable when there is one global in-
teraction model for the latent components and its variation
across the third mode can be described by diagonal factors.
Examples where this is a reasonable assumption include
international trade or communication patterns across time,
as presented in (Bader et al., 2007). However, for multi-
relational data this assumption is often too restricted.

Furthermore, the model (1) can be regarded as a restricted
Tucker3 model. Let X(n) = AG(n)(C⊗B)T be the matri-
cized form of the Tucker3 decomposition of X . (1) is then
equivalent to a Tucker3 model, where the factors B and C
are constrained to B = A and C = Ik, while G is holding
the slices Rk.

4.3. Computing the Factorization

In order to compute the factor matrices for (1), equation (2)
could be solved directly with any nonlinear optimization
algorithm. However, to improve computational efficiency
we take an alternating least-squares (ALS) approach and
exploit the connection of (1) to DEDICOM, by using the
very efficient ASALSAN (Bader et al., 2007) algorithm as
a starting point and adapting it to our model. In particular,
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RESCAL and subject–object–predicate data (2)

(a)

σA

ai aj

Xijk

σ Rk

σR

1..N
1..N

1..M

(b)

Figure 1: Graphical representations of RESCAL. (a) Illustration of data representation and factorization in RESCAL. (b)
Graphical model of the RESCAL factorization in plate notation. Observed variables are shaded gray.

3.1 Modeling Semantic Web Data
Let a relational domain consist of n entities and m dyadic

relation types. Using RESCAL, such data is modeled as a
three-way tensor X of size n× n×m, where the entries on
two modes of the tensor correspond to the combined enti-
ties of the domain of discourse and the third mode holds the
m different types of relations. A tensor entry Xijk = 1 de-
notes the fact that the relation k-th Relation(i-th entity, j-th
entity) exists. Otherwise, for non-existing or unknown rela-
tions, Xijk is set to zero. This way, RESCAL approaches the
problem of learning from positive examples only, by assum-
ing that missing triples are very likely not true, an approach
that makes sense in a high-dimensional but sparse domain.
Figure 1a shows an illustration of this modeling method.
Each frontal slice Xk = X:,:,k of X can be interpreted as the
adjacency matrix of the relational graph for the respective
relation k.

Creating such a tensor representation for RDF(S) data
is straightforward. The entities are given by the set of
all resources, classes and blank nodes in the data, while
the set of relations consists of all predicates that include
entity-entity relationships. For each existing triple (i-th

entity, k-th predicate, j-th entity), the correspond-
ing entry Xijk is set to one, otherwise it is set to zero. Since
the original RESCAL model assumes that two of the three
modes are defined by entities, this procedure is constrained
to resources. However, much of the information in the LOD
cloud is given as literal values. For this reason, we present
an efficient extension to RESCAL in Section 3.5, such that
attributes of entities, i.e. literal values, can be included in
the factorization.

It is also important to note that in this modeling of RDF(S)
data, we do not draw a distinction between ontological knowl-
edge (i.e. RDFS in the T -Box) and instance data (the A-
Box). Instead, for a given domain, classes and instances of
these classes are modeled equally as entities in the tensor X .
Furthermore, all predicates from the T -Box and the A-Box
form the slices Xk of X . This way, ontological knowledge is
represented similarly to instance data by an appropriate en-
try Xijk = 1, such that facts about instances as well as data
from ontologies are integrated simultaneously in one tensor
representation. In doing so, ontologies are handled like soft
constraints, meaning that the additional information present
in an ontology guides the factorization to semantically more

reasonable results, but doesn’t impose hard constraints on
the model. Consequently, our modeling has aspects of both
a pure data-centric and an ontology-driven Semantic Web
approach.

3.2 Factorizing Semantic Web Data
Given a tensor X of size n × n × m that has been con-

structed as described in Section 3.1, RESCAL computes a
factorization of X , such that each frontal slice Xk of X is
factorized into the matrix product

Xk ≈ ARkAT , for k = 1, . . . , m

where A is a n × r matrix, Rk is a full, asymmetric r × r
matrix and r is a user-given parameter that specifies the
number of latent components or factors. The factor-matrices
A and Rk are computed by solving the optimization problem

min
A,R

floss(A, R) + freg(A, R) (1)

where

floss(A, R) =
1

2

(∑

k

‖Xk −ARkAT ‖2F
)

(2)

and freg is the regularization term

freg(A, R) = λA‖A‖2F + λR

∑

k

‖Rk‖2F (3)

which is included to prevent overfitting of the model.
RESCAL can be regarded as a latent-variable model for

multi-relational data. Let ai denote the i-th row of A. Then,
(1) explains observed variables, i.e. Xijk, through latent fea-
ture vectors ai, aj and Rk. Figure 1b illustrates this in-
terpretation as a graphical model in plate notation. In this
model, ai and aj are representations of the i-th and j-th en-
tity by latent components, i.e. the columns of A, which have
been derived by the factorization to explain the observed
variables.3 Furthermore, an additional interpretation of A
is as an embedding of the entities into a latent-component

3For instance, in the US presidents example, a latent-
variable model could try to explain observed data such as
party membership via the latent components conservative
politician, liberal politician, conservative party, liberal party
etc. Unfortunately, in many cases, including RESCAL, the
invented latent components are not easily interpretable.
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Why RESCAL?

• RESCAL computes an embedding for every entity (Ai :) and for
every relation (Rk)

• With Tucker2, entity embeddings were different depending on
whether the entity appears as subject or object
I Having one embedding per entity ensures “information flow”
I Facts with entity as subject help predicting facts with entity as obj.

• With INDSCAL, reconstructed relations were symmetric
I That’s not the case with RESCAL because Rk tells us how to mix

embeddings to reconstruct the k-th relation
I For symmetric relations, Rk should be symmetric
I For asymmetric relations, Rk should be asymmetric

• Computation using ALS-style methods
I To update A, we use mode-1 matricization of RESCAL (as before)
I X (1) ≈ AR(1)(I ⊗ A)T

I Hard because A appears on left- and right-hand side
I Original paper uses hack (treat right-hand side as fixed + cleverness)

57 / 61



The DEDICOM decomposition

• The DEDICOM decomposition is a precursor to RESCAL
I Mixing matrix is the same for all relations
I But entity factors are weighed differently
I X k = ADkRDkAT , where Dk is diagonal and contains the

weights of each factor for the k-th relation

• Many of the ideas in RESCAL are based on DEDICOM
I But DEDICOM is more involved to scale to large data
I And DEDICOM generally needs larger R due to shared relation

matrix
Tensor Decompositions and Applications 31

A

R
D

X

D
AT

≈

Fig. 5.2: Three-way DEDICOM model.

to di↵erent benefits of interpreting the results [95]. Second, the matrix A can be
transformed with any nonsingular matrix T with no loss of fit to the data because
ARAT = (AT)(T�1RT�T)(AT)T. Thus, the solution obtained in A is not unique
[95]. Nevertheless, it is standard practice to apply some accepted rotation to “fix” A.
A common choice is to adopt VARIMAX rotation [112] such that the variance across
columns of A is maximized.

A further practice in some problems is to ignore the diagonal entries of X in
the residual calculation [93]. For many cases, this makes sense because one wishes
to ignore self-loops (e.g., a country does not export to itself). This is commonly
handled by estimating the diagonal values from the current approximation ARAT

and including them in X.
Three-way DEDICOM [93] is a higher-order extension of the DEDICOM model

that incorporates a third mode of the data. As with CP, adding a third dimension
gives this decomposition stronger uniqueness properties [100]. Here we assume X 2
RI⇥I⇥K . In our previous example of trade among nations, the third mode may
correspond to time. For instance, k = 1 corresponds to trade in 1995, k = 2 to 1996,
and so on. The decomposition is then

Xk ⇡ ADkRDkA
T for k = 1, . . . ,K. (5.8)

Here A and R are as in (5.7), except that A is not necessarily orthogonal. The
matrices Dk 2 RR⇥R are diagonal, and entry (Dk)rr indicates the participation of
the rth latent component at time k. We can assemble the matrices Dk into a tensor
D 2 RR⇥R⇥K . Unfortunately, we are constrained to slab notation (i.e., slice-by-slice)
for expressing the model because DEDICOM cannot be expressed easily using more
general notation. Three-way DEDICOM is illustrated in Figure 5.2.

For many applications, it is reasonable to impose nonnegativity constraints on
D [92]. Dual-domain DEDICOM is a variation where the scaling array D and/or
matrix A may be di↵erent on the left and right of R. This form is encapsulated by
PARATUCK2 (see §5.5).

5.4.1. Computing three-way DEDICOM. There are a number of algorithms for
computing the two-way DEDICOM model, e.g., [128], and for variations such as
constrained DEDICOM [125, 187]. For three-way DEDICOM, see Kiers [116, 118]
and Bader, Harshman, and Kolda [15]. Because A and D appear on both the left
and right, fitting three-way DEDICOM is a di�cult nonlinear optimization problem
with many local minima.

Kiers [118] presents an alternating least squares (ALS) algorithm that is e�cient
on small tensors. Each column of A is updated with its own least-squares solution
while holding the others fixed. Each subproblem to compute one column of A in-
volves a full eigendecomposition of a dense I ⇥ I matrix, which makes this procedure

Preprint of article to appear in SIAM Review (June 10, 2008).                                     
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Outline

1. What Is a Tensor?

2. Tensor Basics

3. The CP Decomposition

4. The Tucker Decomposition

5. Wrap-Up
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Lessons learned

• Tensors generalize matrices
I Many matrix concepts generalize well
I But some don’t, and some behave very differently

• Compared to matrix decomposition methods, tensor algorithms
are in their youth

• Tensor decompositions are used in many different fields of
science
I Sometimes the wheel gets re-invented multiple times
I Traditionally tensor problems were dense
→ Fewer algorithms for decomposing sparse tensors

• There are many tensor decompositions related to CP and Tucker
I Need care to select the one that’s best suited for the task at hand
I Computational complexity can be an issue
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Suggested reading

• Skillicorn, Ch. 9

• Kolda & Bader, Tensor Decompositions and Applications, SIAM
Rew. 51(3), 2009
I A great survey on tensor decompositions, includes many variants

and applications

• Acar & Yener, Unsupervised Multiway Data Analysis: A
Literature Survey, IEEE Trans. Knowl. Data Eng. 21(1), 2009
I Another survey, shorter and more focused on applications

• All the papers linked at the bottom parts of the slides
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