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What is data mining?

“Data mining is the process of discovering knowledge or patterns
from massive amounts of data.” (Encyclopedia of Database
Systems)

Rock Gold Tools Miners

Data Knowledge Software Analysts

Estimated $100 billion industry around managing and analyzing data.

Data, Data everywhere. The Economist, 2010. 4/36


http://www.economist.com/node/15557443

What is data mining?

“Data mining is the process of discovering knowledge or patterns
from massive amounts of data.” (Encyclopedia of Database
Systems)

e Science

v

v vy

The Sloan Digital Sky Survey gathered 140TB of information
NASA Center for Climate Simulation stores 32PB of data

3B base pairs exist in the human genome

LHC registers 600M particle collisions per second, 25PB/year

e Social/business data

>
>
>
>

>

1M customer transactions are performed at Walmart per hour
4.6B mobile-phone subscriptions worldwide

300M active Twitter users write 500M tweets per day

100M Netflix customers view and rate hundreds of thousands of
movies

300h of videos uploaded every minute on YouTube

e Government, health care, news, stocks, books, web search, ...

o Often: less data than in these extreme cases, but still “massive”

Data, Data everywhere. The Economist, 2010
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http://www.economist.com/node/15557443

What is data mining?

“Data mining is the process of discovering knowledge or patterns
from massive amounts of data.” (Encyclopedia of Database

Systems)
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Outlier detection

“Regnet es am Siebenschlifertag, der
Regen sieben Wochen nicht weichen mag.”
(German folklore)

Pattern mining
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What is data mining?

“Data mining is the process of discovering knowledge or patterns
from massive amounts of data.” (Encyclopedia of Database
Systems)

Focus of this lecture

[ Raw data ] { Selection ] [Preprocessing] [Translormaticn] [Data mining] hEvaluation ]

Patterns

Knowledge discovery process
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Womb

e mater (Latin) = mother
e matrix (Latin) = pregnant animal
e matrix (Late Latin) = womb
also source, origin
e Since 1550s: place or medium where
something is developed

e Since 1640s: embedding or enclosing
mass

Umbilical cord
Cervixz wleri

Online Etymology Dictionary 9/36


http://www.etymonline.com/index.php?term=matrix

Rectangular arrays of numbers

e “Rectangular arrays’ known in ancient China (rod calculus,
estimated as early as 300BC)

OO O oo

e Term “matrix” coined by J.J. Sylvester

in 1850
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https://en.wikipedia.org/wiki/Rod_calculus
https://en.wikipedia.org/wiki/James_Joseph_Sylvester

System of linear equations

each sheaf of a mediocre crop, and each sheaf of a bad crop?
Chiu-chang Suan-shu (Nine Chapters on Arithmetic), ~ 200BC

Three sheafs of a good crop, two sheafs of a mediocre crop, and one sheaf
of a bad crop are sold for 39 dou. Two sheafs of good, three mediocre, and
one bad are sold for 34 dou; and one good, two mediocre, and three bad are
sold for 26 dou. What is the price received for each sheaf of a good crop,

e Systems of linear equations can be written as matrices

3x+2y+2z=39 3 2 1139
2x+3y+z=34 — 2 3 1|34
1 2 3|26

X+2y+3z=26

e and then be solved using linear algebra methods

32 139 x 9.25
5 1 (24 = |[y]| =425
12|33 z 2.75
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Set of data points

86}

X y

—-3.84 221

-3.33 -2.19

—2.55 —1.47

—2.46 -1.25

—1.49 -0.76

o —-1.67 -0.39
-1.3 —-0.59

1.59 0.78

1.53 1.02

1.45 1.26

1.86 1.18

2.04 0.96

2.42 1.24

T 2.32 2.03

2.9 1.35
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Linear maps

e Linear maps from R3 to R

f(x,y,z) =3x+2y+z

f(x,y,z) =2x+3y +z
3(x, y, )_x+2y—|—3z
fa(x.y,z) =
e Linear map fi written as a matrix
X
(3 2 1) y | =f(x,y,2)
z

e Linear map from R3 to R*

3 2 1 f
2 3 1| (*\ _|[#&
1 23(\Y) 7|8
10 0/ V¥ f

Original data




2134 1234

3124 132

1203 321

12 4213 2413 4123

POOPOOOOOONOOOOOO®

n

Adjacency matrix
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Objects and attributes

Anna, Bob, and Charlie went shopping

e Anna bought butter and bread

e Bob bought butter, bread, and beer

e Charlie bought bread and beer
Bread Butter Beer

Anna 1 1 0
Bob 1 1 1
Charlie 0 1 1

Customer transactions

Avatar The Matrix Up

Alice 4 2
Bob 3 2
Charlie 5 3

Incomplete rating matrix

Data Matrix Mining

Book 1 5 0 3
Book 2 0 0 7
Book 3 4 6 5

Document-term matrix

Jan  Jun Sep
Saarbriicken [/ —1 11 10
Helsinki —-6.5 10.9 8.7
Cape Town 157 78 8.7

Cities and monthly temperatures

Many different kinds of data fit this object-attribute viewpoint.
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What is a matrix?

e A means to describe computation

» Rotation
» Rescaling
» Permutation Linear operators
» Projection
>
"~
. [}
e A means to describe data 3
Rows Columns Entries E
Objects Attributes Values ai a2 - ay
Equations Variables  Coefficients 21 d2 - ay
Data points Axes Coordinates
Vertices Vertices Edges Object i | an an --- JEj

In data mining, we make use of both viewpoints simultaneously.
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Outline

3. Why data mining and matrices?
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Key tool: Matrix decompositions

A matrix decomposition of a data matrix D is given by three
matrices L, M, R such that

D= LMR,
where = thk/ iy
e D is an m x n data matrix, . r; K
e L is an m X r matrix, K R
e M is an r1 X r» matrix, E :
e R is an rn X n matrix, and - __i
e r; and rp are integers > 1. i - -

Oftenn=rn=r>1
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Why matrix decompositions?

e Decompositions as just defined are not really helpful
» Supposeweset r=rn=rn=nL=D, M=R=1, (the nxn
identity matrix)
» Then D=LMR=DI,l,=D
» But this does not provide insight
e To make decompositions useful, we want the decomposition to
satisfy certain (carefully chosen) properties or contraints
e For example: we may want r to be small

» Each object is represented by n numbers in D rj
» Each object is represented by r numbers in L oM R

(called embedding or distributed representation)
» If r < n, we performed some form of compression

17 djj

e Another example: we may want factors to have Lt~
certain properties
» Compare: integer factorization L D

» 391 =17-13

19/36



Approximate matrix decompositions

A approximate matrix decomposition of data matrix D is given
by three matrices L, M, R such that

D~ LMR = D,

where each matrix has conforming dimensions (as before).

e We often look at approximate decompositions

Data is noisy anyway

Approximation may remove noise

Allows to focus on global (small r) or local (large r) patterns
Often more insightful

More efficient to compute

vV vy vy VvYYy

e ~ defined by some loss function L(D, D)
» E.g., squared error
» Low means good approximation, high means bad
» Finding the best approximation (smallest loss) can be hard
e We often say “matrix decomposition” when we actually mean
“approximate matrix decomposition”
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Some matrix decompositions

e There are many different decompositions, each enforcing
different constraints and serving a different purpose

>

vV VvV VY VY VY VY VY VvYY

Singular value decomposition (SVD)
k-means (crisp or fuzzy)

Non-negative matrix factorization (NMF)
Semi-discrete decomposition (SDD)
Boolean matrix decomposition (BMF)
Independent component analysis (ICA)
Matrix completion

Probabilistic matrix factorization

Tensor decompositions

e Picking the right one for the problem (if any) at hand is hard,
experience helps

e Decompositions are not always easy (and often hard) to compute

21/36



Example: Singular value decomposition
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Example: k-Means

Original

d] (original)
LI L O |
FA= T T
I R N [ e
[ |
- ig-iH1-
--l—i:-l-—l--l—
11111
T

~T
= 1”7 R

k-means factors correspond to prototypical faces.
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Example: Non-negative matrix factorization
Original
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NMF factors correspond to parts of faces.
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http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html

Example: Latent Dirichlet allocation

“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH R
MUSICAL  YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER 1
ACTOR NEW SAYS BENNETT (toplc X Word )
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI
The William Randolph Hearst Foundation will give 51.25 million to Lincoln Center, Metropoli-

tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical rescarch. education
and the social scrvices” Hearst Foundation President Randolph A. Hearst said Monday in

announcing the grants.  Lincoln Center’s share will be $200.000 for its new building, which

will house young artists and provide new public facilitics. The Metropolitan Opera Co. and

New York Philharmonic will receive $400.000 each. The Juilliard School, where music and

the performing arts are taught, will get $250.000. The Hearst Foundation, a leading supporter L

of the Lincoln Center Consolidated Corporate Fund. will make its usual annual $100.000 )
donation, too. (docxt0p|c)

Blei et al. Latent dirichlet allocation. JMLR, 2003. 25/36


http://dl.acm.org/citation.cfm?id=944937

What can we do with matrix decompositions?

e Separate data from multiple processes

e Remove noise from the data

e Remove redundancy from the data

e Reveal latent structure and similarities in the data
e Cluster the data

e Fill in missing entries

e Find local patterns

e Reduce space consumption

e Reduce computational cost

e Aid visualization

Matrix decompositions can make data mining algorithms
more effective. They may also provide insight into the
data by themselves.
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Factor interpretion of matrix decompositions

Assume that M is r x r and diagonal. Consider object /.

e [0 Row of R = part (or piece), called latent factor (“latent object”)
e [ Entry of M = weight of corresponding part

e Row of MR = weighted part

e [ Row of L =representation of object via weighted parts,

called embedding or distr
(r pieces of information)
e r forces “compactness’ (often r < n)

Each object can be viewed as a combina-
tion of r (weighted) “latent objects” (or
“prototypical objects’). Similarly, each at-
tribute can be viewed as a combination of r
(weighted) “latent attributes.”

(e.g., latent attribute = "body size”; latent ob-
ject relates body size to real attributes such as

(LT L T

“height”, "weight”, “shoe size")

. representation

T _ T
di =5 lkmur,

M

R

d’

1

D
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Example: Weather data (r = 1)

1.00

0.62
0.69
0.83
0.90
0.88
0.98
1.09
1.14
1.16
1.24
1.21
1.27

9.05 16.55 26.73 18.75 17.81

Jan Apr Jul Oct  Year

Stockholm -0.70 8.60 21.90 9.90 10.00
Minsk -2.10 12.20 23.60 10.20 10.60
London 7.90 13.30 22.80 15.20 14.80
Budapest 120 16.30 26.50 16.10 15.00
Paris 6.90 14.70 24.40 15.80 15.50
Bucharests 150 18.00 28.80 18.00 16.50
Barcelona 1240 17.60 27.50 21.50 20.00
Rome 11.90 17.70 30.30 21.40 20.40
Lisbon 14.80 19.80 27.90 2250 21.50
Athens 12.90 20.30 32.60 23.10 22.30
Valencia 16.10 20.20 29.10 23.60 22.30
Malta 16.10 20.00 31.50 25.20 23.20

28/36



Example: Weather data (r = 1), reconstruction
1.00 9.05 1655 26.73 18.75 17.81

Jan Apr Jul Oct  Year

0.62 Stockholm  5.65 10.33 16.68 11.70 11.11
0.69 Minsk  6.21 11.36 18.35 12.87 12.23
0.83 London 7.55 13.80 22.28 15.63 14.85
0.90 Budapest 8.11 14.83 2394 16.80 15.96
0.88 Paris 7.96 1456 2352 1650 15.67
0.98 Bucharests 8.91 16.30 26.32 18.47 17.54
1.09 Barcelona 9088 18.06 29.17 20.46 19.44
1.14 Rome 10.28 18.80 30.35 21.30 20.23
1.16 Lisbon 10.47 19.15 30.92 21.70 20.61
1.24 Athens 11.21 20.50 33.11 23.23 22.07
1.21 Valencia 10.92 19.96 3224 2262 21.48
1.27 Malta 11.47 20.98 33.88 23.77 2258

D

(RMSE: 2.66) 2,



Example: Weather data (r = 2), reconstruction

1.00 9.05 16.55 26.73 18.75 17.81
1.00 -414 027 232 -0.89 -0.69

Jan Apr Jul Oct  Year
0.62 1.69 Stockholm -1.34 10.79 2059 10.20 9.95

0.69 211 Minsk -2.52 11.94 23.23 10.99 10.77
0.83 0.00 London 7.54 13.80 22.28 15.63 14.85
0.90 152 Budapest 1.82 1524 27.46 1545 14091
0.88 0.30 Paris  6.71 14.65 2422 16.23 15.46

0.98 1.59 Bucharests 231 16.74 30.02 17.05 16.44
1.09 -0.66 Barcelona 12.61 17.88 27.64 21.05 19.90

1.14 -0.31 Rome 11.55 18.71 29.64 21.57 20.44
1.16 -1.09 Lisbon 15.00 18.85 28.39 22.67 21.36
1.24 -0.35 Athens 12.65 20.41 3231 2354 2231
1.21 -1.26 Valencia 16.14 19.62 29.31 23.74 22.36
1.27 -1.12 Malta 16.10 20.67 31.29 2476 23.35

D

(RMSE 060) 30/36



Example: Weather data (r

Factor 2

2), plot

Minsk

Stockholm

Paris

London

Budap eh]%uchdrestb

Rome  Athens

Barcelona

Lisbon Malta
Valencia

0.6

0.8

I
1.0

Factor 1

I
1.2
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Example: Netflix prize data

0.5

0.0

Factor vector 2

Koren et al., 2009

(=~ 500k users, ~ 17k movies, ~ 100M ratings)
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Factor vector 1
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http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5197422

Other interpretions

e Geometric interpretation
» Transformation of n-dimensional space in r-dimensional space
» Row of R = new axes
» Row of L = new coordinates (embeddings)

e Component interpretation
» D is viewed as consisting of r layers (of same shape as D)
> k-th layer described by Ixmyxr]
» D= Zk IkmkkrkT

e Graph interpretation
» D is thought of as a bipartite graph with object and attribute
vertexes
» Edge weights measure association b/w objects and attributes
» Decomposition thought of as a tripartite graph with row,
waypoint, and column vertexes

All interpretations are useful (more later).
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Outline

4. Summary
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Lessons learned

e Data mining = from data to knowledge
— Prediction, clustering, outlier detection, patterns

e Matrices are common representation of datasets
— Linear maps, data points, sets, graphs, relational data, ...

e Often: rows = objects, columns = attributes

e Matrix decompositions reveal structure in the data
— D~ LMR

e Many different decompositions with different applications
— SVD, k-means, NMF, SDD, BMF, ICA, completion, ...

e Factor interpretation: objects described by “prototypical objects”

35/36



Suggested reading

e Skillicorn, Ch. 1: Data Mining

e Skillicorn, Ch. 2: Matrix Decompositions
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Outline

1. Vectors
2. Matrices

3. Summary
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Outline

1. Vectors
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Vector

A vector is Stockholm
e A 1D array of numbers Minsk
. . . . . . London

e A geometric entity with magnitude and direction Budapest
e A matrix with exactly one row or column Paris

» Called row vector and column vector, resp. Bucharests

» Transpose v transposes a row vector into a Barcelona
column vector and vice versa R.0me
Lisbon
e A (latent) object or attribute Athens
Valencia
Malta

Jan  Apr  Jul  Oct
Stockholm (—0.70 8.60 21.90 9.90

Year
9.95
10.77
14.85
14.91
15.46
16.44
19.90
20.44
21.36
22.31
22.36
23.35

Year

10.00)

4/39



Vector norm

The norm of vector defines its magnitude. Let
T
Vv = (V1 Vo - Vn) .

e Euclidean norm: |v| = /> ; v?

» Corresponds to intuitive notion of length in Euclidean space
: — (S Py\L/P

e Ly norm for 1 < p <oo: [lv]|, = (3L [vil?)

» [; norm = sum of absolute values

(Manhattan distance from origin)

L> norm = Euclidean norm

(bird-fly distance from origin)

L, norm = maximum absolute value

The L, norms never increase as p increases, i.e.,

v

v

v

llpea <livl, ~ fora>0 o ( 4 )

e Properties of vector norms -3
> |lv|]| > 0when v#0and |[v|=0iff v=0 vil, =7
» |lav|| = |a| ||v|| (absolute scalability) vl =5
> ||vi + va|| < [|vi]| + ||v2| (triangle inequality) [Vl =4
5/39



Norms and distances

The distance between two vectors u, v € R" can be quantified
with norm |ju — v||.
Jan  Apr  Jul  Oct Year
e Stockholm, s = (_0.70 8.60 21.90 9.90 10.00)
e Minsk, ~m=(-2.10 1220 23.60 10.20 10.60)
o Athens,  a= (1290 20.30 32.60 23.10 22.30)

Ly s m a Ly s m a

s 0.00 7.60 61.50 s 0.00 427 27.60

m 760 0.00 56.70 m 427 0.00 25.98

a 6150 56.70 0.00 a 27.60 2598 0.00
Lo s m a

s 0.00 3.60 13.60
m 360 0.00 15.00
a 13.60 15.00 0.00

6/39



Dot product (algebraic definition)

The dot product of two vectors u, v € R" is given by

n

u-v= E uvi.

i=1

Also known as scalar product or inner product
T

We'll often use matrix product notation and write u' v
Properties (with a, b € R)

>»u-v=v-u

> (au)-v=2a(u-v)

> (au+bv)-w = (au)-w+(bv) w

Many uses, many interpretations

7/39



With dot products, we can ...

e Compute the (squared) Euclidean norm

n

2 2
vov=Y v2=|v

i=1

Normalize a vector to length 1 (then a unit vector)
v=v/v]

Determine the value of a coordinate

vVi=V-ej,

where e; denotes the i-th standard basis vector (i.e., [e;]; =1 if
i =j else 0)
Compute the sum of the elements of a vector

n

V']-n:zvia

i=1

where 1, is the all-ones vector of dimensionality n

° ... 8/39



Dot product: Weighted sum

The elements of one vector are interpreted as weights for the
elements of the other vector.

Example: Anna goes shopping

Item ‘ Bread Butter Pizza
Price/piece 1€ 050€ 3€
Quantity bought 1 2 5

How much does Anna pay?

Prices can be interpreted as “weights™: p = (1 0.5 3)T
Quantities are n = (1 2 5)T
Totalisp-n=1-1405-2+3.5=17

Similarly: Can interpret quantities as weights for prices

9/39



Dot product: Expected value

One vector corresponds to probabilities, the other one to a random
variable.

Example: Bob is gambling

Outcome ‘ Jackpot Win Loss
Probability 0.1 02 07
Amount won 5€ 1€ -2€

How much does Bob win in expectation? (Should he play?)
Probabilities p = (0.1 0.2 0.7)"

» A non-negative vector that sums to one (||p||; = 1) is called a
probability vector

» Corresponds to a probability distribution over a finite set of
outcomes

-
Amounts won x = (5 1 —2)

» Corresponds to a random variable; associates a real value with

each outcome

Expected value p-x=0.1-5+0.2-1+40.7-(-2) = -0.7

10/39



Dot product: Sample variance

Denote by & = 1 3", u; the mean of u. If we treat the entries of u
as samples from some distribution, then the unbiased sample
variance is given by
1 lu—a|* _ (u—1) (u—a)
2 —\2
ST = u, — u = =
Z( 1 ) n— 1 n— 1 )

n—1
i=1

where & denotes the sample mean vector, i.e., [u]; = & for

1<i<n.
e Example
»u=(10 11 12)7
> G=11,a= (11 11 11)"

»u—m=(-1 0 1)7
» s2=1, |lu|® =365
e Variances are thus closely related to norms; the key difference is
centering and averaging
e When we center data before analyzing it, dot products are

proportional to variances (u - u) or covariances (u - v) .



Dot product: Sets and intersections

The indicator vector of a subset T of aset S ={s1,...,s,}is
the vector x such that x; =1ifs;€ Tand x; =0ifs5; ¢ T. If u
and v are indicator vectors for subsets U, V C S, resp., then
u-v=|UNnYV|

e S = {France, Germany, Denmark, Poland }
e Anna visited France, Germany, and Poland: u=(1 1 0 1)T
e Bob visited Germany, Denmark, and Poland: v =(0 1 1 1)T

e Number of countries visited by both:

u-v=1.04+1-140-1+1-1=2 = |{ Germany, Poland }|

12/39



Dot product (geometric definition)

An alternative geometric definition of the dot product of two
vectors u, v € R" is

u-v = ull[[v][cost,

where —7 < 0 < 7 denotes the angle between u and v.

(=2}
2
] u
I~
ST v
0
2
o™
e
—_| /6
o
0 I I I I I I I I I 1
0.1 0.3 0.5 0.7 0.9
13/39



Why is this?
Let's focus on the 2D case. Recall the law of cosines:

c® = 2% + b? — 2abcos.

Now set u = B — C and v = A — C and observe A
that v —u=A- B.

2 2 2 C a B
cosf = 3+ b ¢ — ull” +[[v]]" = [lv — ul A
2ab 2 ul[[[v]
7u‘u+v.v_(v_u)'(v_u)
2 [ul[v]] .,
—u.u+V'V_V‘V+2U'V—u.u
2wl v [0\
u-v c u 5

el [[v]

14/39



Dot product: Test for orthogonality

Two nonzero vectors u, v € R” are orthogonal iff u- v = 0.

e Since 0 = u-v = ||u ||v] cosf and |ju]|,]||v| > 0, we have
cosf =0

e And this means that the angle is 90 degrees

A%
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Dot product: Cosine similarity (1)

The angle between u and v is another way to measure the
similarity between two vectors. The cosine similarity of u and v is
given by

cos(u, v) = u-v

Al vl

e —1<cos(u,v) <1
e Vectors that point in roughly the same direction
— small angle — cosine similarity &~ 1

e Vectors that point in roughly opposite directions
— large angle — cosine similarity ~ —1

e Vectors that are roughly orthogonal
— roughly right angle — cosine similarity ~ 0

e Popular in IR to determine the similarity between a document
and a query
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Dot product: Cosine similarity (2)

570,
L
#buys
A
"r%:
104 &3}‘“ Fuclidean
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Dot product: Pearson correlation
The sample Pearson correlation coefficient is a measure of
linear correlation. It is given by

(x—x)-(y—-¥y)

Ix = X[/ ly — ¥l

Ixy =

e Numerator proportional to the sample covariance
e Denominator proportional to sample standard deviations
e Closely related to cosine similarity but performs centering
» This is sometimes desired
» And sometimes a bad idea (e.g., example last slide)

p=-1 ‘ -1<p <0

n
o

0< p <+1 p=+1 P
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Dot product: Similarity

The dot product itself can also be seen as a measure of similarity
or compatibility. Recall

u-v=lul|vl|cosb.

Example: Shopping transactions

e Like in previous example, vectors u and v correspond to persons

Elements correponds to frequencies of buying each product

We can think of the direction of a vector as “preference”

» Which products are being bought?
» cosf large when u and v have similar interest

We can think of the magnitude of a vector as “strength”

» How much is being bought?

> ||ul| ||v]| large when both persons buy a lot
e If u-vislarge, u and v have similar shopping behaviour and
buy a lot
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Dot product: Projection

The vector projection of v onto u is given by

(V) u-v u u-v
proj,(v) = = Su
lull Null )
——
scalar
projection n
D
2]
e The scalar projection L\_ u
describes how far v points ST v
in the direction u 7
m_
e The vector projection e
is a vector pointing this far 7]
0 the directi ¢ =_| .
in the direction of u e Proju(v)
=1 /9
o
ol T T T 1
01 03 05 07 09
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Outline

2. Matrices
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Notation

Let A € R™*" be a real m x n matrix. We write
e a; or Aj (both scalars) for the value of entry (i, ;)
e aj or A,; (both column vectors) for the j-th column of A

e a; (column vector) or Aj, (row vector) for the i-th row of A
Thus

dil1 d12 -+ dln
ar1 a2 -+ an
A=

dml dm2 ' dmn
Al*
A2*

:(A*l A*2 A*n) = .

Api
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Full matrix ring (addition)
The set of all matrices in R"*" form a ring, the full matrix ring.

e Addition and substraction are element-wise

[A—l—B],-J-:a,-J-—i-b,-J-
[A— Bl = ajj — by

The additive identity is the n x n zero matrix 0,x,,
The additive inverse is —A with [-A]; = —aj;

In general [cA];; = cajj for c € R (scalar multiplication)

Addition is associative and commutative
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Full matrix ring (multiplication)

e For multiplication, we take dot products

n
[AB],'J' = aj- bj = Z a,-kbkj
k=1

The multiplicative identity is
the n x n identity matrix /, al @

10 -0
01 --- 0 A c

I, =

Multiplication is associative, but not commutative

(AB # BA in general)

Multiplication distributes over addition (A(B + C) = AB + AC
and (B+ C)A= BA+ CA)

Multiplication does not always have an inverse (division)

24/39



Rectangular matrices

e We generally have rectangular matrices A € R™*"

e We can only add and substract matrices of the same dimensions
(Am><n + Bm><n)
e We can only multiply matrices with a matching inner dimension

» We can multiply A € R™*" with B € R"™*" (inner dimension is r)

» Gives an m X n matrix (outer dimensions)
> [AB];j =a; - bj =37, _; aiby
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Interpretation for matrix multiplication (1)

When we multiply A and B, we compute all dot products between
rows of A and columns of B.

e We can apply any of the interpretations of the dot product
e E.g., weighted sum

m supermarkets, r products, n persons

aj = price of product k at supermarket i

byj = quantity of product k bought by person i
[AB];; = how much the j-th person would pay
when buying at the i-th supermarket b;
e E.g., covariance

vV vyVvYy

» If all columns of A,,x, are centered
1 AT _

(>, ai = 0), then ,.n_lA Ac }'R"X" al G
is the sample covariance matrix -

> [ﬁATA]ii holds the sample variance
of column i A C

> [ﬁATA],-j holds the sample covariance
between columns i and j
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Interpretation for matrix multiplication (2)

We can also interpret rows i of AB as a linear combination of the
rows of B with the coefficients coming from A

[AB). = aj1B1« + ai2Bas + - - + aj B,

and, similarly, the columns of AB as linear combinations of the
columns of A

z
<
3

il
1 gl
et e o

1
b= =g

e =

Smia SR s

=l 1 1 1
Lo—_1 1 Ll

A (each square is a column)

[AB].;
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Interpretation for matrix multiplication (3)

We can view matrix AB as the sum of the r component matrices

obtained by multiplying the k-th column of A and the k-th row of
B:

AB = A*lBl* + A*2B2* + -+ A*rBr*

e Components A, By, are outer products (m x n matrices)
e Note: when u € R™ and v € R", the matrix product
» u’v corresponds to a dot product (a scalar), m = n required

> uv’ corresponds to an outer product (an m X n matrix)
e In our supermarket example

» Components correspond to products

» Entry (/,) of k-th component indicates how much the j-th person
would pay for product k when buying at the i-th supermarket
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Transposes

The matrix transpose AT switches rows and columns, i.e.,
Ty, — 4.
[A']; = aji.

The foIIowing properties hold

(AT)T —
.(A+BW AT + BT
e (cA)T =cAT

e (AB)T =BTAT
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Summing and scaling

Let A € R™*" Denote by 1, the all-ones vector of dimensionality
n. For s € R", denote by diag (s) the n x n matrix with the entries

of s on the main diagonal:

s 0 --- 0
0 s -~ 0
diag (s) = . :
0 O Sn

Al,, computes the row sums of A

1] A computes the column sums of A

Adiag (c) scales each column j of A by ¢j, c € R”
diag (r) A scales each row i of A by r;, r € R”
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Matrices as linear maps

e A matrix A € R™*" s a linear map from R"” to R™
> If x € R", then y = Ax € R™ is the image of x
> y= Z}’Zl a;x;, i.e., a linear combination of the columns of A
e If Ac R™" and B € R"™", then AB maps from R” to R™
» Product AB corresponds to composition of linear maps A and B

e Square matrix A € R™" is invertible (= nonsingular) iff there
is matrix B € R"™" such that AB =1
» Matrix B is the inverse of A, denoted A}
> If Ais invertible, then AA™' = A"'A =]
> AA lx = A 'Ax = x
» Non-square matrices do not have (general) inverses but can have
left or right inverses: AR =1or LA=1
e The transpose of A € R™*" is a linear map A”: R™ — R"
> (A7) = A;
» Generally, transpose is not the inverse (AAT # 1)
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Matrix norms

e Matrix norms measure the magnitude of the matrix

» Magnitude of the values in the matrix
» Magnitude of the image

e Operator norms measure how large the image of an unit vector
can get
> Induced by a vector norm
For p > 1, [|A]|, = max{||Ax]|,, | [Ix|[, = 1}
|Al|; = maximum sum of absolute values of a column
|A]| ., = maximum sum of absolute values of a row
Spectral norm: ||A||, = largest singular value of A (more later)

v

v vy

e The Frobenius norm is the vector-L, norm applied to matrices
(treating them as a vector)

> Al = /S YL B
» Note: [|A| g # ||A|l, (but sometimes Frobenius norm is referred to
as L, norm)
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Matrix rank and linear independence

e A vector u € R" is linearly dependent on set of vectors
V = {v;} C R"if u can be expressed as a linear combination of
vectors in V

» u=> .ajv; for some ay,...,a, € R
» Set V is linearly dependent if some v; € V is linearly dependent
on V\{v;}

» If V is not linearly dependent, it is linearly independent
e The column rank of matrix A is the maximum number of
linearly independent columns of A
e The row rank of A is the maximum number of linearly
independent rows of A
e The Schein rank of A is the least integer r such that A= LR
for some L € R™*" and R € R™*"
» Equivalently, the least r such that A is a sum of r vector outer
products
e All these ranks are equivalent
» E.g., matrix has rank 1 iff it is an outer product of two (non-zero)
vectors
33/39



Matrices as systems of linear equations

e A matrix can hold the coefficients of a system of linear
equations (c.f. Chinese Nine Chapters on Arithmetic)

auxi + awxe + -+ awxp = b

a1 a2 - am X1 b

anxi + anxe + -+ axs = bo an  axm - am X2 by
A . . . . . =

ami  dm2 - dmn Xn bm

amiX1 + ameX2 + -+ - + amnXn = bm

e If the coefficient matrix A is invertible, the system has exact
solution x = A71b

e If m < n the system is underdetermined and can have an
infinite number of solutions

e If m > n the system is overdetermined and (usually) does not
have an exact solution

e The least-squares solution is the vector x that minimizes
|Ax — ng (cf. linear regression)
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Special types of matrices

e The diagonals of matrix A go from top-left to bottom-right
The main diagonal contains the elements aj;
The k-th upper diagonal contains the elements a; (i
The k-th lower diagonal contains the elements a(j; (), j)
The anti-diagonals go from top-right to bottom-left
e Matrix is diagonal if all its non-zero values are in a diagonal
(typically main diagonal)
» Bi-diagonal matrices have values in two diagonals, etc.
e Matrix A is upper (right) triangular if all of its non-zeros are
in or above the main diagonal
» Lower (left) triangular matrices have all non-zeros in or below
main diagonal
» Upper left and lower right triangular matrices: replace diagonal
with anti-diagonal
e A square matrix P is permutation matrix if each row and each
column of P has exactly one 1 and rest are Os
» If P is a permutation matrix, PA permutes the order of the rows
and AP the order of the columns of A

vV vyVvYyy
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Orthogonal matrices

o Aset V= {v;} CR"is orthogonal if all vectors in V are
mutually orthogonal
»v-u=0forallv£AueV
» If all vectors in V also have unit norm (J|v||, =1), V is
orthonormal
e A square matrix A is orthogonal if its columns are a set of
orthonormal (!) vectors or equivalently
> Its rows are orthonormal
» ATA=1,
» Al=AT
e An m X n matrix A is
» column-orthogonal if columns are a set of orthonormal vectors
(only possible if m > n); then AT is left inverse (AT A = 1,,)
» row-orthogonal if rows are a set of orthonormal vectors (only
possible if m < n); then AT is right inverse (AA” = 1,,)
e If A and B are orthogonal, so is AB
» Similarly: column-orthogonality and row-orthogonality is preserved
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Outline

3. Summary
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Lessons learned

e Many uses, many interpretations
Vectors

Matrices

Dot products

Matrix products

v vy VvYy

e Magnitudes and distances are measured by norms
e Basic concepts of linear algebra

e Special types of matrices: diagonal, triangular, orthogonal
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Suggested reading

e Any (elementary) linear algebra text book
» Carl Meyer
Matrix Analysis and Applied Linear Algebra
Society for Industrial and
Applied Mathematics, 2000
http://www.matrixanalysis.com

e Wolfram MathWorld articles

e Wikipedia articles
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The SVD is the Swiss Army knife of matrix decompositions.

—Diane O’Leary, 2006



Outline

1. Definition
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Definition

Theorem
For each A € R™*" there are orthogonal matrices U mym, Vnxn,

and a diagonal matrix X,,,«, with values
g1l = 012 = 2 Oiin(im)) = 0 N the main diagonal such that

A=UXVT,

e UXV' is called the singular value decomposition (SVD) of A
Values o; are the singular values of A

Columns of U are the left singular vectors of A

Columns of V are the right singular vectors of A

4/52



Outline

2. Properties of the SVD
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Characterization of the four fundamental subspaces

The fundamental theorem of linear algebra states that every
matrix A € R™*" induces four fundamental subspaces:
e The column space (range, image) of dimension rank (A) = r
» The set of all possible linear combinations of columns of A
e The nullspace (kernel) of dimension n — r
» The set of all vectors x € R" for which Ax =0

e The row space (coimage) of dimension r

e The left nullspace (cokernel) of dimension m — r

Explicit bases for these subspaces can be obtained from the SVD:
e Column space: the first r columns of U

e Null space: the last (n — r) columns of V

e Row space: the first r columns of V

e Left null space: the last (m — r) columns of U

6/52



The four fundamental subspaces

dim r dim r
column

space

nullspace
of AT

nullspace dimm-r

of A

dimn-r

The action of A. Row space to column space, nullspace to zero.

Strang, 93 7/52


http://www.jstor.org/stable/2324660

Pseudo-inverse

Problem.
Given A € R™" and b € R, find x € R"” minimizing ||Ax — b||,.

If A is invertible, the solution is A~ 1Ax = A"lb < x = A~ 1b
A pseudo-inverse A1 captures some properties of inverse A™!
The Moose—Penrose pseudo-inverse of A is a matrix
AT € R™™ satisfying the following criteria

» AATA=A (but it is possible that AA™ # I)

» ATAAT = AT (cf. above)

» (AAY)T = AAT (AAT is symmetric)

» (ATA)T=ATA (as is AT A)
If A= UEVT is the SVD of A, then |[A” = VE U]

» X7 replaces each o; > 0 by 1/0; and transposes

Theorem.
An optimum solution for the above problem is x = AT b.
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Pseudo inverse (illustration)

column
space

p=Axt

-

nullspace
of AT

nullspace
of A

The inverse of A is (where possible) the pseudo-inverse A™.

Strang, 93 9/52


http://www.jstor.org/stable/2324660

Truncated SVD

e The rank of the matrix is the number of its non-zero singular
values
» Easy to see by writing A = Zm'"{" m} ojujv]
e The truncated SVD only takes the first k columns of U and V
and the main k x k submatrix of X
> A=Y o] = UkE V]
» rank(Ax) = k (if ok > 0)
» Uy and V| are not orthogonal anymore, but they are
column-orthogonal
e If k = min{m, n}, then A = A; called thin SVD
e If k =rank(A), then Ay = A; called compact SVD
e If k < rank(A), then Ay is low-rank approximation of A

_ \& vi
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SVD and matrix norms

Let A= UZV be the SVD of A. Then
o A} = S o2
° [|All; =01

> Remember: 01 > 02 > -+ > Omingp,my > 0
o Therefore [|A[l, < [|Allf < V/nl|All
e Sq. Frobenius norm of truncated SVD is || Ax[|%2 = 2K, 02

min{n,m} o

» And of the “approximation error” ||A — Ak||;2: =itk o

The Eckart—Young theorem

Let A, be the rank-k truncated SVD of A. Then Ay is the rank-k
matrix closest to A in the Frobenius sense. That is

|A— Agl|g <||A—B| for all rank-k matrices B.
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Eigendecompositions

e An eigenvector of a square matrix A is a vector v such that A
only changes the magnitude of v

» le. Av = \v for some A € R
» Such X\ is an eigenvalue of A
> Try it!
e The eigendecomposition of Ais A= QAQ ™!

» The columns of Q are the eigenvectors of A
» Matrix A is a diagonal matrix with the eigenvalues

e Not every (square) matrix has eigendecomposition
» If Ais of form BB, it always has eigendecomposition
e The SVD of A is closely related to the eigendecompositions of
AAT and ATA
» The left singular vectors are the eigenvectors of AA”™

» The right singular vectors are the eigenvectors of AT A

» The singular values are the square roots of the eigenvalues of both
AA” and ATA
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Outline

3. Interpreting SVD
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Factor interpretation

e The most common way to interpret SVD is to consider the
columns of U (or V)

» Let A be objects-by-attributes and UXV " its SVD

> If two rows have similar values in a column of U, these objects are
somehow similar

» If two columns have similar values in a row of V7, these attributes
are somehow similar

» In both cases, first entries often matter most — truncated SVD

e Example: people's ratings
of different wines
" e Scatterplot of first and
i second column of U
e ' left: likes wine
right: doesn't like
up: prefers red wine
bottom: prefers white vine

u
v

.
v vy

s

025 02 o015 o1 005 0 005 01 015 02 025
ul

e Conclusion: winelovers like
Fi .2. The first ctors for a dataset ranking wines. -
Seilicomn o 1g5\15re 3.2. The first two factors for a dataset ranking wine. red and Wh|te, others care 14/52



Example: Weather data (k = 2)

1.00 9.05 16.55 26.73 18.75 17.81
1.00 -414 027 232 -0.89 -0.69

Jan Apr Jul Oct  Year
0.62 1.69 Stockholm -0.70 8.60 21.90 9.90 10.00

0.69 211 Minsk -2.10 12.20 23.60 10.20 10.60
0.83 0.00 London  7.90 13.30 22.80 15.20 14.80
0.90 1.52 Budapest 1.20 16.30 26.50 16.10 15.00
0.88 0.30 Paris  6.90 14.70 2440 15.80 15.50

0.98 1.59 Bucharests 150 18.00 28.80 18.00 16.50
1.09 -0.66 Barcelona 12.40 17.60 27.50 21.50 20.00

1.14 -0.31 Rome 11.90 17.70 30.30 21.40 20.40
1.16 -1.09 Lisbon 14.80 19.80 27.90 2250 21.50
1.24 -0.35 Athens 1290 20.30 32.60 23.10 22.30
1.21 -1.26 Valencia 16.10 20.20 29.10 23.60 22.30
1.27 -1.12 Malta 16.10 20.00 31.50 25.20 23.20

D

(RMSE: 0.60) .. .,



Thin SVD of Weather data (U)

Stockholm
Minsk
London
Budapest
Paris
U = Bucharests

Barcelona
Rome
Lisbon
Athens
Valencia
Malta

1

0.18
0.19
0.24
0.25
0.25
0.28
0.31
0.32
0.33
0.35
0.34
0.36

2

0.41
0.51
0.00
0.37
0.07
0.39
—0.16
—0.07
—0.27
—0.08
—0.31
—0.27

3

0.61
0.08
0.20
—0.39
0.05
—0.49
—0.01
0.30
—0.23
0.10
—0.12
0.12

4

0.28
—0.54
—0.15

0.18
—-0.25

0.30

0.33

0.10
—0.27
—0.23
-0.21

0.37

5

—0.32
0.40
0.04

—0.10

—0.22
0.08

—0.26
0.07

—0.46

—0.09
0.17
0.59
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Thin SVD of Weather data (X)

1
2
=3
4
5

1

147.55
0.00
0.00
0.00
0.00

2

0.00
20.09
0.00
0.00
0.00

3
0.00
0.00
4.25
0.00
0.00

4

0.00
0.00
0.00
1.77
0.00

5
0.00
0.00
0.00
0.00
0.32
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Thin SVD of Weather data (V)

1

Jan [ 0.22
Apr| 0.40
Jul'| 0.64
Oct| 0.45
Year \ 0.43

2

—0.85
0.06
0.47

—0.18

—0.14

3

0.31
—-0.74
0.54
—0.25
—0.03

4
—0.30
—0.52
—0.16
0.78
0.05

5
0.21
0.17
0.21
0.30
-0.8
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Example: Weather data (k = 2), SVD

147.54 022 040 064 045 043
20.09 -0.85 0.06 0.47 -0.18 -0.14

Jan Apr Jul Oct  Year
0.18 0.41 Stockholm -0.70 8.60 21.90 9.90 10.00

0.19 051 Minsk -2.10 12.20 23.60 10.20 10.60
0.24 0.00 London  7.90 13.30 22.80 15.20 14.80
0.25 0.37 Budapest 1.20 16.30 26.50 16.10 15.00
0.25 0.07 Paris  6.90 14.70 2440 15.80 15.50

0.28 0.39 Bucharests 150 18.00 28.80 18.00 16.50
0.31 -0.16 Barcelona 12.40 17.60 27.50 21.50 20.00

0.32 -0.07 Rome 11.90 17.70 30.30 21.40 20.40
0.33 -0.27 Lisbon 14.80 19.80 27.90 2250 21.50
0.35 -0.08 Athens 1290 20.30 32.60 23.10 22.30
0.34 -0.31 Valencia 16.10 20.20 29.10 23.60 22.30
0.36 -0.27 Malta 16.10 20.00 31.50 25.20 23.20

D

(RMSE: 0.60) ., .,



Example: Weather data (r = 2), SVD plot

uz

Minsk
< _{Stockholm harests
S Budap eh]%uc harests
™
AR
Paris
g — London
Rome  Athens
~ Barcelona
c‘j .
Lisbon Malta
Valencia
I I I I
0.20 0.25 0.30 0.35

up
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Orthogonal matrices and rotations

e Orthogonal matrices are rotation matrices

e Consider orthogonal matrix Q

e Inner products are retained: (@x)"(Qy) = xTQ"Qy=x"y
e Thus Euclidean norms also retained: ||@x| = ||x||

e Implies that all angles are retained

cos —sinf
* In2D: Qp = (sin@ cosf >

» Consider vector

= Xxe; + yer

. Qo (;) = x[Ql1 + y[ @l

[Qel1

e Thus: the columns of @ '

form “new axes” for rotation Qv
e Similarly: rows of Q

form “new axes’ for rotation v’ Q

(rotates backwards)
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Geometric interpretation (1)

Dsox2

Do @ °
0o
.

@ 5 °

L s 11.64 0
0 1.69
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Geometric interpretation (2)

o Let UX VT be the SVD of
M

e SVD shows that every
linear mapping y = Mx
can be considered as a
series of rotation,
stretching, and rotation
operations

» Matrix V' performs the
first rotation y; = V' x

» Matrix X performs the
stretching y, = Xy,

» Matrix U performs the
second rotation y = Uy,

Wikipedia user Georg-Johann 23 /52
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Dimension of largest variance (1)

e The singular vectors give the
dimensions of the variance in the
data

» The first singular vector is the
dimension of the largest variance

Zaki & Meira Fundamentals of Data Mining Algorithms, manuscript 2013 24 /52



Dimension of largest variance (2)

e The singular vectors give the
dimensions of the variance in the
data

» The first singular vector is the
dimension of the largest variance

» The second singular vector is the
orthogonal dimension of the second
largest variance

> First two dimensions span a
hyperplane

e From Eckart—Young we know that if
we project the data to the spanned
hyperplanes, the distance of the
projection is minimized

Zaki & Meira Fundamentals of Data Mining Algorithms, manuscript 2013 25 /52



SVD and linear regression (1)

Consider the 2-dimensional case.

e When fitting a linear regression model, we want to predict the
value of one distinguished variable (the response variable) given
the others (the explanatory variable)

e Say y is the response variable, x the explanatory variable

e We obtain a coefficient vector
B= (B P1) T € R?, consisting
of offset By and slope 31

e Predictionis y =3 (1 X)T,
the error is (y — y)?

(least squares)

e Goal is to minimize

this error, i.e., |ly — ¥/|2
e Set X = (1 x),

then B3 = X1y

n 26 /52



SVD and linear regression (2)

e Contrast this to the rank-1 truncated SVD of A = (x y)

e We obtain a vector uy, a scaling coefficent o1, and a vector v
e Let's look at the line described by v; (roughly corresponds to 3)
e Reconstructed data is A1 = ui01 vlT; all points lie on the line

e There is no distinguished response variable;
we minimize distance to line instead;
e, [[A—Aqg.

e This is different from regression

n 27/52



SVD and linear regression (3)
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Component interpretation

e Recall that we can write
A=UZVT =31 ouv] =51 A
» A =oviu]
e This explains the data as a sums of (rank-1) layers

The first layer explains the most
The second corrects that by adding and removing smaller values
The third corrects that by adding and removing even smaller values

v vy VvYy

e The layers don't have to be very intuitive
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Outline

4. Using the SVD
4.1 How many factors?
4.2 Using SVD: Data preprocessing and visualization
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Outline

4. Using the SVD
4.1 How many factors?
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Problem

e Most data mining applications do not use full SVD, but
truncated SVD

» To concentrate on “the most important parts”
e But how to select the rank k of the truncated SVD?

What is important, what is unimportant?
What is structure, what is noise?

Too small rank: all subtlety is lost

Too big rank: all smoothing is lost

v vy VvYy

e Typical methods rely on singular values in a way or another
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Guttman—Kaiser criterion and captured energy

e Perhaps the oldest method is the Guttman—Kaiser criterion:
» Select k so that forall i > k, 0, < 1
» Motivation: all components with singular value less than unit are
uninteresting
e Another common method is to select enough singular values
such that the sum of their squares is 90% of the total sum of
the squared singular values
» The exact percentage can be different (80%, 95%)
» Motivation: The resulting matrix “explains” 90% of the (sq.)
Frobenius norm of the matrix

e Problem: Both of these methods are based on arbitrary
thresholds and do not consider the “shape” of the data
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Cattell's Scree test

e The scree plot plots the squared singular values in decreasing
order
» The plot looks like a side of the hill, hence the name
e The scree test is a subjective decision on the rank based on the
shape of the scree plot
e The rank should be set to a point where
> there is a clear drop in the magnitudes of the values values; or
> the values start to even out
e Problem: Scree test is subjective, and many data don’t have
any clear shapes to use (or have many)
» Automated methods have been developed to detect the shapes
from the scree plot
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Entropy-based method

e Consider the relative contribution of each singular value to the
overall (sq.) Frobenius norm

» Relative contribution of oy is fy = 02/, 02
e We can treat these as probabilities and define the (normalized)
entropy of the singular values as

min{n,m}

E=—-—F—— Y filogf

Iog(mm{n m}) —

» The basis of the logarithm doesn’t matter

» We assume that 0-co =0

» Low entropy (close to 0): the first singular value has almost all
mass

» High entropy (close to 1): the singular values are almost equal
e The rank is selected to be the smallest k such that Z:I'(:l fi> E
e Problem: Why entropy?
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Random flip of signs

e Multiply every element of the data A randomly with either 1 or
—1 to get A
» The Frobenius norm doesn't change (||A| - = ||A|/F)
» The spectral norm does change (||Al|, # ||A|2)
» How much this changes depends on how much “structure” A has
e We try to select k such that the residual matrix contains only
noise
» The residual matrix contains the last m — k columns of U,
min{n, m} — k singular values, and last n — k rows of V'
» If A_y is the residual matrix of A after rank-k truncated SVD, and

A_ is obtained from A_j by randomly flipping signs, we select
rank k to be such that (||A_k|l, — |A=«kll2)/ |A=k]|| ¢ is small

e Problem: How small is small?
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Outline

4. Using the SVD

4.2 Using SVD: Data preprocessing and visualization
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Normalization

e SVD is sensitive to data scaling
e Data should usually be normalized before SVD is applied
> If one attribute is height in meters and another weights in grams,
weight seems to carry much more importance in data about
humans
» If data is all positive, the first singular vector just explains where in
the positive quadrant the data is
e The z-scores are attributes whose values are transformed by
» Centering them to 0
> Remove the mean of the attribute’s values from each value
» Normalizing the magnitudes
> Divide every value with the standard deviation of the attribute
e Notice that the z-scores assume that
» all attributes are equally important
» attribute values are approximately normally distributed

e Values that have larger magnitude than importance can also be
normalized by first taking logarithms (from positive values) or
cubic roots

e The effects of normalization should always be considered
38/52



Relationship to PCA (1)

e Truncated SVD can also be used to battle the curse of
dimensionality
» All points are far from each other in very high dimensional spaces
» High dimensionality slows down data mining algorithms
> If we use the truncated SVD, every object is represented by its row
in Uy (k values instead of n)
If k < n, we performed dimensionality reduction

v

e SVD is closely related to principal components analysis
(PCA)
» Key difference is “centering” of the data
1. Center each column of A to obtain M

2. Compute the sample covariance matrix S = M"M/(m — 1)
3. Compute the eigendecomposition S = QAQ s.t. Q orthogonal

» The columns of Q are called principal components
» The corresponding eigenvalues in A are the component weights
> Try it!
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Relationship to PCA (2)

e Relationship between SVD and PCA

» Q = eigenvectors of M M/(m — 1), A = corresponding
eigenvalues
Let M = UZV' be the SVD of M
The SVD of M//m —1 is then U(Z/vV/m —1)V'
From slide 12, we know that Q = V
From slide 12, we know that £2/(m — 1) = A

vV vy VvYy

e PCA associates each data object with a set of scores

One per principal component

m x n “score matrix' given by MQ

We have: MQ = (UZVT)V = UX

Usually we only take first k-components: MQ, = U, Xy

Also known as the Karhunen—Loéve transform (KLT) of the
rows of M

vV vy vy VvVYYy
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Relationship to PCA (3)

M50 = U, P} vi=@QJ]

BV - S P 1164 0 -
= . e 0 1.69).

°
o

000 Wb
00

@

MQ, = U,X;

%500 @020 °
e B

What is the difference between the PCA and the SVD of A (# M)?
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Relationship to PCA (4)

e Assumptions of PCA
> Linearity: The data set is a linear combination of the (retained)
components.
» Large variances indicate important structure: PCA scores may or

may not be suitable for subsequent tasks (e.g., classification).
» Components are orthogonal

e Recall that [MTM/(m — 1)];; holds the sample covariance
between attributes i and j (i.e., columns A,; and A,;)
» When each row of M is an i.i.d. observation of some underlying

distribution, then M” M/(m — 1) is an unbiased estimator of the
covariance matrix of that distribution

42/5
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Relationship to PCA (5)

e For our example data, M is a 50 x 2 matrix

e Here is its sample covariance matrix

2.1 1.16
M™M/(m—-1) =

1.16 | 0.72

e And here the sample covariance matrix of the PCA scores

2.76 0

(MQ)T(MQ)/(m-1) =

0 0.06

e This is “by construction”
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Relationship to PCA (6)

e Only information used by PCA is sample means and covariances
» Data assumed i.i.d. from a multivariate normal distribution

» Mean and covariance parameters are estimated from data (and
ordered)
» We obtain distribution A(0, A) after rotation
(with correct estimates and assuming normality assumption holds)
e We already established that f, = 02/, 02 can be seen as the
relative contribution of a singular value to the sq. Frobenius
norm
e We also know that o2 /(m — 1) = X\,
e Implies that f, can also be seen as the fraction of the total
variance explained by the k-th principal component
> Interpretation only valid when data is centered (!)
> In a Scree plot, one may plot fx (or their cumulative sum) instead
of the o2
e To make sure PCA is adequate, ensure that data “looks”
normally distributed (or transform it to look normal)
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Removing noise

e Very common application of SVD is to remove the noise from
the data

e This works simply by taking the truncated SVD from the
(normalized) data

» The big problem is to select the rank of the truncated SVD

e Example:
e Original data
g » Looks like 1-dimensional with some noise
. ol e The right singular vectors show the directions

» The first looks like the data direction
» The second looks like the noise direction

\/_ e The singular values confirm this

o1 = 11.64
o> = 1.69
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Visualization

e Truncated SVD with k = 2,3 allows us to visualize the data

» We can plot the projected data points after 2D or 3D PCA

» Or we can plot the scatter plot of two or three singular vectors

» Or we color data points based on their entries in a singular vector
>

e

Figure 3.2. The first two factors for a dataset ranking wines.

Skillicorn, p. 55; Zaki & Meira Fundamentals of Data Mining Algorithms,

005 0 005 01 015 02 025

manuscript 2013
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Latent semantic analysis

e The latent semantic analysis (LSA) is an information retrieval
method that uses SVD

The data: a term-document matrix A

» Values are (weighted) term frequencies
» Typically tf-idf values (the frequency of the term in the document
divided by the global frequency of the term)

The truncated SVD A, = U, X, VkT of A is computed

» Matrix Uy associates documents to “topics”

» Matrix V associates “topics’ to terms

> If two rows of Uy are similar, the corresponding documents “talk
about same things"

A query g can be answered by considering its term vector g
» g is projected to g, = qVE ! (called: fold in)
> @, is compared to rows of U and most similar rows are returned

Later more (when we consider NMF and LDA)

Landauer & Dumais, 1997 47 /52
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Outline

5. Computing the SVD
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Algorithms for SVD

e In principle, the SVD of A can be computed by computing the
eigendecomposition of AAT
» This gives us left singular vectors and squares of singular values
» Right singular vectors can be solved: VT =X 'UTA
» Bad for numerical stability!

e Full SVD can be computed in time O(nmmin{n, m})

» Matrix A is first reduced to a bidiagonal matrix
» The SVD of the bidiagonal matrix is computed using iterative
methods (similar to eigendecompositions)

e Methods that are fast in practice exist
» Especially for truncated SVD

e Efficient implementation of an SVD algorithm requires
considerable work and knowledge

» Luckily (almost) all numerical computation packages and programs
implement SVD
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Outline

6. Wrap-Up
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Lessons learned

e SVD is the Swiss Army knife of (numerical) linear algebra
— Ranks, kernels, norms, inverses, ... ...

e SVD is also very useful in data analysis
— Dimensionality reduction, noise removal, visualization, ...

e Truncated SVD is best low-rank factorization of the data in
terms of Frobenius norm

e Selecting the correct rank for truncated SVD is still a problem

e Interpretation of results can be challenging
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Suggested reading

e Skillicorn, Ch. 3

e Meyer, Ch. 5.12

e Gene H. Golub & Charles F. Van Loan: Matrix Computations,
3rd ed. Johns Hopkins University Press, 1996

» Excellent source for the algorithms and theory, but very dense
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Recap: Singular Value Decomposition

e SVD is useful in data analysis
— Noise removal, visualization, dimensionality reduction, ...

e Provides a means to understand the hidden structure in the data

We may think of Ay and its factor matrices as a low-rank model
of the data:

e Used to capture the important aspects of the data
(cf. principal components)

e lIgnores the rest

e Truncated SVD is best low-rank factorization of the data in
terms of Frobenius norm

e Truncated SVD A, = U, X VkT of A thus satisfies

A-A = i A-B
|A~Adlp = min_|A~ Bl
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Incomplete data

e If all entries of the data matrix are available, computing a
low-rank model is easy
e We now look at the case of partially observed data

» Many data mining methods cannot handle missing data well
» Need for imputation

e Qur goal is to build a low-rank model...

» ...and ultimately approximately recover the full matrix
» Cannot be done in general; assumptions needed
» Ongoing research topic, large body of results

e Some reasons for missing entries

[
B

Weight o

Name | Sex| Age [ Height
» Failure in data acquisition processes e H
. . . 3 Barbara F 13
» Expensive to obtain all entries Eod ¢ E
| oy
» Some entries cannot be measured [ N z
8 Janet F 15
a Jeffrey M 1%
10 |John M 12
11 Joyee F n
12 Judy F 14
13 Louise: F 12
14 F 15
15 Phiip 2] 16
Robert M 12

565
65.3

615
57.3

625

59
513
643
5.3
665

72
6458

125



Outline

1. Collaborative Filtering
2. Matrix Completion

3. Algorithms

4. Variants

5. Summary
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Outline

1. Collaborative Filtering
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Recommender systems

e Problem

» Set of users

Set of items (movies, books, jokes, products, stories, ...)
Feedback (ratings, purchase, click-through, tags, ...)
Sometimes: metadata (user profiles, item properties, ...)

v vy

e Goal: Predict preferences of users for items

e Ultimate goal: Create item recommendations for each user

e Example
Avatar The Matrix Up
Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3
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Collaborative filtering

Key idea: Make use of past user behavior

No domain knowledge required

No expensive data collection needed

Allows discovery of complex and unexpected patterns
Widely adopted: Amazon, TiVo, Netflix, Microsoft

Key techniques: neighborhood models, latent factor models

Avatar The Matrix Up

Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3

Leverage past behavior of other users and/or on other items.
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A simple baseline

e m users, n items, m X n rating matrix D
e Revealed entries Q = { (/,/) | rating djj is revealed }, N = |Q|
e Baseline predictor: bjj =+ b; + b;

> 1= 3 > j)eq di is the overall average rating

> bj is a user bias (user’s tendency to rate low/high)

> bj is an item bias (item'’s tendency to be rated low/high)

e Least squares estimates: argmin,, 3 (; yeq(dj — 1 — bi — b;)?

D Avatar  Matrix Up m=3
(1.01) (0.34) (-1.32) n=3
Alice ? 4 2 Q= {(1)2)7(173)7(271))"'}
(0.32) | (45) (38)  (2.1) N =6
Bob 3 2 ? po=317

bip =3.174+0.32+0.34 =3.8

—1.34 2.8 2.2 0.5
( )| (28) (2:2) (05) b3o =3.17+0.99+0.34 = 4.5

Charlie 5 ? 3
(0.99) (5.2) (4.5) (2.8) Baseline does not account for
personal tastes.




When does a user like an item?

e Neighborhood models (kNN):
When the user likes similar items
» Find the top-k most similar items the user has rated
» Combine the ratings of these items (e.g., average)
> Requires a similarity measure (e.g., Pearson correlation coefficient)

is similar to

Unrated by Bob
— predict 4

e Latent factor models (LFM):
When similar users like similar items
» More holistic approach
» Users and items are placed in the
same “latent factor space”
» Position of a user and an item
related to preference (via dot products)

The Color Purple
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Intuition behind latent factor models (1)

The Color Purple

.=

¢
)

3

Serious

Amadeus

Braveheart

Lethal Weapon

Koren et al., 2009.

A
Escapist

Sense and —
Geared Sensibility flocears 11 s ¥ Geared
toward < e » toward
females &y males
.
Dumb and
oA Dumber
The Princess Independence £
Diaries Day
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Intuition behind latent factor models (2)

Does user u like item v?

[ ]
e Quality: measured via direction from origin (cos Z(u, v))
» Same direction — attraction: cos Z(u,v) ~ 1
» Opposite direction — repulsion: cos Z(u,v) ~ —1
» Orthogonal direction — oblivious: cos Z(u,v) = 0
e Strength: measured via distance from origin (||ul| ||v]|)
» Far from origin — strong relationship: ||u]| ||v]| large
» Close to origin — weak relationship: |lu|| ||v| small
e Overall preference: measured via dot product (u - v)

u-v

u-v=|ullfv] = [lull{lv]| cos £(u, v)

[[urf| vl

» Same direction, far out — strong attraction: u - v large positive
» Opposite direction, far out — strong repulsion: u - v large negative
» Orthogonal direction, any distance — oblivious: : u-v =~ 0

But how to select dimensions and where to place items and users?
Key idea: Pick dimensions that explain the known data well.
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Latent factor models (simple form)

e Given rank r, find m x r matrix L and r x n matrix R such that

for (i,j) € Q

e Least squares formulation

LR

min Y (dj — [LR];)?

R

7

(iJ)eq
e Example (r =1)
R

Avatar  The Matrix Up

(2.24) (1.92) (1.18)
Alice 7 4 2
(1.98) | (4.4) (3.8) (2.3)

L Bob 3 2 ?

(1.21) | (2.7) (2.3) (1.4)
Charlie 5 7 3
(2.30) | (5.2) (4.4) (2.7)
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SVD and missing values

Input data Rank-10 truncated SVD

10% of input data Rank-10 truncated SVD

B SVD treats missing entries as 0.

/ 57



Latent factor models and missing values

Input data

10% of input data

LFMs “ignore” missing entries.

Rank-10 LFM




Example: Netflix prize data

0.5

0.0

Factor vector 2

Koren et al., 2009

(=~ 500k users, ~ 17k movies, ~ 100M ratings)
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Latent factor models (summation form) R

4

e Least squares formulation prone to overfitting

e More general summation form:

L = Z L,-J-(I,-,rj)+R(L,R), L LT Td;
(ij)eq

L is global loss

I; and r; are user and item parameters, resp.
L is local loss, e.g., Lj = (dj — [LR],-J-)2

R is regularization term, e.g., R = )\(||L||12C + ||R||,2E)

vV v VY

e As before, goal is to solve ming g L(L, R)
e Loss function can be more sophisticated

» Improved predictors (e.g., include user and item bias)

» Additional feedback data (e.g., time, implicit feedback)

» Regularization terms (e.g., weighted depending on amount of
feedback)

» Available metadata (e.g., demographics, genre of a movie)
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Example: Netflix prize data

RMSE

Koren et al., 2009

091

0.905

09

0.895

0.89

0.885

0.88

0.875

Root mean square error of predictions

10

40
60
s Plain
o 128 . e \\ith biases
) == \\lith implicit feedback
200 With temporal dynamics (v.1)]
With temporal dynamics (v.2)
0
100
200
100 W 5 50 »
00 50 100
1,500
100 1,000 10,000 100,000

Millions of parameters
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Outline

2. Matrix Completion
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The matrix completion problem

Complete these matrices!

11111 11111
11111 17 72 77
11711 1 7?2 7 77
11111 1 7?2 7 77
11111 1 72 7 77

Matrix completion is impossible without additional assumptions! ‘

Let's assume that underlying full matrix is “simple” (here: rank 1).

11111 11111
11111 1 1111
11111 1 1111
11111 1 1111
11111 1 1111

When/how can we recover a low-rank matrix from a sample of its entries?
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Rank minimization

Definition (rank minimization problem)

Given an n x n data matrix D and an index set € of revealed
entries. The rank minimization problem is

minimize  rank(X)
subject to  djj = xjj (i,)) € Q
X e R™".

e Seeks for “simplest explanation” fitting the data
e If unique and sufficient samples, recovers D (i.e., X = D)
e NP-hard

Time complexity of existing rank minimization algorithms dou-
ble exponential in n (and also slow in practice).
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Nuclear norm minimization

e Denote by o = (01 oy ... U,,)T the singular values of X
o rank(X) = [{o > 0} = X0, lns0 = [l

e Nuclear norm: | X||, =>"_; 0k = |lo|l;

e Nuclear norm can be seen as approximation to rank

Definition (nuclear norm minimization)
Given an n x n data matrix D and an index set €2 of revealed

entries. The nuclear minimization problem is

minimize || X,
subject to  djj = x;j (i,j) €
X e R™".

e A convex relaxation of rank minimization | Can be optimized (more)
e Nuclear norm is convex function efficiently via semidefi-
(thus local optimum is global optimum) nite programming.
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Why nuclear norm minimization? (1)

Let's look at two-dimensional vectors first.
e Border of blue area = L1 unit ball
e Red lines = L “unit ball” — axes except 0

e Lg unit ball intersects Ly unit ball at extreme points

Recht, 2012 22/57
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Why nuclear norm minimization? (2)

Let's find a solution to the problem ¢ox = y.

e Underdetermined system with infinitely many solution
e We usually pick one that has certain structure
e E.g. sparsity: min||x|[, s.t. Px =y
» Example solution: x; = y/¢1, 2 =0 — Lo =1
e Approximation: minimize L; X5

» Recall: ||x]|; =" [xi]
» Increasing L; norm can be seen as
“inflating” the Ly unit ball
» Minimum L; norm
= minimum inflation
> Achieved at intersection
with x; or xo axis
(whatever is smaller)

Recht, 2012 oy ol


http://www.cs.rpi.edu/~drinep/RandNLA/slides/Recht_RandNLA@FOCS_2012.pdf

Why nuclear norm minimization (3)

Figure 1. Unit ball of the L norm for ric 2 x 2 matrices.
The red line depicts a random one-dimensional affine space. Such a

subspace will generically intersect a sufficiently large nuclear norm
ball at a rank one matrix.

Candés and Recht, 2012

Consider SVD of D = UT VT

Unit nuclear norm ball = convex
combination (o) of rank-1
matrices of unit Frobenius norm
(U*kvﬁ)

Extreme points have low rank
(in figure: rank-1 matrices of
unit Frobenius norm)

Nuclear norm minimization:
inflate unit ball as little as
possible to reach dj; = x;;

Solution lies at extreme point of
inflated ball — (hopefully) low
rank
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Relationship to LFMs

e Recall regularized LFM (L is m x r, R is r X n):

min > (dj = [LR]5)* + M(ILIF + IRIF)
(ig)eQ

e View as matrix completion problem by enforcing dj; = [LR];:

minimize 1 (|ILI7 + |R|)
subject to  djj = xj; (i,j) e Q
LR = X.

e One can show: for r chosen larger than rank of nuclear norm
optimum, equivalent to nuclear norm minimization
e For some intuition, suppose X = LR = ULV at optimum L

and R: 1 (HLH,% + HR|y2F) <1 (Huzl/2H2F + HzlﬂvTHi)
% >y 22:1(U?k0k + V,%Uk)
=2 k=1 0k = [ X1,

Candés and Recht, 2012 25 /57
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When can we hope to recover D7 (1

Assume D is the 5 x 5 all-ones matrix (rank 1

1

[ G S B

[ S G S
NN =

?

Not unique
(column missed)

1

Ok

7

=

?

1

1
?
7
1
5

NN

?

Not unique
(insufficient samples)

l—lH-\)l—l-\)_\/

-

NN N N e

—- N

?

‘ Sampling strategy and sample size matter. ‘
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When can we hope to recover D7 (2)

Consider the following rank-1 matrices and assume 50% revealed

entries.
1 1
1111 1121
1 1 2 2
1 111 1 211
1 1 2 1
Ok (“incoherent”) Ok (“incoherent”)
1 0
0 00O 000U O
0 0 0 0
0 0 0O 0 000
0 0 0 0
Bad (“coherent”) Bad (“coherent”)
— first row required — (1,1)-entry required

‘ Properties of D matter. ‘
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When can we hope to recover D7 (3)
Exact conditions under which matrix completion “works” is active
research area:
e Which sampling schemes? (e.g., random, WR/WOR, active)
e Which sample size?
e Which matrices? (e.g., “incoherent” matrices)

e Noise (e.g., independent, normally distributed noise)

Theorem (Candés and Recht, 2009)
Let D= UXVT. If D is incoherent in that

maxu < — 2 and maxv < — re
n

ij

for some jug = O(1), and if rank(D) < pug'n*/>, then
O(n®>rlog n) random samples without replacement suffice to
recover D exactly with high probability.

Candés and Recht, 2009 28 /57
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Outline

3. Algorithms
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Overview

Latent factor models in practice
e Millions of users and items
e Billions of ratings

e Sometimes quite complex models

Many algorithms have been applied to large-scale problems

Gradient descent and quasi-Newton methods

Coordinate-wise gradient descent

Stochastic gradient descent

Alternating least squares

30/57



Continuous gradient descent

Find minimum 68* of function L :
Pick a starting point 6g =
Compute gradient L'(6y)
Walk downhill S

Differential equation

00(t)

R 1t =
o = —L(0() =
with boundary cond. 8(0) = 6, o o " " v
Under certain conditions 2
o(t) — 6" T oo
% 2 & 05 o 1o

t 31/57



Discrete gradient descent

Find minimum 6* of function L
Pick a starting point 6g
Compute gradient L'(6p)

Jump downhill

Difference equation
Oni1=0,—e,L'(0,)

Under certain conditions,

approximates CGD in that
0"(t) = 0, + “steps of size t"

satisfies the ODE as n — oo

q

folc) -
0.0 02 04 06 08 1.0

T T T T
-0.5 0.0 0.5 1.0

stepfun(px, py)

0.0

0.2 0.4 0.6 038 1.0
t 32/57



Recap: Gradient computation

e You know: gradient computations for functions on one input;
e.g.,

f(x) = x?
Vif(x) =2x

e For functions with multiple inputs, there are multiple partial
derivatives

f(l,r) = (d —Ir)?

Vif(l,r)==2(d — Ir)r
V., f(l,r)=-=2(d —Ir)l
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Matrix calculus (1)

e We focus on functions from R” — R
Let@=(/ r)’
Then

f(8) = (d — Ir)?
V,f(0) = —=2(d — Ir)r
V() = —2(d — Ir)!

e We can write this in matrix form

Vorf = (=2(d —Ir)r =2(d —Ir)l) ==2(d —1Ir)(r )

The resulting matrix is called the Jacobian matrix of f
Je==2(d—1Ir)(r 1)

Note: The Jacobian is a matrix of functions of 8
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Matrix calculus (2)

e To recap

deéfvxrfdéf (Vxlf vng vxnf)

e The following rules hold

Vi c=(0 0 0)
Ve c'x=c’
V,r x'ce=c’

Ver  x'x=2xT
V,r x Ax =xT(A+AT),

where constants ¢, ¢, and A do not depend on x

e Also: multiplicative rule, product rule, chain rule, ...
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Gradient computation for LFMs
Set 6 = (L,R), L(0) = L(L, R), and write

Z Li(li,r))

(i,j))eQ
LO)y= > Lilir)
(ij)eQ
VL) = Y Vililir)
(i".j)eq

= Z V/ikL"j(Iiarj)

Jedi'Nijnet

since Vlka:"j(Ii” rj) =0fori 7£ i’

column r;.

Local gradient of entry (i,/) € Q nonzero only for row I; and
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Example gradient computation

Simplest form of LFM (unregularized)
Ly(li,r) = (dy — 1] r;)?
Gradient computation

Vi Lii(lisrj) = =2(dy — 17 rj)ry
Vi Li(li, ) = —2lx(dy — 1] 1))

—2(dj — I,-Trj)rJ-T

=21 (dj — 1] r))

VrLi(li,rj)
v TLU(I r)
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Gradient descent for LFMs

R
GD epoch "
1. Compute gradient
» Initialize zero matrices LY and RV 1o
» For each entry (i,j) € Q, update gradients o
I I
L - =
I =17 + VLl r)) ] 1d
rjv — er + ver,'j(I,'7 l’j)

» After this step
=Y ViLlir)
Je{J'G e}

; v
as desired (r;” analog)

2. Update parameters

L L—¢,LVY

R+ R—¢,RY
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Stochastic gradient descent

1.0

Find minimum 0* of function L

0.5

Pick a starting point 6g
Approximate gradient (o)
Jump “approximately” downhill E
Stochastic difference equation

0,1 =0,—e,l'(0))

Under certain conditions, 1o 05 00 os 10
asymptotically approximates stepfun(px, py)
(continuous) gradient descent

fat) - o
1 1 1

00 02 04 06 08 10
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Stochastic gradient descent for LFMs
e Set 6 = (L, R) and use

Z Li(li, rj)

(ij)eQ

Z UNS L 1

(i.))en li dj
[/(072) = NL:'ZjZ(I/'z’ rjz)’

where N = |Q| and z = (i,,j,) € Q

e SGD epoch (with or without replacement)
1. Pick a random entry z € Q (with or without replacement)
2. Compute approximate gradient L'(6, z)
3. Update parameters
Oni1 =0, —ecnl'(6,,2)

SGD step affects only
current row and column.

4. Repeat N times
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Comparison

e Per epoch, assuming O(r) gradient computation per element

GD SGD
Algorithm Deterministic ~ Randomized
Gradient computations 1 N
Gradient types Exact Approximate
Parameter updates 1 N
Time O(rN) O(rN)
Space O((m+n)r) O((m+ n)r)

e Why stochastic?

» Fast convergence to vicinity of optimum
» Randomization may help escape local minima
» Exploitation of “repeated structure”

41/57



Example: Netflix data, unregularized

Mean Loss

1.4

1.2

1.0

0.8

0.6

4b

+
\

Ay

\
%ﬁ

\

+

o LBFGS
A SGD
+ ALS

+

T+
+
M e o SN
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GD/SGD in practice (1)

Step size (or learning rate) sequence { €, } needs to be chosen
carefully; widely studied, many options:

e Large — good initially (move quickly), bad later on (juggle
around optimum)

Keep step size throughout or reduce it gradually
» E.g., constant (useful for online learning)

» E.g., ¢, = a/(b+ n) for some constants a, b

» E.g., pick ¢, < 1/L(Vf)if f has bounded gradient

Bold driver heuristic: After every epoch

> Increase step size slightly when loss decreased (by, say, 5%)
» Decrease step size sharply when loss increased (by, say, 50%)
» Not provably correct, but works well in practice

Pick initial step size based on sample

Line search: optimize the step size directly

€n = argmln L(6,—el'(6,))
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https://en.wikipedia.org/wiki/Lipschitz_continuity

GD/SGD in practice (2)

e SGD is a common learning algorithm

» E.g., training neural networks
» Related to incremental gradient descent and online learning

e Many variants exist; e.g.,

Use more than one example per step (mini-batch)
Polyak averaging

Momentum

Adaptive, per-parameter step sizes (AdaGrad, RMSprop,
AdaDelta, Adam)

> L.

vV vy VvYyy

e And it can (often) be parallelized; e.g.,
» Hogwild
» Vowpal Wabbit (for regression problems)
» DSGD++ (for latent factor models)
E.g.: 10Mx1M, 10B observed entries, =~ 1h on 8 machines

> ..
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http://epubs.siam.org/doi/abs/10.1137/0330046
http://dl.acm.org/citation.cfm?id=3043064
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1412.6980
https://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent
https://github.com/JohnLangford/vowpal_wabbit/wiki
http://ieeexplore.ieee.org/document/6413862/

Outline

4. Variants
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Variants of latent factor models

e In practice, the basic latent factor model is often modified in an
application-dependent way

e We discuss two variants here

» How to handle implicit feedback?
(All observed entries are 1.)

» How to make use of additional contextual information?
(E.g., attributes for users and items.)

e There are many other variants; e.g.

Bayesian variants (partly discussed later)
Combination of explicit and implicit feedback
Additional constraints (e.g., non-negativity of factors)

v vy VvYy

e Picking the right model requires thought, experience, and
experimentation

46 /57



Implicit feedback

e Implicit feedback is an indicator for preference

» Which product pages do users look at?
» Which movies do users watch?
» How much time do users spend on a news article?

e Absence of implicit feedback is not necessarily an indicator for
non-preference

e In the basic latent factor model, we used explicit feedback,
which contains

» Positive evidence (a user gave an item a high rating)
» Negative evidence (a user gave an item a low rating)

e If we only have implicit feedback

» We may think of the implicit feedback as positive evidence
» But we do not have negative evidence
» This implies that the basic latent factor model won't work
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Implicit feedback and the basic LFM

e A matrix of implicit feedback (1=present, 7=absent)

N N )
NN )
= e
NN =

e Its completion by an (unregularized) LFM

[ e S S S
=
[ = T = =
e e

e That's not helpful!
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How to handle implicit feedback

e One option is to build a different model
» E.g., a nearest-neighbor model

e We can also learn variant of an LFM
» Good approach if low-rank assumption applies

e How? Move from “predicting values' to “ranking values”

» Ranking is per row (e.g, the items for each user) or per column
» Goal is not to predict the preference of a user for an item, but to
rank items such that high-preference items appear early on

e Key idea is to find a ranking that

» Tends to rank items with implicit feedback before items without
> Is simple (e.g., can be described with a low-rank matrix)
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Bayesian personalized ranking (intuition)

e Goal is to learn a personalized ordering >; for each user i

Consider a user i, an item j; and an item j,
Idea: j; >; jo if user i prefers item j; over item jp

v

v

v

jo, then he prefers j; over j,
We want to learn >; for all pairs of items
Ordering should be total, antisymmetric, and transitive

v

v

e The BPR model
» Associate each triple (7, 1,/2) with a score &j,;, € R
positive if ji is preferred by user i
» Score is ¢ negative if j, is preferred by user i

0 if oblivious
» Model probability that i prefers j; over j> as

P(jl >ij2) = U()?’:I'IJ'Z)7

where o(x) = 1/(1 4+ exp(—x)) € [0, 1] is the logistic function

Assumption: If user i provided implicit feedback for j; but not for
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http://dl.acm.org/citation.cfm?id=1795167

BPR for latent factor models

e Use low-rank matrix factorization to model scores
o6 _ T, T,
Xijij = Ii rj — Ii rj,
where as before L and R are factor matrices

e Construct database D C [m] x [n] x [n] of “observed orderings”
» (i,j7,j7) € D if user i has implicit feedback for j* but not for j~
» Can be large, but does not really need to be constructed

e Under certain assumptions, maximum likelihood estimate for L

and R is
sgmax [ pU* >i/)
LeRer7ReRr><n(i7j+’j_)€D
= argmax Z log p(j™ > j7)
LER™Xr RERrxn (ijtj-)eD

e We can use stochastic gradient ascent to find the estimates
» Gradient estimate obtained by sampling a single triple

» In practice, add regularization
51/57



BPR in

AUC
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Figure 6: Area under the ROC curve (AUC) prediction quality for the Rossmann dataset and a Netflix subsample.
Our BPR optimizations for matrix factorization BPR-MF and k-nearest neighbor BPR-kNN are compared
against weighted regularized matrix factorization (WR-MF) [5, 10], singular value decomposition (SVD-MF),
k-nearest neighbor (Cosine-kNN) [2] and the most-popular model. For the factorization methods BPR-MF,
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Contextual information

e We often have additional information; e.g.,
» Demographics of users (age, sex, city, ...)
» Information about items (e.g., genre, actors, directors, ...)

e How to exploit this additional information with LFM models?

1. Build a separate model and combine predictions (stacking)
2. As above, but but learn model parameters jointly
3. Extend LFMs to directly incorporate context

e A popular approach for (3) are factorization machines

» Open source implementation: libfm

» Can be combined with BPR

» Advertisement: also useful for extracting relations from
natural-language text
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http://dl.acm.org/citation.cfm?id=1934620
http://www.libfm.org/
http://aclweb.org/anthology/D/D15/D15-1204.pdf
http://aclweb.org/anthology/D/D15/D15-1204.pdf

Factorization machines (intuition)

( Feature vector x Target y‘
N N )
x[1]ofo].l1]o]o]o]..|os[os]os o]..[13]o o o]o].[f[5 ]
X 1\0\0\... 0\1\0\0\... 0.3\0.3\0.3\0\... 14 1\0\0\0‘... y(2>
x® 1\0\0\... 0\0\1\0\... 0.3\0.3\0.3\0\... 16 0\1\0\0\... y(Z)
X 0\1\0\... 0\0\1\0\... 0\0\0.5\0.5\... 5 o\o\o\o\... y<3>
x®[0]1]o].Jofolof[1]..[o]o]oslos[..[8]o[o]1]0]. y(‘”
x{olo[1][.J1]o]o]o]..fos[ 005 0]..[9]ofo]o]o].[f[1]w
x[ofo]1].Jofo]1]o]..[os[0]os[o]..[12]1]0o]o0]o]..[f[5]v®
A B C ...ITI NHSW ST .. TI NH SW ST ...

\ User A Movie D, (ime{_Last Movie rated )
e Rows = observed entries

Columns = information about observed entry

» Which user rated which item? In what context?

» Must be constructable at prediction time for unobserved entries (!)
Associate a latent feature vector with each column

» Prediction & sum of pairwise inner products of weighted feature vectors

» As before, learn latent features using SGD to fit observed data
Rendle, 2010
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Outline

5. Summary
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Lessons learned

e Collaborative filtering methods learn from past user behavior

» Latent factor models are best-performing single approach
» Many variants exist
» In practice, often combined with other methods

e Users and items are represented in common latent factor space

» Holistic matrix-factorization approach
» Similar users/item placed at similar positions
» Low-rank assumption = few “factors” influence user preferences

e Close relationship to matrix completion problem

» Reconstruct a partially observed low-rank matrix
» Many applications

e SGD is simple and practical algorithm to solve LFMs in
summation form

56 /57



Suggested reading

e Y. Koren, R. Bell, C. Volinsky
Matrix factorization techniques for recommender systems
IEEE Computer, 42(8), p. 30-37, 2009
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5197422

e E. Candeés, B. Recht
Exact matrix completion via convex optimization
Communications of the ACM, 55(6), p. 111-119, 2012
http://doi.acm.org/10.1145/2184319.2184343

e https://en.wikipedia.org/wiki/Matrix calculus

e And references in the above articles and slides
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Non-negative datasets

Some datasets are intrinsically non-negative:
e Counters
(e.g., no. occurrences of each word in a text document)
e Quantities
(e.g., amount of each ingredient in a chemical experiment)
e Intensities
(e.g., intensity of each color in an image)

The corresponding data matrix D has only non-negative values.

e Decompositions such as SVD may involve negative values in
factors and components

e Negative values describe the absence of something

e Often no natural interpretation

Goal: Find a decomposition that is more natural to non-negative data.
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Example (SVD)

Consider the following “bridge” matrix and its compact SVD:

Negative values can make interpretation unnatural or difficult.
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Outline

1. Non-Negative Matrix Factorization
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Non-negative matrix factorization (NMF)

Definition (Non-negative matrix factorization, basic form)

Given a non-negative matrix D € RmX”, a non-negative matrix
g + g
factorization of rank k is

D ~ LR,

where L € RT*" and R € R*" are both non-negative.

Additive decomposition: factors and components non-negative
— No cancellation effects

Rows of R can be thought as “parts”

Row of D obtained by mixing (or “assembling”) parts as
described in L

Smallest r such that D = LR exists is called non-negative
rank of D

rank(D) < ranky (D) < min{m,n}
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Example (NMF)

Consider the following “bridge” matrix and its rank-2 NMF:

oo o] o]o

oo | o 0 1|0 1] o0

D = Ilrlr + I2r2T77

Non-negative matrix decomposition encourage a more natural,
part-based representation and (sometimes) sparsity.
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Decomposing faces (SVD)
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SVD factors can be hard to interpret.

Lee and Seung, 1999.


http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html

Decomposing faces (NMF)
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NMF factors correspond to parts of faces.
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Decomposing digits (NMF)
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NMF factors correspond to parts of digits and “background”.



http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470746661.html

Some applications

matrix Y of dimension 1000 x 1000. (d) Performance expressed via the PSNR using the Beta HALS NMF
algorithm for f=0.5, 1, 1.5, 2 and 3.

Sound recognition
Remote sensing
Object characterization

e Text mining (more later)
e Bioinformatics
e Microarray analysis
e Mineral exploration
e Neuroscience =
PY Image understanding (a) Original 10 sources
e Air pollution research £ © = 2
. ~ [ = ] T
e Chemometrics T H =R &
A g» ‘/x'/ £ T 1 =
e Spectral data analysis ot () | T
. . 4w+ |
e Linear sparse coding N
e Image classification S T
° Clustering (c) Ten estimated components by using Fast-HALS ld}PSNRusingBemHAL‘S’fnrvmousvnlneso!ﬁ
. Figure 4.8 for (a) used in large-scal with 10 sources;
) Neural |earn|ng process (b) Typical 1000 mixtures; (c) Ten estimated components by using FAST HALS NMF from the observations
[ ]
[ )
[ ]
[ )

Cichocki et al., 2009. 10/48
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Gaussian NMF

e Gaussian NMF is the most basic form of non-negative
factorizations:

minimize ||D — LR|%
s.t. LeRT™
R e RX"

e Truncated SVD minimizes the same objective (but without
non-negativity constraints)
e Many other variants exist

vV vy vy VvYy

Different objective functions (e.g., KL-divergence)

Additional regularizations (e.g., Li-regularization)

Different constraints (e.g., orthogonality of R)

Different compositions (e.g., 3 matrices)

multi-layer NMF, semi-NMF, sparse NMF, tri-NMF, symmetric
NMF, orthogonal NMF, non-smooth NMF (nsNMF), overlapping
NMF, convolutive NMF (CNMF), k-Means, . ..
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k-Means can be seen as a variant of NMF

Additional constraint: L contains exactly
one 1 in each row, rest 0

d] (original)

[LR]i* =

k-Means factors correspond to prototypical faces.

Lee and Seung, 1999. 12 /48
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NMF is not unique

e Factors are not “ordered”

1 1 1 1 1 1|0 N O U T Y 1 o | 1

o 1o |1]|o0 = o | 1 o 1o |10 = 1] o0

o | 1] o 1|0 0| 1 1|0

e One way of ordering: decreasing Frobenius norm of components

(i-e., order by [[licr[[lF = [I/ill [lr«l])
e Factors/components are not unique

1 1 1 1 1 1 1 1 1 1 oo | oo |o

o | 1] o 1|0 = ol o|ofofo + 0 1o |1 |o

o | 1] o 1|0 ol ofofofo 0 1o |1 |o

= Jojofofoflo|l 4 |o|1|o]|1]o

Additional constraints or regularization can encourage

uniqueness.
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NMF is not hierarchical

1 1 1 1 1 1 1 1 1 1 0 o o 0 0
0 1 0 1 0 = 0 0 0 0 0 + 0 1 o 1 0
o 1 0 1 o 0 0 o o 0 0 1 o 1 0
1 1 1 1 1
T
= -G
0 1
o Rank-1 NMF
i s 05 [ 1 | 06 [ 1 | 06
12 12

el & [lelelels] = [ EEEE]
o 1 0 1 o 03 08 03 08 03 H

Best rank-k approximation may differ significantly from best

rank-(k — 1) approximation

Rank influences sparsity & interpretability

Optimum choice of rank is not well-studied (often requires
experimentation) 14 /48



Outline

2. Algorithms
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NMF is difficult

We focus on minimizing L(L, R) = ||D — LR|%.
e For varying m, n, and r, problem is NP-hard
e When rank(D) =1 (or r = 1), can be solved in polynomial time
1. Take first non-zero column of D as L,,x1
2. Determine Rix, entry by entry (using the fact that d; = Lryj)
e Problem is not convex
» Local optimum may not correspond to global optimum
» Generally little hope to find global optimum
e But: Problem is biconvex

» For fixed R, f(L) = ||D — LR||% is convex

F(L)=>lld] — I/ R} (chain rule)
Vi f(L) = =2(d] — 1] R)ry (product rule)
V2f(L)y=2r[r,>0 (convex in fi; can show: also in L)

» For fixed L, f(R) = ||D — LR||% is convex
» Allows for efficient algorithms

Vavasis, 2009 16 /48


http://epubs.siam.org/doi/pdf/10.1137/070709967

General framework

Gradient descent generally slow

Stochastic gradient descent often also slow

Key approach: alternating minimization

1: Pick starting point Ly and Ry
2: while not converged

3: Keep R fixed, optimize L
4 Keep L fixed, optimize R

Update steps 3 and 4 easier than full problem

Also called alternating projections or (block) coordinate descent

Starting point
» Random
» Multi-start initialization: try multiple random starting points, run

a few epochs, continue with best
Based on SVD

v Yy
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Example

Ignore non-negativity for now. Consider the regularized
least-square error:

L(L,R)=||D— LR|z + 5 (H’-HF+ IR|Z)
By setting m=n=r=1, D= (1) and A = 0.1, we obtain
L(I,r) = (1 —Ir)®> +0.05(/% + r?)

V,L=-2r(1—-1Ir)+0.1/
V,L==-2/(1—1Ir)+0.1r
Local optima:

(V% f) ( )ff)

Stationary point:
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Example (Alternating Least Squares, ALS)

o L(/,r)=(1—1Ir)*>+0.05(/+r?)

| < min; L = m
r < min, L = m
Step |/ r

0 2 2

1 049 2

2 049 1.68

3 058 1.68

4 058 149
100 0.97 0.97

Converges to

local minimum

2
o~

e
~

|

| \\




Example (Alternating Least Squares, ALS)

L(l,r) = (1—1r)2 +0.05(/2 + r?)

H _ r
| < min; L = 77005

0
H _ / ] N
r <— min, L ~ 1230.05 / \\\

e Step [/ r 2
0 20
1 00 2
2 00
e Converges to
stationary point 2
2
[ ———

I
00 05 10 L5 20 ,25



Alternating non-negative least squares (ANLS)

e Uses non-negative least squares approximation of L and R:

argmin||D — LR||% and argmin||D — LR||%
LeRT*" ReR*"
e Equivalently: find non-negative least squares solution to LR = D
e Common (bad!) hack: Solve unconstrained least squares
problems and “remove’ negative values. E.g., when columns
(rows) of L (R) are linearly independent, set

L=[DR'], and R=[L"D].

where
» Rt = RT(RRT) is the pseudo-inverse of R
» LT = (L"L)"'L" is the pseudo-inverse of L
» [a]c = max{¢,a} for e = 0 or some small constant (e.g., ¢ = 10~°)
e Difficult to analyze due to non-linear update steps
e Often slow convergence to a “bad” local minimum (better when
regularized or good NLS solver used)
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Example (ANLS, common bad hack)

o f(I,r)=(1—1Ir)®2+0.05(/> + r?) and set ¢ = 10~°

e

I
re [/§+0.05]

¢ ]
2
r¢+0.05 6

€

Step |/ r
0 2 2
1 049 2
2 049 1.68
3 058 1.68
4 0.58 1.49

100 0.97 0.97

Converges to

local minimum

0

AN




Example (ANLS, common bad hack)

o L(I,r)=(1—1Ir)?>+0.05(/> + r?) and set ¢ = 10~°

o I+ |:r2—|—r0405] b
€ T N
/
°re [/%0.05]6 / \
e Step / r ]
0 2 0 2
1 1-10° 0
2 1-107° 2-1078 _
3 4-1007 2-107%
4 4-1077 8-107°
100  0.97 0.97
e Converges to =] T —————
—

local minimum : | : : :




Hierarchical alternating least squares (HALS)

e Optimize just one component, then next component, and so on
o Let D) be the residual matrix (error) when k-th component is
removed:

DX =D—LR+I,r[ =D lur],

Kk

HALS optimizes HD(k) — Ikr[H% fork=1,2,...,r,1,...
(thus: optimize only k-th component)
E.g., in each iteration, set (once or multiple times):

1 1
1T — D)y and r] <« 1T D)
ST [ kL SN TATH [ k }

D) can be incrementally maintained — fast implementation
k+1 k T T
D(+):D()+Ikrk—lk+1rk+1

e Good performance in practice
e Converges to stationary point when initialized with positive

matrix and sufficiently small €
Cichocki, 2007

€
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Multiplicative updates

e Gradient descent step with step size 7;;

rj < rij + M ([L7 Di; — [LTLR]y)

e Setting 1y = [I.Trl#],v we obtain the multiplicative update rules
DRT LD
L« Lo—— and R< Ro——,
LRR L'LR

where multiplication (o) and division are element-wise

e Does not necessarily find optimum L (or R), but can be shown
to never increase loss

e Faster than ANLS (no NLS problems solved), easy to implement
and parallelize

e Zeros in factors are problematic (never changed, division by 0)

T T
[DR]c and R+ Ro [L” D]

L+ Lo—t—— 1 i L
LRRT + ¢ LTLR + ¢

Lee and Seung, 2001. Cichocki et al., 2006 25/48
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Example (multiplicative updates)

L(l,r) = (1—1r)2 +0.05(/2 + r?)

o o0, )
N AN

pasie.B N\ N\
e Step |/ r = o

0 2 2

1 048 2 A

2 048 1.66

3 059 1.66 T =

4 0.58 1.45

100 0.97 0.97
e Converges to =

local minimum j e ——




Outline

3. Probabilistic Latent Semantic Analysis
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Topic modeling

e Consider a document-word matrix constructed from some corpus

air water pollution power democrat republican

doc 1{ 3 2 8 4 0 0
- doc2| 1 4 12 2 0 0
P= qoc3l 0 o 0 4 10 11
docdl 0 0 0 3 8 5
docH\ 1 1 1 1 1 1

e Documents seem to talk about two “topics”

1. Environment (with words air, water, pollution, power)
2. Congress (with words democrat, republican, power)

e Note: “power” is polysemous (electrical power, political power)

‘ Can we automatically detect topics in documents? ‘
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Let's try SVD

e Rank-2 truncated SVD of example matrix

air wat pol pow dem rep air wat pol pow dem rep

sl e ]a]o]o o [osn| 00t [ 005 | 02 | 032 [[osr | osa
1| 4 2 | oo 018 o |1569 016 | 028 017 | -02 |-0.19
o | o |o| 4 |10 . -022

o|o|o]| 3 |8]s 052 |-013

1|1 1] 1 1] 1 01 | 007

p ~ U, % !
e Can see clear topic-driven differences for documents in &1 and i,
e Similarly for words in ¥1 and ¥
e Hard to interpret
e Called latent semantic analysis

Landauer and Dumais, 1997 29/48
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Let's try NMF

e Rank-2 NMF of example matrix

air wat pol pow dem rep air wat pol pow dem rep

3 2| 8| 4|00 19 | 0 11 | 154 (461 145 | 0 | o

1] a4 fa2 2|0 |0 219 | o o | o | o |o094| 24215

P ~ L R
Can see clear topic-driven differences in L and R
Easier to interpret: large value — relevant for topic

Decomposition is sparse

Related to probabilistic latent semantic analysis (pLSA)
» An even more interpretable factorization
» Assumptions are well-understood
» Example of a topic model

Polysemy of “power” hinted at by its use in multiple topics

Topic distributions often much more complex
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A probabilistic viewpoint

e Let's normalize P such that the entries sum to unity

air wat pol pow dem rep air wat pol pow dem rep

3 | 28| 4a]|o]o0 004|002 | 01 {005 0 | 0

1] 4 @20 |0 001|005 | 014|002 0 | ©

o | o | o | 4|10 | o | o | o |o00s|012]|013

oo | o 3| 8| s o | o | o |o004| 01006

1 1 1 1|1 1 001 | 001 | 001 | 001 | 001 | 0.01

e Put all words in an urn, draw, and denote by D and W the
result. The probability to draw word w from document d is
given by

P(D=d, W =w) = pg

e Matrix P can represent any such probability distribution

e pLSA tries to find a distribution that is “close” to P but exposes
information about topics
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Probabilities: Shortcut notation

Let X and Y be discrete random variables with possible values
Val(X) and Val(Y). Let x € Val(X) and y € Val(Y).

Expression Shortcut notation
P(X = x) P(x)

P(X=x,Y =y) P(x,y)
PX=x|Y=y) P(X\y)

Vx.P(X = x) = f(x) P(X) = f(X)
VxVy. P(X=x|Y =y)="f(x,y) P(X|Y)=f(X,Y)

P(x), P(x,y), P(x | y) are numbers (= probabilities)

P(X) and P(X | Y) are functions (= probability distributions)
Can be thought of as functions from Val(X) — [0, 1] or
Val(X) x Val(Y) — [0, 1], respectively

f,(X) = P(X | y) is often referred to as conditional
probability distribution (CPD)
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Probabilities: Important properties
P(AU B) = P(A) + P(B) — P(AN B)

P(A) =1— P(A)
If B2 A, P(B)=P(A)+P(B\A) > P(A)
P(X,Y) = P(Y | X)P(X)
P(X) =Y P(X.y)
P(X)= | P(X,y)
P(X|Y):P(YF|,(XY))P(X)

E[aX + b] = aE[X] + b
E[X + Y] = E[X]+ E[Y]

Ey[Ex[X | Y]] = E[X]

(inclusion-exclusion)

(product rule)

(sum rule, discrete)

(sum rule, continuous)

(Bayes theorem)

(linearity of expectation)

(law of total expectation)

33/48



Probabilistic latent semantic analysis (pLSA)

Definition (pLSA, NMF formulation)

Given a rank r, find matrices L, ¥, and R such that

P~ LYR

where

L, is a column-stochastic matrix,
Y ,«, is a non-negative, diagonal matrix that sums to unity, and

R,«n is a row-stochastic matrix.

Column-stochastic = each column is probability vector = each
column is non-negative and sums to 1

~ is usually taken to be the (generalized) KL divergence

Regularization or “tempering” may be necessary to avoid
overfitting

Hofmann, 2001
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Example

e pLSA factorization of example matrix

air wat pol pow dem rep air wat pol pow dem rep

004|002 | 01 |005| 0 | 0 043 | o 048 | o 013 | 018 | 083 | 017 | 0 | ©

001|005 |014|002| 0 | 0 048 | 0 o |o0s2 0 0 | o |017 | 044|039

o | o | o |o005|012]|013 o |0s8

o | o | o |o004| 01006 o | o037

P = L > R
Rank r corresponds to number of topics
o, corresponds to overall relative frequency of topic z
l4, corresponds to contribution of document d to topic z
rw corresponds to frequency of word w in topic z
pLSA constraints allow for probabilistic interpretation

P(d,w) = [LEXR]gw = >, 0zlgzt2w = Y, P(2)P(d | z)P(w | 2)

e pLSA model assumes conditional independence, i.e., it assumes
that words and documents are conditionally independent given a
topic — restricted space of distributions
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Another example

Concepts (10 of 128) extracted from Science Magazine articles (12K)

Pwlz)

P(w|z)

universe 00439| |dug 0.0672 | | cells 0.0675 | | sequence 0.0818 years 0.156
galaxies 0.0375| |patients 0.0483 stem 0.0473 sequences 0.0493 oillion 00556
clusters 00279| |drugs 0.0444 | | human 0.0421 | | genowme 0.033 ago 0.045
matter 00233 |clinical 0.0346 | | cell 0.0309 dna 0.0257 titne 0.0317
galaxy 00232| |treatment  0.023 gene 0.025 sequencing  0.0172 age 0.0243
cluster 0.0214| [tnals 0.0277 | | tissue 0.0185 | | map 0.0123 year 0.024
cosmic 0.0137| |therapy 00213 cloning 0.016% genes 0.0122 record 00238
dark 0.0131| [tnal 0.0164 | | transfer 0.0155 | | chromosorme 0.0119 early 0.0233
light 0.0109| |disease 0.0157 | | blood 0.0113 | | regions 0.011% billion 0.0177
density 0.01 medical 0.00997| | embryos 0.0111 human 0.0111 history 0.0148
bacteria 0.0983 || male 0.0558 1| theory 0.0811 || tnmune 0.0509] | stars 0.0524
bacterial 0.0561 || females 0.0541 1| physics 0.0782 || respense 0.0375| | star 0.0458
resistance 0.0431 female 0.0529 physicists 00146 system 0.0358 | | astrophys 0.0237
coli 0.0381 males 0.0477 citistein 0.0142 || respenses  0.0322| | mass 0.021
straing 0.025 sEX 0.0339 || university 0,013 antigen 0.0263| | disk 0.0173
microbiol 0.0214 reproductive 0.0172 gravity 0013 anfigens 0.0184 | | black 0.0161
microbial 0.0196 || offspring 00168 || black 0.0127 || imrmunity 00176 | | zas 0.0143
strain 0.0165 || sexual 0.0166 1| theories 0.01 mmuneclogy  0.0145| | stellar 0.0127
salmonella ~ 0.0163 || reproduction 0.0143 aps 0.00987| | antibody 0.014 astron 0.0125
resistant 0.0145 egae 0.0138 matter 0.00954| | autemmmune 0.0128) | hole 0.00824

“Topics” (also: concepts, aspects) described by distributions of words.

Hofmann, 2004
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pLSA geometry

e Rewrite probabilistic formulation

ZP P(d | z)P(w | 2)
P(w|d) = ZPW|Z (z|d)

e Generative process B =
. T E  simplex
1. Pick a document '
d. P d : spanngd - +P(wld)
according to P(d) | iRl

Hofmann, 2001

. Select a topic

acc. to P(z | d)

Select a word § /,p(w -
: \ i
acc. to P(W | Z) ! P(w, |Zs)\"\ ,/ ,_/--/ﬁw lz,)
: \ %
O e bz

Figure 2. Sketch of the probability simplex and a convex region spanned by class-conditional probabilities in
the aspect model.
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Example

e pLSA factorization of example matrix, rewritten formulation

air wat pol pow dem rep air wat pol pow dem rep
0.18 | 0.12 [ 047 | 0.24 o o 1 0 013 | 0.18 | 053 | 0.17 o o
0.05 | 021 [ 063 | 0.11 [ o 1 o o 0 o 0.17 | 0.44 | 0.39
o 0 o 0.16 | 04 | 0.44 0 1
o 0 o 019 | 05 | 031 0 1
017 | 017 | 017 | 017 | 017 | 0.17 06 0.4

P(w P(z

2
2

013 | 018 [053 | 017 | 0 | © 013|018 | 053|017 | 0 | © o | oo | o | o]0
013 | 018 [053 | 017 | 0 | © 013|018 [ 053|017 | 0 | © oo flo|o o]0
o | o | o |07 044|039 ol oo | o o]0 o | o | o |o017 044|039
o | o | o |o017 044|039 oo flo|o o]0 o | o | o |o017 044|039
008 | 011 | 032 | 017 | 0.18 | 0.16 008|011 |032| 01| 0 | 0 o | o | o |o007 018|016

Approximate dist. P(w,z=1|d) P(w,z=2]d)
e This formulation more directly exposes topic distribution of
documents (more in assignment)

e Next: Applications & a suitable definition of "~"
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Applications of pLSA

Topic modeling

Clustering documents

Clustering terms
Information retrieval

» Treat query g as a “new” document

» Using the second formulation of the previous slide, determine
P(z | q), keeping P(w | z) fixed (called “fold in" the query)

> In more detail, find P(z | ) such that
P(w|q)~>_, P(w|2)P(z]q)
» Retrieve documents with similar topic
mixture (= P(z | d))
» Can deal with synonymy and polysemy
e Better generalization performance
than LSA (=SVD), esp. with tempering
e Full Bayesian treatment:
Latent Dirichlet Allocation (LDA)

Hofmann, 2001

30007y

25001 -

Perplexity
N
S
S
S

@
o
=3

1000

200 400 600 800 1000
Latent space dimensions
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Kullback-Leibler divergence (1)

Let P be the unnormalized word-count data and denote by N
total number of words

Probability of seeing P when drawing N words with replacement
P(P) o [T T P(d, w)P+
d=1w=1

Conditional probability P(I5 | L, X, R) of seeing the data given a
pLSA model is as above with P(d, w) given by

P(d,w | L, X, R) = [LXR]aw

pLSA maximizes this probability = likelihood £(P | L, Z, R) of
data given model

Equivalent to maximizing the log-likelihood log E(f? | L,X,R)
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Kullback-Leibler divergence (2)
Let P = LZR.

log L(P | P) x Z Z Paw 108 Paw

d=1w=1

m n
x Z Z Pdw 108 Baw

d=1w=1

*Zzpdwlog,\

d=1w=1

Cross entropy H(P, P)

= - Z Z Pdw Iog > +cp

d=1w=1

Kullback-Leibler divergence Dy (P||P)

e Takeaway: maximizing the log-likelihood = minimize cross
entropy = minimizing the Kullback-Leibler divergence

Gaussier and Goutte, 2005.
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Background: Entropy

e Consider any discrete contribution over values { aj,...,a, }
e We can represent this distribution using a probability vector
p € R", where value a; is associated with probability p;
Suppose Anna selects a random value A according to p, i.e.,
P(A = aj) = p
She wants to tell Bob which value she selected
» Anna and Bob agree upfront on a codeword (bitstring) for each
value a;
» On average, how many bits does Anna have to send to Bob so
that he can determine the value of A?

Answer: at best H(p) bits, where H(p) is the Shannon entropy

n
1
H(p) = pilog —
i=1 Pi

» p; = probability that Anna selects value a;
> Iog% = number of bits of codeword for a;
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Background: Cross entropy and KL divergence

e Let's modify the game a bit
» Suppose Anna cheats and gives Bob the wrong distribution q
» They use an optimal code for q, i.e., codeword for a; has Iog bits
» But Anna later selects values according to p, not q
» How many bits are sent on average?

e Answer: cross entropy of p and g
‘ 1
q) = Z pilog -
i=1 ai

» p; = probability that Anna selects value a;
> log ;- = number of bits of codeword for a;

e On average, how many additional bits are now sent?
e Answer: Kullback-Leibler divergence

Duc(plla) = H(p, q) Z pi Iogr
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Kullback-Leibler divergence (3)

KL divergence is a measure of “difference” between distributions
In our setting, we have

DL (P||P) = Z Paw log ’fdw

dw

Interpretation: expected number of extra bits for encoding a
value drawn from P using an optimum code for distribution P
Dki(P|P) >0

Dk (P|P)=0 .

In general, DKL(PHP) 75 DKL(P”P)

NMF-based pLSA algorithms often minimize the generalized
KL divergence (exercise)

=0 R o Pd o %
DekL(P||P) = § (Pdw log =~ — Paw + Pdw>,
d,w Pdw
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Multiplicative updates for GKL (w/o tempering)

o We first find a decomposition P ~ LR, where L and R are
non-negative matrices

» E.g., using multiplicative update rules

Peio z,; R’ diag(1,/(R1,))
R « Rodiag(1 /(1TZ)T)1T£
B iR

» GKL is non-increasing under these update rules

o Normalize by rescaling columns of L and rows of R to obtain

L = Ldiag(1,/(1]0)T) (colums of L sum to 1)
R = diag(1,/(R1,))R (rows of R sum to 1)
¥ =diag((1]L)7 o (R1,)) (scaling factors)
r=%/3.%, (X sums to 1)

Lee and Seung, 2001
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Outline

4. Summary
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Lessons learned

e Non-negative matrix factorization (NMF) appears natural for
non-negative data

e NMF encourages parts-based decomposition, interpretability,
and (sometimes) sparseness

e Many variants, many applications

e Usually solved via alternating minimization algorithms

» Alternating non-negative least squares (ANLS)
» Projected gradient local hierarchical ALS (HALS)
» Multiplicative updates

e pLSA is a well-known approach to topic modeling
» Can be seen as an NMF
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Decompositions (Chapter 8)

Chapman and Hall, 2007
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References given at bottom of slides
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Graph mining

e Graphs everywhere, e.g.

v

Internet

World wide web

Social networks
Protein-protein interactions
Similarity graphs

vV vy VvYy

e Goals of graph mining

As data mining: classification, clustering, outliers, patterns
Output often also one or more graphs

Interesting subgraphs (e.g., communities, near-cliques, clusters)
Interesting vertices (e.g., influential bloggers, PageRank, outliers)
Web mining (e.g., topic predicition, classification)

Web usage mining (e.g., frequent subgraphs, patterns)
Recommender systems (e.g., movie recommendation)

Knowledge bases (e.g., link prediction)

vV VYV VY VY VY VY VY VvYY

Spectral analysis of matrices associated with graphs is an important
tool in graph mining. Our focus: spectral clustering and link analysis.
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A graph is a matrix is a graph

Let G = (V, E) be a (weighted) graph

Vertices V ={vq,...,vp }

Edge (i, /) € E has positive weight wj; (or 1 if graph is
unweighted)

Convention: absent edges (i/,/) ¢ E have weight w; =0
Adjacency matrix W is n X n matrix with entries w;;
Undirected graph = W symmetric (W = W)
(Out-)degree of vertex i given by d; = Y- wj; = w1
Degree matrix D is n x n diagonal matrix with d;; = d;

0 00O0°TO O 0 00O0°TO

10110 0 3000

' 01000 00100

01100 00020

@ 00010 0 0001
G w D
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Outline

1. Graph-Based Clustering
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k-Means example (1)

k-Means cannot detect non-convex clusters well.

5/58



k-Means example (2)

k-Means is sensitive to skew in cluster sizes.
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A better clustering

In this clustering, points within a cluster are close to their neigh-
bors, but not necessarily to all the points in the cluster.
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Graph-based clustering

1. Given a dataset, construct a similarity graph modeling local
neighborhood relationships

2. Partition the similarity graph using suitable graph cuts

Similarity graph Clustering
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Discussion

e Clustering

1. Points within a cluster should be similar
2. Points in different clusters should be dissimlar

e k-Means is global

1. All points within a cluster should be similar (close)
2. Points in different clusters should be dissimilar (far apart)

e Graph-based clustering is local

1. Neighboring points within a cluster should be similar (close)
2. Points in different clusters should be dissimilar (far apart)
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Another example (1)

Global distances can be misleading.
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Another example (2)

Distances to neighbors may capture structure better.
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Which cut? (1)

e G = (V, E): Undirected, weighted similarity graph

e Cut = partitioning of vertices into two partitions A C V and
A=V\A

For us: A and A correspond to clusters

e Minimum cut is cut that minimizes weight

cut(A, A) = Z wij

icAjeA

Can be solved efficiently (in P)

e Often not useful in practice, e.g., may separate a single vertex
— Need to balance cut weight and cluster sizes
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Which cut? (2)

e Minimum ratio cut (penalize different sizes w.r.t. vertices)

RatioCut(A, A) = <i\‘ + ;\) Z wij

icAjeA

e Minimum normalized cut (penalize different sizes
w.r.t. degrees)

NC”t(A’A):(voﬁ(A) vol(A > 2 i

icAjeA

where vol(A) =>4 d;
e Both problems are NP-hard

Spectral clustering is a relaxation of RatioCut or Ncut, is simple
to implement, and can be solved efficiently.
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Which cut? (3)

e Recall clustering objectives

1. Points in same cluster should be similar
(maximize within-cluster similarity)

2. Points in different clusters should be dissimilar
(minimize between-cluster similarity)

(1) = vol(A) and vol(A) are both large

(2) = minimize cut(A, A)

cut, RatioCut, and Ncut all implement (2)

Only Ncut additionally implements (1)

Ncut captures both goals — usually good choice
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Outline

2. Similarity Graphs
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Similarity graph

e In graph-based clustering, we first need to construct a similarity
graph
» Need notion of similarity and a way to construct an appropriate
graph based on that similarity
» How to do this depends on domain
» Generally difficult
» Can significantly affect results

e E.g., similarity for documents

Similarity of words in documents

Similarity of words in documents with tf/idf weighting
Similarity of topic distribution of documents

vV vy VvYy

e Here:

» How to obtain a similarites from Euclidean data
» How to construct a similarity graph from similarities
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From distances to similarities

Sometimes: Need to “convert” distances to similarities
Large distance 0;; <= small similarity wj; (and vice versa)

Simplest choice: reciprocal (problematic, unbounded)
1
wjj = —

0jj

Common choice for Euclidian data: Gaussian kernel (in [0, 1])

wj = exp(—67/(207)),
where §j; is Euclidean distance (||x; — x;||)
Parameter o controls what is considered local
(large o = large neighborhood)

0=0.3 o=1 T 0=3

0.8

Wi
w;;
0.4

0.0




From distances to similarities (examples)

% o
&,
., &o @
:‘?fmﬂ GE o
a0 0 °
080, %

1 e

AL Em O
TN 1)

o =20.01
(too small)

oc=0.4
(good)

c=3
(too large)
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Full graph

e Connect all pairs of vertices
e Weigh edges by similarity
e Generally expensive, not feasible for large datasets
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e-Neighborhood graph

e Pick neighborhood size €
e Connect vertices of distance < ¢

e Unweighted or weighted by similarity

€ too small € good Skewed clusters: € too
large for red, too small
for black
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Nearest neighbor graphs

e Pick number k of neighbors

e Directed k-nearest neighbor graph

» Add directed edge (i,j) if j is among k closest neighbors of i

» But: need undirected graph for well-defined similarities
(Symmetric) k-nearest neighbor graph

» Connect (i,) if (i,j) or (j, i) in directed k-NN graph (OR)

» Each node has at least k, but potentially more than k “neighbors”
Mutual k-nearest neighbor graph

» Connect (i, ) if (i,j) and (j, i) in directed k-NN graph (AND)

» Each node has at most k, but potentially less than k “neighbors”

Weigh edges by similarity

o oo o

directed 2-NN symmetric 2-NN mutual 2-NN
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k-Nearest neighbor graph (examples)

Symmetric k-NN graph

AN
° A
3 Fo
» .
T
SRR
ool

k =10 (good) Skewed, k = 10 (good)

Mutual k-NN graph

k =1 (too small)

k =10 (good) Skewed, k = 10 (too small)
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Discussion (1)

e Construction of similarity graph non-trivial and not
well-understood

e Clustering results sensitive to choice of graph
e Which similarity function?
» Should capture similarity of most-similar objects well
(other edges pruned by neighborhood graphs anyway)
» Gaussian kernel common choice for Euclidean data
» Generally application-dependent
e Which graph?
» Fully connected graph often too large + requires suitable similarity
function, dense graph
» e-neighborhood graph cannot deal well with clusters of different
densities
» k-NN graph can connect points in regions with different densities
— Generally recommended choice, sparse graph
» Mutual k-NN graph is somewhere in between
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Discussion (2)

e Which parameters? (e or k, o)

» ¢ or k should be small so that graph is sparse

» But large enough to ensure that similarity graph is connected (or
at least has fewer components than desired clusters)

» Otherwise: clustering sizes arbitrarily unbalanced, sensitive to
outliers

» k-NN: try various values (start with, e.g., k = O(log(n))

» Mutual k-NN: no good heuristics known

> ¢-N: around length of longest edge in minimal spanning tree
(problematic with outliers or clusters that are far apart)

» o: no. neighbors with similarity significantly larger than 0 “neither
too small nor too large” (e.g., mean distance to k-th nearest
neighbor, or using minimal spanning tree)

‘Skilled data miners do not run out of jobs. ‘
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3. Background: Eigendecomposition

25 /58



Eigenvectors and eigenvalues

e A non-zero vector v € R" is an eigenvector of A € R™" if
Av = \v

e )\ is the corresponding eigenvalue
e The eigenvalues are the roots of the characteristic polynomial

pa(A) = det(A — \I)
e We can factor pa()) as
pa(A) = (A= A1)™ - (A = An)™,

where Y .nj=n
» n; is called the algebraic multiplicity of );
» There are 1 < m; < n; linearly independent eigenvectors associated
with eigenvalue \;
» m; is called the geometric multiplicity of );
» Note: Some eigenvectors can be complex
e Collection of eigenvalues is called spectrum of A
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Eigendecomposition

e The eigendecomposition of A € R™" is given by
A=QAQ*,

where

» @ is square and has eigenvectors as its columns

» A is diagonal and has eigenvalues on its diagonal
e Does not always exist; if it does, A is called diagonalizable
e Some properties

» When A is symmetric, there exists an eigendecomposition where
Q is real and orthogonal
A=BB' = (Uxzv')(Uuxzv'")T = uz*U’
Eg,A=B'B=(UxVv")T(UzV')=vE?v’
Eg., A= QAQ ', then tr(A) = tr(A) = >, \;
rank (A) = number of non-zero eigenvalues (counting multiplicity)

v vy VvYy
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4. Graph Laplacian
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Graph Laplacian

Definition

Let G be an undirected graph with positive edge weights. Denote
by W the (weighted) adjacency matrix of G, and by D the degree
matrix of G. Then

L=D-WwW
is called the (unnormalized) graph Laplacian of G.

Note that self edges (w;; > 0) do not affect the graph Laplacian.

100 010 1 -1 0
1 1
020 101 -1 2 -1
0 01 010 0 -1 1
G D w L

Graph Laplacians are the main tool for spectral clustering, but they
have many other uses too (e.g., label propagation, graph drawing).
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Properties of the graph Laplacian (1)

Theorem

1 n n

T 2

For every vector x € R", f(x) = x'Lx = 5 g 1 E 1 wii(Xi — X;)
i=1 j=

e x assigns a real value to each vertex

e f(x) is a quadratic form and small when “similar” vertices
(which are connected with high-weight edges) take similar values

Proof.

n n n
xTLx :xTDx—xTWx:g d,-x,-2—§ E Wij Xi X;

i=1 j=1

2<de 2ZZWUX,XJ de>

i=1 j=1

2<ZZWUX — 2x) + X )z ZZWU xi = %)’

i=1 j=1 i=1 j=1
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Properties of the graph Laplacian (2)

1
xTLx = 5 Z wii(x; — x;)?
i
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Properties of the graph Laplacian (3)

A matrix A™" is called positive semi-definite if x” Ax > 0 for
any x € R".

Theorem

L is symmetric and positive semi-definite.

e Implies that f(x) = x" Lx is a convex function

e Implies that L= PP for some P (oriented incidence matrix)

Proof. Since D and W are symmetric, so is L. Since x"Lx>0
(see slide 30) for all x € R", L is positive semi-definite.
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Properties of the graph Laplacian (4)

Theorem

The smallest eigenvalue of L is zero, the corresponding eigenvector
is the constant one vector 1.

O—0—O

A3 =0

Proof. The row sums satisfy L1 = 0 = 01 by construction. For
smallest, see next slide.
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Properties of the graph Laplacian (5)

Theorem

All eigenvalues are non-negative and real-valued, i.e.,
A > > A1 > A =0.

Proof. All eigenvalues of a symmetric matrix are real. If Lv = M\v,
then vTLv = \|v||?> > 0 and thus A > 0.
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Connected graphs

Theorem

If G is connected, then eigenvalue O has multiplicity 1, i.e.,
An—1 > 0.

OO OO0

A3=0 A=1>0

Proof. Recall that 1 is an eigenvector of L with eigenvalue 0.
Suppose that 0 # v # c1 is an eigenvector of L with eigenvalue A.
Since G is connected, this implies that there are two neighboring
vertices i/’ and j such that vy # vj;. Now

1

2 T 2 2

Av[|*=v Lv = 3 g wii(vi — vj)= > wirjr(vir — vj)* >0
iJ

so that A > 0.
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Connected components

Theorem

The multiplicity k of eigenvalue 0 is equal to the number of
connected components Gy, ..., Gy of G. The corresponding
eigenspace is spanned by the indicator vectors 1, (value 1 for
vertices in G;, value 0 otherwise).

Proof. Let Ly,..., L, be the graph Laplacian of the connected
components. Order w.l.o.g. the vertices by their component so that

Ly
L,

Ly

Since L is block-diagonal, the spectrum of L is given by the union
of the spectra of the L;. The corresponding eigenvectors are the

eigenvectors of L;, filled with 0 at positions of other blocks.
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Connected components (example)

1 -1 OJ
-1 2 -1
0 -1 1
(OO

1 -1 0
-1 2 -1
0 -1 1

|

O—0—O

X =0

O——0—©

O—0—

s =0




Outline

5. Spectral Clustering

5.1 Unnormalized Spectral Clustering
5.2 Normalized Spectral Clustering
5.3 Variants
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Outline

5. Spectral Clustering
5.1 Unnormalized Spectral Clustering
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Algorithm

e Algorithm to construct k clusters

1. Construct similarity graph W
2. Compute its (unnormalized) graph Laplacian L

3. Compute the last k eigenvectors u,, ..., u,_x11 of L
(i.e., having k smallest eigenvalues)
4. Construct n x k matrix U = (up, Up_1 -+ Up_k41)

5. Cluster the rows of U using k-means
e Simple, easy to implement

e Main trick: represent (or “embed”) each vertex into R*
(= rows of U)

e Change of representation enhances clustering properties in the
data

Why does this work? Why are we interested in the
smallest eigenvalues?
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Unnormalized spectral clustering (example, 1)

Similarity graph
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Unnormalized spectral clustering (example, 2)

Similarity graph Spectral clustering (k = 2)
: 5 7]
§_
= ]
T T T T T T T O‘ T T T T T
0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.2 0.1 0.0 0.1 0.2
Uil Ui2
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Unnormalized spectral clustering (example)
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Why does spectral clustering work? (1)

e Consider the minimum ratio cut problem (k = 2)

: : = . 1 1
min, RatioCut(A, A) = Xgr\} Z Wy (W + |A|>
iEAJEA

e Given A, set x € R" such that

o VIAIJIAl  ifv, €A
"l =VIAJIAl ifvieA

e Easy to show
1. x"Lx = n- RatioCut(A, A)

2. E xi=0sothat x L 1
i=1
2
3. |x[IF=n
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Why does spectral clustering work? (2)

e Minimum ratio cut can be rewritten as
minimize x'Lx
subjectto x L1
x|l =+/n

x takes form defined in previous slide

e Still NP-hard; relax by dropping discreteness constraint
minimize x' Lx
subjectto x L 1

x|l = /n

e By Rayleigh-Ritz theorem: solution is eigenvector corresponding
to second-smallest eigenvalue (appropriately normalized)

[ ug;lLun41 ::uZ;IAn,lun41 ::nAn:l

e Thus: A\p—1 < minacy RatioCut(A, A)

e Similar arguments for k > 2: solutions of relaxation

= eigenvectors u,_1,...,U,_k+1 (See exercise)
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Why does spectral clustering work? (3)

e Recall

o VIAIJIAl  ifv, €A
Ol =VAIJIA ifvie A

in the constrained solution

e Need to obtain clustering from u,_1

» Generally does not satisfy the discreteness constraints

» Simple heuristic: use sign as cluster indicator (threshold=0)

» Optimal: pick threshold that minimizes RatioCut (optimal

thresholding)

» k-means often used in practice (also works well for k > 2)

e In general, no guarantees to obtain good solution

e But: popular because simple, standard linear algebra problem
that tends to work well in practice

e Approximation of balanced graph cuts (up to constant factor)
still hard
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Cockroach graph

Example where spectral clustering performs particularly bad
Minimum ratio cut 8/n

Spectral clustering ratio cut: 1

Spectral clustering is O(n) times worse

Minimum ratio cut

Ratio cut with spectral clustering and sign heuristic
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Discussion (1)

e Computation of eigenvectors
» Graph can be very large
» But Laplacian is sparse
» Efficient algorithms for finding the eigendecomposition of such
matrices exist
e Number k of clusters
» Difficult problem
» Standard approaches can be used
» Eigengap heuristic: choose k such that eigenvalue A1,..., Ay«
large, eigenvalues A\,_ki1,..., A, small
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Discussion (2)

Histogram of the sample
10

5

0

0 2 4 6 8 10

Eigenvalues
*
*

0.06
0.04
0.02 % * % *

0O

2345678910

Histogram of the sample
10

5
0
0 2 4 6 8 10
Eigenvalues
0.08 * ¥
0.06
0.04 *
0.02 * x *
T
123 456 78910

Histogram of the sample
6

4
2
0
0 2 4 6 8 10
Eigenvalues
*
0.08
0.06 *
*
0.04
*
0.02 % X
ok w ¥
123 456 78910

49 /58



Outline

5. Spectral Clustering

5.2 Normalized Spectral Clustering
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Normalized graph Laplacians
Definition
There are two common normalizations of the graph Laplacian:

Loym = D Y21p-12 - _p-lY2wp-1/2
L,.=D'L=1-D'w

e Normalization is performed w.r.t. degree

e Lym is symmetric, Ly, is not

1 -1 0 1 -1/vV2 0 1 -1 o0
-1 2 -1 —1/vV2 1 —1/V/2 -05 1 05
0 -1 1 0 -1/v2 1 0 -1 1

Lsym Lrw
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Normalized spectral clustering

Normalized graph Laplacians have similar spectral properties
Normalized spectral clustering (using L)

1.
2.
3.

4.
5.

Construct similarity graph W
Compute its normalized graph Laplacian L,

Compute the last k eigenvectors u,, ..., un_ki1 of Ly,
(i.e., having k smallest eigenvalues)
Construct n x k matrix U = (4, Unp_1 -+ Un_js1)

Cluster the rows of U using k-means

Normalized spectral clustering is a relaxation of Ncut

Better behaved from statistical point of view

The normalized spectral clustering algorithm
above is often method of choice.
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Some examples

ipe, 8 ustors
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foursoucs, 2 chsers

. . .
o “ o
"
; J I
LAY
35| 35| 35 oo
3| 3 3 N *
. . . :
. .
. y .
] ] . 1 :
y y y . .
| | Y R
.
. o .
I B I e e S T I R It
(2) (b) (c)
.
. .
. “
; .
. .
e ;
. s -
B B o E e B
L)
. L o
1 woed |
. o
i e e

Ng et al., 2001
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Outline

5. Spectral Clustering

5.3 Variants
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Some variants of spectral clustering

e p-spectral clustering
> Use 5 wij |xi — x|
» Standard spectral clustering is obtained for p = 2
» As p — 1, we obtain provably better (Cheeger) cuts

e Constrained spectral clustering

» Way to incorporate domain knowledge and side information

» Intuitively, obtained clustering must satisfy some
application-defined constraints

» E.g., must-link and cannot-link constraints (i.e., provide vertex
pairs that must or must not end up in same cluster)

» E.g., partial labels (i.e., provide labels for some vertexes)
— graph-based semi-supervised learning (tutorial)

e Active area of research
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Outline

6. Summary
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Lessons learned

e Graphs can be represented by matrices (and vice versa)
» Adjacency matrix
> Degree matrix
» Walk matrix
» Graph Laplacian

e Spectral properties of these matrices relate to properties of the
graph

e Spectral clustering

» Find non-convex clusters in similarity graphs
Good clustering & good graph cut (RatioCut or Ncut)
Related to smallest eigenvectors of graph Laplacian
Many useful variants

v vy
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e David Skillicorn
Understanding Complex Datasets: Data Mining with Matrix
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1. What Is a Tensor?
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What is a tensor?

A tensor is a multi-way extension of a matrix.
e A multi-dimensional array

e A multi-linear map

Scalars Vectors Matrices Stacked matrices
Lod,7
1 1 4 7 b 2 5 5
1 2 2 5 8 3 3 6 6
3 369 3 4 7
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Why tensors?

Tensors can be used when matrices are not enough

A matrix can represent a binary relation (or function)

» Entities and attributes
» Vertices and edges

e A tensor can represent an n-ary relation (or function)

» A relationship between n sets of “things”
» E.g. Subject-predicate-object data

e A tensor can represent a set of binary relations (or functions)

» Vertices and typed edges (“colored”)
» E.g., images (rows and columns) for a set of persons

A tensor can represent a sequence of binary (or n-ary) relations
(or functions)

» Objects and their attributes over time

» But: using tensors for time series should be approached with care
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Two examples

CT scans Knowledge bases

j—th entity

i-th entity
.
k-th relation

J
&
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2. Tensor Basics
2.1 Indexing
2.2 Matricization
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Terminology

e We say a tensor is an /N-way array
» E.g., a matrix is a 2-way array

e In the literature, one also finds

» N-dimensional tensor

(confusing: is a 3-dimensional vector a 1-dimensional tensor?)
> rank-N tensor

(but: we have a different use for the word rank)

e A 3-way tensor
» Has three modes: rows, columns, and tubes
» Can be /-by-J-by-K-dimensional
» Also used: M-by-N-by-K or l1-by-h-by-I5

e Notation
» Tensors: X, Y, Z, ...
» Sizes: I, J, K, ...

> Indexes: i, j, k, ...
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2. Tensor Basics
2.1 Indexing
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Fibers

e We can extract subarrays by suitable indexing operations
e If we fix all dimensions, we obtain a scalar (e.g., xjj)
o |f we fix all but one dimension, we obtain a fiber

» Convention: fibers are extracted as column vectors

X:jk Xi:k Xij:

Mode-1 fibers Mode-2 fibers Mode-3 fibers
(columns) (rows) (tubes)
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Slices

e |f we fix all but two dimensions, we obtain a slice

» Convention: slices are extracted as matrices
» Rows correspond to first omitted dimension, columns to second

Xi:: X:j: X::k (OI’ Xk)

Horizontal slices Lateral slices Frontal slices
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Example

2 4

g o ()6

e Column x:13 = { ), row x1.1 = | 5 ), tube x11; = |
. 1 3

e Frontal slice X..; = <2 4)
. 15

o Lateral slice X.;. = <2 6)

: - 15
Horizontal slice X1.. = <3 7>
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2. Tensor Basics

2.2 Matricization
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Matricization

e We can often express tensor operations using suitable matrices
» Allows use of standard linear algebra packages
» We'll repeatedly need this, so we discuss it first
» In particular: matricization, Kroenecker product, Khatri-Rao
product, Hadamard product

e Tensor matricization (flattening, unfolding) unfolds an N-way
tensor into a matrix

» Mode-n matricization X, arranges the mode-n fibers as
columns of a matrix

» As many rows as size of n-th mode

» As many columns as the product of the sizes of the other modes

» Cumbersome to express formally: If X isan |y x L x ... x I,
tensor, then X,y contains x;,...;, at position (i,,j), where

N

k—1
J=14> (k= Vdlk #n] with Je =[] Imlm # 7]
m=1

k=1
» Different authors may use different orders (1)
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Example
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Kronecker matrix product

e Rescales one matrix with each element of another matrix

e my X n and my X np matrices give mymo X nyny matrix

auB apB -+ ai,B

a1B a»pB -+ a, B
A® B = . ) :

amllB am12B o amlnlB

e For example,

B0

NN = =
NN = =
NN = =
>~ b 0w
D w
> D 0w
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Khatri-Rao matrix product

e Column-wise Kroenecker product
» Rescales the columns of one matrix with each element in the
respective column of another matrix
» Number of columns must match

e my X nand my X n matrices give myms X n matrix

AOB=(a1®by ax®by --- a,®b,)
annby  awpby -+ ainb,
_ a» by anby -+ ayb,
anulbl 3nu2b2 co amlnbn

e For example,
1 300
1 3 o 1 100\ (10 3000
2 4 10 1000/ | 2 400
20 4000
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Hadamard matrix product

e Element-wise product

» Rescales every entry of one matrix with the corresponding entry of
another matrix
» Number of rows and columns must match

e Two m X n matrices give m X n matrix

anbi  anbiz - ainbin

agibp1  axoboy -+ axpbop
Ax B = . ) .

amil bml am2 bm2 e amnbmn

e For example,

13*1 100y (1 300
2 4 10 1000/ \20 4000
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Some identities

(A® B)(C® D)= AC ® BD
(Ao B)f = AT @ Bf
AOGBoGC=(AGB)oC=A6(B6C)
(A0B)"(AcB)=A"A«B'B
(AoB)' =(ATAxB'B)/(AcB)"

e Here A’ denotes the pseudo-inverse of A

e Using these equations may save considerable space and time;

e.g.
» Let A, B be n x k matrices with n > k
» AG® B is an n® x k matrix
» (A@B)T(A®B), ATA, B"Band ATA«B" B are k x k
matrices
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3. The CP Decomposition

3.1 Definition

3.2 Tensor Rank

3.3 Computing the CP Decomposition
3.4 Variants
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Outline

3. The CP Decomposition
3.1 Definition

20/61



Outer product

e Tensors require extensions to the standard linear algebra
operations for matrices

e We'll discuss those in turn whenever needed

e A multi-way vector outer product is a tensor where each
element is the product of corresponding elements in the vectors

X =aoboc <~ x,-jk:a,-bjck
(¢
/ b
= S——7
X a

e Observe: aob =ab’
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Example

ea=(12 3
eb=(12 4
c=(1 10)7

e X =aobocisa3x3x2tensor

The frontal slices are then

w N =
S A~ N

4
X1 = (ao b)Cl = (abT)cl = ( 8)
1

10 20 40
X;=(aob)oy=(ab")c; = |20 40 80

N

30 60 120
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Rank-1 tensors

e A matrix decomposition represents the given matrix as the
product of two (or more) factor matrices

e The rank of a matrix M is the
» Number of linearly independent rows (row rank)
» Number of linearly independent columns (column rank)
» Minimum number of rank-1 matrices needed to be summed up to
get M (Schein rank)
» All definitions are equivalent

e Let's first look at rank-1 tensors
» A rank-1 matrix is an outer product of two vectors
» We define: An N-way tensor is a rank-1 tensor if it can be
written as an outer product of N vectors
» E.g., the tensor on the previous slide
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The CP decomposition

e W

~ by + b, bt br

AL

a; ay ap

e The CP decomposition approximates X by summing up R
rank-1 tensors

e R is called the size of the CP decomposition

e Can also be written using N factor matrices: X = [A, B, C]

» For each mode, create a matrix with the corresponding vectors of
each rank-1 component as columns
> E.g., A= (a1 da --- aR)
R
» We have Xijk =~ Zr:l a,-,bj,ck,
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The many names of the CP decomposition

Name Proposed by

Polyadic Form of a Tensor Hitchcock, 1927
PARAFAC (Parallel Factors) Harshman, 1970
CANDECOMP or CAND (Canonical decomposition) Carroll and Chang, 1970
Topographic Components Model Méocks, 1988

CP (CANDECOMP/PARAFAC) Kiers, 2000

e Chemometrics, psychometrics, phonetics, sensor data processing,
telecommunications, neuroscience, medical data, text mining,
social network analysis, image compression, computer vision, ...
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Example: TOPHITS

e Builds a web pages-by-web pages-by-anchor text tensor to study
the link structure and link topics of web pages
> wij is the number of times page i links to page j using term k
e The CP decomposition of this tensor behaves akin to HITS
> In size-1 CP, a gives hub scores, b gives authority scores, and ¢
gives term weights
> In size-R CP, the data is split up into multiple topics, each with its
own hubs, authorities, and term weights
» Helps to avoid topic drift, not restricted to focused subgraphs

e Used a higher-order power method to compute the CP

Topics Authorities

SCORE | TERM SCORE [ HOST

1st Principal Factor

0.23 | java 0.86 | java.sun.com

0.18 | sun 0.38 | developers.sun.com
0.17 | platform 0.16 | docs.sun.com

0.16 | solaris 0.14 | see.sun.com

0.16 | developer 0.14 | www.sun.com

0.15 | edition 0.09 | www.samag.com

0.15 | download 0.07 | developer.sun.com
0.14 | info 0.06 | sunsolve.sun.com
0.12 | software 0.05 |accessl.sun.com

Kolda et al., 2005 nne 26 /61
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3. The CP Decomposition

3.2 Tensor Rank
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Tensor rank

e The rank of a tensor is the minimum number of rank-1 tensors
needed to represent the tensor exactly
» Given by the exact CP decomposition of size R = rank (X), also
called rank decomposition
» Generalizes the notion of Schein rank for matrices

e BV /-

ay ap ag

e Tensors behave differently than matrices

» Much more complicated on the one hand
> (Some) nicer properties on the other hand
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Tensor rank oddities (1)

e The rank of a (real-valued) tensor can be different over reals
and over complex numbers.

Tensor Over R Over C
(10 (10 1 . (11
X1—<0 1) A‘(o 1 -1 A‘ﬁ(-i />
(0 1 (101 . (11
X2_(—1 0> B={0 11 B_ﬁ<i —i)

(
(1% ()

e Determining the rank is NP-hard
» No “straightforward” algorithm known

e Over reals, the rank can be larger than the largest dimension
» rank (X) < min{/J,IK,JK} ofr | x J x K tensor
» Better bounds known only for few special cases
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Tensor rank oddities (2)

e For matrices, the Eckart-Young theorem tells us that
» We can determine a best low-rank approximation
» Factors of best rank-k approximation are part of best higher-rank
approximations

e There are tensors of rank R that can be approximated arbitrarily
well with tensors of rank R’ < R
» Such tensors are called degenerate
» There are no best low-rank approximations for degenerate tensors
» The smallest such R’ is called the border rank of the tensor

e There are tensors for which the factors of the best rank-one
approximation are not part of the best rank-2 approximation

» Cannot find factors sequentially (but must find them
simultaneously)
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Tensor rank oddities (3)

e The rank decomposition is often essentially unique
» Finally some good news!

> Not true for matrices (SVD is essentially unique only due to its
additional constraints)

e Essentially unique = only scaling and permutations allowed

e Holds under “mild conditions”
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3. The CP Decomposition

3.3 Computing the CP Decomposition
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How to compute the CP decomposition?

e Here we discuss the alternating least squares (ALS) approach

Popular method

Simple to understand and implement

Not guaranteed to converge to minimum or stationary point
Objective merely decreases over iterations (until converged)
Can take many iterations until convergence

Final solution heavily dependent on starting point

vV VY VY VY VY

e Many alternative methods have been proposed (and are being
proposed)
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ALS for CP

e Our goal is to optimize mina g c | X — [A, B, C]||¢
e Method is as before

1. Fix B and C and solve for A

2. Solve for B, then solve for C

3. Repeat until convergence

e To implement this method, we rewrite the CP decomposition
X1 ~ACoB)"
X~ B(CoA)"
X3 ~ C(BoA)T
e Now we can “read off” the solution; e.g.
min||X (1) — A(C© B)" ¢
A= X ((CoB)T)f
R x JK

A= X (CoB)C'CxB'B)!
RXR 34 /61
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3. The CP Decomposition

3.4 Variants
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Variants of the CP decomposition

Many variants of the CP decomposition have been proposed; e.g.,

e Explicit modeling of component weights; e.g.,
R
X ~[XABCl=) Ma,ob,oc,
r=1
where X € RF and the columns of A, B, and C have unit norm

e Non-negative CP decomposition (NNCP)

e Tensor completion (to handle missing entries)

e PARAFAC2 decomposition: jointly factor K matrices such that
X~ US VT, where VT is shared for all matrices (shared
subspace learning)

e The INDSCAL decomposition <o
o ...
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http://dl.acm.org/citation.cfm?id=2968986

The INDSCAL decomposition (definition)

e Recall: CP decomposition decomposes a 3-way tensor X using
three factor matrices A, B, and C
» X =~ [A,B,C]
» Or element-wise: X ~ Zle air bjr Cier

e The INDSCAL decomposition decomposes a 3-way tensor X
into two factor matrices A and C

Matrix A is used for first two modes

X ~[A A C]

Or element-wise: xjj ~ ZL airajrCir

X must be an | x | x K tensor, i.e., the first two modes must

have the same dimensionality

vVYy VY

e Observe that reconstructed frontal slices are symmetric
(i.e., [A A, Clix = [A, A, Clji)
> If we know that the frontal slices of X’ are symmetric, INDSCAL
won't destroy this structure

Carroll & Chan, 1970

37/61


http://link.springer.com/article/10.1007/BF02310791

The INDSCAL decomposition (why?)

e INDSCAL stands for “Individual Differences in Scaling”
» Useful to analyze multiple symmetric matrices referring to the
same objects
» Distance, similarity, covariance, Laplacian matrices, ...

» Recently also applied to knowledge bases (under the name
DistMult)

e Assume K subjects each ranked the similarity of / objects
» This gives us K similarity matrices, each | x [
» INDSCAL assumes that similarity decisions for each subject
depends on a set of latent factors (A), and that those factors are
weighted differently by different subjects (C)

e Best method for computing INDSCAL still open; common hack:

» Compute normal CP and hope that A and B converge
» Then force A and B equal and update C one more time
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https://arxiv.org/abs/1412.6575

Psychological data: “How similar are these countries?”
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http://link.springer.com/article/10.1007/BF02310791

Psychological data: “How similar are these countries?”
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Psychological data: “How similar are these countries?”

Carroll & Chan, 1970
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Outline

4. The Tucker Decomposition

4.1 n-Mode Product

4.2 The Tucker Decomposition

4.3 The Tucker2, RESCAL, and DEDICOM Decompositions
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4. The Tucker Decomposition
4.1 n-Mode Product
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Tensor n-mode product

e Let X be an N-way tensor of size l; X I x --- x Iy, U a matrix
of size J x I,,, and v vector of size /,

e The n-mode vector product X x, v of X with v computes

the inner product of each mode-n fiber with v
» Result is tensor of order N — 1; size f; X -+ X [p_1 X lpy1 X -+ X Iy

. I
» Element-wise: [X Xn V]il"'in—lin+1"'iN = Zi::l Xiiy---in Vi,

e The n-mode (matrix) product X x, U of X with U
multiplies each mode-n fiber with U (from the left)

> Result is tensor of order N; size f; X -+ X Ip_1 X J X Ipy1 X -+ X Iy
> In terms of unfolding: ¥ = X x, U <= Y, = UX(,)

. ]
» Or element-wise: [X Xn U]il"'in—ljin+1"‘iN = E,-:zl Xiyiy--ing Uji,
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Example

Sl I (R )
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Rewriting the CP decomposition

e Useful identities
» X xp ), =X
» X Xpn AX, B=X x,Bx,,Aform+#n
» X x,Ax,B =X x,(BA)
e We can rewrite a size-R CP decomposition as

[[A,B,C]]:IR ><1A><23><3C

» Zr is the R X R x R identity tensor
(superdiagonal, 1s on the superdiagonal)

e What happens if we use another tensor instead of Zg?
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4. The Tucker Decomposition

4.2 The Tucker Decomposition
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The Tucker decomposition

e The Tucker3 decomposition decomposes a 3-way tensor as
ngxleQBX3C

» XislxJxK
» Gisa P x Q x R tensor, called the core tensor
» A B, Carel xP, Jx Q, and K X R, resp.

e We write [G; A, B, C] for short and obtain

P Q@ R
X~[G:ABCI=> Y > guqapobsoc,
p=1qg=1r=1
P
B
S
X ~ A

Tucker, 1966 46 /61



http://link.springer.com/article/10.1007%2FBF02289464

Some remarks

e Core tensor can be thought of a compressed version of X
e Many degrees of freedom
» Parameters P, @, and R
» Properties of A, B, and C (often taken to be orthogonal)
» CP decomposition is special case (G superdiagonal, P = Q = R)

e Not unique
[G;A,B,C]|=[Gx1Ux2Vx3W; AU BV~ CW™]
» Used to “simplify” core (e.g., many zeros, all-orthogonal, ...)
e Can be generalized to N-way tensors

Can be computed using ALS with matricized forms
X1~ AG;)(CoB)"
X2~ BGp(C®A)T
X3~ CGi(BeB)T

» |f factor matrices are column-orthogonal, update
g<—X><1AT XzBT X3CT
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Higher-order SVD

e Tucker's “Method I" for computing the decomposition
> ldea is to first find components that capture variation in each
mode (independently of the other modes)
Set A = U; = leading P left singular vectors of X )
Set B = U> = leading Q left singular vectors of X,
» Set C = U3 = leading R left singular vectors of X3,
» Set core tensor G = X x1 U] x, U] x3 U]
e Today known as higher-order SVD (HOSVD)
e If P, Q, and R are smaller than rank of their corresponding
matricized forms, we obtain a truncated HOSVD

L& z7

v

\4

g
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http://epubs.siam.org/doi/10.1137/S0895479896305696

Discussion

e SVD of X, gives n-mode singular vectors (U,) and n-mode
singular values

e Indeed, many useful properties of the SVD transfer over

» Factors and slices of core tensor are ordered

(Frobenius norm of slice = corresponding n-mode singular value)
» Essentially unique
» Core tensor is all-orthogonal

(inner product between pairs of slices = 0)

e Core tensor cannot be made superdiagonal in general

e Truncated HOSVD is not optimal w.r.t. reconstruction error
» But it holds

|& — X||? < sum of squares of truncated singular values

» Good starting point for ALS (or other methods)
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Example: TensorFaces

e Data: 7943-pixel B&W photographs of 28 people in 5 poses
under 3 illumination setups performing 3 different expressions

» 28 x 5 x 3 x 3 x 7943 tensor (10M elements)

€60 00 066
€8¢ CUU 999
€Ee 999 399
€ee 999 9939
009 999 999

Vasilescu & Terzopoulos, 2002 50/61


http://link.springer.com/chapter/10.1007%2F3-540-47969-4_30

Example: TensorFaces

e Data: 7943-pixel B&W photographs of 28 people in 5 poses
under 3 illumination setups performing 3 different expressions

» 28 x 5 x 3 x 3 x 7943 tensor (10M elements)

U,ix (=Us) contains the eigenfaces
(SVD of pixels-by-picture matrix)

Vasilescu & Terzopoulos, 2002 50/61


http://link.springer.com/chapter/10.1007%2F3-540-47969-4_30

Example: TensorFaces

e Data: 7943-pixel B&W photographs of 28 people in 5 poses
under 3 illumination setups performing 3 different expressions
> 28 x 5 x 3 x 3 x 7943 tensor (10M elements)

people] viewpoints— people/ illuminations—  people| expressions—

;fr tw.:a".' I!‘
" '_ “". v —t

Some visualizations of G x5 Upix
(decreasing “importance” from top to bottom / left to right)

Vasilescu & Terzopoulos, 2002
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http://link.springer.com/chapter/10.1007%2F3-540-47969-4_30

Example: TensorFaces

e Data: 7943-pixel B&W photographs of 28 people in 5 poses
under 3 illumination setups performing 3 different expressions
» 28 x 5 x 3 x 3 x 7943 tensor (10M elements)

expres. 1 & illum. 2 expres. 1 & view 3 illum. 2 & view 3
people] viewpoints— people/ illuminations—  people], expressions—

Some visualizations of G x5 Upos X3 Ui X4 Uexp X5 Upix. The
rows show the componets w.r.t. people. The columns refer to

different viewpoints, illuminations, and expressions.
Vasilescu & Terzopoulos, 2002 50/61


http://link.springer.com/chapter/10.1007%2F3-540-47969-4_30

Outline

4. The Tucker Decomposition

4.3 The Tucker2, RESCAL, and DEDICOM Decompositions
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The Tucker2 decomposition

e Recall: Tucker3 decomposition decomposes 3-way tensor X into
three factor matrices A, B, and C, and a core tensor G

e The Tucker2 decomposition decomposes a 3-way tensor into
core and two factor matrices

» Equivalently: third factor matrix is taken as the identity matrix
» |f data tensoris | X J x K, then coreis P x @ x K

=
Q
>
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Why Tucker2?

e Use Tucker2 if you don’t want to “compress” one of the modes

» E.g., too small dimension (e.g., 500 x 300 x 3)

» E.g., want to handle this mode separately

» For example, if third mode is time, we might first do Tucker2 and
then analyze the slices { G } over time

e Tucker2 is slightly simpler than Tucker3

» We have X, = AGkBT for each frontal slice k
» When using ALS, we can update each frontal slice separately
during update of G

e Forms basis for RESCAL and DEDICOM (up next)
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The RESCAL decomposition

e The RESCAL decomposition combines Tucker2 and INDSCAL

e Given an /-by-/-by-K tensor X and a rank R, find an | X R
factor matrix A and an R X R x K core tensor R such that

X%RX;LAXQA

e |.e., minimize

K

STIIXk — ARLAT 2.
k=1

e In practice, add regularization to avoid overfitting

Nickel et al., 2011 54 /61


http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Nickel_438.pdf

RESCAL and subject—object—predicate data (1)

e Proposed with subject—object—predicate data in mind
» Designed for settings with few relations
» E.g., YAGO knowledge base: < 100 relations, millions of entities

e Used for

Link prediction (by looking at X)

Assessment of entity similarity (by looking at A)
Assessment of relation similarity (by looking at R)
Currently a hot research area; many methods can be seen as
constrained variants of RESCAL

v

v vy

Nickel et al., 2012 55/61


http://www.mpi-inf.mpg.de/yago-naga/yago/
http://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/pi1/people/rgemulla/publications/wang18bilinear.pdf
http://www.dbs.ifi.lmu.de/~tresp/papers/p271.pdf

RESCAL and subject—object—predicate data (2)

j-th entity
i-th entity
.
3 A
||Ii.. \

k-th relation

Nickel et al., 2011 56 /61


http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Nickel_438.pdf

Why RESCAL?

e RESCAL computes an embedding for every entity (A;.) and for
every relation (Ry)

e With Tucker2, entity embeddings were different depending on
whether the entity appears as subject or object
» Having one embedding per entity ensures “information flow”
» Facts with entity as subject help predicting facts with entity as obj.

e With INDSCAL, reconstructed relations were symmetric
» That's not the case with RESCAL because R tells us how to mix
embeddings to reconstruct the k-th relation
» For symmetric relations, Ry should be symmetric
» For asymmetric relations, Ry should be asymmetric

e Computation using ALS-style methods

» To update A, we use mode-1 matricization of RESCAL (as before)
Hard because A appears on left- and right-hand side
Original paper uses hack (treat right-hand side as fixed + cleverness)

57 /61
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The DEDICOM decomposition

e The DEDICOM decomposition is a precursor to RESCAL
» Mixing matrix is the same for all relations
» But entity factors are weighed differently
» X« =ADRD A", where D, is diagonal and contains the
weights of each factor for the k-th relation

e Many of the ideas in RESCAL are based on DEDICOM
» But DEDICOM is more involved to scale to large data
» And DEDICOM generally needs larger R due to shared relation
matrix

Harshman, 1978 58/61


http://www.psychology.uwo.ca/faculty/harshman/asym1978.pdf

Outline

5. Wrap-Up
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Lessons learned

e Tensors generalize matrices

» Many matrix concepts generalize well
» But some don't, and some behave very differently

e Compared to matrix decomposition methods, tensor algorithms
are in their youth

e Tensor decompositions are used in many different fields of
science

» Sometimes the wheel gets re-invented multiple times
» Traditionally tensor problems were dense
— Fewer algorithms for decomposing sparse tensors

e There are many tensor decompositions related to CP and Tucker

» Need care to select the one that's best suited for the task at hand
» Computational complexity can be an issue
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Suggested reading

e Skillicorn, Ch. 9

e Kolda & Bader, Tensor Decompositions and Applications, SIAM
Rew. 51(3), 2009
» A great survey on tensor decompositions, includes many variants
and applications

e Acar & Yener, Unsupervised Multiway Data Analysis: A
Literature Survey, IEEE Trans. Knowl. Data Eng. 21(1), 2009

» Another survey, shorter and more focused on applications

e All the papers linked at the bottom parts of the slides
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http://epubs.siam.org/doi/abs/10.1137/07070111X
http://dx.doi.org/10.1109/TKDE.2008.112
http://dx.doi.org/10.1109/TKDE.2008.112
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