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Overview Distributed
systems

Scalability Database

systems

Management

Probability Logic

Artificial intelligence
Machine learning

SUM is about managing large amounts of uncertain data.
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Outline

@ Uncertainty in the Real World
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Sources of uncertainty

Certain data

Uncertain data

The temparature is
25.634589 °C.

Bob works for Yahoo.

MPII is located in
Saarbriicken.

Mary sighted a finch.

It will rain in Saarbriicken
tomorrow.

John's age is 23.

Paul is married to Amy.

Sensor reported 25 + 1 °C.

Bob works for Yahoo or
Microsoft.

MPII is located in
Saarland.

Mary sighted either a finch

(80%) or a sparrow (20%).

There is a 60% chance of
rain in Saarbriicken
tomorrow.

John's age is in [20,30].

Paul is married to Amy.
Amy is married to Frank.

Das Sarma, Stanford Infolab Seminar, 2009

| Precision of devices|

| Lack of information |

Coarse-grained
information

Ambiguity

Uncertainty about
future

| Inconsistent data |



http://infolab.stanford.edu/infoseminar/Archive/WinterY2009/

Where does uncertainty arise?

Everywhere!
@ Information extraction (D5 research)
Sensor networks
Business intelligence & predictive analytics
Forecasting
Scientific data management
Privacy preserving data mining
Data integration

Data deduplication

Social network analysis
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Entity disambiguation (AIDA)
Disambiguate each mention of an entity in a piece of text.

Disambiguation Method: Input Type:TEXT

prior | prior+sim

sson RRHGRGHR 1 2n anciond city on the
Mediterranean Sea] MEOIREIENEEN . t was

‘world wonders.

Similartty Impact 0.5
— Candidate Entity e
Amh\%b/ degree 5 Mediterranean_sea 0.44696¢
e Battls_of_the_Mediterranean 0174937
Conerence thresnoid Mediterranean_Basin 0.01600¢

e Mediterransan_Fleet 011436
j—
Yom_Kippur_War 1

Mention Extraction:

Stles |- para
R S VN
[={[E1E]ES ¥ ] — 2 =[]

Alexandria is an ancient city
on the Mediterranean. It was H H
famous for its lighthouse, one

of the seven world wonders.

Example
e Find web pages concerning “The King of Rock'n'Roll" (entity search)

@ How much fuzz about “Santorum” in each month of 20127 (entity
tracking)

AIDA website


http://www.mpi-inf.mpg.de/yago-naga/aida/

Text segmentation

Segment a piece of text into fields. E.g., “52-A Goregaon West Mumbai

400 062"

CiteSeerx..

Id House no
1

Related Documents.

The YAGO-NAGA approach to

Version History

vy [3 ci — 0 self]
by Gjergji Kasneci , Maya Ramanath , Fabian Suchanek , Gerhard Weikum
1 e bownLonD:
Add To MetaCart ucéﬂ,:
ndd o cotlection 1 correcterrors
1 Abstract:
This paper gives an overview on the YAGO-NAGA approach to information extraction for EBRUCARAIAGS]
Rt s cameersnty esvehee g scoe Wy st knowiodae hovs. o s
facts. YAGO harvests infoboxes and category names of Wikipedia for facts about individual Add a tag:

entities, and it reconciles these with the taxonomic backbone of WordNet in order to ensure
that all entities have proper classes and the class system is consistent. Currently, the YAGO
knowledge base contains about 19 million instances of binary relations for about 1.95 million
entities. Based on intensive sampling, ts accuracy is estimated to be above 95 percent. The
paper presents the architecture of the YAGO extractor toolkt, its distinctive approach t
consistency checking, its provisions for maintenance and further growth, and the query engine
YAGO, coined NAGA. It also discusses ongoing work on extensions towards integrating fact

No tags have been applied to this document.

BIBTEX | ADD TO METACART

candidates extracted from natural-language text sources. 1. @ARTICLE{Kasneci_theyago-naga,

author = { Gjerajl Kasneci and Maya Ramanath
Citations and Fabian Suchanel: and Gerhard Weikum?,
155 Two-stage lanquage models for information retrieval - Zhai, Lafferty - 2002 title = {The YAGO-NAGA approach to knowledge

discovery},

149 Unsupervised named-entity extraction from the web: an experimental study - Etzioni, 2
Cafarella, et al. - 2005 =

yeal 1
pages = {03}
}

{SIGMOD Rec},

106 DBpedia: A Nucleus for a Web of Open Data - Auer; Bizer, et al. - 2008

Example
@ Send a promotion to customers in West Mumbai.

e Find all papers containing YAGO in the title (faceted search)

B

D include Citations | Advanced Search | Hel

Sarawagi, Information Extraction, 2008



Relation extraction (NELL / Yago2)

Extract structured relations from the web.

Recently-Learned Facts = _Refresh |
instance iteration date learned  confidence

dried_squash_seeds is a nut 225 26-mar2011 ws o &
sinnett_thom_mountain_cave is a cave 225 28-mar-2011 99.7 @ @
vail_road is a strest 224 26-mar-2011 98.4 @ @
harold_macmillan is a scientist 225 28-mar-2011 96.6 i§ §F
132207 is a ZIP code 224 26-mar201i 904 Za &
wday_tv collaborates with bbe_news 224 26-mar-2011 969 2 &
times controls friedman 227 03-apr2011 969 2 &
support_personnel is a profession that is a kind of professicnals 224 26-mar-2011 96.9 :b @
nbc_news is a newspaper in the city washington__dc 224 26-mar-2011 99.2 @ @F
twitter operates the website witier com 225 28-mar201i 1000w &

o street(98.4%)
 CPL @219 (98.4%) on 13-mar-2011 [ "ramp onto _" "second right onto _" "first traffic light onto _" "bear left onto _" "off ramp onto _" "traffic light onto _" ] using vail_read
® CPL @86 (87.5%) on 17-mar-2010 [ ffirst traffic light onto _''off ramp onte ' 'bear left onto _' ] using vail_road

Example
@ What is known about Albert Einstein? (fact search)

@ Who has won a Nobel Prize and is born in Ulm? (question answering)

Nell website 10/26


http://rtw.ml.cmu.edu/rtw/
http://www.mpi-inf.mpg.de/yago-naga/yago/
http://rtw.ml.cmu.edu/rtw/

Reasoning with uncertainty (URDF)

£
Pom,
o= . / & -~
¢
o | f

Chicago "W
all facts (1106) ...

URDF website 11/26


http://urdf.mpi-inf.mpg.de/

Google Squared (discontinued)

Find and describe items of a given category.

GOUSAQ squared [eomedy moves Square it || Add to this Square
labs
comedy movies
tem Name Release Date Genre Director Country Language
The Mask 29 July 1994 Comedy (Chuck Russell UsA English
Shrek 2 19 May 2004 Aduenture ® Chuck Russell
Directed by for The Mask
wowreebase.com - 210 sources
ues
Scary Movie 7 uly 2000 Comedy
Author for The Mask
wofraebase,con - 4
© Bob Engelman L
Role Models 7 Novembsr 2008 Comsdy
Director:
Road Trip 19 May 2000 Comady 4 Add to
Search for more values »
0ld School 21 Febuaw 2003 Comedy ToTTPT ST

Example
@ Directors that directed at least one comedy movie?

@ Birthplaces of directors of comedy movies with a budget of over
$20M?

12726



Information integration

[ Op.System | Custld | Name ] City | State ]
1 [ John San Francisco CA .
Same?{ 2 Co Johnny San Jose CA }WhICh one?
1 C3 Jack San Francisco CA
1 Cy William San Francisco CA
2 Cs Bill San Jose CA
(a) Customer Data

[ Op.System [ TransID [ CustID [ Sales

1 TT‘] C] $15
1 Tro cy $5
2 T’I‘3 CQ $30
2 Try Cs $20
1 Trs C3 $30
1 T’r‘()' 14 $90
2 Tre Cs $25
2 Trs Cs $15

(b) Transaction Data

Example

@ Turnover in San Francisco? And in California? (OLAP)

Sismanis et al., ICDEQ9 13 /26



Predictive analytics

Long tail in
Q Q2 Delivery times
/

Ew E”
S 40 S a0 .
o e mHhmJn

§27825 53 835 84 eas s foo 250 o

Revenue change x10° Days um.ll oompl.tlon

" Q3 . Q4
bl oo
§ 20, § 40
E 10 E 20

o
1.3375 1.338 1.3385 1.339 1.3395 1.34 1.3405 1,341

Total supplier cost

Example

x10"

[8.342 (8.4 [5.838C8.836C8.834(8.832 (8.83 (8,828
x10"

Additional profits

@ What is the effect of changing the price on future sales?

@ What is the risk associated with my portfolio?

Haas, MUD10
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http://www.almaden.ibm.com/cs/people/peterh/MUD2010web.pdf

RFID & moving objects

St Ha4

H1'\A/lﬁ B 'EJII H3

03

Example
@ How many people are attending John's lecture?

@ Where are choke points when moving items through my storage
facility?

Ré et al., SIGMODO08 15/26



Statistical & uncertain rules

Smoking and Quitting in Groups
Researchers studying a netwark of 12,067 people found that smakers and nonsmokers tended to cluster in groups of close friends and family
members. As more people quil over the decades, remaining groups of smokers were Increasingly pushed to the periphery of the social network

1971 A sample of 1,000 people from 2000 Nearly three decades later, groups te
the study includes many large ' % of smokers tended to be smaller and e/
b -

aroups of srmokers, inp¥ & . fmore isolated.
‘; 'f.'g' 3
= A ek

KEY

@ Malo smoker  + Male nonsmaker Friendshi

@ Female smoker  « Female nonsmaker marrlage or family te
H Fomler Ciele size 15 proportional to the number of Cigaretes Smoked per day.

Sources: Haw Engia
D Mcholas A, Clis

Example
@ Does John smoke? (social network analysis)

o “Mississippi” most often refers to the state of Mississippi. (entity
disambiguation)

Kolata, The New York Times, 2008. 16 /26


http://www.nytimes.com/2008/05/22/science/22smoke.html

Anonymized data

Non-Sensitive Sensitive
Zip Code| Age | Nationality Condition
1 1305* <40 * Heart Disease
4 1305* <40 * Viral Infection
9 1305* < 40 * Cancer
10 1305* < 40 * Cancer
5 1485* > 40 * Cancer
6 1485* > 40 * Heart Disease
7 1485* > 40 * Viral Infection
8 1485* > 40 * Viral Infection
2 1306* <40 * Heart Disease
3 1306* < 40 * Viral Infection
11 1306* < 40 * Cancer
12 1306* <40 * Cancer

Example

@ Medical research, trend analysis, allocation

of public funds, ...

Machanavajjhala et al., TKDDO7
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© Managing Uncertainty
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How to deal with uncertainty? (1)

Clean it (then deny it)!

o E.g., data warehouse systems
@ Advantages

> Lots of expertise and tools for cleaning data

» Can be stored and queried in traditional DBMS
Disadvantages

Loss of information

> No risk assessment

» High expense of cleaning

» New data may “break” the clean database

v

Important, but not covered in this lecture!

Customers CleanedCustomers

Cust Name | City State
Ci2 |Johnny|SFO| CA
Cs Jak |SFO| CA

19/26



How to deal with uncertainty? (2)

Manage it!

20/26



Approach |: Incomplete databases

@ A data integration scenario
Customers Transactions
Sys Cust Name City|State

Sys TransID Cust Sales

1 T C; | $15

1 T G| %5
2 LE Cz | $30
1 Ts Cs | $30

@ Resolving entities via an incomplete database
ResolvedCustomers Resolved Transactions
Ent Name City  State

E: [John || Johnny|SFO || SJ| CA T E; | $15
E» Jak SFO CA T Ei| $5
Ts E: | $30
T E> | $30
@ Some query results
Sales by city Sales by state

State Sum(Sales)| Status
CA $80 guaranteed

City | Sum(Sales) Status
SFO| $30-$80 guaranteed
SJ $50 non-guaranteed

Sismanis et al., ICDE09 21/26



Approach |l: Probabilistic databases

@ Bird watcher's observations
Sightings

Species

@ Which species exist in the park?

ObservedSpecies

Finch: 0.8 ?
Toucan: 0.714 ?
nghtlngale 0.65 |7

@ Observe: Cleaning up data by most likely choice would miss Toucan!

Das Sarma, Stanford Info Blog, 2008 22/26


http://infoblog.stanford.edu/2008/07/why-uncertainty-in-data-is-great-posted.html

Approach lll: Probabilistic graphical models

@ Anna and Bob are friends. Anna smokes, but does not have cancer.
What do we know about Bob?
@ Uncertain knowledge

15 { Smoking causes cancer
Vx.Smokes(x) = Cancer(x)

11 { Friends have similar smoking habits
Vx.Vy.Friends(x,y) = (Smokes(x) <= Smokes(y))

o Build a graphical model S(B) C(B) #R1 #R2 w Prob.
& perform inference

No | Yes 1 1 .
Yes | No | O 3 [3.3]15.4%
1 3 14.8/69.2%

. Yes | Yes
| Smokes(B)

Cancer(A)

23/26



How to deal with uncertainty? (2)

Manage it!
o Advantages

» No or little loss of information

» Uncertainty might be resolved more accurately at query time
» Risk assessment is possible

> Less upfront effort

» Arrival of new data handled gracefully

o Disadvantages

> Increased cost of data processing
» Active research area with lots of open issues (and interesting results)
» No commercial DBMS systems available!

@ This lecture!

24 /26



Course overview

@ Modelling uncertainty
> Incomplete databases
» Probabilistic databases
» Probabilistic graphical models for relational data

@ Managing uncertain data

» Languages (relational algebra, datalog, relational calculus)
» Provenance
» Algorithms
» Complexity
» Approximation techniques
» Systems

@ Applications
» Information extraction, sensor networks, business intelligence &
predictive analytics, forecasting, scientific data management, privacy
preserving data mining, data integration, data deduplication, social
network analysis, ...

25 /26



Suggested reading

e Charu C. Aggarwal (Ed.)
Managing and Mining Uncertain Data (Chapter 1)
Springer, 2009.

@ Daphne Koller, Nir Friedman
Probabilistic Graphical Models: Principles and Techniques (Chapter 1)
The MIT Press, 2009

@ Dan Suciu, Dan Olteanu, Christopher Ré, Christoph Koch
Probabilistic Databases (Chapter 1)
Morgan & Claypool, 2011

@ Charu C. Aggarwal, Philip S. Yu
A Survey of Uncertain Data Algorithms and Applications
IEEE Transactions of Knowledge and Data Engineering, 21(5),
pp. 609-623, May 2009

26 /26
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Overview

In this lecture
@ Refresh relational algebra
What is an incomplete database?
How can incomplete information be represented?
How expressive are these representations?

How to query incomplete databases?

e 6 6 o6 o

How to query their representations?

Not in this lecture
o Complexity
o Efficiency

@ Applications

)

N



Outline

@ Refresher: Relational Algebra
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Notation

Set of attributes </ (countably infinite, totally ordered)

Domain & of values for the attributes (countably infinite)

Elements of & are called constants

Per-attribute domain denoted dom(A)

Set of relation names Z, each associated with a finite set of attributes
a(R) C 7 (countably infinite names per finite set of attributes)

A schema is a finite set of attributes (symbols U, W, V)

A relation schema is a relation name (symbols R, S)

@ A database schema is a nonempty finite set of relation names

Example

o ={AB,C,D,...} =ABCD...
2 ={a,bi,c,a,...}

dom(A) ={a1,a,...}
Z={R,S,...}

a(R) = ABC; write R[ABC]

A C

® 6 6 6 o




The Named Perspective

Let U C & be a schema

Tuple t over U is a function t : U — 2 (also called U-tuple)

a(t) denotes the schema of t

Value of attribute A € U of U-tuple t is denoted t(A) or t.A
Restriction of U-tuple t to values in V C U is denoted t[V]
Relation instance I(R) of R is a finite set of tuples over a(R)
Database instance | of database schema R maps each relation name
in R € R to a relation instance I(R)

Example

t1 is a tuple over ABC

t1 =(A:a1,B: by, C: 1) = a1y

a(t) = ABC

ti(A) = t.A=a

t1[AB] = a1 b is a tuple over AB

I(R) ={ti,tr} = {aiboci,axbicy } is relation instance over ABC

v

5/72



The Unnamed Perspective

@ Tuple t is an ordered n-tuple (n > 0) of constants, i.e., t € Z"

@ Value of i-th coordinate denoted t(/)
@ Natural correspondence to named perspective
» n-tuples can be viewed as functions with domain {1,...,n}

» U-tuples can be viewed as |U|-tuples by using total order of attributes

Example

ty:
to:

R

al
an

b
b1

€1
€1

@ t; = (a1, br,c) = aihrc1

o tl(l) =a

‘ For now, we will mostly use the named perspective.

6/72



Relational algebra (1)

@ Relation name R
e Single-tuple, single-attribute constant relations (VALUES clause)

{(A:a)}
for A€ o/, a € dom(A)
o Selection o (WHERE clause)

oa=a(l)={tel|tA=a}
oa=g(l)={tel|tA=tB}
for A, B € a(l) and a € dom(A).

{(A:a)}
2]

Example

R

O'A:al(R) O'A:a3(R)




Relational algebra (2)
® Projection m (SELECT DISTINCT clause)
my(l) = {tlU] [tel}

for U C o(R)
e Natural Join x (FROM clause)

I'wJ={tover UUV |t[UlelNt[V]eJ},
where U = «(l), V = a(J)

Example
R S mac(R)
A B C A C
ti:|ai| b2 | c1 ty: ai|c
tilax| b1l ts:| az| do az|

tz:|a1|b1|c1 te:| a1 | ds

/72



Relational algebra (3)

@ Renaming of attributes p (AS clause)
pAl.',A"ﬁBIV.'Bn(/) = { t over V | (Elu € /)(\V/I S [1, n]) uA;=t.B; },

where a(l) ={ A1,...,An}, V={By,...,Bn}

@ Short notation: only list attributes being renamed

Example

R pa—cp(R) pag—Ba(R) R X pg_c(R)

ti:|a1| b2 a1 | bz
tr:|ar | by az| by
t3:| a1 by ai| by




Relational algebra (4)
@ Union U (UNION clause)

luJ={t|telvtel}
for a(l) = a(J)
e Difference — (EXCEPT clause)
I —J={t|telnt¢ ]}
for a(l) = a(J)

Example
S RUS R-S
A B Al B
ty:|a1| by
ts:|a | b1

ts:|az| b

10/72



L -expression

Definition
Let £ C SPJRUD be an algebra. An Z-expression is any well-formed
relational algebra expression composed of only relation names, constant

relations, and the operations in .. Algebra .Z is positive if it does not
contain the difference operator.

Example
o ma(mag(R)) is a P-expression but not an S-expression

@ 0a—,(R) is both an S-expression and a PS-expression, but not a
P-expression

@ R is an (l-expression

@ All of the above expressions are positive, but R — S is not

11/72



Generalized Selection

o Relational algebra
» 0a=s(R) for A€ a(R) and a € dom(A)
» oa—g(R) for A,B € a(R)
» A= aand A= B are called predicates

Generalized selection operators extend the class of predicates

Positive conjunction

UPI/\PZ(R) =0p (UP2(R))

Positive disjunction (ST)
UP1VP2(R) = UPI(R) U UPz(R)

Negation (S, not positive)

o-p(R) = R — op(R)

Note: Union and difference can simulate generalized selection but not
vice versal — St and S~ variants of S



Outline

9 Incomplete Databases
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Examples of incomplete information

Certain data

Uncertain data

Paul owns a car.
Name Object

Paul | Car |

Bob works for Yahoo.
Name Company

Mary sighted a finch.
Paul sighted a finch.
Name Bird

Mary |Finch

Paul |Finch
Paul's favorite number
is 17.

Name Num
| Paul [ 17 |

Paul may own a car. Tuple-level

Name Object Name Object uncertainty
or
Paul | Car

Bob works for either Yahoo or Microsoft. | Attribute-level

Name Company ; Name Company uncertainty
Bob | Yahoo |°| Bob |Microsoft

Mary sighted a finch or a sparrow.

Paul sighted what Mary sighted.
Name Bird Name Bird

Mary |Finch | or | Mary | Sparrow
Paul |Finch Paul |Sparrow

Paul has a favorite number,

but it is unknown.

Paul | 1 |®[Paul| 2 |°

|We need a precise way to model and represent incomplete information.

7/ 72



Examples of incomplete databases

Certain data Uncertain data

Paul owns a car. Paul may own a car.

Name Object Name Object [l§ Name Object
m Paul | Car |

Tuple-level
uncertainty

Attribute-level
uncertainty

Bob works for Yahoo. Bob works for either Yahoo or Microsoft.
Name Company Name Company l§ Name Company
Bob | Yahoo || Bob [Microsoft
Mary sighted a finch. Mary sighted a finch or a sparrow.

Paul sighted a finch. Paul sighted what Mary sighted.

Name Bird Name Bird

Mary | Finch Mary |Finch|, | Mary |Sparrow
Paul |Finch Paul |Finch| | Paul |Sparrow

Paul's favorite number Paul has a favorite number,
is 17. but it is unknown.

Name Num
m Paul | 1 [|Paul| 2 |

Correlations

An incomplete database is a set of “possible worlds” (i.e., DB instances).




Incomplete database

Ay ={11]1is a (finite) relation instance over schema U}

Definition

An incomplete relation (i-relation) Z over U is a set of possible
relation instances over U, i.e., T C A.

@ An incomplete database (i-database) of a database schema R maps
each relation name R € R to an incomplete relation over a(R).

@ “Incomplete” refers to incomplete information

@ Focus on one relation — use i-relation and i-database synonymously

@ Usual relation instances: Z = {1/}

@ No-information or zero-information database over U: T = A,

@ Incomplete databases can be infinite even though every relation
instance is finite; e.g., {,, , .. }

e M is (countably) infinite

@ Set of all incomplete relations is uncountable

16
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Representation system

@ Incomplete databases are in general infinite
@ Even if finite, they can be very large

— Need compact representation!

Definition
A representation system consists of a set (a “language”) .7 whose

elements we call tables, and a function Mod that associates to each table
T € .7 an incomplete database Mod(T).

@ Again, we'll assume a single relation
(reformulation for multiple relations possible)

@ Mod(T) can be thought of as the set of database instances consistent
with T (called the possible worlds)

@ T can be viewed as logical assertion; Mod(T) are models of T

17 /72



Codd tables

@ Missing values are indicated by a single, untyped null value @
@ Each occurrence of @ stands for a value of the attribute's domain

o Different occurrences may or may not refer to the same value

Example
SUPPLIER LOCATION PRODUCT QUANTITY
Smith London Nails (]
Brown (G] Bolts (]
Jones (] Nuts 40,000

Definition
An @-tuple on U is an extended tuple in which each attribute A € U takes
values in dom(A)U{@}. A Codd table is a finite set of @-tuples.

v

18/72



Models of Codd tables (1)

Definition

Under the closed world interpretation, a Codd table represents the set of
relations obtained by replacing @-symbols by valid values.

Example
Suppose dom(A) = { a1, a2 } and dom(B) = { b1, b2 }.
a1 (G] o a1 b1 al bl al b2
MOd(@ b2> _{31 b27 dn bg” d» bz}

Let R* € RHS of the example:

@ There is no certain tuple, i.e., AtVR* t € R*

@ The first column contains a;, the second b

@ R* has at least one and at most 2 tuples

@ apby is not in R* m— .
o ‘ Negative information can be represented.

19/72




Models of Codd tables (2)

Definition

Under the open world interpretation, a Codd table represents the set of
relations obtained by replacing @-symbols by valid values and adding

arbitrarily many additional tuples.

Equivalently, this means S € MOD(T) <= (IR)R € Mod(T)AS DO R.

Example

MOD(

by

ar|by| |a1|bi| |a1|b2| |a1| b2
21| bo), j
AR LAREALAREAL
a b1
a1|b1] [a1]b1] [a1]b1] [an]b2] |1
ai| by
ai|bal,|a1|b2|, |a2| b2, |a2| b2 b
az| by
ar|by| |az|ba| |a2|b1]| |a2| by b
ax| b




Models of Codd tables (3)

Example
a1 b1 a1 b1 a1 b2 a1 b2
T ’ dai b2 an b2 an b2 an b1
a| @\ _ b
MOD ( I b2> = ai|bi| |a1|bi]| |a1|bi]| |a1| b2 zi b;
a1 |ba|, |a1| b2, |a2| b2}, |a2| b2 a| by
ar b1 an b2 ar b1 ar bl b
az| b

\

Let R* € RHS of the example:

R* has at least one tuple

Every tuple is possible, i.e., VtdR* t € R*

There is no certain tuple, i.e., ﬂtVR* te R*

The first column contains aj, the second by

Negative information cannot be represented.

21
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v-Tables

@ Missing values are indicated by marked null values or variables
e V/(A) = set of variables for attribute A (countably infinite)
e V(A)N V(B) =0 if dom(A) # dom(B); otherwise V(A) = V(B)

Example
Course Teacher Weekday
Databases X Monday
Programming| y Tuesday
Databases x | Thursday
FORTRAN | Smith z
Definition

A v-tuple on U is an extended tuple in which each attribute A € U takes
values in dom(A) U V(A). A v-table is a finite set of v-tuples.

22/72



Models of v-tables

Example

Suppose dom(A) = { a1,a2 }, dom(B) = { b1, b2 }, dom(C) ={ a1, }.

dy| X . dl
od (|| ) = {12

b1 al
b2’ an

b ailb
b ar]ea) |2 2

Mod(cl Z):{Cl
Z | C C1

Cl| |G|
Q| ¢

Mod (z]z) = {[co

C1’C2

b

c|c|}

) CZ‘C17

@ Var(T) = { x| variable x occurs in T }

e Valuation v : Var(T) — Z assigns (valid) values to each variable

@ v(T) is the relation obtained by replacing all variables by their values
@ Mod(T)={v(T) | v is a valuation for Var(T) }

‘ Codd tables = v-tables in which each variable occurs at most once.
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v-Tables and view updates

v-tables appear naturally when updating relational views.

Example
SL SP
Supplier Location Supplier Product
London
X New York X Bolts
3% Los Angeles 3% Nuts

7"'Lot:ation,Product(SI- X SP)
Location Product

London
New York | Bolts
Los Angeles| Nuts
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c-Tables

@ c-tables are v-tables with an additional condition column con,
indicating a “tuple existence condition” — conditional table

@ Conditions taken from a set ¥ composed of

> false, true

» x=a forx € V(A) and a € dom(A) for some A € &/

» x=y forx,y € V(A) for some A € &/

» negation —, disjunction V, conjunction A
@ Positive conditions do not contain negations (set €')

Example
Supplier Location Product con
X London | Nails |x = Smith
Brown [New York| Nails |x # Smith
Definition

A c-tuple t on U is an extended tuple over U U {con} such that t[U] is a
v-tuple and t(con) € €. A c-table is a finite set of c-tuples.

v
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Models of c-Tables

Example
Suppose dom(x) = dom(y) ={1,2}.

xlyl x1ly2 x2yl x2y2

Mod 32b1 X;é]. = 31b1,31b1,32b1,22b1
a3|bly =1Ax#1 a4|ba| |as|bo| |a3|bo| |as| b2
alb|ly #1vx=1

al b1 ar b1 an b1
a4 bz’a3 b2’84 b2

@ Valuation check conditions: v(T) = { v(t[U]) | v(t(con)) = true }
@ Mod(T)={v(T) | v is a valuation forVar(T) }

v-tables are equivalent to c-tables in which each condi-

tion equals true.
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Finite representation systems

Definition
In a finite-domain Codd-table, v-table, or c-table T, each variable
x € Var(T) is associated with a finite domain dom(x).

@ Important in practice
@ Sometimes easier to study
@ Basis for most probabilistic databases

@ Incomplete database is finite
(but attribute domain and no. variables still countably infinite)
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Other finite representation systems

All of these models can be seen as special cases of finite-domain c-tables.

Example

In ?-tables, tuples are marked with 7 if they may not exist.

b
od (12121, ) = { [}

In or-set tables, t.A takes values in a finite subset of dom(A).

ai
ai

by
bo

|

al| b ai| b 15 ai| by b Equivalent to
Mod | [a1|b1||b2| | = < |a1| b1, al b2 ai| by al b2 finite-domain
az| b1 b a| by | E2E 5y | by | 122122 Codd tables,
In a 7-or-set table, both are combined.
ai| b ai|bi||a1|b1
(32 by b ?> {’ ax|bi||az|b>
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Outline

© Strong representation systems
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Possible answer set semantics

Definition

The possible answer set to a query g on an incomplete database 7 is the
incomplete database q(Z) = {q(/) |/ € Z }.

Example
Let g(R) = oa=a(R).

ai|bi||a1|b1||a1|b ~ ([a]br
q({ ai|by||az| b1l a2 bz’}>_{al bz”m}

Can we compute the representation of the possible answer

set to a query from the representation of an incomplete
database?

[y
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Strong representation systems

Definition
@ A representation system is closed under a query language if for any
query g and any table T there is a table g(T) that represents
q(Mod(T)).
@ If g(T) can always be computed from g and T, the representation
system is called strong under the query language.

T Mod T
GJ Jq
a(T) M9 (7

Intuitively, this means that the query language is “fully sup-
ported” by the representation system: query answers can be
both computed and represented.
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Normalized c-tables

Definition

A c-table T on U is normalized if t[U] # t'[U] for all pairs of distinct
c-tuples t, t' € T.

Example
Not normalized Normalized
ai1lb|x=1 ailbi|lx=1vx=2
ailbi|x =2 as | by true
ar| by| true

To normalize a c-table, repeatedly apply rule 3 (next slide).

We'll assume normalized c-tables throughout. ‘
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Mod-equivalence

Definition
Two tables T and T’ are Mod-equivalent (or just equivalent) if
Mod(T) = Mod(T"). We write T =poq T'.

Mod-equivalent transformations on c-table T on U:
© Replace a condition by an equivalent condition;
eg, (x=1ANy=1)V(x#1Ay=1)byy=1
@ Remove tuples in which condition is unsatisfiable;
eg, x=1Ax=2

© Merge tuples t1,...,tx € T with t;[U] = - -+ = t,[U] into a new
tuple t’ s.t. t'[U] = t1{U] and t'.con = ty.conV/ - - -V ty.con.

Mod-equivalent transformations can be used to simplify c-tables.
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c-Tables are strong

Theorem

c-tables, finite-domain c-tables, and Boolean c-tables are strong under

RA.

Proof.

Given a RA query g, construct g by replacing in g the operators 7, o, X,
U, and — by the respective operators 7,7, X, U, — of the c-table algebra.
Then v(g(T)) = q(v(T)) for all valuations v for Var(T). O

We assume and produce normalized c-tables

Boolean c-table: all variables are boolean

°

°

e T(t) denotes t.con if t € T; false otherwise

e T[] drops condition column of normalized c-table
°

Relational algebra operations on T[] treat variables as normal values
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c-Projection

Definition
Tu(T[ = mu(T()
Tu(T)(t) = \V T(t')

t'eT st. t'[U]=t

Example
Sightings T Name(Sightings)
Name Species

Anna|x=1Vx =2
Bob X =
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c-Selection

Definition
ar(T)] =TIl
ap(T)(t) = T(t) A P(2),

where P(t) replaces in P each occurence of an attribute A by t.A and
evaluates subexpressions of form a = b (to false) and a = a (to true).

Example
Sightings

5Species=Guan (Sighti ngs)

7s—c(Sightings) (simpl.)
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c-Union

Definition
(THOTL)[] = Ta[]U T[]

(T]_DTZ)(t) = T]_(t) V Tz(t)

Example
Sightings

Sightings U VIPs

x = 1V false

z|falsevy =3

SOV (simplified)
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c-Join (1)

Definition

Set Ui = a(T1), Uo = a(T>), and denote by V = Ui N Us = Ay ... Ai the
join attributes. Let V/ = A} ... A} be a fresh set of attributes (of
matching domains). Set T} = py_,v/(T2) and U} = o(T3).

(Tixvov T2)[] = Tafl @ T3]

(Timv_ v T2)(t) = Ta(t[UL]) A TH(t[US)]) /\ tA=tA
AcV
T1D_<1 T = 7?U1UU2(T1D_4V—>V’ T2/)
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c-Join (2)

Example

Sightings Sightingsx y_,nr VIPs
NS N con
A|IG|A| x=1Ay=1Atrue
AHA| x=2Ay=1Atrue
2KIA|x=3Ay=1ANzz=A
2|LIA|x=4ANy=1Nzn=A
A|IGIB| x=1Ay=2Afalse

VIPs VIPs' AH[B| x=2Ay =2Afalse
z1K|B|x=3Ay=2Az1=8B

Aly = Aly=1 2|L|B|x=4Ay=2A2z=B

Bly = Bly=2 AlGlzi|x=1ANy=3Azx=A

z1ly =3 71|y =3 AH|z1|x=2Ay=3ANzz =A
K|z x=3Ay=3ANz1=27
Lzl x=4Ny=3Nzn=27
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c-Join (3)

Example (continued)

Sightings Sightingsxy_, ns VIPs (simplified)
N S N con
A[G| A x1lyl
AHIA x2y1
z1|KIA|x3ylAz=A
z|L|A|xd4yl ANz =A
z1|K| B |x3y2Az =B
z|L| B |x4y2 Nz =B
AlG|z1 | x1ly3Azr =A
AH|z1 | xX2y3Az1 =A
z1 K| z1 x3y3
z|L|zi | x4y3 Nz =27

AlG x1ylV (x1y3 Az = A)
AlH x2y1V (x2y3 Azy = A)
z|K (x3y1 Az =A)V (x3y2 Az = B) V x3y3

z|L|{(x4yl Az =A)V (x4y2 AN zo = B) V (x4y3 N\ 2o = z1)

v
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c-Difference

Definition (c-Table difference)
(T1=VIPs)[] = T4[]
(Ti=VIPs)(t) = Tu(t) J\ -

(t = t' AVIPs(t))
t’eVIPs

Example

Sightings  VIPs

Sightings—VIPs (simplified)

Al x1 B|yl Al xIA-(z=AAy3)
B| x2 C|y2 B|{x2 A -yl A—=(z=BAy3)
C| x3

z|y3 CIx3A-y2A

—|(Z = C/\y3)

Sightings—VIPs

A|x1 A —(false A y1) A
B|x2 A —(true A y1)
C| x3 A —(false A y1)

—(false A y2) A
A —(false A y2) A
A =(true A y2) A

-(z=AAy3)
-(z=BAy3)
-(z=CAy3)
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Many representation systems are not closed

Theorem
Codd tables, v-tables, finite-domain Codd tables, finite-domain v-tables,
?-tables, or-set tables, and 7-or-set tables are not closed under RA.

Proof.

By counterexample. Consider:

e Codd tables / v-tables (standard and finite-domain), or-set tables,
7-or-set tables:

TA+B (> where dom(x) = dom(y) and |dom(x)| > 1.

@ 7-tables:

Al B 7 We will see: these systems are
still very useful!

dal X ? y

a1
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Outline

@ Completeness
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Expressive power

Key question: How expressive is a given representation system?
Theorem

Neither Codd tables, v-tables, nor c-tables can represent all possible
incomplete databases.

Proof.

Set of incomplete databases is uncountable, set of tables is countable.

Ol

o E.g., zero-information database .4}, cannot be represented with
closed world assumption
@ Need to study weaker forms of expressiveness
@ R.A-completeness
@ Finite completeness

v

44 /72



R A-definability (1)
o Zy={{t}|a(t) =V}

@ Zy is the minimal-information database for instances of cardinality 1

Example
Let V = B;B,, where dom(B;) = dom(B;) ={1,2,...}.

BN C. B2 B1 BB B B B>
VEYl L2222
Definition

An incomplete database Z over U is R.A-definable if there exists a
relational algebra query g such that Z = g(Zy) for some V.
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R A-definability (2)

Theorem
If T is representable by some c-table T, then T is R.A-definable.

Proof.

Let o(T)=U = A;... A, Let xy,...,xx denote the variables in T and
let V = By...Bx be a set of attributes such that dom(B;) = dom(x;).
Consider the query

A(Z) =\ 70 (0p s oy oy ecom [AL(E) 3 -2 3 An(t) ¢ Z])
teT
where

Ailt) = {{ (Aiza)} A=
pB—a(m8;(Z)) if t.A =X

We have q(Zv) =Z. O
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R A-definability (3)

Example
T

- _ | B2 BEEA B2 A2
VEAl a2l 2f

U WAIAZ(UBHA MZ)
U Taa, (UBZ:MBI#I NZ:>
o )
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R.A-completeness

Definition
A representation system is R.A-complete if it can represent any
R A-definable incomplete database.

Theorem
c-tables are R.A-complete.

Proof.

Let Z be R.A-definable using query q(Z\/). Let T be a c-table
representing Zy, i.e., set

T_ By By ... Bx con
T x1 x| .. | xk |true
Since c-tables are closed under RA, g(T) produces a c-table that
represents 7. [
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Finite completeness (1)

Definition
A representation system is finitely complete if it can represent any finite
incomplete database.

Theorem

Boolean c-tables (and hence finite-domain and standard c-tables) are
finitely complete.

Corollary

Every R A-complete representation system is finitely complete.
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Finite completeness (2)

Proof.

Let 7 = { JO oo 00 } be a finite incomplete database and assume wlog
that n = 2™ for some positive integer m. Let x = (xm_1,...,%0) be a
vector of boolean variables. There are 2™ possible values of x; assign a
unique one to each /", w € {0,...,n—1}. Let ¢, (x) be a Boolean
formula that checks whether x takes the value assigned to /. Then set

=
T(t)= \/ cw(x).

w s.t. telv

We have Mod(T) =T. O
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Finite completeness (3)

ai b1 as b2 ai bl
az|b3| |az| b2

Example

Instance x = (xy,xp) cw(x)
10 (F, F) —ix1 A\ TXg
IF- (F, T) —X1 \ Xo
12 (T, F) P AR )
IE (T, T) X1 N\ Xo

ai| by (—\Xl A —|X0) V (X1 A —|Xo)
as | by (—|X1 VAN Xo) V (X1 VAN —|X0)
as| bs (—|X1 A Xo)




Incompleteness results

Theorem

Codd tables, v-tables, finite-domain Codd tables, finite-domain v-tables,

?-tables, or-set tables, and 7-or-set tables are not finitely complete (and
thus not RA-complete).

Proof.

By counterexample. Consider the finite incomplete database

Due to their simplicity (and completion properties), these
representation systems are very useful in practice. This moti-
vates the study of weak representation systems.
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A note on compactness
In practice, compactness of representation is important!

Example

Let x1,...,xx be variables with domain {1,2,...,n}. Consider the
finite-domain v-table

Al As .

-

The corresponding Boolean c-table has n rows!
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Outline

© Weak Representation Systems
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Certain answer tuple semantics (1)

Definition

Let Z be an incomplete database and g a relational algebra query. The
g-information 79 is given by the set of certain tuples in g(Z), i.e.,

79 = Njeq(z)!- Note that 79 is a certain database; it constitutes the query
result under the certain answer tuple semantics.

Example
It 12
@ 7 = < |Anna|Guan/|, [Anna|Guan
Bob |Guan] | Bob | Hb Different relational
e IR=11nJ2 = quer.ies expose more or
o I™s(R) = wg(IM) N7s(12) = Ice:rstal?:ii:r;?;?n about

Anna

o Z™(R) — 7TN(Il) ﬁﬂ'/\/(/2) = Bob




Certain answer tuple semantics (2)

Definition

Let T be a table and g a relational algebra query. The g-information T9 is
given by the set of certain tuples in g(Mod(Z)), i.e., T9 = NjcqMod (7))!-
Note that 79 is a certain database.

Example
Suppose dom(x) = { A,B} and dom(y) = { G,H }.
T
Aly)\ _ [[A]G] [A]G ATH
MOd<XH>_{AH’BH”BH}
e TR=10

o Tﬂ-N(R) = {A}
o T™s(R) = {H}

‘ Intuition: Uncertain tuples that remain after “applying” g are omitted.
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Z-equivalency

Definition
Two sets of incomplete databases Z and J are .Z-equivalent, denoted
IT=¢ Jif 219 = 79 for all Z-expressions q.

Example

7_ Anna| Guan Anna| Guan
~ | | Bob [Hum. bird[ | Bob |Kingfisher

7 = { [Anma Guan]}

@ 7 and J are (-equivalent

e But: Z and J are not P-equivalent (consider 74)

Z-equivalent databases are indistinguishable
w.r.t. the certain tuples in the query result.
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More examples of .Z-equivalency

Example

r-{ ka2 2}
7 ={(alala) 2217}

@ 7 and J are (-equivalent
@ 7 and J are P-equivalent
@ 7 and J are J-equivalent

@ 7 and J are not PJ-equivalent; e.g., set
q(R) = mag(mac(R) x mac(R)).

Then a1by € Z9 but a1b; ¢ J9.
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Weak representation system

Definition
A representation system is weak under a query language .Z if for any
Z-expression g and any table T there is a computable table g(T) that

Z-represents q(Mod(T)).

Mod(3(T)) =2 q(Mod(T)). |
T Mod Mod(T)
jq
q q(Mod(T))
a(T) M9 Mod(a(7))

Weak representation systems correctly determine the certain tuples under .i”ﬁ.q >




PS on Codd-Tables

Theorem
Codd tables are weak under PS.

ap(T)={t|te T and P(v(t)) for all valuations for Var(T) }
Tu(T) = mu(T)

Example

Name Species| Location NS L NS N S

Bob | Kingf. @

These are single-relation queries! |
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PJ/PSU on Codd-Tables

Theorem
Codd tables are not weak under PJ or PSU.

Proof (for PJ).

Consider Codd table T and set Z = Mod(T)
Set q(R) = mac(R) x m(R)

c-table Ty . represents Z, = q(Mod(T)).
Suppose Codd table T, PJ-represents Z,
Consider g’ = mac(mas(R) x mac(R))

For each valuation v, T4 must contain tuples ti, t
sit. t1.A=a, .C =c1, and v(t1).B = v(t2).B

Q t; = t, then arcy € Tg"c but axc; ¢ Ig"‘c
— ¢

Q t1 # ty, then t;.B = t,.B = b, then
ab € T7#¢ for some b but Z7#8 = () — 4

v
or/r2



Null values in SQL

SQL null semantics is related but not equal to Codd tables — Be careful!

Example

On PostgreSQL.

@ 0p_1(T) — SELECT * FROM T WHERE B=1
@ mac(T) — SELECT DISTINCT A, C FROM T

T

1 1
2 2

og=1(T) 0B+1(T) oB=1vB£1(T)

+5 M s CclliG ]
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Positive R.A on v-Tables

Theorem

v-tables are weak under the positive RA. To obtain g, simply treat
variables as distinct constants and use standard R.A operators.

Example

Sightings

N| S
A|G
AlH
ZlK
z|L

VIPs

N
A
B

21

5N:A(S)

N S

AlG
AlH

7s(SxV)
S
G
H
K

Easy to do in an off-the-shelf relational database system!
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PS~ on v-tables

Theorem

v-tables are not weak under PS—.

Proof.
@ Consider v-table T and set Z = Mod(T)
@ Set g(R) = 0(a—a;nB=b)v(A=aABb) (R)
@ c-table Ty, . represents Zg = q(Mod(T)).
@ Suppose v-table T, PS™-represents Z,
@ Consider ¢'(R) = mc(0a=ava=s(R))
QO (3teTy)t1.A=aj, then 3, € T — 4
Q (Vte Ty)t.Ae Var(T), then T =0 — ¢
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Algebraic Completion

Definition
Let (.7, Mod) be a representation system and £ be a query language.

The representation system obtained by closing 7 under £ is the set of
tables {(T,q) | T € 9,9 € £} and function Mod(T, q) = g(Mod(T)).

Example
No Codd table for Z, but closure of f.d. Codd tables under JR suffices.

I= {,}, TZ, q(R) = R % pass(R)

@ Think of g as a view over T
@ View result need not be represented directly

Algebraic completion extends the power of a represen-
tation system with the power of a query language.
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R.A-completion for Codd tables

Theorem
The closure of Codd tables under SPJRU is RA-complete.

Proof.
@ c-tables are RA-complete

o Every c-table T can be R.A-defined by an SPJRU-query g on Zy
(see slide 46)

@ Zy can be represented as a Codd table T’

Bi B, ... B
—

@ Mod(T’,q) = g(Mod(T")) = q(Zy) = Mod(T)

O]

v

‘ Relational databases with views can represent any R.A-definable database!
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R.A-completion for v-tables

Theorem
The closure of v-tables under S P is RA-complete.

Proof.

Let T={t1,...,tm} be a ctable on A;... A, and let
Var(T) = {x1,...,xk }. Express T in terms of v-table T’ and query g:

q(R) = ma...a(oyr (pinc=i)(R))

where 1); is obtained from t;.con by replacing all variables x; by the
corresponding attribute B;. [

B8




Finite completion results

Theorem

The following closures are finitely complete:
© or-set-tables under PJ,
Q finite v-tables under PJ or ST P,
© 7-tables under RA.

Proof.

Try it yourself. Hints: Don't start with a c-table, but an incomplete
database Z. You need two tables for cases 1 and 2; case 3 is quite
tricky. [
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Lessons learned

Incomplete databases are sets of possible databases

Representation systems are concise descriptions of incomplete
databases

Queries can be analyzed in terms of
© Possible answer sets (strong representation)
@ Certain answer tuples (weak representation)
© Possible answer tuples (finite i-databases only)

o Codd tables add null values; weak under PS

— Be careful with null values in SQL

v-tables add variables; weak under positive RA

c-tables add variables and conditions; strong under R.A and
RA-complete

R.A-views on Codd tables are R.A-complete — key property!
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Overview

In this lecture
@ Introduction to datalog

@ What is provenance?

Which types of provenance do exist?
> Lineage
» Why-provenance
» How-provenance

How to compute provenance?

How do the types of provenance relate to each other?

How to derive provenance information for datalog?

Not in this lecture
@ Uncertainty

@ Where-provenance

)
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© Datalog
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Datalog

Datalog is a declarative language
Datalog program is collection of if-then rules
Supports recursion (in contrast to relational algebra)
Datalog is a logic for relations (“database logic”)
Datalog is based on Prolog

» No function symbols + safety condition

» Unique and finite minimum model

» Unique and finite minimum fixpoint

» Expressive power in PTIME

Example

ancestor(x, z) < parent(x, z)

ancestor(x, z) < ancestor(x, y), parent(y, z)
Straightforward translation to first-order logic:

(Vx)(Vz) parent(x, z)— ancestor(x, z)
(Vx)(VYy)(Vz) ancestor(x, y) A parent(y, z)— ancestor(x, z)




Predicates and atoms

@ Relations are represented by predicates of same arity

» For relation name R, we use predicate name R

» Order of predicate arguments = natural order of relation attributes
@ Predicate with arguments is called a relational atom

» R(ai,...,ak) returns TRUE if (a1,...,ax) € I(R)

» FALSE otherwise (closed word assumption)
@ Predicate can take constants and variables as arguments

» Atom with variables = function that takes values for variables and
returns TRUE/FALSE

Example

For simplicity, we denote both predicate and its interpretation by R.
o R(a1, b1) = TRUE

R
o R(a2, b2) = TRUE A B
o R(a3, b3) = FALSE by
by

o Rix.by) = F(x) TRUE if x = a;
X7 g X) =
! FALSE otherwise

&



Extended datalog: arithmetic atoms

@ Comparison between two arithmetic expressions
» Arithmetic predicates: =, <, >, <, >, ...
» Arithmetic expressions: constants, variables, +, —, x, /...

@ Arithmetic predicates are like infinite relations

» Database relations are finite and may change
» Arithmetic relations are infinite and unchanging

Example
o x<y

e x+1>y+4xz
TRUE ifx<5

e x<b="f(x)= .
FALSE otherwise

o "<'=1{(1,2), (~15,65.4), ...}
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Datalog rules

@ Operations are described by datalog rules
O A relational atom called head
@ The symbol < (read as “if")
© A body consisting of one or more atoms, called subgoals
(connected by A; in datalog™: optionally preceded by —)

Example

A movie schema:
Movies(Title, Year, Length, Genre, StudioName, Producer).

A R.A expression:
LongMovie := TTitle Year(TLength>100(Movies)).

Corresponding datalog rule:
subgoal 1 subgoal 2

. - ——
LongMovie(t, y) < Movies(t,y,/,g,s,p), | > 100.

head body




Semantics of rules

© Possible assignments

> Let the variables in the rule range over all possible values

» When all subgoals are TRUE, insert tuple into the head’s relation
@ Nonnegated relational subgoals
Consider sets of tuples for each nonnegated relational subgoal
Check whether assignment is consistent (same variable, same value)
If so, check negated subgoals and arithmetic subgoals
If all checks successful, insert tuple into the head's relation

vV vy VvYy

Example

Q R
2 2(3
1|3 31

[y

P(x,z) < Q(x,y), R(y, z), 7Q(x, z)

Q(x,y) R(y,z) Consistent? —Q(x,z)? Result

1) (1,2 (2,3) Yes No —

2)  (1,2) (3,1) No;y=2,3 lrrelevant — CWA
3)  (1,3) (2,3)  No;y=3,2 lrrelevant

4)  (1,3) (3,1) Yes Yes P(1,1)




Safe rules

Not all rules give a meaningful (i.e., finite) result — safety condition.

Example

o Safe:
LongMovie(t, y) < Movies(t,y,/, g,s,p), | > 100

@ In safe rules, abbreviation _ for variables that occur only once
LongMovie(t, y) < Movies(t,y,/, -, _,_), | > 100
e Unsafe: P(x) < Q(y)

Unsafe: P(x) < ~Q(x)
Unsafe: P(x,y) + Q(y), x >y

Definition

A rule is safe if every variable that appears anywhere in the rule also
appears in some nonnegated, relational subgoal of the body. This
condition is called the safety condition.
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Extensional and intensional predicates

Definition

o Extensional predicates (EDB) are predicates whose relations are stored

in a database. They can only occur in the bodies of datalog rules.

e Intensional predicates (IDB) are predicates whose relations is
computed by applying datalog rules. They can occur in heads and
bodies of datalog rules.

@ “Extension” is another name for “instance of a relation”

@ “Intensional” relations are defined by the programmer's “intent”

Example
LongMovie(t, y) < Movies(t,y, 1, _,_,_), | > 100
@ Movies is an EDB predicate (or relation)

@ LongMovie is an IDB predicate (or relation)
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Datalog queries

A datalog query is a collection of one or more rules (often with a
designated output relation).

Example
Schema (EDB):
o Hotel(HotelNo, Name, City)
@ Room(RoomNo, HotelNo, Type, Price)

RA query:
7THoteINo,Name,City(HOteI X OPrice>500 V Type='suite’ ( Room))

Datalog query:
ExpensiveRoom(r, h, t, p) +— Room(r, h, t, p), p > 500
ExpensiveRoom(r, h, t, p) < Room(r, h, t, p), t = 'suite’
ExpensiveHotelRoom(h, n, c, r, t, p) < Hotel(h, n, c), ExpensiveRoom(r, h, t, p)

ExpensiveHotel(h, n, ¢) < ExpensiveHotelRoom(h, n, c, _, _, )

11/43



Datalog and relational algebra

Example (Recursive query)
ancestor(x, z) < parent(x, z)

ancestor(x, z) < ancestor(x, y), parent(y, z)

@ Nonrecursive if the rules can be ordered such that the head predicate
of each rule does not occur in a body of the current or a previous rule

@ nr-datalog: nonrecursive, no negation
@ nr-datalog™: nonrecursive, with negation

Theorem
e nr-datalog and SPJRU queries have equivalent expressive power.

@ nr-datalog™ and relational algebra have equivalent expressive power.

We will switch between datalog and (subsets of) R.A as convenient.
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Outline

© Introduction to Provenance
@ Lineage
@ Why-provenance
@ How-provenance
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Provenance and annotation management

@ Provenance describes origins and history of data
@ Annotations describe auxiliary information associated with the data

) h Cuici NYRestaurants
Serves fine French Cuisine |Re5taurant Cost |Type Zip

in elegant setting. Formal

attire. eacock Alley o $%$% French (10022
Bull & Bear $$$ | Seafood |10022

® s | Chinese[10013

Pacifica
Soho Kitchen & BaO| $  |American[10022

Cheap Restaurants

Type Restaurant Cost |Type
French ||Pacifica ® $ Chinese
Bull &\Bear Seafood |[Soho Kitchen & Bac| $  |American

Pacific'a i $ Chinese
Soho Kitchen & BaO| $ |American

Chiticariu, VLDB, 2004.
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Tuple location

Definition
A tuple t tagged with a relation name R is called a tuple location and

denoted (R, t) or simply R(t). We can view a database instance /(R) on

Rasaset {(R,t)| RER, t€l(R)}.

Example

Agencies (A) ExternalTours (E)

Name  Basedln Phone Name Dest.
ti| BayTours | SFO |415-1200 t3| BayTours
t>|HarborCruz| SC |831-3000 ts| BayTours SC Bus |$100
ts| BayTours | SC | Boat |$250
ts| BayTours | MRY | Boat | $400
tz|HarborCruz| MRY | Boat | $200
tg | HarborCruz| Carmel | Train | $90

o Tuple locations: A(t1), A(t2), A((FunTravel, SJ, 415-2400)), . . .
e Database instance: { A(t1), A(t2), E(t3), E(ta), ..., E(tg) }
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Lineage

Definition (informal)

The lineage of a tuple t (w.r.t. a query) consists of all tuples of the input

data that “contributed to” or “helped produce” t.

Example

ty
to

t3
ta
ts
te
t7
tg

Agencies (A)
Name  BasedIn
BayTours | SFO |415-1200

HarborCruz| SC

Phone

831-3000

ExternalTours (E)

BayTours
BayTours | SC
BayTours SC
BayTours | MRY

HarborCruz| MRY

HarborCruz | Carmel

Bus
Boat
Boat
Boat
Train

$100
$250
$400
$200
$90

BoatAgencies(n, p)
Agencies(n, _, p),
ExternalTours(n, _, 'Boat’, ).

BoatAgencies

Name eS| Lineage
BayTours
HarborCruz|831-3000|{ A(t2), E(t7) }

415-1200|{ A(t1), E(ts), E(t5) }
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Lineage & query rewriting

Example
Two equivalent queries:

q(x,y) < R(x,y)
ql(Xa}/) — R(Xv)/)vR(X’Z)'

R q(R) q'(R)

A B AWE Lineage AW Lineage
t11]2 1[2[{R(t1)} 112 {R(t1), R(t2) }
|13 1/3/{R(t)} 113 |{R(t1), R(t2) }
t342 42{R(t3)} 42{R(t3)}

Theorem
Lineage is sensitive to query rewriting.
V.
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Application: Lineage tracing in data warehouses

@ Data warehouses integrates data from multiple sources
@ Warehouse directly used for coarse-grained analysis
@ In-depth analysis requires access to source data

— view data lineage problem

Administrator User
T
S N e ™
View Specifigﬁ  Tracing™ ‘
B \Interface/
— e Query \
] \lnterface /

- ~ e Ll;-leage N
\MPGen/ CTPGen > . Tracer /

= -

\\\/7 7

{ Ddld Wdrehouse w

‘ Metadata

( Data Integrator >

Sourcc ]

Sourcel

Lineage tracing in the WHIPS data warehouse system

Cui et al., TODS 25(2). 2000 19/43
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Witness

Definition

Let | be a database instance over R, g a query over R, and t € g(l). An
instance J C | is a witness for t with respect to q if t € q(J). The set of
all witnesses is given by Wit(g,l,t) ={J C |t € q(J)}.

Example

t
b

t3
ty
ts
ts
t7
tg

Agencies (A)

Name  BasedIin| Phone
BayTours | SFO |415-1200
HarborCruz| SC |831-3000
ExternalTours (E)

BayTours
BayTours
BayTours
BayTours
HarborCruz
HarborCruz

SFO
SC
SC

MRY

MRY

Carmel

Cable
Bus
Boat
Boat
Boat
Train

$50
$100
$250
$400
$200
$90

BoatAgencies
Name eS| Lineage
tg BayTours 415-1200 {A(tl),E(ts),E(ts)}
tio |HarborCruz | 831-3000 | { A(t2), E(t7) }

Witnesses for

@ to: {A(tl),E(tS)}r {A(tl)vE(tﬁ)}'
{A(t), E(ts), E(ts) }, ...

© to: {A(t), E(tr) }, { A(tr), A(t2), E(t7) },

@ | is a witness for both t9 and tig
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Minimal why-provenance

Definition

A minimal witness is a minimal element of Wit(q, I, t). The set of minimal

witnesses is called minimal why-provenance and is given by

MWhy(q, 1, t) = {J € Wit(q,1,t) | (V' € Wit(q,1,t)) ' =JVv I ¢ J}.

Example

Agencies (A)
Name  Basedln Phone
BayTours | SFO |415-1200
HarborCruz 831-3000

ExternalTours (E)

Name Dest.
t3| BayTours
ts| BayTours | SC | Bus |$100
ts| BayTours | SC | Boat |$250
ts| BayTours | MRY | Boat | $400
tz|HarborCruz| MRY | Boat | $200
tg |HarborCruz | Carmel| Train | $90

t1
(%3

BoatAgencies

Name Hylely= | Minimal why-provenance
to| BayTours |415-1200|{ { A(t1), E(ts) },{ A(t1), E(ts) } }
tio |HarborCruz |831-3000 | { { A(t2), E(t7) } }
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Minimal why-provenance & query rewriting

Example
Two equivalent queries:

q(x,y) < R(x,y)
ql(Xa)/) — R(Xv)/)vR(X’Z)'

R q(R) q'(R)
A B AW Min. why AW Min. why
t1|1]2 121 {{R(t1)}} L2 {{R(t1) }}
t21]3 113[{{R(2) }} 13 H{{R(t2) } }
4] 2 42|{{R()}}  [42/{{R(=)}} |
Theorem

Minimal why-provenance is insensitive to query rewriting.
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Application: View deletion problem

o Let | be a database instance and consider view V = g(I)
o View deletion problem: Find the set of tuples Al to remove from | so
that a tuple t is removed from V
@ Intuitively, all minimal witnesses must be destroyed; many ways, e.g.,
@ Source side-effect problem: Minimize changes to the source (|Al|)
@ View side-effect problem: Minimize changes to the view (|AV/|)

@ Both NP-hard for PJ and JU queries!

Example

BayTours does not offer boat tours anymore — delete t.

BoatAgencies
Name e Min. why
to| BayTours |415-1200|{ { A(t1), E(ts) },{ A(t1), E(ts) } }
tio|HarborCruz|831-3000|{ { A(t2), E(t7) } }

Examples:

@ delete A(t1): optimum for both problems

@ delete E(ts) and E(ts): optimum for (1) when A x E is taken as source

W
Buneman et al., PODS, 2002 28743
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How-provenance

Definition (informal)

The how-provenance of a tuple t describes how t is derived according to
the query. It makes use of two “operations”: combine () and merge (+).

Example

Agencies (A) ExternalTours (E)
Name  Basedln Phone Name Dest.

t;| BayTours | SFO [415-1200| t3| BayTours | SFO |Cable| $50
t>|HarborCruz| SC |831-3000 ts| BayTours SC Bus |$100
ts| BayTours | SC | Boat |$250
ts| BayTours | MRY | Boat | $400
t7 |HarborCruz| MRY | Boat | $200
ts |HarborCruz| Carmel | Train | $90

BoatAgencies

Name S5 How-provenance
BayTours |415-1200 |A(t1) - E(ts) + A(t1) - E(ts)
HarborCruz |831-3000| A(t2) - E(t7)
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How-provenance & query rewriting

Example
Two equivalent queries:

q(x,y) < R(x,y)
ql(Xa}/) — R(Xv)/)vR(X’Z)'

R a(R) ¢(R)
A B AN How AN How
t1|1]2 1|2|R(t1) 112[R(t1)? + R(t1) - R(t2)
t|1/3 1|3 |R(t2) 113 |R(t2)? + R(t1) - R(t2)
t3(4]2 4|2 R(t3) 4|2 R(t3)2
Theorem

How-provenance is sensitive to query rewriting.
v
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Application: Debugging of schema mappings

e Data exchange between two applications (source and target)

@ Schema mapping relates data from source application to data from
target application

@ Schema debuggers help in developing such a mapping

Manhattan-Credit: Rcd Fargo-Finance: Rcd [ SPIDER Demo i o7 =
Cards: SetOfRed Clients: SetOf Rod Sthema Mapping_Instances _Rautes
ssn
name . hame Bource Instance Target Instance
location ; address (Caras | 9 Accounts [
cardNo AccOwned: SetOf Red ssn__name [ location |_cardNo | limit 1) aechin 723-456
limit ) + aceNo 254 _Anna Brown |- 25-458 2 T it 2%
SuppCards: SetOf RET™; c [ Accounts
Accounts: SetOf Rod ! 0 aceho: N1
name ~aco Al DLt
address « limit A T 9 £ Ascounts
cardNo [Anna Srown_|L2 777789 % aceho: T77-789
it 15 =
Sourc rget dependencies:
D, foreach x, in Manhattan-Credit.Cards Routes Exploration

exists x, in Fargo-Finance Clients, x, in x,.AccOwned,
X, in Fargo-Finance.Accounts
where x,.accNo=x,.accNo
with x, ssn=x,.ssn and x, .name= x,.name and , .location= x, address
and x, .cardNo= x,.accNo and x, limit= x, limit Current Step
D,: foreach x, in SuppCards c
exists x, in Fargo-Finance.Clients

(Drendenty HETIETREREN Variahis Rty

with X, .ssn= x,.ssn and x,.name= x,.name and x, .address= x,.address rFOREACH bindings——————— (EXISTS bindings
| supncaras | [ FargeF nance:
Target dependency: ssn name | _address | cardNo ¢ Clients:
C, foreach x, in Fargo-Finance.Clients, x, in x,.AccOwned T34 mnaBrawn_ A 777 R
exists x, in Fargo-Finance.Accounts with x,.accNo=x,.accNo [ rame A Arosn
[ zooress:La
9 AccCwned:
[ aceno:

Alexe et al., VLDB, 2006 28 /43
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Provenance through annotations

Example
Agencies ExternalTours

Name Basedln Phone
BayTours | SFO |415-1200(t; |BayTours| SFO |Cable|t3
HarborCruz| SC |831-3000|t, |BayTours| SC | Bus |t

Name Dest. Type

BayTours| SC | Boat |t5
BayTours| MRY| Boat |ts

WDest,Phone(AgenCieS X [TrName,DeSt(pBasedIn—>Dest(AgenCieS))
U TTName, Dest (ExternalTou rs)]

SFO |415-1200 |ty - (tl aF t3)
SC [831-3000|t2
SC |415-1200|t; - (t4 + t5)
MTY |415-1200|t; - tg

We need a way to annotate relations and propagate these annotationsio ,,




K-relation

Definition
A K-relation is a function R that maps each tuple in the relation to

nonzero elements of K, and each tuple not in the relation to a special
element 0 € K. R has finite support supp(R) = {t | R(t) # 0 }.

Intuivitely, each tuple t is annotated with an element of K. ‘

Example
@ B-relations correspond to ordinary relations (zero element: FALSE)
@ N-relations correspond to multisets or bags (zero element: 0)
© ©-relations correspond to boolean c-tables (zero element: FALSE)

Q TupleLoc-relations (zero element: 1)
A (1) A (2) A (3) A (4)

Name Name
BayTours |TRUE BayTours |2 BayTours |x BayTours |A(t1)
HarborCruz | TRUE HarborCruz|5 HarborCruz | —x HarborCruz | A(t2)

4
T




Positive K-relational algebra

Definition

Let (K,0,1,+,-) be an algebraic structure with two binary operators +
(merge) and - (combine) and two distinguished elements 0 (not in
relation) and 1 (in relation). Let g"(/)t be the annotation of t in g(/).
The operations of the positive K-relational algebra are defined as follows:

Value ({ (A: a) WK(I)t = {1 fe=(A:3)

0 otherwise
Relation RK(Nt = I(R)t

Selection (g(q))K(/)t = {qK(/)t if 0(t)

0 otherwise

Cop

Projection (my(q))X(/)t = > tesupp(ai (1)), ¢/[U]=t gk(nt
Union (g1 U q2)X(1)t = g ()t + gf (1)t Merge
Join (g1 ™ q2) (1)t = g’ (Nt[U] - g5 (1)t[Ue] Comblie

<
2 3
1) < R (=]

4



Commutative semiring

Relational algebra over bags has the following properties:
e Union (+) is associative and commutative, and has identity ()
@ Join (-) is associative, commutative, and distributes over union

@ Projection and selection commute with each other as well as with
union and join

‘ Goal: Retain these properties with positive K-relational algebra.

Definition

(K,0,1,+,-) is a commutative semiring if:

e (K,+,0) is a commutative monoid (associative, commutative, identity 0),
e (K, 1) is a commutative monoid (associative, commutative, identity 1),
@ - distributes over +,

@0-a=a-0=0forall ac K.
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Common semirings

@ How-provenance: (N[TuplelLoc],0,1,+,")
» TupleLoc denotes set of all tuple locations
» N[K] = set of polynomials with coefficients in N and variables from K
» + and - have usual definitions
» Start with RX(/)t = (R,t) if t € I(R), else 0

Called positive algebra provenance semiring.

e Bag semantics: (N,0,1,+, ")
» + and - have usual definitions
» Start with R¥(/)t = multiplicity of t in R(/)

@ Lineage: (22(TupleLoc)U{ L}, L,0,UL,Us)

» lazy union Up: LUX=XUL=X
» strict union Us: LUX =XUL=1

» Start with RX(1)t = {(R,t)} if t € I(R), else L
@ Minimal why-provenance: (Z(Z(TupleLoc)),D,{ D}, Umin, Umin)
» Min operator computes minimal elements
(eg. Min{{1},{1,2}}={{1}})
» pairwise union: X Uy, Y =Min{xUy |xe X,y e Y}
» Start with RK()t = {{(R,t) } } if t € I(R), else L
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Common semirings (examples)

Example
Query:

q(x,y) + R(x,y), R(x, 2)

maB(R ™ pg_sc(R))

q(R)

Min. why-provenance

Bags Lineage

How-provenance

R

t1
1|3t
t3

A B
12
4(2
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@ How-Provenance for nr-datalog
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Proof tree

Proof-theoretic semantics of datalog: A fact is in the result if there exists
a proof for it using the rules and the database facts.

Definition

A proof tree of a fact A is a labeled tree where:
@ Each vertex of the tree is labeled by a fact.
@ Each leaf is labeled by an EDB fact from the base data.
@ The root is labeled by A.

@ For each internal vertex, there exists an instantiation A; < Ao, ..., A,
of a rule r such that the vertex is labeled A1, its children are
respectively labeled A, ..., A, and the edges are labeled r.

37/43



Proof tree (example)

Example
rn: ExpensiveRoom(r, h) < Room(r, h, _, p), p > $500
rn: ExpensiveRoom(r, h) < Room(r, h, t,_), t = 'suite’
r3: ExpensiveHotelRoom(h, r) < Hotel(h, _, -), ExpensiveRoom(r, h)
ra: ExpensiveHotel(h) + ExpensiveHotelRoom(h, _)

Room (R) Hotel (H)

RoomNo Type HotelNo Price HotelNo Name City
R1 Suite H1 $50 H1 |Hilton| SB
R2 Single | H1 |$600

R3  |Double] H1 | $80 Multiple differ-

may exist!

ent proof trees

r:
H(H1,Hilton,SB)

n
R(R2,Single,H1,$600)

r2
R(R1,Suite,H1,$50)




Lineage tree

Goal: Capture all ways of deriving an output fact.
Definition
A lineage tree of an nr-datalog query is computed with respect to the
semiring (PosBool(¥'), FALSE, TRUE, V, A), where
@ 7 is a countable set of boolean variables,

@ PosBool(7) is the set of sets of equivalent boolean expressions
involving TRUE, FALSE, variables from ¥, Vv, and A,

@ Each fact is tagged with a representative from its class in
PosBool(7),

@ Each EDB fact is tagged with a distinct variable from ¥.

Example
PosBool({ t1, t> }) = { {FALSE }, { TRUE }
{t,, tt V t1, t1 ATRUE, ...},

{tg,...},{tl\/tQ,...},{tl/\tg,...}}
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Lineage tree (example)

Example

7"'HoteINo(7'|'HoteINo,RoomNo(HOtel X 7TRoomNo,HoteINo(U'price>500 \/type:'suite’(Room))))

Hotel (H)

HotelNo Name City
R1 Suite H1 $50 |t H1 Hilton| SB | ts

R2 Single | H1 |$600 |t ]
R3 |Double| H1 | $80 [t; Expensiveliotels
HotelNo

CHL Jun(ave)

Not unique. There
are many different

belong to the same
PosBool equivalence
class.

H(H1,Hilton,SB)

trees, but all of them

R(R1,Suite,H1,$50) R(R2,Single,H1,$600)
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Lessons learned

o Datalog is a declarative language for relations
» Based on Prolog
> Collection of if-then rules
> Closely related to relational algebra

@ Provenance describes origins and history of data;
Annotation management allows and propagates data annotations

» Data warehousing, curated databases, annotated databases, update
languages, uncertain databases, . ..

Different types of provenance provide different amount of detail
@ Lineage: what contributed to the output (tuples)
@ Why-provenance: why an output tuple was produced (db instances)
© How-provenance: how an output tuple was produced (polynomial)

Semirings are a natural way to study provenance

Positive K-relational algebra can compute many forms of provenance

Lineage trees are the preferred form of how-provenance for datalog
(boolean formula)
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Suggested reading

@ Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom
Database Systems: The Complete Book, 2nd ed. (ch. 5.3 & 5.4)
Pearson Prentice Hall, 2009

@ Serge Abiteboul, Richard Hull, Victor Vianu
Foundations of Databases: The Logical Level (ch. 12)
Addison Wesley, 1994

@ James Cheney, Laura Chiticariu, Wang-Chiew Tan
Provenance in Databases: Why, How, and Where
Foundations and Trends in Databases, 1(4), 2007
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Scalable Uncertainty Management
04 — Probabilistic Databases

Rainer Gemulla

Jun 1, 2012



Overview

In this lecture
@ Refresher: Finite probability (not presented)
@ What is a probabilistic database?
@ How can probabilistic information be represented?
@ How expressive are these representations?
@ How to query probabilistic databases?
Not in this lecture
o Complexity
o Efficiency
o Algorithms
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Sample space

Definition
The sample space Q2 of an experiment is the set of all possible outcomes.
We henceforth assume that Q is finite.

Example
@ Toss a coin: Q = { Head, Tail }
@ Throw a dice: Q =1{1,2,3,4,5,6}

In general, we cannot predict with certainty the outcome of

an experiment in advance.

46



Event

Definition
An event A C Q is a subset of the sample space. () is called the empty
event, QQ the trivial event. Two events A and B are disjoint if AN B = ().

Example

Coin:
o Outcome is a head: A = {Head }

@ Outcome is head or tail: A= {Head, Tail} = {Head} U{ Tail }
@ Outcome is both head and tail: A= = {Head} N {Tail}
@ Outcome is not head: A = { Tail} = { Head }°

Die:
@ Outcome is an even number: A= {246} ={2}uU{4}uU{6}
@ Outcomeisevenand <3: A={2} ={2,4,6}N{1,2,3}

When A, B C Q are events, so are AU B, AN B, and A°,
representing 'A or B', 'A and B’, and 'not A’, respectively.
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Probability space

Definition

A probability measure (22, P) is a function P : 2% — [0, 1] satisfying
a) P(0)=0,and P(Q) =1,

b) If A1,..., A, are pairwise disjoint, P (J7_; An) = >.7 1 P(An).
The triple (22,29, P) is called a probability space.

Example

For w € Q, we write P(w) for P({w}); {w} called elementary event.

o Coin: 2% = {f), {Head}, { Tail }, { Head, Tail } }
e Fair coin: P(Head) = P ( Tail ) = }
Implied: P(0) =0, P({Head,Tail})=1
o Fair dice: P(1)=---=P(6) =1 (rest implied)
@ Outcome is even: P({2,4,6})=P(2)+P(4)+P(6)

o Outcomeis <3: P({1,2,3})=P(1)+P(2)+P(3)=1




Conditional probability

Definition
If P(B) > 0, then the conditional probability that A occurs given that B
occurs is defined to be

P(ANB)

P(AIB)=—p gy

Example
Two dice; prob. that total exceeds 6 given that first shows 37
0o 0=1{1,...,6}2
o Total exceeds 6: A= {(a,b):a+b>6}
o First shows 3: B={(3,b):1<b<6}
e AnNB=1{(3,4),(3,5),(3,6) }
o P(A|B)=P(ANB)/P(B)=4/5 =}
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Independence

Definition

Two events A and B are called independent if P(ANB)=P(A)P(B).

If P(B) >0, impliesthat P(A| B) =P (A).
Example
Two independent events:
@ Die shows an even number: A={2,4,6}
@ Die shows at most 4: B ={1,2,3,4}:
o P(ANB)=P({2,4})=31=1.2=P(A)P(B)
Not independent:
@ Die shows an odd number: C ={1,3,5}
o P(ANC)=P(0)=0#£2%-1=P(A)P(C)

‘ Disjointness # independence. ‘
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Conditional independence

Definition
Let A, B, C be events with P( C) > 0. A and B are conditionally
independent given Cif P(ANB|C)=P(A|C)P(B|C).

Example

@ Die shows an even number: A={2,4,6}

@ Die shows at most 3: B =1{1,2,3}

e P(ANB)=¢#%-3=P(A)P(B)
— A and B are not independent
Die does not show multiple of 3: C ={1,2,4,5}
P(ANB|C)=1=1.1=P(A|C)P(B|C)
— A and B are conditionally independent given C
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Product space
Definition

Let (1,2, P1) and (2,2, P,) be two probability spaces. Their
product space is given by (Q12,2%12 P15) with Q12 = Q1 x Q5 and

]P)12(A1 XA2):P1(A1)P2(A2).

Example
Toss two fair dice.
o O =0 =1{1,2,3,4,56}
e Q1 ={(1,1),...,(6,6) }
o First die: A; ={1,2,3} C 4
@ Second die: Ay ={2,3,4} CQ

(] ]P)]_Q(A]_XAZ):]P)]_(Al)]PJQ(A2):%'%:%

Product spaces combine the outcomes of several independent
experiments into one space.
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Random variable

Definition

A random variable is a function X : Q — R. We will write { X = x } or
{X < x} for the events {w: X(w) = x} and {w : X(w) < x},
respectively. The probability mass function of X is the function

fx : R — [0,1] given by fx(x) =P (X = x); its distribution function is
given by Fx(x) =P (X < x).

Example

Toss two dice:
@ Sum of outcomes: X((a,b)) =a+ b
o fx(6)=P(X=6)=P({(1,5),(2,4),(3,3),(4,2),(51)}) = %
o Fx(3)=P(X <3)=P({(1,1),(1,2,21)}) = &

The notions of conditional probability, independence (consider events
{X=x}and {Y =y} forall x and y), and conditional independence

also apply to random variables.
11

46



Expectation

Definition
The expected value of a random variable X is given by

E[X] =) xfx(x)

If g: R — R, then
E[g(X ]—Zg ) (x).

Example
o Fair die (with X being identity)
° E[X]zl-%+2.%+...+6.%:3‘5
o Consider g(x) = [x/2]
e E[g(x)]=0-%+1-%+...+3_%:1'5
e But: g(E[X]) =1!

v
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Flaw of averages

The
: State of
- the drunk
at his AVERAGE
ition
is ALIVE.

But the AVERAGE state Wil
of the drunk is DEAD

Mean correct, variance ignored. E[g(X)]#g(E[X])

Be careful with expected values! ‘

Savage, 2009. 13 /46


http://www.flawofaverages.com/

Conditional expectation

Definition
Let X, Y be random variables. The conditional expection of Y given X is
the random variable 1(X) where

YO)=E[Y | X=x]=) yfx(y|x),
where fyx(y | x) =P(Y =y | X =x).

Example

@ Indicator variable: Ia(w) = {; :t:efwée

@ Fair die; set X = leyen = I{ 2,4,6}; Y is identity
@E[Y|[X=1]=1-0+2-2+3-0+4-14+5-0+6-1=4
@E[Y|X=0]=1-}4+2-0+3-5+4-0+5-3+6-0=3
4 if X(w)=1

° ]E[Y|X](w):{3 if X(w) =0
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Important properties
We use shortcut notation P( X' ) for P( X = x).

Theorem
P(AUB)=P(A)+P(B)-P(ANB)
P(A°) =1-P(A)
FBDA, P(B)=P(A)+P(B\A)>P(A)

P(X)=> P(X,Y=y) (sum rule)
P(X,Y):Py(Y|X)IP’(X) (product rule)
]P’(A\B):P(BHL?;I)P(A) (Bayes theorem)
ElaX +b] =aE[X]+b (linearity of expectation)

E[X+Y]|=E[X]+E[Y]
E[E[X|Y]]=E[X] (law of total expectation)




Outline

© Probabilistic Databases
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Amateur bird watching

@ Bird watcher's observations
Sightings

Species
Mary |Bird-1 Finch: 0.8 || Toucan: 0.2 t
Susan|Bird-2| Nightingale: 0.65 || Toucan: 0.35 |t
Paul |Bird-3|Humming bird: 0.55 || Toucan: 0.45|t3

@ Which species may have been sighted? — CWA, possible tuples

ObservedSpecies
Species

Finch  |0.80 (t1,1)
Toucan  [0.71 (t1,2) V (t2,2) V (t3,2)

(t2,1)

(t3,1)

Nightingale |0.65
Humming bird|0.55

Probabilistic databases quantify uncertainty. ‘
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What do probabilities mean?

@ Multiple interpretations of probability
@ Frequentist interpretation
» Probability of an event = relative frequency when repeated often
» Coin, n trials, ny observed heads
1 1
im ™M= — P(H)=-

n—oo n 2 2

@ Bayesian interpretation

» Probability of an event = degree of belief that event holds
» Reasoning with “background knowledge” and “data”
» Prior belief + model + data — posterior belief
* Model parameter: 6 = true “probability” of heads
Prior belief: P ()
Likelihood (model): P( ny,n|6)
Bayes theorem: P (0 | ny,n) P (nu,n | 0)P(0)
Posterior belief: P (0 | nu, n)

* % %

18 /46



But... what do probabilities really mean? And where do
they come from?

@ Answers differ from application to application, e.g.,

>

vV VY VY VY VY

Information extraction — from probabilistic models

Data integration — from background knowledge & expert feedback
Moving objects — from particle filters

Predictive analytics — from statistical models

Scientific data — from measurement uncertainty

Fill in missing data — from data mining

Online applications — from user feedback

@ Semantics sometimes precise, sometimes less so
e Often: Convert model scores to [0, 1]

>

>

>

Larger value — higher confidence
Carries over to queries: higher probability of an answer — more credible
Ranking often more informative than precise probabilities

Many applications can benefit from a platform that manages
probabilistic data.
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Probabilistic database

Example

Sightings
Name Bird Species

Mary |Bird-1 Finch: 0.8 || Toucan: 0.2
Susan|Bird-2| Nightingale: 0.65 || Toucan: 0.35
Paul |Bird-3|Humming bird: 0.55 || Toucan: 0.45

Possible worlds:

MIL1|F| [M[1|F| [M|1|F| [M|L|F| [M[1|T| [M[L1[T]| [M[1]T| [M|1|T
s{2|N| |s|2|N| |s|2|T| |s|2|T| |s|2|N| |s|2|N| |s|2|T| [s|2|T
PI3[H| [P|3|T| |P|3|H| |P|3|T| |P|3|H| |P|3|T| [P|3|H| |P|3|T
0.286 0.234 0.154 0.126 00715 00585 0038 00315
Definition

A (finite) probabilistic database (p-database, PDB) is a probability space
D = (Z,P) over a (finite) incomplete database Z in which w.l.0.g.
P(/)>0forall I €.

‘ A PDB associates a nonzero probability to each possible world | € I.2l
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Possible answer set semantics (example)

Example
What did Mary see? — q(R) = oName="Mary'(R)

M|{1|F| |[M|1|F| [M|1|F| [M[1|F| [M|1|T| [M[1|T| M|1|T| [M|1|T
S|2|N S|2[N S|2|T S|2|T| [S|2|N S|2|N S|(2|T S|2|T
P|3|H P|3|T P|3|H P|3|T| [P|3|H P|3|T P|3|H P|3|T
0.286 0.234 0.154 0.126 0.0715 0.0585 0.0385 0.0315

—
Q

LT TR

0.286 0.234 0.154 0.126 0.0715 0.0585 0.0385 0.0315

N BS N B S
0.8 0.2

v
21776



Possible answer set semantics

Definition
The possible answer set to a query g on a probabilistic database

D = (Z,P) is the probability space Dgq = (q(Z),Pg), where g(Z) is the
possible answer set to g on Z, and

Pe(J)=P(q(l)=J)=P({I€Z:q()=J})= D  P(I).
1€T:q(1)=J

We refer to Dg as the image of D under q.

o Cf. definition for incomplete databases

@ |g(Z)| < |Z| since each instance of Z gives precisely one result g(/)
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T'Species ( R )

Possible tuple semantics (example)
Which species have been sighted? — g(R)

Example
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Possible tuple semantics

Definition

Let D = (Z,P) be a probabilistic database. A tuple t is a possible answer
to a query g if there exists a possible world | € Z such that t € g(/). The
marginal probability of t is given by

P(req))= Y P(I).

1€Z:teq(l)

o A tuple tis a certain answer if P(t € q(l)) =1,
equivalently, (VI € Z)t € q(I)
— Certain answer tuple semantics as before (g-information).
— Weak representation results carry over.

@ Possible tuple semantics is the main focus of probabilistic databases
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Outline

9 Probabilistic Representation Systems
@ pc-tables
@ Tuple-independent databases
@ Other common representation systems
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Motivating example

Example

Social Security Number: /) 8 5
Name: ; ;\N\qu !

Marital Status: (1) single B (2) married "
(3) divorced O (4) widowed O

Social Security Number: \ % 6
Name: > Qb\]‘

Marital Status: (1) single O (2) married OO
(3) divorced O (4) widowed OO

Form 1

Form 2

Ambiguity:
@ Is Smith single or married?
@ What is the martial status of Brown?
@ What is Smith’s social security number: 185 or 7857
@ What is Brown's social security number: 185 or 1867
Probabilistic database:
@ Here: 2-4.2.2 = 32 possible readings — can easily store all of them

@ 200M people, 50 questions, 1 in 10000 ambiguous (2 options)
1" possible readings

@ Each reading is a table with 50 columns and 200M rows!




Probabilistic representation system
Finiteness assumption: Throughout our entire treatment of PDBs.

Definition

A probabilistic representation system consists of a set .7 of tables and a
function Mod that associates to each table T € .7 a probabilistic
database Mod(T).

Definition
A probabilistic representation system is complete if it can represent any
probabilistic database.

Definition

Let (.7, Mod) be a probabilistic representation system and .Z be a query
language. The probabilistic representation system obtained by closing .7
under £ is the set of tables { (T,q) | T € 7,q € £} and function
Mod(T, q) = g(Mod(T)).
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Outline
© Refresher: Finite Probability
© Probabilistic Databases

e Probabilistic Representation Systems
@ pc-tables

@ Summary
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pc-table (example)

Example
1 |185|Smith | X =1 X|11]0.2
1 | 785|Smith X # 1 X1210.8
2 | 185 |Brown|Y =1AX #1 Y|1(0.3
2 186 |Brown|Y #1v X =1 Y| 2|07

1 | 185 |Smith

2 | 186 |Brown
{X—1,Y—1} {X—2,Y—1l} {X—2Y—2}
{X—1,Y—2}
0.2-0.34+0.2-0.7 0.8-0.3 0.8-0.7

=0.2 =0.24 = 0.56
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pc-tables

Definition
A probabilistic c-table (pc-table) is pair (T,P), where T ia a c-table and P

a probability distribution over the set of assignments © of Var(T) such
that all variables are independent.

Mod(T) = {6(T): 0 € ©}
P(I)= > P(9)

0c0:6(T)=I

@ Variables are independent
— need only specify probabilities of form P (X = a)

@ [P can be stored in a standard relation storing (variable, value,
probability)-triples
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Completeness of pc-tables

Theorem

pc-tables are a complete representation system.

Proof.
Let D = (Z,P) be a probabilistic database with Z = { /*,..., /" } and
I“={te,..., tin, }- Let X be a random variable with domain
{1,....n}. Set P(X = k) =P (Z¥) and use the c-table:

tin | X =1

tin, X=1

t1 | X = 2_

ton, X=2

t31 [ X =3
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Completeness of pc-tables (example)

Example

1 | 785 |Smith
186 |Brown
0.56

FID SSN ' Name

1 | 185 | Smith
186 |Brown
785 | Smith
185 |Brown
785 | Smith
186 |Brown

Il
WWNN R

N RN RN
X X X X X X
Il
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pc-tables are strong

Theorem
pc-tables are strong under RA.

Proof.
Given a pc-table (T,P) and a query g, the resulting pc-table is given by
(g(T),P), where g is the c-table algebra query corresponding to g. O
Example
R mssn(R)
FID SSN SSN
1 [185 X=1 X[1]0.2 185 (X =1V (Y =1AX #1)
1 |785 X #1 X|121]0.8 785 | X #1
2 | 185 Y=1AX#1 |[Y[1]03 186 |Y £1vX =1
2 | 186 Y#1vX=1 Y|2]0.7
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Outline
© Refresher: Finite Probability
© Probabilistic Databases

© Probabilistic Representation Systems

@ Tuple-independent databases

@ Summary
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Tuple-independent databases (p?-tables)

Definition

In a tuple-independent probabilistic database T, each tuple t € T is
marked with a probability p; > 0. We have Mod(T) = (Z,P) where
I={ICT:P(/)>0}and

(1) = (TTre)(TIQ-p).

tel t¢l

Example (Nell)

Recently-Learned Facts =+ _Refresh |
instance Heration date learned _confidence

dried_squash_seeds is a nut 225 28mar20t 005 28 %
sinnett_thom_mountain_cave is a cave 225 28marzott w07 5 &
vail_road is a street 224 2emar2oti w4 25 %
harold_macmillan is a scientist 205 28mar2011 a6 I8 &
132207 is a ZIP code 204 26mmar2011 9.4 5%
wday_tv collaborates with bbo_news 224 26-mar20it 969 23
times controls friedman 227 03-apraott 060 28
support_personnel is a profession that is a kind of profes sionals 204 26-mar2011 960 23 &
nbo_news is a newspaper in the city washington_dc 224 26mar2011 a2 75 €
twitter operates the website twitter_com 225 28marzott 1000 I3 &

v
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Completeness

Theorem

Tuple-independent databases are not complete.

Proof.

They can only represent databases in which all tuples are independent
events. E.g., they cannot represent

(amy o« (U0 AL

01 01 01 0.7

Theorem

The closure of tuple-independent databases under positive R.A is not
complete.
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Closure under R.A

Theorem

The closure of tuple-independent databases under RA is complete.

Proof.

Let D = (Z,P) be a probabilistic database with Z = { /*,..., 1" }. To
obtain a tuple-independent database, use n certain EDB predicates

RY, ..., R" with /(R¥) = I¥ and one tuple-independent table W that
contains tuples {1,...,n} with px =P (I* | { h,...,l_1}°). Write a
query that selects relation R¥ iff argmin,. () = k:

R(x) + W(1), R'(x) pr=P(I")
R(x) « =W(1), W(2), R*(x) p=P(P|{I"})
R(x) «+ =W(1),-W(2), W(3), R*(x) ps=P (1P| {I'I*})

R(x) « ~W(L),...,~W(n—1), W(n), R"(x) pn=1
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Closure under R.A (example)

Example
I* = I(RY) 12 = I(R?) 13 = I(R3)

1 | 185 |Smith 1 | 785 |Smith 1 | 785 |Smith
2 | 186 |Brown 2 | 185 |Brown 2 |186 |Brown

0.2 0.24 0.56
R(f,s,n) + W(1), R\(f,s,n) p1 =0.2
R(f,s,n) <+ =W(1), W(2), R*(f,s,n) p2 = 0.24/(1 - 0.2)

R(f,s,n) + ~W(1),-W(2), W(3), R*(f,s,n) ps=0.56/(1— 0.2 — 0.24)

w

World P

1 ]0.2|P(argmin. ) =1)=0.2
2 |0.3|P(argmin () =2) = 0.3 (1 —0.2) = 0.24
3 | 1 |P(argmingy =3)=1-(1—0.2) (1 —0.3) = 0.56
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Probabilistic database design

e Database normalization — Minimize redundancy/correlations
@ Tuple-independent databases are good building blocks

» No correlations between tuples

» No constraints

» Database normalization can be applied

@ Decompose complex databases into tuple-independent databases

Example (Nell)

@ nellExtraction: extracted relations
(tuple probability = belief that extracted tuple is correct)

@ nellSource: source of extraction
(tuple probability = belief that source is correct)

@ Correlation via views

ProducesProduct(x, y) < nellExtraction(x, 'ProducesProduct’, y, s), nellSource(s)

‘ Tuple-independent databases can be stored in standard relations.

39 /46



Outline

© Refresher: Finite Probability

© Probabilistic Databases

e Probabilistic Representation Systems

@ Other common representation systems

@ Summary
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BID tables

@ Relations are partitioned into blocks

@ Events within a block a disjoint; events across blocks are independent
— Block-independent-disjoint database

@ Blocks are identified by key attributes

Example

<
o)
=

FID SSN Name P

1 | 185 |Smith |X = 1 1]0.8 1 | 185 | Smith 0.8

1 |785|Smith|X =2 X1210.2 — 1 |785|Smith|0.2

2 | 175 |Brown|Y =1 Y|11]0.5 2 | 175 |Brown|0.5

2 | 186 [Brown|Y =2 Y| 2|05 2 | 186 |Brown|0.5
Theorem

BID-tables extended with PJR queries are a complete representation
system.

41/46



U-tables (MayBMS)

@ Goal: completeness + natural representation in RDBMS

@ Restrict pc-table conditions to forms X; = a1 A ... A X = ak

e Conditions — U-tables (usually: one per set of correlated attributes)

e Distribution over assignments — BID-table (world table)

Example
W
X111]0.2 X[|1|X|1| 1 |185|Smith
X121]0.8 X|2[X]|2]| 1 |785|Smith
Y|1]0.3 Y{1|X]|2| 2 |185|Brown
Y|2|0.7 Y{2|Y]|2| 2 |186 |Brown
X|1|X|1]| 2 |186|Brown

Reconstruction via joins: R(f,s, n) < T(vi,d1, v2,db, f,s,n

~—
—~

) w Vi, d1)7 W(V27 d2)

Theorem

U-databases are complete. They can compute/represent results of
nr-datalog queries conveniently (i.e., in polynomial time and space).

y
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Or-set tables

Example
Probabilistic or-set tables (= probabilistic finite-domain Codd tables):

Sightings

Name Bird Species

Mary |Bird-1 Finch: 0.8 || Toucan: 0.2
Susan|Bird-2| Nightingale: 0.65 || Toucan: 0.35
Paul |Bird-3|Humming bird: 0.55 || Toucan: 0.45

Probabilistic 7-or-set tables (Trio):

Sightings

Name Bird Species

Mary | Bird-1 Finch: 0.8 || Toucan: 0.2
Susan|Bird-2 | Nightingale: 0.65 || Toucan: 0.10|7?
Paul |Bird-3 Humming bird 0.55
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Lessons learned

@ Probabilistic databases quantify uncertainty

@ Probabilistic database = incomplete database + probability
distribution

@ Many notions and results from incomplete databases carry over

@ Queries can be analyzed in terms of

@ Possible answer sets
@ Certain answer tuples (same as incomplete databases)
© Possible answer tuples (main focus of PDBs)

@ pc-tables — complete, strong under RA

@ Tuple-independent tables — complete when closed under R.A
(Good probabilistic database design)

o BID-tables — complete when closed under PJR queries

o U-databases — complete, handle positive R.A well, easy to represent
in an RDBMS
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Suggested reading

e Charu C. Aggarwal (Ed.)
Managing and Mining Uncertain Data (Chapter 2)
Springer, 2009

@ Dan Sucio, Dan Olteanu, Christopher Ré, Christoph Koch
Probabilistic Databases (Chapter 2)
Not yet published (But you'll get copies!)

e Charu C. Aggarwal (Ed.)
Managing and Mining Uncertain Data (Chapter 5 — Trio)
Springer, 2009

e Charu C. Aggarwal (Ed.)
Managing and Mining Uncertain Data (Chapter 6 — MayBMS)
Springer, 2009
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Overview

In this lecture
@ Primer: relational calculus
@ Understand complexity of query evaluation
@ How to determine whether a query is “easy” or “hard”
°

How to efficently evaluate easy queries
— extensional query evaluation

How to evaluate hard queries
— intensional query evaluation

@ How to approximately evaluate queries
Not in this lecture
@ Possible answer set semantics

@ Most representation systems but tuple-independent databases
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e Primer: Relational Calculus
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Relational calculus (RC)

Similar to nr-datalog™, but uses a single query expression
Suitable to reason over query expressions as a whole
Queries are built from logical connectives

gu=u=v|R(X)[3Ixq|qaAq@|qaVael-qa,
where u, v are either variables of constants

Extended RC: adds arithmetic expressions
Free variables in g are called head variables

Example
RA query:

7I_HoteINo,Name,City(HOteI X OPrice>500 \/Type:'suite'(Room))

RC query and its abbreviation:
q(h, n,c) < Ir.3t.3p.Hotel(h, n,c) A Room(r, h,t,p) A (p > 500 V t = 'suite’)
q(h, n, c) + Hotel(h, n, c) A Room(r, h,t,p) A (p > 500 V t = 'suite’)

Alternative RC query:

q(h, n, c) + Hotel(h, n, c) A 3r.3t.3p.Room(r, h, t, p) A (p > 500 V t = suite’)
419




Boolean query

Definition J

A Boolean query is an RC query with no head variables.

@ Asks whether the query result is empty
@ Can be obtained from RC-query by
@ Adding existential quantifiers for the head variables
@ Replacing head variables by constants (potential results)

Example
RC-query:
q(h, n, c) « Hotel(h, n, c) A Ir.3t.3p.Room(r, h,t,p) A (p > 500 V t = 'suite’)

Boolean RC-query (“Is there an answer?"):
g < Jh.3n.3c.Hotel(h, n,c) A Ir.3t.3p.Room(r, h, t, p) A (p > 500 V t = 'suite’)

Another Boolean RC-query (“Is (H1,Hilton,Paris) an answer?"):
q < Hotel("H1', 'Hilton’, 'Paris’) A 3r.3t.3p.Room(r, 'H1', t, p) A (p > 500 V t = 'suite’)
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Query semantics

@ Active domain: set of all constants occurring in the database
@ Active domain semantics

@ Every quantifier Ix ranges over active domain
@ Query answers are restricted to active domain

o Domain-independent query. query result independent of domain
(cf. safe queries for datalog)

@ Domain-independent queries and query evaluation under active
domain semantics are equally expressive

Example
@ Active domain of R: {1,2}
@ Domain-independent query Rl 1
q(x) < Jy.R(x,y) 1|2

@ Domain-dependent queries
q(x) < Jy.3z.R(y, z)
q(x) < Jy.-=R(x,y)
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Relationships between query languages

Theorem

Each row of languages in the following table is equally expressive (we

consider only safe rules with a single output relation for nr-datalog™ and
domain-independent rules for RC).

Relational algebra nr-datalog™ Relational calculus
SPJR No repeated head 3, A
predicates, no negation (conjunctive queries: CQ)
SPJRU No negation 4, A,V
(positive RA) (nr-datalog) (unions of CQ: UCQ)
SPJRUD

AV,
(RA) (nr-datalog™) (RC)
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9 The Query Evaluation Problem
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The query evaluation problem

@ Database systems are expected to scale to large datasets and
parallelize to a large number of processors
— Same behavior is expected from probabilistic databases

@ We consider the possible tuple semantics, i.e., a query answer is an
ordered set of answer-probability pairs

{(t1,p1), (t2,p2),...} with pr > pp > ...

Definition (Query evaluation problem)

Fix a query g. Given a (representation of a) probabilistic database D and a
possible answer tuple t, compute its marginal probability P (t € q(D)).
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Questions of interest

@ Characterize which queries are hard
— Understand what makes query evaluation hard

o Given a query, determine whether it is hard
— Guide query processing

@ Given an easy query, solve the QEP
— Be efficient whenever possible

@ Given a hard query, solve the QEP (exactly or approximately)
— Don't give up on hard queries
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Query evaluation on deterministic databases

Definition

The data complexity of a query g is the complexity of evaluating it as a
function of the size of the input database. A query is tractable if its data
complexity is in polynomial time; otherwise, it is intractable.

Example
@ Fix a relation schema R and consider an instance / with n tuples
4(R) = R — O(n)
4(R) = o£(R) — O(n)
q(R) = my(R) — O(n?); can be tightened

Theorem

On deterministic databases, the data complexity of every RA query is in
polynomial time. Thus query evaluation is always tractable.
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Query evaluation on probabilistic databases

Corollary

Query evaluation over probabilistic databases is tractable.

Proof.

Fix query g. Given a probabilistic database D = (Z,P) with
Z={1...,1"}, perform the following steps:

@ Compute q(/¥) for 1 < k < n — polynomial time
@ For each tuple t € g(/¥) for some k, compute

P(teqD)= Y. B(/)

k:teq(1¥)

— polynomially many tuples, polynomial time per tuple

This result is treacherous: It talks about probabilistic

databases but not about probabilistic representation systems!
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Lineage trees and the query evaluation problem

Example

q(h) < 3n.3c.Hotel(h, n, c) A Ir.3t.3p.Room(r, h, t,p) A (p > 500 V t = 'suite’)

Room (R)

RoomNo Type HotelNo Price
R1 Suite H1 $50 | X1
R2 Single H1
R3 Double| H1 $80 | X3

Hotel (H)

HotelNo Name City
H1 |Hilton| SB [ X,

ExpensiveHotels

HotelNo

L HL |Xn (v x)

Theorem

Fix a RA query q. Given a boolean pc-table (T,P), we can compute the
lineage ®; of each possible output tuple t in polynomial time, where ®; is

a propositional formula. We have

P(teq(T))=P(®:).
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How can we compute &7

A naive approach

Let w(®) be the set of assignments over Var(T) that make ® true. Then
apply P(®) =3 pcu0) P(0)

Exponential time: n variables — 2" assignments to check!

Definition (Model counting problem)

Given a propositional formula ®, count the number of satisfying
assignments #® = |w(®P)]|.

Definition (Probability computation problem)

Given a propositional formula ¢ and a probability P ( X') € [0, 1] for each
variable X, compute the probability P (®) = > o) P ().
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Model counting is a special case of probability computation

@ Suppose we have an algorithm to compute P (@)

@ We can use the algorithm to compute #®
o Define P( X ) = 3 for every variable X

e P(60)=1/2" for every assignment (n = number of variables)

o #O=P(d) 2"

Example
X1 Xo Xy
0|00
0|01
0¢=(X1\/X2)/\X4;n:3 0110
i
_ 3 _ #9
cP(®)=5=% 101
11110
11111

dy P(0)

FALSE
FALSE
FALSE
TRUE
FALSE
TRUE
FALSE
TRUE

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8
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The complexity class #P

Definition

The complexity class #P consists of all function problems of the following
type: Given a polynomial-time, non-deterministic Turing machine,
compute the number of accepting computations.

Theorem (Valiant, 1979)
Model counting (#SAT) is complete for #P.

@ NP asks whether there exists at least one accepting computation
@ #P counts the number of accepting computations

@ SAT is NP-complete

o #SAT is #P-complete

‘ Directly implies that probability computation is hard for #P! ‘
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A graph problem

Definition (Bipartite vertex cover)
Given a bipartite graph (V, E), compute [{SC V :(u,w)€EE 5ueSVweS}.

Example

(r2) 80 possible ways
@),

Theorem (Provan and Ball, 1983)

Bipartite vertex cover is #P-complete.
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#PP2DNF and #PP2CNF

Definition
Let X1, Xo,... and Y3, Y2, ... be two disjoint sets of Boolean variables.
@ A positive, partitioned 2-CNF propositional formula (PP2CNF) has
form W = /\(iJ)eE(Xi V'Yj).
@ A positive, partitioned 2-DNF propositional formula (PP2DNF) has

Theorem
#PP2CNF and #PP2DNF are #P-complete.

Proof.
#PP2CNF reduces to bipartite vertex cover. For any given E, we have
#O = 2" — 4V where n is the total number of variables. O

v

Note: 2-CNF is in P.
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A hard query

Theorem
The query evaluation problem of the CQ query Hy given by

Ho <+ R(x)AS(x,¥) A T(y)

on tuple-independent databases is hard for #P.

Proof.

Given a PP2DNF formula ® = \/( XiYj, where

ij)EE

E ={(Xe, Ye); (Xey, Yey), - - - }, construct the tuple-independent DB:

Then #® = 2"P( Hp ), where n is the total number of variables.
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More hard queries

Theorem

All of the following RC queries on tuple-independent databases are
#P-hard:
Ho <+ R(x) AS(x,y) A T(y)
Hy < [R(x0) A S(x0, ¥0)] V [S(x1, y1) A T (y1)]
Hz < [R(x0) A S1(x0, y0)] V [S1(x1, y1) A S2(x1, 1]
V [S2(x2, y2) A T(y2)]

Queries can be tractable even if they have intractable subqueries!
@ g(x,y) < R(x) A S(x,y) A T(y) is tractable
@ g« HyV T(y) is tractable
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Extensional and intensional query evaluation

o We'll say more about data complexity as we go
o Extensional query evaluation

» Evaluation process guided by query expression g

» Not always possible

» When possible, data complexity is in polynomial time
o Extensional plans

» Extensional query evaluation in the database
» Only minor modifications to RDBMS necessary
> Scalability, parallelizability retained

@ Intensional query evaluation

» Evaluation process guided by query lineage

» Reduces query evaluation to the problem of computing the probability
of a propositional formula

» Works for every query
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Problem statement

@ Tuple-independent database
» Each tuple t annotated with a unique boolean variable X;
» We write P(t) =P(X:)
@ Boolean query @
» With lineage ®q
» Wewrite P(Q)=P(®g)
@ Goal: compute P( Q) when Q is tractable
» Evaluation process guided by query expression g
> l.e., without first computing lineage!

Example
Birds e P(Finch) =P(X;)=0.8
Species @ Is there a finch? Q <« Birds(Finch)
Finch 0.80| X3 do =X;
Toucan 0.71| X5 P(Q)=038
Nightingale [0.65|X3 @ Is there some bird? Q « Birds(s)?
Humming bird|0.55| X, Do =X1VXoV X3V Xy

P(Q)~99.1%




Overview of extensional query evaluation

Break the query into “simpler” subqueries

By applying one of the rules
@ Independent-join
@ Independent-union
© Independent-project
© Negation
@ Inclusion-exclusion (or Mdbius inversion formula)
@ Attribute ranking

Each rule application is polynomial in size of database

Main results for UCQ queries

» Completeness: Rules succeed iff query is tractable
» Dichotomy: Query is #P-hard if rules don’t succeed
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Unifiable atoms

Definition
Two relational atoms Ly and L are said to be unifiable (or to unify) if
they have a common image. l.e., there exists substitutions such that

Li[a1/x1] = La[a2/x2], where x; are the variables in L; and x are the
variables in L.

Example
Unifiable: Not unifiable:
@ R(a), R(a) via [], [] @ R(a), R(b)
® R(x), R(y) via [a/x], [a/y] ® R(a,y). R(b,y)
® R(a,y), R(x,y) via [b/yl]. [(a,b)/(x,¥)] ® R(x), S(x)
@ R(a,b), R(x,y) via [, [(a, b)/(x, y)]
@ R(a,y), R(x, b) via [b/y], [a/x]

Unifiable atoms must use the same relation symbol.
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Syntactic independence

Definition

Two queries @1 and @ are called syntactically independent if no two
atoms from @ and Q> unify.

Example
Syntactically independent: Not syntactically independent:
° R( ), R(b) e R(a), R(x)
R(a,y), R(b,y) ° R(x), R(y)
R(x), S(x) ® R(x), S(x) A =R(x)
R(a,x) V S(x), R(b,x) A T(x)

Checking for syntactic independence can be done in polyno-
mial time in the size of the queries.
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Syntactic independence and probabilistic independence

Proposition

Let Q1, @, ..., Qx be pairwise syntactically independent. Then
Q1, ..., Qx are independent probabilistic events.

Proof.

The sets Var(®gq,), ..., Var($q,) are pairwise disjoint, i.e., the lineage
formulas do not share any variables. Since all variables are independent
(because we have a tuple-independent database), the proposition

follows. 0)
Example
Syntactically independent: Not syntactically independent:

@ R(a), R(b) @ R(a), R(x)

® R(a,y), R(b,y) ® R(x), R(y)

@ R(x), S(x) @ R(x), S(x) A =R(x)

@ R(a,x)V S(x), R(b,x) A T(x)

v
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Probabilistic independence and syntactic independence

Proposition

Probabilistic independence does not necessarily imply syntactic
independence.

Example
@ Consider
@1 < R(x,y) A R(x,x)
Qz < R(a, b)
@ If g, does not contain Xg(, ), Q1 and Q> are independent
@ Otherwise, ®q, contains Xg(, ) and therefore Xg(s p) A Xg(a,a)
@ Then, ®q, also contains Xg(s,2) A Xr(s,2) = XR(a,2)
@ Thus, by the absorption law,
(Xr(a,0) A XR(a,2)) V Xr(a,a) = XR(a,a)
o

XR(a,b) €can be eliminated from ®¢, so that Q1 and Q; are independent
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Base case: Atoms

Definition

If Q is an atom, i.e., of form Q = R(a), simply lookup its probability in

the database.

Example

Sightings

Species P

Finch  |0.8| X1
Toucan |0.3| X5
Finch 0.2|X3
Toucan |0.5| X,
Susan|Nightingale|0.6| X5

o Did Mary see a toucan?
e @ = Sightings(Mary, Toucan)
e P(QR)=03
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Rule 1: Independent-join

Definition
If @ and Q> are syntactically independent, then

P(QLAQ)=P(Q1) - P(Q). (independent-join)

Example
Sightings
Species @ Did both Mary and Susan see a toucan?
Mary | Finch [0.8/X; e Q = S(Mary, Toucan) A S(Susan, Toucan)

Mary | Toucan 10.31X> o @, — S(Mary, Toucan)  P(Q;)=0.3
Susan| Finch |0.2|X3

Susan| Toucan [0.5|X4 ® @2 = 5(Susan, Toucan) P(Q)=05
Susan|Nightingale|0.6|Xs @ P(Q)=P(Q1) -P(Q2)=0.15
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Rule 2: Independent-union

Definition

If @ and Q> are syntactically independent, then

P(QVQ)=1-(1-P(@Q))(1—-P(Q2)). (independent-union)

v

Example

Sightings @ Did Mary or Susan see a toucan?

Species P
Mary| Finch [0.8]X; ©° Q@ = S(Mary, Toucan) Vv S(Susan, Toucan)

Mary | Toucan [0.3|X; @ @ = S(Mary, Toucan) P(@)=03

Susan| Finch  |0.2|X3 e @, = S(Susan, Toucan) P(Q)=05
Susan| Toucan |0.5(X; P(Q)=

Susan|Nightingale|0.6| X5

1-1-P(@A))(1-P(Q2)) =0.65
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Root variables and separator variables

Definition
Consider atom L and query Q. Denote by Pos(L, x) the set of positions
where x occurs in Q (maybe empty). If Q is of form Q = Ix. Q"
@ Variable x is a root variable if it occurs in all atoms, i.e.,
Pos(L, x) # () for every atom L that occurs in Q'.
@ A root variable x is a separator variable if for any two atoms that

unify, x occurs on a common position, i.e.,
Pos(L1,x) N Pos(La, x) # 0.

Example
Q1 < 3x.Likes(a, x) A Likes(x, a) Q> < Ix.Likes(a, x) A Likes(x, x)
@ Pos(Likes(a, x),x) ={2} @ x is root variable
@ Pos(Likes(x,a),x) ={1} @ Xx is a separator variable
@ x is root variable Qs + Ix.Likes(a, x) A Popular(a)
@ x is no separator variable @ x is no root variable

@ x is no separator variable 0 /0




Separator variables and syntactic independence

Lemma

Let x be a separator variable in @ = Ix.Q’. Then for any two distinct

constants a, b, the queries Q'[a/x], Q'[b/x] are syntactically independent.

Proof.
Any two atoms Ly, Ly that unify in Q" do not unify in Q'[a/x] and

Q'[b/x]. Since x is a separator variable, there is a position at which both

L; and L, have x; at this position, Li[a/x]| has a and Ly[b/x] has b.

Ol

Example

Sightings
Species
Mary Finch 0.8 X1
Mary | Toucan [0.3|X;
Susan Finch 0.2| X3
Susan| Toucan [0.5(X,
Susan |Nightingale|0.6 | X5

Has anybody seen a toucan?

Q = 3x.Sightings(x, Toucan)

Q'(x) = Sightings(x, Toucan)
Q'[Mary/x] = Sightings(Mary, Toucan)
Q'[Susan/x] = Sightings(Susan, Toucan)

v
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Rule 3: Independent-project
Definition

If Q is of form @ = Ix.Q’ and x is a separator variable, then

P(Q)=1- H (1-P(Qa/x])), (independent-project)

acADom

where ADom is the active domain of the database.

Example

Sightings @ Has anybody seen a toucan?

Name Species P e Q = 3x.S(x, Toucan)
Mary | Finch 10.8|X; o Q' = S(x, Toucan)
Mary | Toucan |0.3|X>

Susan| Finch [02/% ®P(Q)=1— J[ @-P(5(xT))
Susan| Toucan |0.5|X; x€{MSJF,...}
Susan|Nightingale|0.6 | X5 i é g5(1 —03)(1-05)1---1
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Rule 4: Negation

Definition
If the query is =Q, then

P(-Q)=1-P(Q)

(negation)

Example

Sightings

Name Species P

Mary Finch  ]0.8| X1
Mary | Toucan |0.3|X>
Susan Finch 10.2|X3
Susan| Toucan |0.5[X,
Susan|Nightingale|0.6| X5

@ Did nobody see a toucan?
e Q = —[3x.S(x, Toucan)]
o P(Q)=1—-P(3x.5(x, Toucan)) = 0.35
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Rule 5: Inclusion-exclusion

Definition
Suppose @ = Q1 A Q2 A ... Qk. Then,
P(Q)=-— > (-)FIP(\/ @) (inclusion-exclusion)
0£SC{1,..k} i€s
Example
o T2 3 12 13 23 123 (NN
1/0/0/1[1/0] 1 |[+P(Q)
1/1(0(2]1/1]2 |[+P(Q)
1/1)1/2]2/2]3 [+P(Q)
w¢ 0/0/1|1[1[1]2|-P(Q1V Q)
-1/0(0(0|0|0| 1 |-P(Q1V &)
w 1)-1}-1]-1|-1]-1| 0 |[-P(Q:V Q3)
Q Q@ |0/0/0[0/0/0|1 [+P(Q1VQ V&)
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Inclusion-exclusion for independent-project

Goal of inclusion-exclusion is to apply the rewrite

(E|X1.Ql) V(E|X2.Q2) = E|X.(Q1[X/X1] \Y Qz[X/Xz])‘

Example

Sightings

Species P
Mary Finch 0.8
Mary | Toucan |0.3
Susan Finch 0.2
Susan| Toucan |0.5
Susan|Nightingale|0.6

Has both Mary seen some bird and someone seen a finch?
P((3x.5(M,x)) A (3y-S(y,F))) (ie)

=P(Ix.S(M, x)) +P(IJy.S(y,F)) —P((Ix.S(M, x)) VvV (3y.S(y,F))) (ip/ip/rewrite)
= 0.86 + 0.84 — P (3x.S(M, x) V S(x,F) )
=17 - P(3x.S(M,x) V S(x,F))

Now we are stuck — Need another rule (attribute-constant ranking)!
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Rule 6: Attribute ranking

Definition

Attribute-constant ranking. If @ is a query that contains a relation name
R with attribute A, and there exists two unifiable atoms such that the first
has constant a at position A and the second has a variable, substitute each
occurence of form R(...) by Ri(...)V Ra(...), where

Ri = oa=a(R), Ry = 0a+a(R).

Attribute-attribute ranking. If Q is a query that contains a relation name
R with attributes A and B, substitute each occurence of form R(...) by
Ri(...)VRx(...)V Rs(...), where

Ry = oa<g(R), Ry = oa=8(R), R3; = 0a>8(R).

Syntactic rewrites. For selections of form os—., decrease the arity of the
resulting relation by 1 and add an equality predicate.
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Attribute-constant ranking (continues prev. example)
Example

Has both Mary seen some bird and someone seen a finch?

P((3x.S(M, x)) A (Fy.S(y,F)))

=1.7—-P(3x.S(M, x) V S(x,F)) (rank (Name=Mary))
=17 — P(3x.Sm(x) V S-m(M, x) V [Sm(F) A x = M] V S-m(x, F)) (simplify)
= 1.7 — P(3x.Su(x) vV Sm(F) V S—m(x,F)) (rank (Species=Finch))
=1.7— P(HX.[SMF() ANX = F] Vv SMﬂF(X) Vv SMF() Vv Sﬁm(X7 F)) (push E|X)
= 1,7—P(SMF()VHX,SMﬁF(X)\/Sﬁm(X, F)) (IU)
=17-14+1-P(Smr()))(1 — P(3x.Sm-£(x) V S-m(x, F)) (base/ip)
=07+ (1 - 08)[TLcrmsrrny (1 = P(Sm-r(x) VS-m(x,F))] (iv)
=0.7+0.2 [er{ msFrny (L= P(Sw-r(x)))(L —P(S-m(x,F) )] (product)
=0.7+402[11-1(1=0.2)-11- (1 —0.3)1 - 11]

=0.812

S Sm S-m Swe  Sm-r

S P P S P
08 0|
0.3
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Attribute-attribute ranking (example)

The goal of attribute ranking is to establish syntactic inde-
pendence and new separators by exploiting disjointness.

T — 5N
Example 08 07
|
Are there two people who like each other?
P (3x.3y.Likes(x, y) A Likes(y, x) ) (rank
=P (3x.Jy.
(Likes<(x,y) V (Likes—(x) A x = y) V Likesx (x, y)) A
(Likes<(y, x) V (Likes=(x) A x = y) V Likesx (y, x))) (expand, disjoint
=P (3Ix.Jy.L(x,y)Ls(y,x) V (L=(x) Ax = y) VLo (x,y)L<(y,x)) (push 3
=P ((3x.3y.L<(x,y)L>(y,x))
V (3x.L=(x))
V (3x.3y.Lo(x,y)L<(y,x))) (1st = 3rd

=P ((Ix.Fy.L<(x,y)L=(y,x))
V (3x.L=(x)))

Now we can apply independent-union, then independent-project, then independent-join.
o
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Inclusion-exclusion and cancellation

Consider the query

Q+— (VBN (QLYV Q)N (Q2V Qs)
Apply inclusion exclusion to get

P(R)=P(QVQ)+P(QVQ)+P(QV Q)
—P(Q1VRVQ) —P(QVQRVAEBYVQQ)—P(QVQYV Q)
+P(QVQV BV Q)
=P(QVQ)+P(QVQ)+P(QV Q)
—P(QVRVQ)—P(QVQVQ)

One can construct cases in which Q1 V Q> V Q3 V Q4 is hard, but any
subset is not (e.g., consider Hs on slide 20).

The inclusion-exclusion formula needs to be replaced by the
Mobius inversion formula.
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Mobius inversion formula (example)

Given a query expression of form Q1 A ... A Qx:
@ Put the formulas Qs = \/;cs Qi, 0 #S C {1,...,j}, in a lattice
(plus special element 1)
@ Eliminate duplicates (equivalent formulas)
© Use the partial order Qs, > Qs, iff Qs, < Qs,
© Label each node by its Mobius value

,u(i) -1 Q‘*(QIVQS)/\(?IVQUA(QZVQA)
p(u)=— > p(w)
u<w§i

@ Use the inversion formula

P(Ql/\.../\Qk)
== > nu)P(Qu)
u<1:p(u)#£0 .

P(Q)=P(QVQ)+P(Q1VQ)+P(QV Q)
“P(QV@VQ)-P(QLV&VQ)
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An nondeterministic algorithm

Consider the algorithm:
@ As long as possible, apply one of the rules R1-R6
@ If all formulas are atoms, SUCCESS
@ If there is a formula that is not an atom, FAILURE

Definition
A rule is Rg-safe if the above algorithm succeeds. J

@ Order of rule application does not affect SUCCESS
@ Algorithm is polynomial in size of database

» Easy to see for independent-join, independent-union, negation, Mobius
inversion formula, attribute ranking — do not depend on database

» Independent-project increases number of queries by a factor of |[ADom|
— applied at most k times, where k is the maximum arity of a relation
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How the rules fail

Example
Consider the hard query

Ho < 3x.3y.R(x) A S(x,y) A T(y)
@ independent-join, independent-union, independent-project, negation,
Mobius inversion formula all do not apply

@ But we could rank S:

Ho < Ho1 V Ho2 V Hos
Ho1 < 3x.3y.R(x) A S<(x,y) A T(y)
Ho2 < 3x.R(x) A S=(x) A T(x)
Hoz < 3x.3y.R(x) A S (y,x) A T(y)

@ Now we are stuck at Hp; and Hps
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Dichotomy theorem for UCQ

o Safety is a syntactic property
@ Tractability is a semantic property
@ What is their relationship?

Theorem (Dalvi and Suciu, 2010)

For any UCQ query @, one of the following holds:
o Q is Rg-safe, or
@ the data complexity of Q is hard for #P.

@ No queries of “intermediate” difficulty

@ Can check for tractability in time polynomial in database size
(can be done by assuming an active domain of size 1)

@ Query complexity is unknown (M&bius inversion formula)

e For RC, completeness/dichotomy unknown

‘We can handle all safe UCQ queries! ‘

48 /119



Outline
@ Primer: Relational Calculus
9 The Query Evaluation Problem

© Extensional Query Evaluation

@ Extensional Plans

@ Intensional Query Evaluation

© Summary

49 /119



Overview of extensional plans

‘ Can we evaluate safe queries directly in an RDBMS?

@ Extensional query evaluation

» Based on the query expression
> Uses rules to break query into simpler pieces
» For UCQ, detects whether queries are tractable or intractable

@ Extensional operators
» Extend relational operators by probability computation
» Standard database algorithms can be used
@ Extensional plans
» Can be safe (correct) or unsafe (incorrect)
For tractable UCQ queries, we can always produce a safe plan
Plan construction based on Rg rules
Can be written in SQL (though not “best” approach)
Enables scalable query processing on probabilistic databases
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Basic operators

Definition
Annotate each tuple by its probability. The operators
o Independent join (')
o Independent project (')
o Independent union (U')
e Construction / selection / renaming

correspond to the positive K-relational algebra over ([0, 1],0, 1, ®, ),
where py @ pp =1 — (1= p1)(1 — p2).

(Union needs to be replaced by outer join for non-matching schemas; see
Sucio, Olteneau, Ré, Koch, 2011.)

([0,1],0,1,, ) is not a semiring — unsafe plans!
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Incriminates Alibi

Examp|e plans Witness Suspect

Mary Paul |p: Paul |Cinema|q:
Who incriminates someone Mary | John |p> Paul | Friend | q2
who has an alibi? Susan | John |p3 John Bar |gs3

Q1(w) < 3s.3x.Incriminates(w, s) A Alibi(s, x)
@2(w) « Is.Incriminates(w, s) A 3x.Alibi(s, x)

MI1—(1-pq1)(1 = prg2)(1 — p29s) MIT—[1-p(1—(1—aq)(1—q))l - pas]
S |p3q3 ) S |p3gs )
T 7r'w
M P|C|piq
Wil s J TPl p(1— (1~ (1 - )
M J|B|p2gs : .
S J|B|psgs \
i PI1-(1-aq)1-q)
s J]gs
Incriminates(w, s) Alibi(s, x) Incriminates(w, s) Alibi(s, x)
Plan 1 Plan 2
Incorrect (unsafe) Correct (safe)

‘ Not all plans are safe! ‘
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Weighted sum

How to deal with the Mobius inversion formula?

Definition
The weighted sum of relations Ry, ..., R with parameters pi1, ..., p is
given by:
K1y Mk
( Z (Rl,...,Rk)) []:Rl X - X Rk
U
H1see bk
( > (Rl,...,m) (£) = m(Ra(t)) + - i Ri(t))
U

Intuitively,
@ Computes the natural join
@ Sums up the weighted probabilities of joining tuples
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Weighted sum (example)

Example
Consider relations/subqueries V4 (A, B) and V5(A, C) and the query:

Q(X,y,Z) «— Vl(va) A VZ(X7 Z)

Suppose we apply the Mobius inversion formula to get:
o Qi(x,y) = Vi(x,y) with 1 =1
o Q(x,z) = Va(x,z) with pp =1
o Q3(x,y,z) = Va(x,y) V Va(x, z) with pz = —1

We obtain:
1,1,—1
Z (Q,Q,XB)[=QxQ@x=VIxW
{A,B,C}
il il =il
> (@1, Q0 Q) ={(t,py + P, — i) : t{AB] = t1 € Q1 t{AC] = b € Q,,
{AB,C} t[ABCl=t3 € @3}

v
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Complement
How to deal with negation?
Definition

The complement of a deterministic relation R of arity k is given by

C(R):{(r,k[@(teR));teADomk}.

In practice, every complement operation can be replaced by difference
(since queries are domain-independent).
Example

o Query: Q < R(x) A—=S(x)

@ Result: R—'S={(t,P(tcR)(1L-P(teS))):tcR}
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Computation of safe plans (1)

Definition
A query plan for Q is safe if it computes the correct probabilities for all
input databases.

Theorem

There is an algorithm A that takes in a query @ and outputs either FAIL
of a safe plan for Q. If Q is aldCQ query, A fails only if Q is intractable.

V.

o Key idea: Apply rules R1-R6, but produce a query plan instead of
computing probabilities

@ Extension to non-Boolean queries: treat head variables as “constants”

@ Ranking step produces “views" that are treated as base tables
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Computation of safe plans (2)

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Cif Q= @1 A Q and Q1, @, are syntactically independent then

return plan(@:) »' plan(@-)

1
2
3: end if

4: if Q= @1V Q and Q1, @, are syntactically independent then
5:
6
7
8

return plan(@:) U' plan( @)

: end if
s if Q(x) = 3z.Qui(x, z) and z is a separator variable then

return 7 (plan(Qi(x, 2)))

end if

if Q=@QiN...ANQk, k> 2 then
Construct CNF lattice Q1, ..., Qn,
Compute Mobius coefficients p1, ..., tim
return > M1 oFm(plan(Q)), . . ., plan(Qp))

end if

if Q=-Q: then
return C(plan Q1)

end if

if Q(x) = R(x) where R is a base table (possibly ranked) then
return R(x)

end if

otherwise FAIL
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Computation of safe plans (example)

Q(w) <+ Js.3Ix.Incriminates(w, s) A Alibi(s, x)
@ Apply independent-project to Q on s
> Qi(w,s) < Ix.Incriminates(w, s) A Alibi(s, x)
@ x is not a root variable in Q; — push Jx:
Q2(w, s) < Incriminates(w, s) A 3x.Alibi(s, x)
© Apply independent-join to @ _
> Q3(w,s) < Incriminates(w, s) Tiitness
> Qu(s) + Ix.Alibi(s, x)
Q@ @3 is an atom i
© Apply independent-project to Q4 on x M Suspect

> Qs(s, x) = Alibi(s, x) \

Q@ @5 is an atom

i
7rSuspect

Incriminates
Alibi
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Safe plans with PostgreSQL (example) TWitness

Q(w) <+ Js.3Ix.Incriminates(w, s) A Alibi(s, x)

o Q4 = TriSuspect(A“bi) MISuspect
® @ < Incriminates NiSuspect Qs \
° Q< 7T{/Vitness(QZ) i
7l'Suspect
Incriminates
SELECT Witness, 1-PRODUCT(1-P) AS P Alibi

FROM (
SELECT Witness, Incriminates.Suspect,

Incriminates.P *x Q4.P as P
FROM Incriminates,

(
SELECT Suspect, 1-PRODUCT(1-P) AS P
FROM Alibi
GROUP BY Suspect
) AS Q4
WHERE Incriminates.Suspect = Q4.Suspect

) AS Q2
GROUP BY Witness
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Deterministic tables

@ Often: Mix of probabilistic and deterministic tables
@ Naive approach: Assign probability 1 to tuples in a deterministic table
— Suboptimal: Some tractable queries are missed!

Example
o If T is known to be deterministic, the query

Q «+ R(x),S(x,y), T(y)

becomes tractable!
@ Why? S x T now is a tuple-independent table!

@ We can use the safe plan
™y [R(x) 5 (S(x,¥) ™y T(y))]

Additional information about the nature of the tables (e.g.,
deterministic, tuple-independent with keys, BID tables) can
help extensional query processing.
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Overview

Given a query Q(x), a Tl database D; for each output tuple t
@ Compute the lineage ® = CDB(t)
> |®| = O(|]ADom|™), where m is the number of variables in ®
» Data complexity is polynomial time

» Difference to extensional query evaluation: |®| depends on input
— rules exponential in |®| also exponential in the size of the input!

@ Compute the probability P(®)
> Intensional query evaluation = probability computation on
propositional formulas
» Studied in verification and Al communities
» Different approaches: rule-based evaluation, formula compilation,
approximation

Can deal with hard queries.
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Example (tractable query)

Example

q(h) < 3n.3c.Hotel(h, n, c) A Ir.3t.3p.Room(r, h, t,p) A (p > 500 V t = 'suite’)

Room (R)

RoomNo Type HotelNo Price

Rl | Suite | HI | $50 | X
R2 | Single| H1 [$600|X;
R3 |Double] H1 | $80 |X

) ¢:X4/\(X1VX2)

@ P(®)=P(X)[1 -(1-P(X))1-P(X2))]
@ Eg,P(Xi)=3foralli—P(®)=0.375

ExpensiveHotels
HotelNo

Hotel (H)

HotelNo Name City
H1 |Hilton| SB [ X,

ExpensiveHotels

HotelNo

L HL XA (v x)

P

v
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Example (intractable query)

Example
@ R S T
X110.5 X2l Y1|1 Y1/0.5
X5/0.5 X3| Yo|1 0.5
. . X3 0.5
X4(0.5
@ Hp < Ix.3Jy.R(x),S(x,y), T(y)
e d=XY7V.X3Y,
o P(d)=1—-(1-P(X2)P(Y1))(1—-P(X3)P(Y2))=0.4375
e Model counting: #® =20P () =28
o Bipartite vertex cover: #W =20 — #4d =36=2-3-3-2

v

64 /119



Outline
@ Primer: Relational Calculus
e The Query Evaluation Problem

© Extensional Query Evaluation

@ Intensional Query Evaluation
@ Syntactic independence

© Summary

65/119



Overview of rule-based intensional query evaluation

Break the lineage formula into “simpler” formulas

By applying one of the rules
© Independent-and
@ Independent-or
© Disjoint-or
© Negation
© Shannon expansion

Rules work on lineage, not on query — data dependent

Rules always succeed

Rule 5 may lead to exponential blowup

Can be used on any query but data complexity can be expo-
nential. However, depending on the database, even a hard
query might be “easy” to evaluate.
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Support

Definition

For a propositional formula ®, denote by V(&) the set of variables that
occur in ®. Denote by Var(®) the set of variables on which ® depends;
Var(®) is called the support of ®. X € Var(®) iff there exists an
assignment 6 to all variables but X and constants a # b such that
POU{X—a}]#APOU{X— b}

Example
<I>—X\/(Y/\Z) d=YV(XAY)=Y
V(e)={X,Y,Z} o V(®)={X,Y}

o Var(®) = {X,Y,Z} o Var(®) = { Y}
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Syntactic independence

Definition
®; and @, are syntactically independent if they have disjoint support, i.e.,
Var(®1) N Var(d,) = 0.

Example
b =X b, =Y ®3 = XY VXY

@ ®; and P, are syntactically independent

@ All other combinations are not

Checking for syntactic independence is co-NP-complete in general. ‘

Practical approach:

Proposition
A sufficient condition for syntactic independence is V(1) N V(®3) = 0. J
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Probabilistic independence

Proposition

If ©1,5, ..., P, are pairwise syntactically independent, then the
probabilistic events ®1, Dy, ..., Py are independent.

Note that pairwise probabilistic independence does not imply
probabilistic independence!

Example
;=X b, =Y ®3 = XY VXY

@ ®; and P, are probabilistically independent

o ®;, &y, d3 are not pairwise syntactically independent
Assume P(X)=P(Y)=1/2

o O, ®y, ®3 are pairwise independent

o O, ®y, ®3 are not independent!

v
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Rules 1 and 2: independent-and, independent-or
Definition
Let ®; and ®, be two syntactically independent propositional formulas:

P(d1ADPy) =P(P1) -P(P2) (independent-and)
P(d1Vdy) =1—(1—-P(P1))(1—-P(P2)) (independent-or)
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Independent-and, independent-or (example)

Incriminates Alibi
Witness Suspect Suspect
Mary Paul | X1 (p1) Paul |Cinema|Y: (q1)

Mary John | Xz (p2) Paul | Friend | Y2 (q2)
Susan | John |X3 (p3) John Ys (g3)

Q(w) < Js.3x.Incriminates(w, s) A Alibi(s, x)

Xl(Y1VY2)\/X2Y3 o Og = X3Y;

>)avs @ Independent-and: P(®ds) = p3qgs3

TWitn

Witness o Oy :Xl(Yl\/ Y2)\/X2Y3
MIP| X, (Y V Ya) @ Independent-or:

XSuspect |M|J|X2Y3 P(oy)=1-(1-P(X(Y1V Y2)))(1—-P(X2Y3))
SIEIESLE @ Independent-and: P(X2Y3) = p2gs3

© Independent-and:
T'Sus PIivY, P( X1(Y Y- = P(Y; Y.
ety (X1 (YAV Y2))=pP(Y1V Y2)

© Independent-or:
P(vivYe)=1-(1-q)(1-q)

Incriminates Alibi Q r(ow)=1-0-p(- (- @) - @) - p2as)
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Rule 3: Disjoint-or

Definition

Two propositional formulas ®; and ®, are disjoint if &1 A ®5 is not
satisfiable.

Definition
If ®; and 5 are disjoint:

P(d1Vdy)=P(d1)+P(Py) (disjoint-or)
Example

o P(X)=02 P(Y)=07

o &1 =XY; P(XY)=P(X)P(Y)=0.14
o ¥, =-X; P(-X)=038

o P(dyVdy)=P(d;)+P(dy)=0.94

Checking for disjointness is NP-complete in general. But
disjoint-or will play a major role for Shannon expansion.
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Rule 4: Negation

Definition

P(-®)=1—-P ()

(negation)

Example
e P(X)=02 P(Y)=07
e P(XY)=P(X)P(Y)=0.14
o P(~(XY))=1-0.14=0.86
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Shannon expansion

Definition

The Shannon expansion of a propositional formula ® w.r.t. a variable X
with domain { a1,...,am } is given by:

S =(P[X = a]A(X=a1))V...V(P[X = am] A (X = am))

Example
e d=XYVXZVYZ

e ¢ = (P[X — TRUE] A X) V (®[X — FALSE] A =X)
=(YV2)XV YZ-X

In the Shannon expansion rule, every A is an independent-and;
every V is a disjoint-or.

75

119




Rule 5: Shannon expansion
Definition
Let ® be a propositional formula and X be a variable:

P(®)= > P(O[X—a)P(X=a) (Shannon expansion)
acdom(X)

Example
e db=XYVXZVYZ
e P(®)=P(YVZ)P(X)+P(YZ)P(~X)

@ Can always be applied
o Effectively eliminates X from the formula

@ But may lead to exponential blowup!

76 /119



Shannon expansion (example)

Incriminates Alibi

Witness Suspect

Mary

Mary
Susan

Suspect

Paul | X1 (p1) Paul |Cinema|Y1 (q1)
John [ Xz (p2) Paul | Friend | Y2 (q2)
John X3 (p3) John Ys (g3)

Q(w) < Is.3x.Incriminates(w, s) A Alibi(s, x)

Incriminates

ﬂXﬂﬁVXleVXzYs ¢M :X1Y1 \/X1Y2\/X2Y3
S|XsYs i © Independent-or:
P(ew)=1—(1-P(X1Y1VX1Y2))(1-P(X2Y3))
M[P[C| X Y4 ) _
Vil Mslpect @ Independent-and: P( X2Y3) = p2gs
'\S" j E f:ﬁ © Shannon expansion: P(X1Y1V X1Y2)) =
o P(Y1V Yy)P(Xy)+P(FALSE)P(-X;)
@ Independent-or:
P(Yl\/ Y2)Zl—(1—q1)(1—q2)

Alibi Q P(on)=1-1-p(1—(1—aq)1— @)1 - pas)

The intensional rules work on all plans! ‘
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A non-deterministic algorithm

e T e )

© 0N aRs b

if & =®; A Dy and Dy, P, are syntactically independent then
return P(®;) -P(®y)

end if

if ® =,V P, and dq, P; are syntactically independent then
return 1 — (1 —P($1))(1-P(P2))

end if

if & =®; Vv Py and Py, P, are disjoint then
return P(®;) +P (o)

end if

if ® = —®; then
return 1 —P(®;)

. end if
: Choose X € Var(®)
return 3o iomo) P(OX = a] )P(X =a)

Should be implemented with dynamic programming to avoid
evaluating the same subformula multiple times.
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Materialized views in TID databases (1)

@ TID databases complete only with views
@ How to deal with views in a PDBMS?
@ Store just the view definition
@ Store the view result and probabilities
© Store the view result and lineage
@ Store the view results and “compiled lineage”

@ Trade-off between precomputation and query cost (just as in DBMS)

Example (ExpensiveHotel view)
q(h) < 3n.3c.Hotel(h, n, c) A Ir.3t.3p.Room(r, h, t,p) A (p > 500 V t = suite’)
Room (R) Hotel (H)
RoomNo Type HotelNo Price HotelNo Name City
R1 Suite H1 $50 | X1 H1 Hilton| SB [ Xa
R2 Single | H1 |$600|X>
R3  |Double| H1 $80 | X3

ExpensiveHotels  ExpensiveHotels ExpensiveHotels

HotelNo HotelNo HotelNo
H]. 0.375 H]. X4/\(X1 \/Xz H]. X4/\ X1\/ Xz)

(3) 80/ 119




Materialized views in TID databases (2)

Example (Continued) Hotel (H) :
HotelNo Name City
Consider the query H1 |Hilton| SB | X,

q(h) < Jc.ExpensiveHotel(h), Hotel(h, 'Hilton’, ¢),

which asks for expensive Hilton hotels using a view. Can we answer this
query when ExpensiveHotel is a precomputed materialized view?

ExpensiveHotels ExpensiveHotels ExpensiveHotels

HotelNo HotelNo HotelNo

CHL XAQavX) | HL Jos7s [ HL XA (Vi)

Yes, combine lineages No, dependency Yes, combine “compiled
between lineages” — Need to be
ExpensiveHotels and able to combine compiled
Hotels lost lineages efficiently!

ExpensiveHiltons ExpensiveHiltons
HotelNo HotelNo

L HL XA (X V X)] A Xa L HL XA (v Xe)

1/119



Query compilation

@ “Compile” @ into a Boolean circuit with certain desirable properties
@ P(®) can be computed in linear time in the size of the circuit

» Many other tasks can be solved in polynomial time
» E.g., combining formulas ®; A ®, (even when not independent!)
» Key application in PDBMS: Compile materialized views

@ Tractable compilation = circuit of size polynomial in database
— Implies tractable computation of P ( ® ) (converse may not be true)
o Compilation targets
© RO (read-once formula)
@ OBDD (ordered binary decision diagram)
© FBDD (free binary decision diagram)
@ d-DNF (deterministic-decomposable normal form)

Goals: (1) Reusability. (2) Understand complexity of intensional QE.
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Restricted Boolean circuit (RBC)
Rooted, labeled DAG

All variables are Boolean

Each node (called gate) representents a propositional formula W

e 6 o6 o

Let W be represented by a gate with children representing Wq,...,V,;
we consider the following gates & restrictions:

Independent-and (A): Wyq,..., W, are syntactically independent
Independent-or (V): Wy, ..., W, syntactically independent

Disjoint-or (V9): Wy,..., W, are disjoint

Not (—): single child, represents =W

Conditional gate (X): two children representing X A W1 and =X A Wy,
where X ¢ Var(V1) and X ¢ Var(W;)

» Leaf node (0, 1, X): represents FALSE, TRUE, X

vV vy VY VvYYy

The different compilation targets restrict which and where
gates may be used.
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Restricted Boolean circuit (example)

Example

Who incriminates someone who has an alibi?
Lineage of unsafe plan: &y = X1Y1 V X1Y2V X5Y3

“Documents” the non-deterministic algorithm for intensional
query evaluation.
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Deterministic-decomposable normal form (d-DNF)

@ Restricted to gates: Al, V94, =

» Al-gates are called decomposable (D)
» V9-gates are called deterministic (d)

Example
® = XYUV XYZ=U
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RBC and d-DNF

Theorem

Every RBC with n gates can be transformed into an equivalent d-DNF
with at most 5n gates, a polynomial increase in size.

Proof.

We are not allowed to use \V' and conditional nodes. Apply the
transformations:

@, (v9)
A= R Ao AR
0 1
vy W, ‘ ‘ vy Vs ‘ vy W,
v v, ©

A Vi-node is replaced by 4 new nodes. A conditional node is replaced by
(at most) 5 new nodes.

Ol
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Application: knowledge compilation

@ Tries to deal with intractability of propositional reasoning
o Key idea
© Slow offline phase: Compilation into a target language
@ Fast online phase: Answers in polynomial time
— Offline cost amortizes over many online queries
o Key aspects

» Succinctness of target language (d-DNF, FBDD, OBDD, ...)

» Class of queries that can be answered efficiently once compiled
(consistency, validity, entailment, implicants, equivalence, model
counting, probability computation, ...)

» Class of transformations that can be performed efficiently once
compiled (A, V, =, conditioning, forgetting, ...)

@ How to pick a target language?
@ Identify which queries/transformations are needed
@ Pick the most succinct language

Which queries admit polynomial representation in which target language?

Darwiche and Marquis, 2002 87 /119
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Free binary decision diagram (FBDD)

@ Restricted to conditional gates
@ Binary decision diagram: Each node decides on the value of a variable
@ Free: Each variable occurs only on every root-leaf path

Example

Who incriminates someone who has an alibi?
Lineage of safe plan: &y = X1(Y1V Y2) V X2 Y3
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Ordered binary decision diagram (OBDD)

@ An ordered FBDD, i.e.,

» Same ordering of variables on each root-leaf path
» Omissions are allowed

Example
The FBDD on slide 88 is an OBDD with ordering X1, Y1, Y2, X5, Yj.

Theorem

Given two ODDBs V1 and V, with a common variable order, we can
compute an ODDB for W1 AWy, Wy V Wy, or =Wy in polynomial time.
Note that W1 and W5 do not need to be independent or disjoint.

v

(Many other results of this kind exist. Many BDD software packages exist,
e.g., BuDDy, JDD, CUDD, CAL).
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Read-once formulas (RO)

Definition
A propositional formula @ is read-once (or repetition-free) if there exists a
formula @’ such that ® = @’ and every variable occurs at most once in ¢'.

v

Example
e &= X; VX5V X3 — read-once
@ O=X1Y7VXiYoVvXoYsV XoYsV XoYs
' = X1 (Y1V Y2)VXo(Y3V Yy V Ys) — read-once
e ®=XY VXUV YU — not read-once

Theorem

If ® is given as a read-once formula, we can compute P (® ) in linear time.

Proof.
All A's and V's are independent, and negation is easily handled. [
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When is a formula read-once? (1)

Definition

Let @ be given in DNF such that no conjunct is a strict subset of some
other conjunct. ® is unate if every propositional variable X occurs either
only positively or negatively. The primal graph G(V, E) where V is the set
of propositional variables in ¢ and there is an edge (X, Y) € E if X and Y
occur together in some conjunct.

Example
@ Unate: XY V —-ZX
@ Not unate: XY Vv Z=X

XUV XVVYUVYV XY VYUV UV XY VXUV YU

X0 ® O
W) v
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When is a formula read-once? (2)

Definition

A primal graph G for ® is P4-free if no induced subgraph is isomorphic to
P, (O-O-O-0O). G is normal if for every clique in G, there is a conjunct
in ® that contains all of the clique's variables.

Example
XUV XVVYUVYV XY VYUV UV XY Vv XUV YU

0 ®
W) v

P4-free Not P,-free P,-free
Normal Normal Not normal
Read-once Not read-once Not read-once
Theorem

A unate formula is read-once iff it is P4-free and normal.
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Query compilation hierarchy

Denote by .Z(.7) the class of queries from £ that can be compiled
efficiently to target .7. The following relationships hold for U/C Q-queries:

Necessary
and sufficient
characterization

ucQP) -
/

7~
/UCQ(d-DNNF)

P —
¢ sufficient
[ Characterization
\ (Necessary
conjectured) »
~ -_—

UCQ(FBDD) Q,

(

UCQ(OBDD)

I S

ucQ(ro) ¢
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Why approximation?

@ Exact inference may require exponential time — expensive
o Often absolute probability values of little interest; ranking desired
— Good approximations of P ( ® ) suffice
@ Desiderata
» (Provably) low approximation error
» Efficient
» Polynomial in database size
» Anytime algorithm (gradual improvement)
@ Approaches

» Probability intervals
» Monte-Carlo approximation

We will show: Approximation is tractable for
all RA-queries w.r.t. absolute error and for all
UC O-queries w.r.t. relative error!
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Probability bounds

Theorem

Let ®, and ¥, be propositional formulas. Then,

Boole's inequality / union bound

maX(P(¢1),P(¢2)) S P(¢1\/¢'2) S mm(IP’(¢1)+IP’(¢2),1)
max(O,IP’(¢1)+P(¢2)71) < P(¢1/\¢2) < min(IP’(le),IP’(d)g)).

via inclusion-exclusion )
Example
Border cases:

P P

]P’((Dl\/cbz) P(¢1)+P(¢2) ]P)((DQ) 1
P(®1A®y) 0 P(®1) P(®P1)+P(P2)-1

v
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Computation of probability intervals

Theorem

Let ®; and &, be propositional formulas with bounds [Ly, Ui] and
[Lo, Us], respectively. Then,

[OFRVEOPS [L7 U] = [max(Ll, Lz), min(U1 + U2, 1)]
b1 A Dy [L, U] = [max(O, L+ L, — 1), min(Ul, Uz)]
—\¢1Z [L, U]:[l— U1,1—L1]

Example (Does Mary incriminate someone who has an alibi?)

d=X1YiVXiYaV XoYs Inciminates Alibi .
Witness Suspect| P Suspect Claim P
e X1Yp: [0.75,0.85] Mary | Paul |0.9|X; | Paul |Cinema|0.85|Y;
° X1Y2: [0.65,0.75] Mary John (0.8 X Paul Friend |0.75| Y2
John Bar |0.65|Y3
4 X2Y3 o [0.45,0.65]

e X1Y1VX1YoVv XoYs: [0.75, 1]

‘ Bounds can be computed in linear time in size of ®.
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Probability intervals and intensional query evaluation

[ S S
o~ W N~ O

© 0N aRs b

if ® =®; APy and dg, O, are syntactically independent then
return [L, U] = [L1- Ly, Ui - Us]

end if

if ® =,V P, and dq, P; are syntactically independent then
return [L, U] =[L1 @ Ly, U1 & Us]

end if

if ® =3V Py and Py, P, are disjoint then
return [L, U] = [L1 + Lo, min(U;y + Uz, 1)]

end if

if & =, then
return [L, U] =[1—- Ui, 1— L]

. end if

: Choose X € Var(®)

: Shannon expansion to ® =\/; ®; A (X = a))

creturn [L U] =, LiP(X=a;),min(>; UP(X =a;),1)]

‘ Independence and disjointness allow for tighter bounds. ‘
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Probability intervals and intensional query evaluation (2)

Example
Incriminates
Witness Suspect, P
Mary Paul |0.9]|X; Paul |Cinema|0.85|Y;
Mary John [0.8|X> Paul Friend |0.75| Y>

P =X1Yi1VX1YoV XoY;

X.Yi : [0.75,0.85]
X1Ys: [0.65,0.75]
XoYs: [0.45,0.65]
¢ : [0.75,1]
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Discussion

Incremental construction of RBC circuit
If all leaf nodes are atomic, computes exact probability
If some leaf nodes are not atomic, computes probability bounds
Anytime algorithm (makes incremental progress)
Can be stopped as soon as bounds become accurate enough
» Absolute e-approximation: U — L < 2¢ — choose p € [U — €, L + €]
> Relative e-approximation:
(1-€)U<(1+4€)L — choose p e [(1—¢€)U,(1+¢€)L]
@ But: no apriori runtime bounds!

Definition
A value p is an absolute e-approximation of p =P (@) if

p—e<p<p+te

it is an relative e-approximation of p if

(I-ep<p=<(l+¢)p.
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Monte-Carlo approximation w/ naive estimator

Let & be a propositional formula with V(®) = { Xy, ...

7XI}-

@ Pick a value nand for k € {1,2,...,n}, do
@ Pick a random assignment 6, by setting

| TRUE
" | FALSE otherwise

@ Evaluate Z, = ¢[9k]
A1
@ Return p=->", Zx

How good is this algorithm? ‘

0.8

0.4

0.0

LI M) e a0 e e e ]
10 100 1000 10000 100000

N

with probability P ( X;)

P=X1Y1 VXYV X2 Y3

1711111 111.00
1.00
0.66
0.75
0.80
0.83
0.85
0.88
0.89
0.90/ ..,

e e e o e

_H R =R O0OOO0O
i S N N N C N i e
H =R 2 O OO
H =), OFEKFFHEKFRO
o= O




Naive estimator: expected value

Theorem

The naive estimator p is unbiased, i.e., E[p] = P(®) so that p is correct
in expectation.

Proof.
E[p]=E[2Y Z] =23 E[Z]
k=1 k=1
=E[£]
=> o[0]P(0)
0
—P(0).

‘ But: Is the actual estimate likely to be close to the expected value?

102 /119




Chernoff bound (1)

Theorem (Two-sided Chernoff bound, simple form)

Let Zy,...,Z, be i.id. 0/1 random variables with E[ Z1] = p and set
Z=1%" 27 Then,

_ 2
P(|Z—-p|>vp) <2exp (—217;3”)

In words:
@ Take a coin with (unknown) probability of heads p (thus tail 1 — p)
@ Flip the coin n times: outcomes Zi,...,2Z,
e Compute the fraction Z of heads
e Estimate p using Z
@ Then: Probability that relative error larger than

© Decreases exponentially with increasing number of flips n
@ Decreases with increasing error bound ~
© Decreases with increasing probability of heads p

Very important result with many applications!
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Chernoff bound (2)

Theorem (Two-sided Chernoff bound, simple form)

Let Zl, .., Zy, be i.i.d. 0/1 random variables with E[ Z; | = p and set
Ek Ze. Then,

2
P(|Z—-p|>vp) <2exp (—217;"7)

Proof (outline).
We give the first steps of the proof of the one-sided Chernoff bound. First,

P(Z>q)=P(e” >e").
for any t > 0. Use the Markov inequality P (|X| > a) < E[|X]]/a to obtain
P(Z>q)<E[e?]/e"
=E[e% e/ =E[eD]. E[e?]/e" =E[e2]'/e"

Use definition of expected value and find the value of t that minimizes RHS to obtain
the precise one-sided Chernoff bound. Relax the RHS to obtain the simple form. O

v
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Naive estimator: absolute (¢,0)-approximation (1)

Theorem (sampling theorem)

To obtain an absolute e-approximation with probability at least 1 — ¢, it
suffices to run

24+¢€. 2 1 1
> — = —InZ
n> 2 In(s O<e2 In 5)

sampling steps.

Proof.
Take v = ¢/p and apply the Chernoff bound to obtain

2 2 2
IED(|Z—P|26)§2e><p< </p pn>=2exp< ‘ )

- - n
2+¢/p 2p+e

&2
< 2exp (—2+ n)
€

since p < 1. Now solve RHS < ¢ for n. O

v
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Naive estimator: absolute (¢,0)-approximation (2)

The number of sampling steps given by the sampling theorem
is independent of .

10()'()00

IO(I)UU

IUIO()
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Naive estimator: relative (€,0)-approximation (1)

Theorem

To obtain a relative e-approximation with probability at least 1 — 6, it
suffices to run
2 1 1
tn2_o(Ln))
pe )

n>

In2
)

sampling steps.

Proof.

Take v = € and apply the Chernoff bound to obtain

2
]P’(‘Z—p‘Zep) §2exp<— ¢ pn>

2+e

Now solve RHS < § for n.

Ol

v
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Naive estimator: relative (€,0)-approximation (2)

The number of sampling steps given by the sampling theorem now is de-
pendent on ®; we cannot compute the number of required steps in ad-
vance! Obtaining small relative error for small p (i.e., ® is often false)
requires a large number of sampling steps.
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Why care about relative e-approximation?

@ Absolute error ill-suited to compare estimates of small probabilities
» p1 = 0.001, p, = 0.01, e = 0.1
» Absolute error: /; =[0,0.101], /, = [0,0.11]
> Relative error: /; = [0.0009,0.0011], /, = [0.009, 0.011]
— Ranking of tuples more sensitive to absolute error

@ For p € [0,1), relative error € is always tighter than absolute error €
(esp. when probabilities are small)

Can we get a relative e-approximation in which the minimum
number of sampling steps does not depend on P ($)?
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The problem with the naive estimator
P=X1Y1VXYoV XoYs

00020

0.

b
0.00010

0.00000

10 100 1000 10000 100000 10 100 1000 10000 100000
N N
Large probabilities Small probabilities (x1072)

@ When P(®) is small, ® not satisfied on most samples
— Slow convergence

Idea: Change the sampling strategy so that & is satisfied on
every sample.

110 /119



Karp-Luby estimator (basic idea)
Let & be a propositional DNF formula with V(®) = { X1,..., X }, i.e.,

: - - |
S=C VGV o ‘ Easy to find satisfying assignments! ‘

Set g =P () and @ =), gi. Note that p < Q (union bound).
P(e)=P(G)+P(-CGGANG)+---
+P(-(GV---VCno1)ACn)
=P(TRUE | C)P(C)+P(~-C | G)P(C)+---
+P(~(CV-V Cno1) | Cn)P(Cm)
=Q[P(TRUE | G1)q1/QR+P(~C | &) qa/Q+ -
+P(~(G V-V Cna)| Cn)am/Q]
Idea of Karp-Luby estimator:

Q gi/Q is computed exactly (in linear time)
@ P(~(GV---VC(C_1)| G) are estimated
» Impact of estimate proportional to P ( C;)
— Focus on clauses with highest probability
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Karp-Luby estimator

@ Pick a value nand for k € {1,2,...,n}, do
@ Pick a random clause C; (with probability g;/Q)
@ Pick a random assignment 6
* For a variable X € V(G;)
TRUE if X is positive in G
FALSE if X is negative in

— Clause C; is satisfied (and thus )
* For the other variables X ¢ V()

TRUE  with probability P (X))
FALSE otherwise

— All other variables take random values

© Evaluate
7 {1 i (Vagjes GIOD

0 otherwise

Q n
@ Return p = o ZZk
k=1
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Example of KL estimator
P=X1YIVXiYoVv XoYs

e m = 3, probabilities of X; and Y3 reduced to 1/10th

o (4 = X1V,
o G =X1Yo,
o (G3=XY53,
e =0.196, p~0.134

1

N = =N W
el e = N
O FH = =

1

[ G W A G G T

1

= e

0

O o oo

1

== == O

g1 = 0.09-0.85 = 0.0765,
g2 = 0.09-0.75 = 0.0675,
g3 = 0.8-0.065 = 0.052,

1

== == O

0

OO oo

g2/ Q ~ 0.34
43/ Q ~ 0.27

1

O = O M

i X1 Xo Y1 YaYs GGG Zo p

0.196
0.196
0.131
0.147
0.157
0.131
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KL estimator: expected value

Theorem

The KL estimator p is unbiased, i.e., E[p]

=P (®) so that p is correct in
expectation.

v

Proof.
; =E[§sz] — QE[Z]=QE[E[Z | G picked]]

= qu'E[Zl | C; picked]

i=1

—Z]P’(C)IP’ \V GlG)

1<)<i

:IP’(cb).

O

v
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KL estimator: relative (€,0)-approximation

Theorem

To obtain a relative e-approximation with probability at least 1 — 6, it

suffices to run

2+e 2 1
anEZ s~ O( 5)

sampling steps of the KL estimator.

Proof.

Use the Chernoff bound with vy = ¢ and E[Z] = Q@ 1p.
P(|Z-Q7'p|>eQ7"p) < 2exp (

—*/(2+€)Q 'pn)
P(|Q -

Q7lp| 2 eQ7p) =P(Ip—pl=ep)

<2exp (—€/(2+e)m tn),
since mp > Q. Now solve RHS < ¢ for n.
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KL estimator: discussion

e KL estimator provides relative (€,0)-approximation in polynomial time
in size of ® and %
—fully polynomial-time randomized approximation scheme (FPTRAS)

o Example: ® = X1Yi1VX1YoV XoY3

0.00020

p
0.00010

0.00000

10 100 1000 10000 100000 10 100 1000 10000 100000
N N
Large probabilities Small probabilities (x1072)

@ Requires DNF (=why-provenance; polynomial in DB size for UCQ)

For €, fixed and relative error, the naive estimator requires O(p~!) sam-
pling steps and the KL estimator requires O(m) steps. In general, the
naive estimator is preferable when the DNF is very large. The KL estimator
preferable if probabilities are small.
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Outline
@ Primer: Relational Calculus
9 The Query Evaluation Problem

© Extensional Query Evaluation
@ Syntactic Independence
@ Six Simple Rules
@ Tractability and Completeness
@ Extensional Plans

@ Intensional Query Evaluation
@ Syntactic independence
@ 5 Simple Rules
@ Query Compilation
@ Approximation Techniques

© Summary
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Lessons learned

Relational calculus is a great tool for query analysis & manipulation
Query evaluation computes marginal probabilities P (¢t € q(D))

On tuple-independent DBs and UCQ, data complexity either P or #P
Extensional query evaluation
» Detects and evaluates the subset of safe queries (P)
> Leverages query structure to obtain polynomial-time algorithm
» Uses Rg-rules to create an extensional plan that can be executed in an
(extended) RDBMS — highly scalable
» Rules are sound and complete for UCQ

Intensional query evaluation
» Applies to all queries, but focus is on hard (sub)queries
> lgnores query structure, leverages data properties
» Computes probabilities of propositional lineage formulas
» Rule-based evaluation computes probabilities precisely, but potentially
exponential blow-up — stop early to obtain probability bounds
» Sampling techniques apply to all formulas; FPTRAS for UCQ

Hybrids of extensional and intensional query evaluation promising
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Suggested reading

@ Serge Abiteboul, Richard Hull, Victor Vianu
Foundations of Databases: The Logical Level (ch. 12)
Addison Wesley, 1994

@ Dan Sucio, Dan Olteanu, Christopher Ré, Christoph Koch
Probabilistic Databases (ch. 3-5)
Morgan& Claypool, 2011

@ Michael Mitzenmacher, Eli Upfal
Probability and Computing: Randomized Algorithms and Probabilistic
Analysis (ch. 10)
Cambridge University Press, 2005
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Overview

In this lecture

e 6 o6 o

Not

Statistical relational learning (SRL)

Introduction to probabilistic graphical models (PGM)

Basics of undirected models (called Markov networks)

Markov logic as a template for undirected models

Basics of inference in Markov logic networks

in this lecture

Directed models (called Bayesian networks)

Other SRL approaches (such as probabilistic relational models)
High coverage and in-depth discussion of inference

Learning Markov logic networks

)
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Outline

@ Introduction to Markov Logic Networks
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Correlations in probabilistic databases

@ Simple probabilistic models
» Tuple-independent databases
» Block-disjoint independent databases
» Key/foreign key constraints, ...
e Correlations (mainly) through R.A queries/views
» Any discrete probability distribution can be modeled
» Queries describe precisely how result is derived

Example (Nell)

NellExtraction NellSource
Subject Pattern  Object Source P

Sony produces| Walkman| 1 |0.96 1 10.99
IBM produces PC 0.96 2 0.1

Source P

1
IBM produces PC 2 1
Microsoft | produces| MacOS 2 0.9
AlbertEinstein| bornln Ulm 1 0.9 Predlucss
Subject  Object
Produces(x, y) <NellExtraction(x, 'produces’, y, s), Sony |Walkman| 0.9504
NellSource(s) IBM PC  ]0.95536

Microsoft| MacOS 0.09

A




Statistical relational learning (I)
Smoking and Quitting in Groups

Researchers studying a network of 12,067 people found that smokers and nonsmokers tended to cluster in groups of close Iriends and family

members. As more pecple quit over the decades, remaining groups of smokers were increasingly pushed to the periphery of the social network
1971 A sample of 1,000 people from 2000 Mearly three decades later, groups ‘e
the study includes many large ? \'. of smokers tended to be smaller and e 28

.Ig. ) I
Py
s

. 5
aroups of smokers. ? . % more isolated
-

KEY
@ Male smoker = Male nonsmaoker - Friendshig,
marriage or family lie
Soumes: New England Journalof Madoine .. ch:ala .srnokcr X = Famale nonsmaker g ¥
Dr Michalas A. Cheistakis: James H. Fowler Circle size is propovtional to the number of cigarettes smoked per day. THE NEW YORK TIMES

Does John smoke?

| Learn correlations from structured data, then apply to new data. | 5o




Statistical relational learning (I1)

@ Goal: Declarative modelling of correlations in structured data
@ Idea: Use (subsets of) first-order logic
Very expressive formalism; lots of knowledge bases use it
Symmetry: Vx.Vy.Friends(x, y) <= Friends(y, x)
Everybody has a friend: Vx.3y.Friends(x, y)
Transitivity: Vx.Vy.Vz.Friends(x, y) A Friends(y,z) = Friends(x, z)
Smoking causes cancer: ¥x.Smokes(x) = Cancer(x)
Friends have similar smoking habits:
Vx.Vy.Friends(x,y) = (Smokes(x) <= Smokes(y))
@ Problem: Real-world knowledge is incomplete, contradictory, complex
— Above rules do not generally hold, but they are “likely” to hold!
@ Approach: Combine first-order logic with probability theory
» Expressiveness of first-order logic
» Principled treatment of uncertainty using probability theory

vV VvV VvV VY VY

There are many approaches of this kind. Our focus is on
Markov logic, a recent and very successful language.

6/78



Markov logic networks

Definition

A Markov logic network is a set of pairs (F;, w;), where F; is a formula in
first-order logic and the weight w; is a real number.

Example

15 { Smoking causes cancer
' Vx.Smokes(x) = Cancer(x)

11 { Friends have similar smoking habits
' Vx.Vy.Friends(x,y) = (Smokes(x) <= Smokes(y))

@ Formulas may or may not hold
@ Weights express confidence
» High positive weight — confident that formula holds
» High negative weight — confident that formula does not hold
» But careful: weights actually express confidence of certain
“groundings” of a formula and not the formula as a whole (more later)

@ Formulas may introduce complex correlations By




Simple MLN for entity resolution

Which citations refer to the same publication?

author  Richardson, Matt M. Richardson and Domingos, Pedro and
and Domingos, P. Domingos Richardson, Matthew
Pedro
title Markov Logic Markov logic Markov Logic: A Unifying
Networks networks Framework for Statistical
Relational Learning
year 2006 2006 2007
// predicates
HasToken(token, field, citation) // e.g., HasToken(’Logic’, ’title ’, C1)
SameField(field, citation, citation) // Semantic equality of values in a field
SameCitation(citation, citation ) // Semantic equality of citations
// formulas

HasToken(+t, +f, c1) *~ HasToken(+t, +f, ¢2) => SameField(+f, c1, c2)
SameField(+f, c1, ¢2) => SameCitation(cl, c2)
SameCitation(cl, ¢2) ~ SameCitation(c2, ¢3) => SameCitation(cl, ¢3)

Rule weights are usually learned from data. The same rule may
have different weights for different constants (indicated by “+").
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Alchemy

(]

Alchemy is well-known software package for Markov logic
Developed at University of Washington

Supports a wide range of tasks
» Structure learning
» Weight learning
» Probabilistic inference

Has been used for wide range of applications
> Information extraction
» Social network modeling
» Entity resolution
» Collective classification
> Link prediction
Check out http://alchemy.cs.washington.edu/
» Code
> Real-world datasets

» Real-world Markov logic networks
> Literature

78
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From Markov logic to graphical models (example)

Friends Smokes Cancer
Namel Name2 Value Name Value Name| Value
Anna | Bob | Yes Anna| Yes Anna| No

Bob | Anna | Yes 15 { Smoking causes cancer

Anna | Anna | Yes Vx.Smokes(x) = Cancer(x)
Bob | Bob | Yes

11 { Friends have similar smoking habits
) Vx.Vy.Friends(x, y) = (Smokes(x) <= Smokes(y))

Inference result Inference (conceptual)
@ P(Bob smokes) = 84.6% S(B) C(B) #R1 #R2|>w P

@ P (Bob has cancer) = 76.9%

Smokes(B)
Cancer(A)

Example is simplified;
actual semantics are

slightly different.




Probabilistic databases and graphical models

Probabilistic databases Graphical models
Probabilistic  Simple Complex
model (disjoint-independent tuples)  (independencies given by graph)
Query Complex Simple

(e.g., IxFy.R(x,y) AS(x)) (eg. P(X1, X2 | 21, 22, 23))
Network Dynamic Static

(database + query) (Bayesian or Markov network)
Complexity Database Network
measured in
size of
Complexity Query Treewidth
parameter
System Extension to RDBMS Stand-alone

Hybrid approaches have many potential applications and are under
active research.
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Outline

© Probabilistic Graphical Models
@ Introduction
@ Preliminaries
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Outline
@ Introduction to Markov Logic Networks

© Probabilistic Graphical Models
@ Introduction

© Markov Networks
@ Markov Logic Networks

© Inference in MLNs

© Summary
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Reasoning with uncertainty

@ Goal: Automated reasoning system
» Take all available information
(e.g., patient information: symptoms, test results, personal data)
» Reach conclusions
(e.g., which diseases the patient has, which medication to give)
@ Desiderata
© Separation of knowledge and reasoning

* Declarative, model-based representation of knowledge
* General suite of reasoning algorithms, applicable to many domains

@ Principled treatment of uncertainty
* Partially observed data
* Noisy observations
* Non-deterministic relationships
@ Lots of applications
» medical diagnosis, fault diagnosis, analysis of genetic and genomic
data, communication and coding, analysis of marketing data, speech
recognition, natural language understanding, segmenting and denoising
images, social network analysis, ...
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Probabilistic models

o Multiple interrelated aspects may relate to the reasoning task
> Possible diseases
» Hundreds of symptoms and diagnostic tests
» Personal characteristics

© Characterize data by a set of random variables
Flu (yes / no)

» Hayfever (yes / no)

» Season (Spring / Sommer / Autumn / Winter)

» Congestion (yes / no)

» MusclePain (yes / no)

— Variables and their domain are important design decision

@ Model dependencies by a joint distribution

» Diseases, season, and symptoms are correlated

» Probabilistic models construct joint probability space

— 2-2-4.2.2 outcomes (64 values, 63 non-redundant)
» Given joint probability space, interesting questions can be answered

v

P (Flu | Season=Spring, Congestion, =MusclePain )

| Specifying a joint distribution is infeasible in general! |
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Probabilistic graphical models

@ A graph-based representation of direct probabilistic interactions

@ A break-down of high-dimensional distributions into smaller factors
(here: 63 vs. 17 non-redundant parameters)

@ A compact representation of a set of (conditional) independencies

Example (directed graphical model)

Graph representation

Factorization

Independencies

P(S,F,H,M,C)
=P(S)P(F|S)P(H|S)P(C|F,H)P(M|F)

(FLH|S),(CLS|F,H),(MLH,C,S|F)

y
16/78



Main components

© Representation
» Tractability
* Variables tend to interact directly only with very few others
* Natural and compact encoding as graphical model
» Transparency
* Models can be understood/evaluated by human experts
@ Inference
» Answer queries using the distribution as model of the world
» Work on graph structure
— orders of magnitude faster than working on joint probability
© Learning
» Learn a model from data that captures past experience to a good
approximation
» Human experts may provide rough guidance
> Details filled in by fitting the model to the data
— Often better reflection of domain than hand-constructed models,
sometimes surprising insights

Graphical models exploit locality structure that appears in
many distributions that arise in practice.
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Outline
@ Introduction to Markov Logic Networks

© Probabilistic Graphical Models

@ Preliminaries
© Markov Networks
@ Markov Logic Networks

© Inference in MLNs

© Summary
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Notation

Let X and Y be sets of random variables with domain Dom(X) and
Dom(Y). Let x € Dom(X) and y € Dom(Y).

Expression Shortcut notation
P(X=x) P(x)
P(X=x[Y=y) P(x|y)
Vx.P(X =x) = f(x) P(X) = f(X)
T P(X = x| Y =y) = f(xy) P(X|Y)=F(XY)

e P(X)and P(X|Y) are entire probability distributions

e Can be thought of as functions from Dom(X) — [0, 1] or
(Dom(X), Dom(Y)) — [0, 1], respectively

o fy(X) =P (X |y) is often referred to as conditional probability
distribution (CPD)

@ For discrete variables, may be represented as a table (CPT)
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Conditional independence

Definition

Let X,Y and Z be sets of random variables. X and Y are said to be

conditionally independent given Z if and only if
P(X,Y|Z)=P(X|Z)P(Y|Z).

We write (X L Y | Z) for this conditional independence statement. If
Z = (), we write (X L Y) for marginal independence.

Example

(FLH|S),(CLS|F,H)
(M LH,CS|F)

P(S,F,H,M,C)
=P(S)-P(F[S)-P(HIS)
P(C|F,H)-P(M|F)




Properties of conditional independence

Theorem
In general, (X L Y) does not imply nor is implied by (X LY | Z)

The following relationships hold:

(XLY|Z) < (YLX]|Z) (symmetry)

XLYW|Z) = (XLY|Z) (decomposition)
XLYW|Z) = (XLY|Z W) (weak union)
XLW|ZY)AXLY|Z) = (XLY,W|2Z) (contraction)

For positive distributions and mutally disjoint sets X, Y, Z,\W:

XLY|ZW)AXLW|ZY) = (XLY,W|Z) (intersection)

Proof.

Discussed in exercise group.
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Querying a distribution (1)
Consider a joint distribution on a set of variables X
o Let E C X be a set of evidence variables that takes values e
o Let W =X — E be the set of latent variables
o Let Y C W be a set of query variables
@ Let Z=W —Y be the set of non-query variables

Example
e X = { Season, Congestion, MusclePain, Flu, Hayfever }
o E = { Season, Congestion, MusclePain }
@ e = { Spring, Yes,No }
e W = { Flu, Hayfever }
o Y={Flu}
e Z = { Hayfever }




Querying a distribution (2)

@ Conditional probability query
» Compute the posterior distribution of the query variables
P(Y|e)
@ MAP query
» Compute the most likely value of the latent variables
MAP(W | e) = argmax,, P(w | e) = argmax, P(w,e)
© Marginal MAP query
» Compute the most likely value of the query variables
MAP(Y | e) = argmax, P (y | e) = argmax, >, P(y,z,e)

Example

P(W|e) | Flu —Flu
Hayfever | 5% 35%
—Hayfever | 40% 20%

@ P (Flu | Spring, Congestion, =MusclePain ) — Yes (45%), No (55%)
@ MAP(Flu, Hayfever | Spring, Congestion, “MusclePain) — Only flu
© MAP(Flu | Spring, Congestion, =MusclePain) — No flu (!)
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Querying graphical models

@ Graphical models induce conditional independences
@ Queries reason about dependencies between variables

Can we evaluate queries more efficiently given a graphical
model and its associated independences?

Example
Independence properties help inference!
Table known to satisfy (F L H | E)
P(W|e) | Flu —Flu
Hayfever | 24% 16% | 40%
—Hayfever | 36% 24% | 60%
60% 40%

Thus, for example, monotonicity is now known to hold for MAP:
MAP(Flu, Hayfever | E) = (MAP(Flu | E), MAP(Hayfever | E))
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Outline

© Markov Networks
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Misconception example

Example
@ Alice, Bob, Charles, and Debbie study in pairs for the SUM exam

@ Lecturer misspoke in class, giving rise to a possible misconception

@ Some students figured out the problem, others did not

Which of the students has the misconception?

@ If A does not have the misconception, he may help B and D
— Students influence each other

@ If A has the misconception, he may be helped by B and D
— Influence has no natural “direction”

@ A does not study with C — No direct influence between A and C
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Markov network

Definition

A Markov network is an undirected graph H = (X, &), where X is a set of
random variables and £ C X x X is the set of edges.

Example

o X={AB,CD}

0 o £ ={(AB),(B,C),(C,D),(D,A) }
oo
<

We will see that Markov networks encode a set of conditional
independence assumptions between its variables.

27 /78
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Local models

Definition
Let D be a set of random variables. A factor ¢ is a function from

Dom(D) — R. A factor is nonnegative if has range R*. The set D is
called the scope of the factor and is denoted Scope[d].

We restrict attention to nonnegative factors.

Example

@ Factors describe “compatibility” between values (not normalized)

@ ¢1: More “weight” when A and B agree than when they disagree

@ ¢1: More weight when A and B are both right than when both are wrong
@ ¢1: If they disagree, more weight when A is right than when B is right




Combining local models

Definition

Let X, Y, Z be three disjoint sets of random variables and let ¢1(X,Y)
and ¢2(Y, Z) be two factors. The factor product 1) = ¢1 X ¢, is given by

the factor ¢ : Dom(X,Y,Z) — R with

P(X, Y, Z) = p1(X,Y) - (Y, Z).

Example

5]

L L L L L LD
H H kB R O O O

i bi E 3000

30

500
100

10

Factor products combine lo-
cal models by “joining” fac-
tors on the common part Y.

1000
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Factor products and the product rule of probability
Recall the product rule of probability
P(X,Y)=P(Y)P(X]|Y).

Example
MusclePain Flu | MusclePain  Flu, MusclePain

Yes|0.1 Yes|Yes|0.8 Yes|Yes|0.08
No|0.9 Yes| No |0.2 Yes| No |0.02
No | Yes|0.1 No |Yes|0.09
No|No|0.9 No|No|0.81

o Set ¢1(MusclePain) = P ( MusclePain)

@ Set ¢»(MusclePain, Flu) = P ( Flu | MusclePain )
o Set ¢)(MusclePain, Flu) = P ( MusclePain, Flu )
@ Then ¢ = ¢1 X &2

‘ Factor products generalize the product rule of probability.
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Gibbs distribution

Definition

A distribution Pg is a Gibbs distribution parameterized by a set of factors
& ={¢1(D1),...,0m(Dn) } if it is defined by

Z= Y Po(X,...,Xn)

Here, ]f% (Xi,...,Xpn) is an unnormalized measure and Z a normalizing
constant called the partitioning function.

@ Factors contribute to the overall joint distribution
@ Overall dist. takes into consideration the contribution from all factors

A set of factors defines a Gibbs distribution, i.e., a joint prob-
ability distribution over all variables. s




Gibbs distribution for Misconception example
A B C| D
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b
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Factorization and factor graphs

Definition

A distribution Py with ® = { ¢1(D1),...,¢m(Dm) } factorizes over a
Markov network # if each D; is a complete subgraph of H. The factors ¢;
are often called clique potentials.

Example
7‘[1 7‘(2

(4 ()
(2] (&) oee

G, O,
°o b= {¢1(A7 B)7¢2(B¢ C),¢3(C, D)7¢4(DaA)}
o V= {d}l(Aa B, D)7w2(Bv C)}

o Py factorizes over both #1 and H,

o Py factorizes over only Ho> S




Active paths

Definition

Let X;—...—Xj be a path in H = (X,€). Let Z C X be a set of
observed variables. The path X;—...—Xj is active given Z if X; ¢ Z for
1<i<k. |
Example

All active paths given A:
o D-C
o C-B
e D-C-B
Some inactive paths given A:
o D-A-B
o C-D-A-B
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Separation and independencies for Markov networks

Definition
We say that a set of nodes Z separates X and Y in H, denoted
sepy(X; Y | Z), if there is no active path between any node in X and any

node in Y given Z. We associate with H the following set of
independencies:

I(H) ={(X LY |Z):sepy(X;Y | Z)}

Example

@ () does not separate any nodes

e { A} does not separate any nodes

o {A, C} separates { B} and { D}

e { A, B, C} does not separate any nodes

I(H)={(BLD|AC),(DLBI|AC)
(ALC|B,D),(CLA|B,D)}
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Relationship Gibbs distributions and Markov networks

Definition
@ Let P be a probability distribution over X. Define Z(IP) to be the set
of independence assertions of the form (X L Y | Z) that hold in P.

e A Markov network H is an I-map for P if Z(H) C Z(P).

Theorem Soundness (—)

Let P be a distribution and H be a Markov network over X. If P is a
Gibbs distribution that factorizes over H, then H is an I-map for PP.

Theorem (Hammersley-Clifford theorem) Soundness ()

Let P be a positive distribution and H be a Markov network over X. If H
is an I-map for P, then P is a Gibbs distribution that factorizes over H.

Theorem Completeness

If X and Y are not separated given Z in ‘H, then X and Y are dependent
for some distribution P that factorizes over H.
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Application: Image denoising

Original Noisy image Denoised image

Li and Huttenlocher, ECCV 2008


http://portal.acm.org/citation.cfm?id=1478201

Application: Stanford Named Entity Recognizer

Named Entity Recognition (NER) labels sequences of words in a text
which are the names of things, such as person and company names, or

gene and protein names.

@ Local evidence often strong clue for label
@ Long-range evidence (label consistency) helps when local evidence is

insufficient

Finkel, Grenager, and Manning, ACL 2005 38/78


http://nlp.stanford.edu/software/CRF-NER.shtml
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Semantics of Markov logic networks

Definition

A Markov logic network L = { (Fi, w;) } is a template for constructing
Markov networks. Given a set of constants C, a ground Markov logic My ¢
specifies a distribution over the possible worlds as follows

P(X =x) xexp [Z Wi”i(x)] )

where nj(x) is the number of “true groundings” of formula F; in the
possible world x.

@ A possible world x is likely if
© It satisfies many groundings with positive weight
@ If satisfies few groundings with negative weight
© It satisfies groundings with high positive weight
@ It does not satisfy groundings with high negative weight
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How many true groundings does a formula have?
o FL = M(A)

o F, = M(A)V M(B)

n2:1 n2:1 n2:0
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How many true groundings does a formula have? (2)
o F3 = M(A) A M(B)

FOL: (strict)
MLN: n3 =2 n3=1 n3 =0 (smoothed)

o F4 =VYx.M(x)

B

FOL: 1 0 0 (strict)
MLN: ng =4 ng =3 ng =20 (smoothed)

Conjunctions in FOL are sensitive to noise: If just one of the conjuncts is unsat-
isfied, the formula is also unsatisfied. MLNs count how many of the conjuncts
are true and thus are less sensitive to noise. T




How many true groundings does a formula have? (3)
e F5 = 3dx.M(x)

FOL: 1 1 0 (strict)
MLN: ng=1 ng=1 ng=20 (Stl’iCt)

Disjunctions in FOL are insensitive to noise, so we are fine. ‘
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Grounding a formula in Markov logic

Let F be a formula and C = {¢cj,...,cq } be a set of constants.
Conceptually, we obtain the set G(F) of ground formulas as follows:

@ Whenever a subformulas of form 3x.F’(x) occurs, replace by
(F'(a) V-V F(cd))

@ Convert the formula to form Vx.F’(x), where F’ is in conjunctive
normal form and is quantifier-free, optionally simplify, denote result
by cnf(F)

@ Forallce CX, set G(F,c)={G: Gisaclause in F'(c)}

Q Set G(F)={G(F,c):ce CH}

Example
e C={AB}
@ F; = Vx.Smokes(x) = Cancer(x)
@ No existential quantifiers — nothing to do
Q onf(F1) = Vx.=S(x) Vv C(x)
Q G(F,A)={-S(A)vVC(A)}
G(F1,B) ={—-5(B)VC(B)}
Q G(F)={{-S(A)vC(A)}, {-S(B)VvC(B)}}
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Grounding a formula (example)

Example

e C={AB}
o

© No existential quantifiers — nothing to do

Q conf(F2) = Vx.Vy.[2F(x,y) VS(x) V =S(Y)] A [2F(x, ) V =S(x) VS(y)]
Q G(F2, (A A)) = { ~F(A, A) V S(A) v =S(A), —F(A, A) v =S(A) v S(A) }
G(F2, (A, B)) = { =F(A, B) v S(A) v =S(B), —F(A, B) V =S(A) v S(B) }
G(F2, (B, A)) = { =F(B, A) v S(B) v =S(A), —F(B, A) v ~S(B) V S(A) }
G(F2,(B,B)) = {—F(B, B) v S(A) v =S(B), —F(B, B) v =S(A) v S(B) }
QO G(F) = {{ -F(A,A) VS(A) v =S(A), =F(A, A) v =5(A) V5(A) }
{ =F(A, B) VS(A) v =5(B), =F(A, B) V =S(A) vV S(B) } ,
{=F(B,A) v S(B) v -S(A), =F(B,A) v =S(B) v S(A) },

{-F(B,B) VS(A) v =5(B), -F(B,B)V -5(A) VS(B) } } |

= Vx.Vy.Friends(x,y) = (Smokes(x) <= Smokes(y))
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Grounding a Markov logic network

Given an MLN { (F;, w;) } and a set of constants C.
@ Create a Boolean variable R(c) for each predicate that occurs in one
of the formulas and each ¢ € C™, where m is the arity of the relation

@ For each formula F;
® Ground F; to obtain G(F;)
@® For each ground set of clauses G(F;,c) € G(F;)
@ Split weight evenly among clauses: w/ = w;/|G(F;,c)|
@ For each clause Fjj in G(F;,c), create a factor

¢(Dy) = wif;(Dy),
where Dj; is the set of variables that occur in Fj;, and

£(Dy) {1 if j-th clause in in G(Fj,c) is satisfied for assignment Dj
ii(Dj) =

0 otherwise

is an “indicator feature” with weight w;.

The weight of a ground CNF formula is split evenly among its clauses.
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Grounding a Markov logic network (example)

Fro 15 { Smoking causes cancer
1 Vx.Smokes(x) == Cancer(x)

Friends have similar smoking habits
P11 { Vx.Vy.Friends(x, y) = (Smokes(x) <= Smokes(y))
C={AB}
G(F1) = {{-S(A) v C(A) }, fu,w];1 =1.50
{-S(B)vC(B)}} fi2, w]72 =1.50
G(F) = {{ —F(A, A) v S(A) v =S(A), 1, wyy = 0.55
—F(A, A) vV =S(A) vV S(A) }, 22, Wy, = 0.55
{ —=F(A, B) V S(A) v =5(B), f23, wy3 = 0.55
—F(A, B) Vv =S(A) Vv S(B) }, 24, wy, = 0.55
{ —=F(B, A) v S(B) VvV =S(A), 5, o5 = 0.55
—F(B,A) vV =S(B) VS(A) }, 6, wyg = 0.55
{ —~F(B, B) V S(A) v =5(B), f27, wy; = 0.55
—F(B,B) VvV =S(A) v S(B)}} fog, wyg = 0.55

D24

<

(8)
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Log-linear model

Definition

A positive distribution P is a log-linear model over a Markov network # if
it is associated with

@ a set of features F = { fi(D1),...,fm(Dm) }, where each D, is a
complete subgraph in ‘H

@ a set of weights wy, ..., wp
such that

P(X1,...,Xn) x exp

m
> wifi(D;)
i—1

The terms ¢;(D;) = —w;f;j(D;) are called energy functions.

logP( X1,...,Xp) is a linear combination of the the features.
The linearity allows us to detect and eliminate redundancy in
the features (using standard linear algebra techniques).




From factors to features

Definition
Let D be a subset of variables. An indicator feature is a function
f(D):D—{0,1}.

Theorem

Every factor of a graphical model on discrete variables can be expressed in
terms of a linear combination of weighted indicator features.

Proof (Boolean case).
Consider a factor ¢(Xi, ..., Xk) on k Boolean variables. Let © be the set
of all assignments of values to Xi,..., Xk. Set

wy = Inp(Xq[6], . .., Xk[6]) (constants)
1if Xy = Xa[0], ..., Xk = Xi[0]
0 otherwise

Ind(Xi,..., Xk) =D geo Wola(X1, ..., Xk) (decomposition)
L]
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From factors to features (example)

Example

Consider three friends with similiar interests and let A, B, C be Boolean
variables that indicate whether each of the friends likes football.

[y

T
T

=
— T
=
o

We have

In¢(A,B,C) = wofy(A, B, C) = 2.3 frrr(A, B, C) + 2.3 frrr(A, B, C).
6

Even more compact: In¢(A, B, C) = 2.3 - Iapcv—a-B-C
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From Gibbs distribution to log-linear models

Theorem

Every positive Gibbs distribution P over H on Boolean variables X1, ..., X,
has a log-linear model over H with only indicator features and vice versa.

Proof.
]P(Xl,..-,Xn) = ?HQSI(DI)

Markov logic networks are “templates” for constructing log-

linear models. Any positive Gibbs distribution with finite-
domain variables can be modeled.
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Inference in probabilistic graphical models

@ Recall the queries of interest

@ Conditional probability query
Q@ MAP query
© Marginal MAP query

Definition
Let Py be a Gibbs distribution over variables { X, Xi,..., X, }.
@ The Po-decision problem asks whether Py, (X = x) > 0,
@ The Po-probability computation problem asks for Pg ( X = x).
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Complexity of inference in probabilistic graphical models

Theorem
The Py-decision problem is NP-complete, Po-probability computation is #P-hard.

Proof (by reduction from 3-SAT and #3-SAT).

Take a 3-SAT formula W = GG A G A ... A Gy, over variables X = { X1, Xo,..., X, }.
Consider the following Gibbs distribution Py over Boolean variables:

Here, Vi(Ci, X;) = 1 if for assignment X; the truth value of clause C; equals variable C;,
else Vi(G;, X;) = 0; similarly for A-factors. Po can be computed in polynomial time in
the size of W. Assertion 1 follows since Po (X = TRUE) > 0 if and only if W is
satisfiable. Po (X = TRUE) = P (W) where P(X; = TRUE) = 1/2 and the { X; } are
i.i.d. Assertion 2 follows since #¥ =2"P (W) = 2"Py (X = TRUE). O

V.
57/78




Queries in Markov logic

e Standard PGM queries, e.g.,
[P (Smokes(B), Cancer(B) | Smokes(A) A Friends(A,B) A ...)
— #P-hard

@ More general queries of form “What is the probability that formula F;
holds given that formula F, holds?”, e.g.,
P (3x.Cancer(x) | Vx.Smokes(x) )

o Let L be an MLN and C be a set of constants

P(F|F,LC)=P(F|F,M.)

P(Fl A F> ’ Mch)
P(F2| M)

2 xexr,nxp, F (X =x| Mc)
2 xexy, P(X =x|Mic)

where XF is the set of worlds in which F holds

We focus on standard PGM queries. ‘

58 /78



Outline
@ Introduction to Markov Logic Networks

© Probabilistic Graphical Models

© Markov Networks
@ Markov Logic Networks

© Inference in MLNs

@ Exact Inference

© Summary

59 /78



Naive approach
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Grounding with evidence (1)

Denote by M the weighted ground clauses in a ground Markov logic
network My c. Given evidence E, we can partition M into:

@ Clauses M; that involve only observed variables

@ Clauses M, that involve both observed and latent variables

© Clauses M3 that involve only latent variables
logP(W |E)=—logZ+ >  wf(Wr,Ef)
P=(f,w)eEM

=—logZ+ Y wF(E)+ D wF(Wr Ef)+ > wF(Wy)

(f,w)eM; (f,w)eMy (f,w)eMs

Constant
Example

My = { ¢11, ¢21, 22 }
My = { ¢23, b4, P25, P26, P27, D28 }
Ms = { $12 }

Cancer(B)
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Grounding with evidence (2)

Denote by M the weighted ground clauses in a ground Markov logic
network My c. Given evidence E, we can partition M into:

© Clauses My that involve only observed variables

@ Clauses M> that involve both observed and latent variables

© Clauses Mj that involve only latent variables

logP(W |E)=—logZ+ >  wf(Wr,Ef)
b=(f,w)eM
—logZ' + ST wF(Wr, Ef) + >0 whi(wy)
(f,w)EM, (f,w)EM3

N—_—— —
Replace observed variables by their values

Example
T

Croela]S ‘

Friends(B,A)

My = { ¢23, b24, $25, P26, D27, b28 }

Mz = {12 }

Cancer(B




Grounding with evidence (3)

Denote by M the weighted ground clauses in a ground Markov logic
network My c. Given evidence E, we can partition M into:

© Clauses My that involve only observed variables

@ Clauses M> that involve both observed and latent variables

© Clauses Mj that involve only latent variables

logP(W |E)=—logZ+ >  wf(Wr,Ef)
b=(f,w)eM
=—logZ' + > w(Wp)+ >
(F,w)eMm} (f,w)EM3
=—logZ' + >  wf(Wy)
(f,w)yem’
Example

Smokes(B)

Cancer(B)

wf(Wr)

No observed variables
are left. Gives rise to ef-
ficient grounding meth-
ods.

M3 = { b33, b4, b5, D26, Po7: P25 |

Ms = { ¢12 }

M = Mé U Ms

oa = ~F(A, B) V —~S(A) V S(B

¢5, = FALSE V FALSE V S(B)
=5(B)
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MAP inference for MLNs (1)

Example

What is the most likely world for a given Markov logic network?

Friends(A,B)

Friends(A,A)

Friends(B,A)

Cancer(B)

Corresponds to weighted CNF formula:
V ="f1Afi2 Az AN A fas Afe Ay Afas
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MAP inference for MLNs (2)

Definition
Consider a CNF formula F over variables X', in which each of the clauses
fi,...,fn is associated with a corresponding weight wy, ..., wp,. The

Weighted MAX-SAT problem is to find an assignment x* € Xr that
maximizes the sum of the weights of satisfied clauses, i.e.,
x* = argmax, > ; wif;.

Consider the following transformation:

1
argmaxP(x) = argmax[— exp Z Wf(X)}
X X Z
(f.w)eMy c
= argmax w f(x) =x*
max >, w f(x)
(fweMic wi %
~——

F

There are many algorithms and solvers for Weighted MAX-SAT, both
exact and approximate. Specialized algorithms for MLNs do exist;
they try to reduce grounding by computing M, ¢ only partially.

65)
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MAP inference for MLNs (3)
‘/\

Probability
Probability
Probability

World World World

MAP world character- MAP world not dis- MAP world(s) charac-

izes distribution well tinguished from other terize only a part of
words the distribution

MAP estimates provide the “most consistent” world, i.e., the
world that satisfies most of the rules. This world may or may
not characterize the entire distribution well.
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Variable elimination (idea)

Goal: Eliminate non-query variables from the graph.

> K8
X
Y o
N

@)
-

B has been eliminated (“margin-
alized out”). The resulting factor
graph represents P( A, C,D).

= = R B O O O O
o
-

H O H O K O +~ O
—
o
o

L L L L L LY L

0O 0 0 0 o0 0 o0 0
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Variable elimination (why it works)

Recall that

P(A.B,C.D) = 261(A B) x 62(B, C) x 65(C, D) x 6u(D, A
and thus

P(A,C,D) =P (A, C.D)+P(Ab',C,D)
= ZI0n(A B%) x 62(5°, €) x 65(C, D) x 64(D, A
+ ¢1(A, b') x ¢o(b*, C) x ¢3(C, D) x ¢4(D, A)]

- l { Z ¢1(Aa b) X ¢2(b7 C)} X ¢3(C, D) X ¢4(D7A)

4
be{ bO,b1 }

=~ [60(A, C) x 65(C. D) x 6u(D, A)]
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Variable elimination (remarks)

@ Also called sum-product variable elimination
@ Whenever we eliminate a variable B

» We remove all factors connected to B
» We introduce a single factor that is connected to the neighbors of B
» If B has k neighbors, the new factor has 2% rows

— Potentially exponential blow-up

@ Computational cost

» Dominated by sizes of intermediate factors

Depends strongly on elimination ordering

NP-hard to find optimal ordering

Lots of useful heuristics exist

“Conditioning” can be used to avoid large factors for increased
processing time

v

v vy

@ Similar observations give rise to other important algorithms, e.g.,
“message passing” in “clique trees”
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Sampling methods

@ Also called particle-based approximate inference
@ Idea: Obtain samples from the distribution underlying the graphical
model
@ If samples were independent, we could count how often each variables
is true/false and apply the sampling theorem
@ Sampling is much more difficult in Markov networks — samples are
generally dependent
» Goal is to minimize the dependencies
» More samples needed than “implied” by the sampling theorem
» If dependencies vanish between far-apart samples — correctness and
convergence
@ Many techniques
» Forward sampling (for directed models)
Likelihood weighting
Importance sampling
Gibbs sampling
Other Markov Chain Monte Carlo (MCMC) methods
Collapsed particles

vV vy vy VvYYyYy
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Gibbs sampling (idea)

Gibbs sampling is a simple algorithm to sample from P ( X, Y). It is used
when it is hard to sample from P ( X, Y'), but easy to sample from
P(X|Y)and P(Y | X).
@ Pick an initial point (xo, yo)
Q@ Forn=1,2 ...
@ Generate x, ~P(X|Y =y,-1)
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|

0.2

0.0
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Gibbs sampling (idea)

Gibbs sampling is a simple algorithm to sample from P ( X, Y). It is used
when it is hard to sample from P ( X, Y'), but easy to sample from
P(X|Y)and P(Y | X).
@ Pick an initial point (xo, yo)
Q@ Forn=1,2 ...
@ Generate x, ~P(X|Y = yp_1)
® Generate y, ~P(Y | X =x,)
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Gibbs sampling for Markov networks

Recall that
P(A,B,C,D)= %qﬁl(A7 B) x ¢2(B, C) x ¢3(C, D) x ¢4(D, A).

Sampling from P (A, B, C, D) is hard but sampling from
P(A,B,C,D)
P(B,C,D)
2[61(A, B) x ¢2(B, C) x ¢3(C, D) x ¢u(D, A)]

P(A|B,C,D) =

= %Zae{ao,al}[dh(a, B) x ¢»(B, C) x ¢3(C, D) x ¢4(D, a)]
$1(A, B) x ¢4(D, A)
Zae{ao,al } ¢1(37 B) X ¢4(D, a)

is easy. Only the factors connected to A remain.

When resampling a variable A, we only have to look at the
factors connected to A, and thus only the subset of variables
connected to A. These variables are called the Markov blan-
ket of A.
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Gibbs sampling for Markov networks (remarks)

@ Variables are picked according to a schedule

— sequential, random, ...
@ An instance of the more general class of MCMC methods
» Markov chains describe how the sampling process moves through the
set of worlds
» Irreducible if all worlds can be reached from all other worlds
» Convergence speed depends on how fast the sampling process moves

(mixing time)

/\
z 2 e
< @< <
= = =}
2 2 2
a9 = =9
World World World

Gibbs sampling works  Gibbs sampling does not

Gibbs sampling works
reasonable (slow mixing) work (not irreducible)

well (fast mixing)
@ MCMC methods can perform “bigger” steps than Gibbs sampling;

they change multiple variables simultaneously 75/78



Outline

© Summary
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Lessons learned

@ Probabilistic databases and graphical models focus on different
aspects of probabilistic reasoning
@ Probabilistic graphical models
» Describe and reason about probability distributions and independencies
» Exploit locality structure (conditional independence)
» Main components: representation, inference, learning
@ Markov logic
» Combines first-order logic and probability theory
> Set of formulas with weights
» Template for generating undirected graphical models
@ Inference
» #P-hard in general
» MAP inference on MLNs corresponds to Weighted MAX-SAT
» Exact methods for probability computation (e.g., variable elimination)
may work when graph has no dense regions
» Approximate methods often based on MCMC sampling
» Gibbs sampling is the simplest MCMC method; it changes one variable
at a time
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Suggested reading

@ Daphne Koller, Nir Friedman
Probabilistic Graphical Models: Principles and Techniques
The MIT Press, 2009

@ Matthew Richardson and Pedro Domingos
Markov Logic Networks
Machine Learning, 62(1-2), pp. 107-136, 2006

@ Michael Mitzenmacher, Eli Upfal
Probability and Computing: Randomized Algorithms and Probabilistic
Analysis
Cambridge University Press, 2005

@ http://alchemy.cs.washington.edu/
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