
Scalable Uncertainty Management
01 – Introduction

Rainer Gemulla

April 20, 2012



Information & Knowledge Management Circa 1988

2 / 26Domingos, CIKM08 keynote

http://videolectures.net/cikm08_domingos_mlmaul/


Information & Knowledge Management Today

3 / 26Domingos, CIKM08 keynote

http://videolectures.net/cikm08_domingos_mlmaul/


Overview

SUM

Scalability

Uncertainty Management
Probability

theory

Artificial intelligence
Machine learning

Database
systems

Distributed
systems

Logic

SUM is about managing large amounts of uncertain data.
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Outline

1 Uncertainty in the Real World

2 Managing Uncertainty
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Sources of uncertainty
Certain data Uncertain data

The temparature is
25.634589 ◦C.

Sensor reported 25 ± 1 ◦C. Precision of devices

Bob works for Yahoo. Bob works for Yahoo or
Microsoft.

Lack of information

MPII is located in
Saarbrücken.

MPII is located in
Saarland.

Coarse-grained
information

Mary sighted a finch. Mary sighted either a finch
(80%) or a sparrow (20%).

Ambiguity

It will rain in Saarbrücken
tomorrow.

There is a 60% chance of
rain in Saarbrücken
tomorrow.

Uncertainty about
future

John’s age is 23. John’s age is in [20,30]. Anonymization

Paul is married to Amy. Paul is married to Amy.
Amy is married to Frank.

Inconsistent data

6 / 26Das Sarma, Stanford Infolab Seminar, 2009.

http://infolab.stanford.edu/infoseminar/Archive/WinterY2009/


Where does uncertainty arise?

Everywhere!

Information extraction (D5 research)

Sensor networks

Business intelligence & predictive analytics

Forecasting

Scientific data management

Privacy preserving data mining

Data integration

Data deduplication

Social network analysis
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Entity disambiguation (AIDA)

Disambiguate each mention of an entity in a piece of text.

Example

Find web pages concerning “The King of Rock’n’Roll” (entity search)

How much fuzz about “Santorum” in each month of 2012? (entity
tracking)

8 / 26AIDA website

http://www.mpi-inf.mpg.de/yago-naga/aida/


Text segmentation

Segment a piece of text into fields. E.g., “52-A Goregaon West Mumbai
400 062”.

Id House no Area City Pincode Prob
1 52 Goregaon West Mumbai 400 062 0.1
1 52-A Goregaon West Mumbai 400 062 0.2
1 52-A Goregaon West Mumbai 400 062 0.5
1 52 Goregaon West Mumbai 400 062 0.2

Example

Send a promotion to customers in West Mumbai.

Find all papers containing YAGO in the title (faceted search)

9 / 26Sarawagi, Information Extraction, 2008



Relation extraction (NELL / Yago2)

Extract structured relations from the web.

Example

What is known about Albert Einstein? (fact search)

Who has won a Nobel Prize and is born in Ulm? (question answering)

10 / 26Nell website

http://rtw.ml.cmu.edu/rtw/
http://www.mpi-inf.mpg.de/yago-naga/yago/
http://rtw.ml.cmu.edu/rtw/


Reasoning with uncertainty (URDF)

11 / 26URDF website

http://urdf.mpi-inf.mpg.de/


Google Squared (discontinued)

Find and describe items of a given category.

Example

Directors that directed at least one comedy movie?

Birthplaces of directors of comedy movies with a budget of over
$20M?
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Information integration

Example

Turnover in San Francisco? And in California? (OLAP)

13 / 26

Same?
{ }

Which one?

Sismanis et al., ICDE09.



Predictive analytics

Example

What is the effect of changing the price on future sales?

What is the risk associated with my portfolio?

14 / 26Haas, MUD10.

http://www.almaden.ibm.com/cs/people/peterh/MUD2010web.pdf


RFID & moving objects

Example

How many people are attending John’s lecture?

Where are choke points when moving items through my storage
facility?

15 / 26Ré et al., SIGMOD08.



Statistical & uncertain rules

Example

Does John smoke? (social network analysis)

“Mississippi” most often refers to the state of Mississippi. (entity
disambiguation)

16 / 26Kolata, The New York Times, 2008.

http://www.nytimes.com/2008/05/22/science/22smoke.html


Anonymized data

Example

Medical research, trend analysis, allocation of public funds, . . .

17 / 26Machanavajjhala et al., TKDD07.



Outline

1 Uncertainty in the Real World

2 Managing Uncertainty
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How to deal with uncertainty? (1)

Clean it (then deny it)!

E.g., data warehouse systems

Advantages
I Lots of expertise and tools for cleaning data
I Can be stored and queried in traditional DBMS

Disadvantages
I Loss of information
I No risk assessment
I High expense of cleaning
I New data may “break” the clean database

Important, but not covered in this lecture!

Customers
Sys Cust Name City State

Same!
{ 1 C1 John SFO CA

2 C2 Johnny SJ CA
1 C3 Jak SFO CA

CleanedCustomers
Cust Name City State
C12 Johnny SFO CA
C3 Jak SFO CA
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How to deal with uncertainty? (2)

Manage it!
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Approach I: Incomplete databases

A data integration scenario
Customers
Sys Cust Name City State

Same!
{ 1 C1 John SFO CA

2 C2 Johnny SJ CA
1 C3 Jak SFO CA

Transactions
Sys TransID Cust Sales
1 T1 C1 $15
1 T2 C1 $5
2 T3 C2 $30
1 T4 C3 $30

Resolving entities via an incomplete database
ResolvedCustomers
Ent Name City State
E1 John ‖ Johnny SFO ‖ SJ CA
E2 Jak SFO CA

ResolvedTransactions
TransID Ent Sales

T1 E1 $15
T2 E1 $5
T3 E1 $30
T4 E2 $30

Some query results
Sales by city

City Sum(Sales) Status
SFO $30-$80 guaranteed
SJ $50 non-guaranteed

Sales by state

State Sum(Sales) Status
CA $80 guaranteed

21 / 26Sismanis et al., ICDE09



Approach II: Probabilistic databases

Bird watcher’s observations
Sightings

Name Bird Species
t1: Mary Bird-1 Finch: 0.8 ‖ Toucan: 0.2
t2: Susan Bird-2 Nightingale: 0.65 ‖ Toucan: 0.35
t3: Paul Bird-3 Humming bird: 0.55 ‖ Toucan: 0.45

Which species exist in the park?

ObservedSpecies

Species
Finch: 0.8 ? (t1, 1)

Toucan: 0.714 ? (t1, 2) ∨ (t2, 2) ∨ (t3, 2)
Nightingale: 0.65 ? (t2, 1)

Humming bird: 0.55 ? (t3, 1)

DistinctSpecies

#
1: 0.0315 ? . . .
2: 0.2230 ? . . .
3: 0.7455 ? . . .

Observe: Cleaning up data by most likely choice would miss Toucan!

22 / 26Das Sarma, Stanford Info Blog, 2008.

http://infoblog.stanford.edu/2008/07/why-uncertainty-in-data-is-great-posted.html


Approach III: Probabilistic graphical models

Anna and Bob are friends. Anna smokes, but does not have cancer.
What do we know about Bob?

Uncertain knowledge

1.5
{ Smoking causes cancer

∀x .Smokes(x) =⇒ Cancer(x)

1.1
{ Friends have similar smoking habits

∀x .∀y .Friends(x , y) =⇒ (Smokes(x) ⇐⇒ Smokes(y))

Build a graphical model
& perform inference

23 / 26

Friends(A,B)

Friends(A,A) Smokes(A) Smokes(B) Friends(B,B)

Cancer(A) Friends(B,A) Cancer(B)

S(B) C(B) #R1 #R2 w Prob.
No No 1 1 2.6 7.7%
No Yes 1 1 2.6 7.7%
Yes No 0 3 3.3 15.4%
Yes Yes 1 3 4.8 69.2%



How to deal with uncertainty? (2)

Manage it!

Advantages
I No or little loss of information
I Uncertainty might be resolved more accurately at query time
I Risk assessment is possible
I Less upfront effort
I Arrival of new data handled gracefully

Disadvantages
I Increased cost of data processing
I Active research area with lots of open issues (and interesting results)
I No commercial DBMS systems available!

This lecture!
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Course overview

Modelling uncertainty
I Incomplete databases
I Probabilistic databases
I Probabilistic graphical models for relational data

Managing uncertain data
I Languages (relational algebra, datalog, relational calculus)
I Provenance
I Algorithms
I Complexity
I Approximation techniques
I Systems

Applications
I Information extraction, sensor networks, business intelligence &

predictive analytics, forecasting, scientific data management, privacy
preserving data mining, data integration, data deduplication, social
network analysis, . . .
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Suggested reading

Charu C. Aggarwal (Ed.)
Managing and Mining Uncertain Data (Chapter 1)
Springer, 2009.

Daphne Koller, Nir Friedman
Probabilistic Graphical Models: Principles and Techniques (Chapter 1)
The MIT Press, 2009

Dan Suciu, Dan Olteanu, Christopher Ré, Christoph Koch
Probabilistic Databases (Chapter 1)
Morgan & Claypool, 2011

Charu C. Aggarwal, Philip S. Yu
A Survey of Uncertain Data Algorithms and Applications
IEEE Transactions of Knowledge and Data Engineering, 21(5),
pp. 609–623, May 2009
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Overview

In this lecture

Refresh relational algebra

What is an incomplete database?

How can incomplete information be represented?

How expressive are these representations?

How to query incomplete databases?

How to query their representations?

Not in this lecture

Complexity

Efficiency

Applications

2 / 72



Outline

1 Refresher: Relational Algebra

2 Incomplete Databases

3 Strong representation systems

4 Completeness

5 Weak Representation Systems

6 Completion

7 Summary
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Notation

Set of attributes A (countably infinite, totally ordered)

Domain D of values for the attributes (countably infinite)

Elements of D are called constants

Per-attribute domain denoted dom(A)

Set of relation names R, each associated with a finite set of attributes
α(R) ⊂ A (countably infinite names per finite set of attributes)

A schema is a finite set of attributes (symbols U,W ,V )

A relation schema is a relation name (symbols R, S)

A database schema is a nonempty finite set of relation names

Example

R
A B C

t1: a1 b2 c1
t2: a2 b1 c1

A = {A,B,C ,D, . . . } = ABCD . . .

D = { a1, b1, c1, a2, . . . }
dom(A) = { a1, a2, . . . }
R = {R, S , . . . }
α(R) = ABC ; write R[ABC ]
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The Named Perspective

Let U ⊂ A be a schema
Tuple t over U is a function t : U → D (also called U-tuple)
α(t) denotes the schema of t
Value of attribute A ∈ U of U-tuple t is denoted t(A) or t.A
Restriction of U-tuple t to values in V ⊆ U is denoted t[V ]
Relation instance I (R) of R is a finite set of tuples over α(R)
Database instance I of database schema R maps each relation name
in R ∈ R to a relation instance I(R)

Example

R
A B C

t1: a1 b2 c1
t2: a2 b1 c1

t1 is a tuple over ABC

t1 = 〈A : a1,B : b2,C : c1〉 = a1b2c1

α(t1) = ABC

t1(A) = t1.A = a1

t1[AB] = a1b2 is a tuple over AB

I (R) = { t1, t2 } = { a1b2c1, a2b1c1 } is relation instance over ABC

5 / 72



The Unnamed Perspective

Tuple t is an ordered n-tuple (n ≥ 0) of constants, i.e., t ∈ Dn

Value of i-th coordinate denoted t(i)

Natural correspondence to named perspective
I n-tuples can be viewed as functions with domain { 1, . . . , n }
I U-tuples can be viewed as |U|-tuples by using total order of attributes

Example

R
t1: a1 b2 c1
t2: a2 b1 c1

t1 = 〈a1, b2, c1〉 = a1b2c1

t1(1) = a1

For now, we will mostly use the named perspective.
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Relational algebra (1)

Relation name R
Single-tuple, single-attribute constant relations (VALUES clause)

{ 〈A : a〉 }
for A ∈ A , a ∈ dom(A)
Selection σ (WHERE clause)

σA=a(I ) = { t ∈ I | t.A = a }
σA=B(I ) = { t ∈ I | t.A = t.B }

for A,B ∈ α(I ) and a ∈ dom(A).

Example

R
A B C

t1: a1 b2 c1
t2: a2 b1 c2
t3: a1 b1 c1

{ 〈A : a〉 }
A
a

σA=a1(R)

A B C
a1 b2 c1
a1 b1 c1

σA=a3(R)

A B C

7 / 72



Relational algebra (2)

Projection π (SELECT DISTINCT clause)

πU(I ) = { t[U] | t ∈ I }

for U ⊆ α(R)

Natural Join on (FROM clause)

I on J = { t over U ∪ V | t[U] ∈ I ∧ t[V ] ∈ J } ,

where U = α(I ), V = α(J)

Example

R
A B C

t1: a1 b2 c1
t2: a2 b1 c2
t3: a1 b1 c1

S
A D

t4: a1 d1
t5: a3 d2
t6: a1 d3

πAC (R)

A C
a1 c1
a2 c2

R on S
A B C D
a1 b2 c1 d1
a1 b2 c1 d3
a1 b1 c1 d1
a1 b1 c1 d3
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Relational algebra (3)

Renaming of attributes ρ (AS clause)

ρA1...An→B1...Bn(I ) = { t over V | (∃u ∈ I )(∀i ∈ [1, n]) u.Ai = t.Bi } ,

where α(I ) = {A1, . . . ,An }, V = {B1, . . . ,Bn }
Short notation: only list attributes being renamed

Example

R
A B

t1: a1 b2

t2: a2 b1

t3: a1 b1

ρAB→CD(R)

C D
a1 b2

a2 b1

a1 b1

ρAB→BA(R)

B A
a1 b2

a2 b1

a1 b1

R on ρB→C (R)

A B C
a1 b2 b2

a1 b2 b1

a2 b1 b1

a1 b1 b1

a1 b1 b2
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Relational algebra (4)

Union ∪ (UNION clause)

I ∪ J = { t | t ∈ I ∨ t ∈ J }
for α(I ) = α(J)
Difference − (EXCEPT clause)

I − J = { t | t ∈ I ∧ t /∈ J }
for α(I ) = α(J)

Example

R
A B

t1: a1 b2

t2: a2 b1

t3: a1 b1

S
A B

t4: a1 b2

t5: a2 b1

t6: a3 b2

R ∪ S
A B
a1 b2

a2 b1

a1 b1

a3 b2

R − S
A B
a1 b1

10 / 72



L -expression

Definition

Let L ⊆ SPJRUD be an algebra. An L -expression is any well-formed
relational algebra expression composed of only relation names, constant
relations, and the operations in L . Algebra L is positive if it does not
contain the difference operator.

Example

πA(πAB(R)) is a P-expression but not an S-expression

σA=a(R) is both an S-expression and a PS-expression, but not a
P-expression

R is an ∅-expression

All of the above expressions are positive, but R − S is not

11 / 72



Generalized Selection

Relational algebra
I σA=a(R) for A ∈ α(R) and a ∈ dom(A)
I σA=B(R) for A,B ∈ α(R)
I A = a and A = B are called predicates

Generalized selection operators extend the class of predicates

Positive conjunction

σP1∧P2(R) = σP1(σP2(R))

Positive disjunction (S+)

σP1∨P2(R) = σP1(R) ∪ σP2(R)

Negation (S−, not positive)

σ¬P(R) = R − σP(R)

Note: Union and difference can simulate generalized selection but not
vice versa! → S+ and S− variants of S
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Outline

1 Refresher: Relational Algebra

2 Incomplete Databases

3 Strong representation systems

4 Completeness

5 Weak Representation Systems

6 Completion

7 Summary
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Examples of incomplete information
Certain data Uncertain data
Paul owns a car. Paul may own a car. Tuple-level

uncertaintyName Object
Paul Car

Name Object
Paul Car

or
Name Object

Bob works for Yahoo. Bob works for either Yahoo or Microsoft. Attribute-level
uncertaintyName Company

Bob Yahoo
Name Company
Bob Yahoo

or
Name Company
Bob Microsoft

Mary sighted a finch.
Paul sighted a finch.

Mary sighted a finch or a sparrow.
Paul sighted what Mary sighted.

Correlations

Name Bird
Mary Finch
Paul Finch

Name Bird
Mary Finch
Paul Finch

or
Name Bird
Mary Sparrow
Paul Sparrow

Paul’s favorite number
is 17.

Paul has a favorite number,
but it is unknown.

Infinity

Name Num
Paul 17

Name Num
Paul 1

or
Name Num
Paul 2

or . . .

We need a precise way to model and represent incomplete information.
14 / 72



Examples of incomplete databases
Certain data Uncertain data
Paul owns a car. Paul may own a car. Tuple-level

uncertaintyName Object
Paul Car

{
Name Object
Paul Car

,
Name Object

}

Bob works for Yahoo. Bob works for either Yahoo or Microsoft. Attribute-level
uncertaintyName Company

Bob Microsoft

{
Name Company
Bob Yahoo

,
Name Company
Bob Microsoft

}

Mary sighted a finch.
Paul sighted a finch.

Mary sighted a finch or a sparrow.
Paul sighted what Mary sighted.

Correlations

Name Bird
Mary Finch
Paul Finch


Name Bird
Mary Finch
Paul Finch

,
Name Bird
Mary Sparrow
Paul Sparrow


Paul’s favorite number
is 17.

Paul has a favorite number,
but it is unknown.

Infinity

Name Num
Paul 17

{
Name Num
Paul 1

,
Name Num
Paul 2

, . . .

}
An incomplete database is a set of “possible worlds” (i.e., DB instances).
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Incomplete database

NU = { I | I is a (finite) relation instance over schema U }

Definition

An incomplete relation (i-relation) I over U is a set of possible
relation instances over U, i.e., I ⊆ NU .

An incomplete database (i-database) of a database schema R maps
each relation name R ∈ R to an incomplete relation over α(R).

“Incomplete” refers to incomplete information

Focus on one relation → use i-relation and i-database synonymously

Usual relation instances: I = { I }
No-information or zero-information database over U: I = NU

Incomplete databases can be infinite even though every relation
instance is finite; e.g.,

{
a1 , a2 , a3 , . . .

}
NU is (countably) infinite

Set of all incomplete relations is uncountable
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Representation system

Incomplete databases are in general infinite

Even if finite, they can be very large

→ Need compact representation!

Definition

A representation system consists of a set (a “language”) T whose
elements we call tables, and a function Mod that associates to each table
T ∈ T an incomplete database Mod(T ).

Again, we’ll assume a single relation
(reformulation for multiple relations possible)

Mod(T ) can be thought of as the set of database instances consistent
with T (called the possible worlds)

T can be viewed as logical assertion; Mod(T ) are models of T

17 / 72



Codd tables

Missing values are indicated by a single, untyped null value @

Each occurrence of @ stands for a value of the attribute’s domain

Different occurrences may or may not refer to the same value

Example

SUPPLIER LOCATION PRODUCT QUANTITY
Smith London Nails @
Brown @ Bolts @
Jones @ Nuts 40,000

Definition

An @-tuple on U is an extended tuple in which each attribute A ∈ U takes
values in dom(A) ∪ {@ }. A Codd table is a finite set of @-tuples.
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Models of Codd tables (1)

Definition

Under the closed world interpretation, a Codd table represents the set of
relations obtained by replacing @-symbols by valid values.

Example

Suppose dom(A) = { a1, a2 } and dom(B) = { b1, b2 }.

Mod

(
a1 @
@ b2

)
=

{
a1 b1

a1 b2
,

a1 b1

a2 b2
, a1 b2 ,

a1 b2

a2 b2

}
Let R∗ ∈ RHS of the example:

There is no certain tuple, i.e., @t∀R∗ t ∈ R∗

The first column contains a1, the second b2

R∗ has at least one and at most 2 tuples

a2b1 is not in R∗

...
19 / 72
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Models of Codd tables (2)

Definition

Under the open world interpretation, a Codd table represents the set of
relations obtained by replacing @-symbols by valid values and adding
arbitrarily many additional tuples.

Equivalently, this means S ∈ MOD(T ) ⇐⇒ (∃R) R ∈ Mod(T ) ∧ S ⊇ R.

Example

MOD
(T

a1 @
@ b2

)
=



a1 b2 ,
a1 b1

a1 b2
,

a1 b1

a2 b2
,

a1 b2

a2 b2
,

a1 b2

a2 b1
,

a1 b1

a1 b2

a2 b1

,
a1 b1

a1 b2

a2 b2

,
a1 b1

a2 b2

a2 b1

,
a1 b2

a2 b2

a2 b1

,

a1 b1

a1 b2

a2 b1

a2 b2


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Models of Codd tables (3)

Example

MOD
(T

a1 @
@ b2

)
=



a1 b2 ,
a1 b1

a1 b2
,

a1 b1

a2 b2
,

a1 b2

a2 b2
,

a1 b2

a2 b1
,

a1 b1

a1 b2

a2 b1

,
a1 b1

a1 b2

a2 b2

,
a1 b1

a2 b2

a2 b1

,
a1 b2

a2 b2

a2 b1

,

a1 b1

a1 b2

a2 b1

a2 b2


Let R∗ ∈ RHS of the example:

There is no certain tuple, i.e., @t∀R∗ t ∈ R∗

The first column contains a1, the second b2

R∗ has at least one tuple

Every tuple is possible, i.e., ∀t∃R∗ t ∈ R∗

...

21 / 72
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v-Tables

Missing values are indicated by marked null values or variables

V (A) = set of variables for attribute A (countably infinite)

V (A) ∩ V (B) = ∅ if dom(A) 6= dom(B); otherwise V (A) = V (B)

Example

Course Teacher Weekday
Databases x Monday

Programming y Tuesday
Databases x Thursday
FORTRAN Smith z

Definition

A v-tuple on U is an extended tuple in which each attribute A ∈ U takes
values in dom(A) ∪ V (A). A v-table is a finite set of v -tuples.
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Models of v-tables

Example

Suppose dom(A) = { a1, a2 }, dom(B) = { b1, b2 }, dom(C ) = { c1, c2 }.

Mod

(
a1 x
y b2

)
=

{
a1 b1

a1 b2
,

a1 b1

a2 b2
, a1 b2 ,

a1 b2

a2 b2

}

Mod

(
c1 z
z c2

)
=

{
c1 c1
c1 c2

,
c1 c2
c2 c2

}
Mod

(
z1 z2

)
=
{

c1 c1 , c1 c2 , c2 c1 , c2 c2
}

Var(T ) = { x | variable x occurs in T }
Valuation v : Var(T )→ D assigns (valid) values to each variable
v(T ) is the relation obtained by replacing all variables by their values
Mod(T ) = { v(T ) | v is a valuation for Var(T ) }

Codd tables ≡ v -tables in which each variable occurs at most once.
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v-Tables and view updates

v-tables appear naturally when updating relational views.

Example

SL
Supplier Location
Smith London

x New York
y Los Angeles

SP
Supplier Product
Smith Nails

x Bolts
y Nuts

πLocation,Product(SL on SP)

Location Product
London Nails

New York Bolts
Los Angeles Nuts

24 / 72



c-Tables

c-tables are v-tables with an additional condition column con,
indicating a “tuple existence condition” → conditional table
Conditions taken from a set C composed of

I false, true
I x = a for x ∈ V (A) and a ∈ dom(A) for some A ∈ A
I x = y for x , y ∈ V (A) for some A ∈ A
I negation ¬, disjunction ∨, conjunction ∧

Positive conditions do not contain negations (set C+)

Example

Supplier Location Product con
x London Nails x = Smith

Brown New York Nails x 6= Smith

Definition

A c-tuple t on U is an extended tuple over U ∪ {con} such that t[U] is a
v -tuple and t(con) ∈ C . A c-table is a finite set of c-tuples.
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Models of c-Tables

Example

Suppose dom(x) = dom(y) = { 1, 2 }.

Mod


A B con
a1 b1 x = 1
a2 b1 x 6= 1
a3 b2 y = 1 ∧ x 6= 1
a4 b2 y 6= 1 ∨ x = 1

 =


x1y1

a1 b1

a4 b2

,

x1y2

a1 b1

a4 b2

,

x2y1

a2 b1

a3 b2

,

x2y2

a2 b1

a4 b2


=

{
a1 b1

a4 b2
,

a2 b1

a3 b2
,

a2 b1

a4 b2

}
Valuation check conditions: v(T ) = { v(t[U]) | v(t(con)) = true }
Mod(T ) = { v(T ) | v is a valuation for Var(T ) }

v-tables are equivalent to c-tables in which each condi-
tion equals true.
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Finite representation systems

Definition

In a finite-domain Codd-table, v-table, or c-table T , each variable
x ∈ Var(T ) is associated with a finite domain dom(x).

Important in practice

Sometimes easier to study

Basis for most probabilistic databases

Incomplete database is finite
(but attribute domain and no. variables still countably infinite)
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Other finite representation systems

All of these models can be seen as special cases of finite-domain c-tables.

Example

In ?-tables, tuples are marked with ? if they may not exist.

Mod

(
a1 b1

a1 b2 ?

)
=

{
a1 b1 ,

a1 b1

a1 b2

}
In or-set tables, t.A takes values in a finite subset of dom(A).

Mod

 a1 b2

a1 b1‖b2

a2 b1‖b2

 =


a1 b2

a1 b1

a2 b1

,
a1 b2

a2 b1
,

a1 b2

a1 b1

a2 b2

,
a1 b2

a2 b2


In a ?-or-set table, both are combined.

Mod

(
a1 b1

a2 b1‖b2 ?

)
=

{
a1 b1 ,

a1 b1

a2 b1
,

a1 b1

a2 b2

}
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Possible answer set semantics

Definition

The possible answer set to a query q on an incomplete database I is the
incomplete database q(I) = { q(I ) | I ∈ I }.

Example

Let q(R) = σA=a1(R).

q

({
a1 b1

a1 b2
,

a1 b1

a2 b1
,

a1 b1

a2 b2
, a2 b1

})
=

{
a1 b1

a1 b2
, a1 b1 ,

}

Can we compute the representation of the possible answer
set to a query from the representation of an incomplete
database?
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Strong representation systems

Definition

A representation system is closed under a query language if for any
query q and any table T there is a table q̄(T ) that represents
q(Mod(T )).

If q̄(T ) can always be computed from q and T , the representation
system is called strong under the query language.

T I

q̄(T ) q(I)

Mod

Mod

q̄ q

Intuitively, this means that the query language is “fully sup-
ported” by the representation system: query answers can be
both computed and represented.
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Normalized c-tables

Definition

A c-table T on U is normalized if t[U] 6= t ′[U] for all pairs of distinct
c-tuples t, t ′ ∈ T .

Example
Not normalized
a1 b1 x = 1
a1 b1 x = 2
a2 b2 true

Normalized
a1 b1 x = 1 ∨ x = 2
a2 b2 true

To normalize a c-table, repeatedly apply rule 3 (next slide).

We’ll assume normalized c-tables throughout.
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Mod-equivalence

Definition

Two tables T and T ′ are Mod-equivalent (or just equivalent) if
Mod(T ) = Mod(T ′). We write T ≡Mod T ′.

Mod-equivalent transformations on c-table T on U:

1 Replace a condition by an equivalent condition;
e.g., (x = 1 ∧ y = 1) ∨ (x 6= 1 ∧ y = 1) by y = 1

2 Remove tuples in which condition is unsatisfiable;
e.g., x = 1 ∧ x = 2

3 Merge tuples t1, . . . , tk ∈ T with t1[U] = · · · = tk [U] into a new
tuple t ′ s.t. t ′[U] = t1[U] and t ′.con = t1.con ∨ · · · ∨ tk .con.

Mod-equivalent transformations can be used to simplify c-tables.
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c-Tables are strong

Theorem

c-tables, finite-domain c-tables, and Boolean c-tables are strong under
RA.

Proof.

Given a RA query q, construct q̄ by replacing in q the operators π, σ, on,
∪, and − by the respective operators π̄, σ̄, ōn, ∪̄, −̄ of the c-table algebra.
Then v(q̄(T )) = q(v(T )) for all valuations v for Var(T ).

We assume and produce normalized c-tables

Boolean c-table: all variables are boolean

T (t) denotes t.con if t ∈ T ; false otherwise

T [] drops condition column of normalized c-table

Relational algebra operations on T [] treat variables as normal values
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c-Projection

Definition

π̄U(T )[] = πU(T [])

π̄U(T )(t) =
∨

t′∈T s.t. t′[U]=t

T (t ′)

Example
Sightings

Name Species con
Anna Guan x = 1
Anna Humming bird x = 2
Bob y x = 3

z Guan x = 4

π̄Name(Sightings)

Name con
Anna x = 1 ∨ x = 2
Bob x = 3

z x = 4
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c-Selection

Definition

σ̄P(T )[] = T []

σ̄P(T )(t) = T (t) ∧ P(t),

where P(t) replaces in P each occurence of an attribute A by t.A and
evaluates subexpressions of form a = b (to false) and a = a (to true).

Example
Sightings

N S con
A G x = 1
A H x = 2
B y x = 3
z G x = 4

σ̄Species=Guan(Sightings)

N S con
A G x = 1 ∧ true
A H x = 2 ∧ false
B y x = 3 ∧ y = G
z G x = 4 ∧ true

σ̄S=G(Sightings) (simpl.)

N S con
A G x = 1
B y x = 3 ∧ y = G
z G x = 4
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c-Union

Definition

(T1∪̄T2)[] = T1[] ∪ T2[]

(T1∪̄T2)(t) = T1(t) ∨ T2(t)

Example
Sightings

N con
A x = 1
B x = 2
C x = 3

VIPs
N con
B y = 1
C y = 2
z y = 3

Sightings ∪̄VIPs

N con
A x = 1 ∨ false
B x = 2 ∨ y = 1
C x = 3 ∨ y = 2
z false ∨ y = 3

S∪̄V (simplified)

N con
A x = 1
B x = 2 ∨ y = 1
C x = 3 ∨ y = 2
z y = 3
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c-Join (1)

Definition

Set U1 = α(T1), U2 = α(T2), and denote by V = U1 ∩U2 = A1 . . .Ak the
join attributes. Let V ′ = A′1 . . .A

′
k be a fresh set of attributes (of

matching domains). Set T ′2 = ρV→V ′(T2) and U ′2 = α(T ′2).

(T1ōnV→V ′T2)[] = T1[] on T ′2[]

(T1ōnV→V ′T2)(t) = T1(t[U1]) ∧ T ′2(t[U ′2])
∧
A∈V

t.A = t.A′

T1ōnT2 = π̄U1∪U2(T1ōnV→V ′T
′
2).

38 / 72



c-Join (2)

Example
Sightings

N S con
A G x = 1
A H x = 2
z1 K x = 3
z2 L x = 4

SightingsōnN→N′VIPs
N S N ′ con
A G A x = 1 ∧ y = 1 ∧ true
A H A x = 2 ∧ y = 1 ∧ true
z1 K A x = 3 ∧ y = 1 ∧ z1 = A
z2 L A x = 4 ∧ y = 1 ∧ z2 = A
A G B x = 1 ∧ y = 2 ∧ false
A H B x = 2 ∧ y = 2 ∧ false
z1 K B x = 3 ∧ y = 2 ∧ z1 = B
z2 L B x = 4 ∧ y = 2 ∧ z2 = B
A G z1 x = 1 ∧ y = 3 ∧ z1 = A
A H z1 x = 2 ∧ y = 3 ∧ z1 = A
z1 K z1 x = 3 ∧ y = 3 ∧ z1 = z1
z2 L z1 x = 4 ∧ y = 3 ∧ z2 = z1

VIPs
N con
A y = 1
B y = 2
z1 y = 3

VIPs′

N ′ con
A y = 1
B y = 2
z1 y = 3
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c-Join (3)

Example (continued)

Sightings

N S con
A G x1
A H x2
z1 K x3
z2 L x4

SightingsōnN→N′VIPs (simplified)

N S N ′ con
A G A x1y1
A H A x2y1
z1 K A x3y1 ∧ z1 = A
z2 L A x4y1 ∧ z2 = A
z1 K B x3y2 ∧ z1 = B
z2 L B x4y2 ∧ z2 = B
A G z1 x1y3 ∧ z1 = A
A H z1 x2y3 ∧ z1 = A
z1 K z1 x3y3
z2 L z1 x4y3 ∧ z2 = z1

VIPs
N con
A y1
B y2
z1 y3

VIPs′

N ′ con
A y1
B y2
z1 y3

SightingsōnVIPs (simplified)

N S con
A G x1y1 ∨ (x1y3 ∧ z1 = A)
A H x2y1 ∨ (x2y3 ∧ z1 = A)
z1 K (x3y1 ∧ z1 = A) ∨ (x3y2 ∧ z1 = B) ∨ x3y3
z2 L (x4y1 ∧ z2 = A) ∨ (x4y2 ∧ z2 = B) ∨ (x4y3 ∧ z2 = z1)
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c-Difference

Definition (c-Table difference)

(T1−̄VIPs)[] = T1[]

(T1−̄VIPs)(t) = T1(t)
∧

t′∈VIPs
¬(t = t ′ ∧ VIPs(t ′))

Example

Sightings

A con
A x1
B x2
C x3

VIPs
A con
B y1
C y2
z y3

Sightings−̄VIPs (simplified)
A con
A x1 ∧ ¬(z = A ∧ y3)
B x2 ∧ ¬y1 ∧ ¬(z = B ∧ y3)
C x3 ∧ ¬y2 ∧ ¬(z = C ∧ y3)

Sightings−̄VIPs
A con
A x1 ∧ ¬(false ∧ y1) ∧ ¬(false ∧ y2) ∧ ¬(z = A ∧ y3)
B x2 ∧ ¬(true ∧ y1) ∧ ¬(false ∧ y2) ∧ ¬(z = B ∧ y3)
C x3 ∧ ¬(false ∧ y1) ∧ ¬(true ∧ y2) ∧ ¬(z = C ∧ y3)
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Many representation systems are not closed

Theorem

Codd tables, v-tables, finite-domain Codd tables, finite-domain v-tables,
?-tables, or-set tables, and ?-or-set tables are not closed under RA.

Proof.

By counterexample. Consider:

Codd tables / v-tables (standard and finite-domain), or-set tables,
?-or-set tables:

σA 6=B

(
A B
x y

)
where dom(x) = dom(y) and |dom(x)| > 1.

?-tables:

A B
a1 b1

a1 b2

on A
a1 ?
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Expressive power

Key question: How expressive is a given representation system?

Theorem

Neither Codd tables, v-tables, nor c-tables can represent all possible
incomplete databases.

Proof.

Set of incomplete databases is uncountable, set of tables is countable.

E.g., zero-information database NU cannot be represented with
closed world assumption

Need to study weaker forms of expressiveness
1 RA-completeness
2 Finite completeness
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RA-definability (1)

ZV = { { t } | α(t) = V }
ZV is the minimal-information database for instances of cardinality 1

Example

Let V = B1B2, where dom(B1) = dom(B2) = { 1, 2, . . . }.

ZV =

{
B1 B2

1 1
,

B1 B2

1 2
,

B1 B2

2 1
,

B1 B2

2 2
, . . .

}

Definition

An incomplete database I over U is RA-definable if there exists a
relational algebra query q such that I = q(ZV ) for some V .
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RA-definability (2)

Theorem

If I is representable by some c-table T , then I is RA-definable.

Proof.

Let α(T ) = U = A1 . . .An. Let x1, . . . , xk denote the variables in T and
let V = B1 . . .Bk be a set of attributes such that dom(Bj) = dom(xj).
Consider the query

q(Z ) =
⋃
t∈T

πU

(
σρx1...xk→B1...Bk

(t.con) [A1(t) on · · · on An(t) on Z ]
)
,

where

Ai (t) =

{
{ 〈Ai : a〉 } if t.Ai = a

ρBj→Ai
(πBj

(Z )) if t.Ai = xj

We have q(ZV ) = I.
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RA-definability (3)

Example

T
A1 A2 con
a1 b1 x = 1
a2 b1 x 6= 1
a3 b2 y = 1 ∧ x 6= 1
a4 b2 y 6= 1 ∨ x = 1

ZV =

{
B1 B2

1 1
,

B1 B2

1 2
,

B1 B2

2 1
,

B1 B2

2 2
, . . .

}

q(Z) := πA1A2

(
σB1=1

[
A1 A2

a1 b1
on Z

])
∪ πA1A2

(
σB1 6=1

[
A1 A2

a2 b1
on Z

])
∪ πA1A2

(
σB2=1∧B1 6=1

[
A1 A2

a3 b2
on Z

])
∪ πA1A2

(
σB2 6=1∨B1=1

[
A1 A2

a4 b2
on Z

])
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RA-completeness

Definition

A representation system is RA-complete if it can represent any
RA-definable incomplete database.

Theorem

c-tables are RA-complete.

Proof.

Let I be RA-definable using query q(ZV ). Let T be a c-table
representing ZV , i.e., set

T =
B1 B2 . . . Bk con
x1 x2 . . . xk true

Since c-tables are closed under RA, q̄(T ) produces a c-table that
represents I.
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Finite completeness (1)

Definition

A representation system is finitely complete if it can represent any finite
incomplete database.

Theorem

Boolean c-tables (and hence finite-domain and standard c-tables) are
finitely complete.

Corollary

Every RA-complete representation system is finitely complete.
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Finite completeness (2)

Proof.

Let I =
{

I 0, . . . , I n−1
}

be a finite incomplete database and assume wlog
that n = 2m for some positive integer m. Let x = (xm−1, . . . , x0) be a
vector of boolean variables. There are 2m possible values of x; assign a
unique one to each Iw , w ∈ { 0, . . . , n − 1 }. Let cw (x) be a Boolean
formula that checks whether x takes the value assigned to Iw . Then set

T [] =
⋃
w

Iw

T (t) =
∨

w s.t. t∈Iw
cw (x).

We have Mod(T ) = I.
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Finite completeness (3)

Example

I =


I 0

A B
a1 b1

,

I 1

A B
a2 b2

a3 b3

,

I 2

A B
a1 b1

a2 b2

,

I 3

A B


Instance x = (x1, x0) cw (x)

I 0 (F ,F ) ¬x1 ∧ ¬x0
I 1 (F ,T ) ¬x1 ∧ x0
I 2 (T ,F ) x1 ∧ ¬x0
I 3 (T ,T ) x1 ∧ x0

T =

A B con
a1 b1 (¬x1 ∧ ¬x0) ∨ (x1 ∧ ¬x0)
a2 b2 (¬x1 ∧ x0) ∨ (x1 ∧ ¬x0)
a3 b3 (¬x1 ∧ x0)
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Incompleteness results

Theorem

Codd tables, v-tables, finite-domain Codd tables, finite-domain v-tables,
?-tables, or-set tables, and ?-or-set tables are not finitely complete (and
thus not RA-complete).

Proof.

By counterexample. Consider the finite incomplete database

I =

{
A1 A2

a1 a1
,

A1 A2

a2 a3

}
.

Due to their simplicity (and completion properties), these
representation systems are very useful in practice. This moti-
vates the study of weak representation systems.
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A note on compactness

In practice, compactness of representation is important!

Example

Let x1, . . . , xk be variables with domain { 1, 2, . . . , n }. Consider the
finite-domain v-table

A1 A2 . . . Ak

x1 x2 . . . xk
.

The corresponding Boolean c-table has nk rows!
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Certain answer tuple semantics (1)

Definition

Let I be an incomplete database and q a relational algebra query. The
q-information Iq is given by the set of certain tuples in q(I), i.e.,
Iq = ∩I∈q(I)I . Note that Iq is a certain database; it constitutes the query
result under the certain answer tuple semantics.

Example

I =

I 1

Anna Guan
Bob Guan

,
I 2

Anna Guan
Bob Hb


IR = I 1 ∩ I 2 = Anna Guan

IπS (R) = πS(I 1) ∩ πS(I 2) = Guan

IπN(R) = πN(I 1) ∩ πN(I 2) =
Anna
Bob
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Certain answer tuple semantics (2)

Definition

Let T be a table and q a relational algebra query. The q-information T q is
given by the set of certain tuples in q(Mod(I)), i.e., T q = ∩I∈q(Mod (I))I .
Note that T q is a certain database.

Example

Suppose dom(x) = {A,B } and dom(y) = {G,H }.

Mod

(T
A y
x H

)
=

{
A G
A H

,
A G
B H

, A H ,
A H
B H

}

TR = ∅
TπN(R) = {A }
TπS (R) = {H }

Intuition: Uncertain tuples that remain after “applying” q are omitted.
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L -equivalency

Definition

Two sets of incomplete databases I and J are L -equivalent, denoted
I ≡L J if Iq = J q for all L -expressions q.

Example

I =

{
Anna Guan
Bob Hum. bird

,
Anna Guan
Bob Kingfisher

}
J =

{
Anna Guan

}
I and J are ∅-equivalent

But: I and J are not P-equivalent (consider πA)

L -equivalent databases are indistinguishable
w.r.t. the certain tuples in the query result.
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More examples of L -equivalency

Example

I =

{
a1 b1 c1 ,

a1 b2 c2
a2 b1 c2

}
J =

{
a1 b1 c1 ,

a1 b2 c2
a2 b1 c3

}

I and J are ∅-equivalent

I and J are P-equivalent

I and J are J-equivalent

I and J are not PJ-equivalent; e.g., set
q(R) = πAB(πAC (R) on πBC (R)).

Then a1b1 ∈ Iq but a1b1 /∈ J q.
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Weak representation system

Definition

A representation system is weak under a query language L if for any
L -expression q and any table T there is a computable table q̄(T ) that
L -represents q(Mod(T )).

Mod(q̄(T )) ≡L q(Mod(T )).

T Mod(T )

q(Mod(T ))

q̄(T ) Mod(q̄(T ))

Mod

Mod

q̄

q

≡L

Weak representation systems correctly determine the certain tuples under L .
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PS on Codd-Tables

Theorem

Codd tables are weak under PS.

σ̄P(T ) = { t | t ∈ T and P(v(t)) for all valuations for Var(T ) }
π̄U(T ) = πU(T )

Example
T
Name Species Location
Anna Guan @

@ @ Paris
Bob Kingf. @

σ̄N=B(T )

N S L
B K @

π̄NS(T )

N S
A G
@ @
B K

π̄NS(σ̄N=B(T ))

N S
B K

These are single-relation queries!
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PJ/PSU on Codd-Tables

Theorem

Codd tables are not weak under PJ or PSU.

Proof (for PJ).

Consider Codd table T and set I = Mod(T )

Set q(R) = πAC (R) on πB(R)

c-table Tq,c represents Iq = q(Mod(T )).

Suppose Codd table Tq PJ-represents Iq
Consider q′ = πAC (πAB(R) on πBC (R))

For each valuation v , Tq must contain tuples t1, t2
s.t. t1.A = a2, t2.C = c1, and v(t1).B = v(t2).B

1 t1 = t2, then a2c1 ∈ TπAC
q but a2c1 /∈ IπAC

q

→  
2 t1 6= t2, then t1.B = t2.B = b, then

a2b ∈ TπAB
q for some b but IπAB

q = ∅ →  

T
A B C
a1 x c1
a2 y c2

Tq,c

A B C
a1 x c1
a1 y c1
a2 x c2
a2 y c2

Iq
′

q

A C
a1 c1
a1 c2
a2 c1
a2 c2
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Null values in SQL

SQL null semantics is related but not equal to Codd tables → Be careful!

Example

On PostgreSQL.

σB=1(T ) → SELECT * FROM T WHERE B=1

πAC (T ) → SELECT DISTINCT A, C FROM T

T
A B C
1 null 1
2 null 2

σB=1(T )

A B C

σB 6=1(T )

A B C

σB=1∨B 6=1(T )

A B C

πAC (T )

A C
1 1
2 2

πB(T )

B
null

Tq = πAC (T ) on πB(T )

A B C
1 null 1
2 null 2

T q′
q = πAC (πAB(Tq) on πBC (Tq))

A C
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Positive RA on v-Tables

Theorem

v-tables are weak under the positive RA. To obtain q̄, simply treat
variables as distinct constants and use standard RA operators.

Example
Sightings

N S
A G
A H
z1 K
z2 L

VIPs
N
A
B
z1

σ̄N=A(S)

N S
A G
A H

SōnV
N S
A G
A H
z1 K

π̄S(SōnV)

S
G
H
K

Easy to do in an off-the-shelf relational database system!
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PS− on v-tables

Theorem

v-tables are not weak under PS−.

Proof.
Consider v-table T and set I = Mod(T )

Set q(R) = σ(A=a1∧B=b)∨(A=a2∧B 6=b)(R)

c-table Tq,c represents Iq = q(Mod(T )).

Suppose v-table Tq PS−-represents Iq
Consider q′(R) = πC (σA=a1∨A=a2(R))

1 (∃t ∈ Tq) t1.A = ai , then ai ∈ TπA
q →  

2 (∀t ∈ Tq) t.A ∈ Var(T ), then T q′

q = ∅ →  

T
A B C
a1 x c
a2 x c

Iq
′

q

C
c

Tq,c

A B C con
a1 x c x = b
a2 x c x 6= b
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Algebraic Completion

Definition

Let (T ,Mod) be a representation system and L be a query language.
The representation system obtained by closing T under L is the set of
tables { (T , q) | T ∈ T , q ∈ L } and function Mod(T , q) = q(Mod(T )).

Example

No Codd table for I, but closure of f.d. Codd tables under JR suffices.

I =

{
A B
a1 a1

,
A B
a2 a2

}
, T =

A
a1‖a2

, q(R) = R on ρA→B(R)

Think of q as a view over T

View result need not be represented directly

Algebraic completion extends the power of a represen-
tation system with the power of a query language.
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RA-completion for Codd tables

Theorem

The closure of Codd tables under SPJRU is RA-complete.

Proof.

c-tables are RA-complete

Every c-table T can be RA-defined by an SPJRU-query q on ZV

(see slide 46)

ZV can be represented as a Codd table T ′

T ′ =
B1 B2 . . . Bk

@ @ . . . @

Mod(T ′, q) = q(Mod(T ′)) = q(ZV ) = Mod(T )

Relational databases with views can represent any RA-definable database!
67 / 72



RA-completion for v-tables

Theorem

The closure of v-tables under S+P is RA-complete.

Proof.

Let T = { t1, . . . , tm } be a c-table on A1 . . .An and let
Var(T ) = { x1, . . . , xk }. Express T in terms of v-table T ′ and query q:

T ′ =

A1 . . . An B1 . . . Bk C
t1.A1 . . . t1.An x1 . . . xk 1
t2.A1 . . . t2.An x1 . . . xk 2

...
...

...
...

...
...

...
tm.A1 . . . tm.An x1 . . . xk m

q(R) = πA1...An(σ∨m
i=1(ψi∧C=i)(R))

where ψi is obtained from ti .con by replacing all variables xj by the
corresponding attribute Bj .
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Finite completion results

Theorem

The following closures are finitely complete:

1 or-set-tables under PJ,

2 finite v-tables under PJ or S+P,

3 ?-tables under RA.

Proof.

Try it yourself. Hints: Don’t start with a c-table, but an incomplete
database I. You need two tables for cases 1 and 2; case 3 is quite
tricky.
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Lessons learned

Incomplete databases are sets of possible databases

Representation systems are concise descriptions of incomplete
databases

Queries can be analyzed in terms of
1 Possible answer sets (strong representation)
2 Certain answer tuples (weak representation)
3 Possible answer tuples (finite i-databases only)

Codd tables add null values; weak under PS
→ Be careful with null values in SQL

v-tables add variables; weak under positive RA
c-tables add variables and conditions; strong under RA and
RA-complete

RA-views on Codd tables are RA-complete → key property!
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Tomasz Imieliński, Witold Lipski, Jr.
Incomplete Infomation in Relational Databases
Journal of the ACM, 31(4), Oct. 1984

72 / 72



Scalable Uncertainty Management
03 – Provenance

Rainer Gemulla

May 18, 2012



Overview

In this lecture

Introduction to datalog

What is provenance?

Which types of provenance do exist?
I Lineage
I Why-provenance
I How-provenance

How to compute provenance?

How do the types of provenance relate to each other?

How to derive provenance information for datalog?

Not in this lecture

Uncertainty

Where-provenance
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Datalog

Datalog is a declarative language
Datalog program is collection of if-then rules
Supports recursion (in contrast to relational algebra)
Datalog is a logic for relations (“database logic”)
Datalog is based on Prolog

I No function symbols + safety condition
I Unique and finite minimum model
I Unique and finite minimum fixpoint
I Expressive power in PTIME

Example

ancestor(x , z)← parent(x , z)

ancestor(x , z)← ancestor(x , y), parent(y , z)

Straightforward translation to first-order logic:
(∀x)(∀z) parent(x , z)→ ancestor(x , z)
(∀x)(∀y)(∀z) ancestor(x , y) ∧ parent(y , z)→ ancestor(x , z)
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Predicates and atoms

Relations are represented by predicates of same arity
I For relation name R, we use predicate name R
I Order of predicate arguments = natural order of relation attributes

Predicate with arguments is called a relational atom
I R(a1, . . . , ak) returns TRUE if (a1, . . . , ak) ∈ I (R)
I FALSE otherwise (closed word assumption)

Predicate can take constants and variables as arguments
I Atom with variables = function that takes values for variables and

returns TRUE/FALSE

Example

For simplicity, we denote both predicate and its interpretation by R.

R(a1, b1) = TRUE

R(a2, b2) = TRUE

R(a3, b3) = FALSE

R(x , b1) = f (x) =

{
TRUE if x = a1

FALSE otherwise

R
A B
a1 b1
a2 b2
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Extended datalog: arithmetic atoms

Comparison between two arithmetic expressions
I Arithmetic predicates: =, <,>,≤,≥, . . .
I Arithmetic expressions: constants, variables, +,−,×, /, . . .

Arithmetic predicates are like infinite relations
I Database relations are finite and may change
I Arithmetic relations are infinite and unchanging

Example
x < y

x + 1 ≥ y + 4× z

x < 5 = f (x) =

{
TRUE if x < 5

FALSE otherwise

“<”= { (1, 2), (−1.5, 65.4), . . . }
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Datalog rules

Operations are described by datalog rules
1 A relational atom called head
2 The symbol ← (read as “if”)
3 A body consisting of one or more atoms, called subgoals

(connected by ∧; in datalog¬: optionally preceded by ¬)

Example

A movie schema:
Movies(Title, Year, Length, Genre, StudioName, Producer).

A RA expression:
LongMovie := πTitle,Year(σLength≥100(Movies)).

Corresponding datalog rule:

LongMovie(t, y)︸ ︷︷ ︸
head

←
subgoal 1︷ ︸︸ ︷

Movies(t, y , l , g , s, p),

subgoal 2︷ ︸︸ ︷
l ≥ 100︸ ︷︷ ︸

body

.
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Semantics of rules
1 Possible assignments

I Let the variables in the rule range over all possible values
I When all subgoals are TRUE, insert tuple into the head’s relation

2 Nonnegated relational subgoals
I Consider sets of tuples for each nonnegated relational subgoal
I Check whether assignment is consistent (same variable, same value)
I If so, check negated subgoals and arithmetic subgoals
I If all checks successful, insert tuple into the head’s relation

Example

P(x , z)← Q(x , y), R(y , z), ¬Q(x , z)
Q
1 2
1 3

R
2 3
3 1

Q(x , y) R(y , z) Consistent? ¬Q(x , z)? Result

1) (1, 2) (2, 3) Yes No —
2) (1, 2) (3, 1) No; y = 2, 3 Irrelevant —
3) (1, 3) (2, 3) No; y = 3, 2 Irrelevant —
4) (1, 3) (3, 1) Yes Yes P(1, 1)
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Safe rules

Not all rules give a meaningful (i.e., finite) result → safety condition.

Example

Safe:
LongMovie(t, y)← Movies(t, y , l , g , s, p), l ≥ 100

In safe rules, abbreviation for variables that occur only once
LongMovie(t, y)← Movies(t, y , l , , , ), l ≥ 100

Unsafe: P(x)← Q(y)

Unsafe: P(x)← ¬Q(x)

Unsafe: P(x , y)← Q(y), x > y

Definition

A rule is safe if every variable that appears anywhere in the rule also
appears in some nonnegated, relational subgoal of the body. This
condition is called the safety condition.
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Extensional and intensional predicates

Definition

Extensional predicates (EDB) are predicates whose relations are stored
in a database. They can only occur in the bodies of datalog rules.

Intensional predicates (IDB) are predicates whose relations is
computed by applying datalog rules. They can occur in heads and
bodies of datalog rules.

“Extension” is another name for “instance of a relation”

“Intensional” relations are defined by the programmer’s “intent”

Example

LongMovie(t, y)← Movies(t, y , l , , , ), l ≥ 100

Movies is an EDB predicate (or relation)

LongMovie is an IDB predicate (or relation)
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Datalog queries

A datalog query is a collection of one or more rules (often with a
designated output relation).

Example

Schema (EDB):

Hotel(HotelNo, Name, City)

Room(RoomNo, HotelNo, Type, Price)

RA query:
πHotelNo,Name,City(Hotel on σPrice>500∨Type=’suite’(Room))

Datalog query:
ExpensiveRoom(r , h, t, p)← Room(r , h, t, p), p > 500

ExpensiveRoom(r , h, t, p)← Room(r , h, t, p), t = ’suite’

ExpensiveHotelRoom(h, n, c, r , t, p)← Hotel(h, n, c), ExpensiveRoom(r , h, t, p)

ExpensiveHotel(h, n, c)← ExpensiveHotelRoom(h, n, c, , , )
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Datalog and relational algebra

Example (Recursive query)

ancestor(x , z)← parent(x , z)

ancestor(x , z)← ancestor(x , y), parent(y , z)

Nonrecursive if the rules can be ordered such that the head predicate
of each rule does not occur in a body of the current or a previous rule

nr-datalog: nonrecursive, no negation

nr-datalog¬: nonrecursive, with negation

Theorem

nr-datalog and SPJRU queries have equivalent expressive power.

nr-datalog¬ and relational algebra have equivalent expressive power.

We will switch between datalog and (subsets of) RA as convenient.

12 / 43



Outline

1 Datalog

2 Introduction to Provenance
Lineage
Why-provenance
How-provenance

3 Provenance Semirings

4 How-Provenance for nr-datalog

5 Summary

13 / 43



Provenance and annotation management

Provenance describes origins and history of data

Annotations describe auxiliary information associated with the data

Restaurant Cost Type

Peacock Alley

Bull & Bear

Pacifica
Soho Kitchen & Bar

$$$ French

$$$ Seafood

$ Chinese
$ American

Restaurant Cost Type

Pacifica
Soho Kitchen & Bar

$ Chinese
$ American

All Restaurants Cheap Restaurants

Yummy chicken curry!!

NYRestaurants
Restaurant Cost Type

Peacock Alley

Bull & Bear

Pacifica
Soho Kitchen & Bar

Zip

$$$ French 10022

$$$ Seafood 10022

$ Chinese 10013
$ American10022

Serves fine French Cuisine 
in elegant setting. Formal 
attire.

Extensive wine list!

Our Vision

14 / 43Chiticariu, VLDB, 2004.
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Tuple location

Definition

A tuple t tagged with a relation name R is called a tuple location and
denoted (R, t) or simply R(t). We can view a database instance I (R) on
R as a set { (R, t) | R ∈ R, t ∈ I (R) }.

Example

Agencies (A)

Name BasedIn Phone
t1 BayTours SFO 415-1200
t2 HarborCruz SC 831-3000

ExternalTours (E)

Name Dest. Type Price
t3 BayTours SFO Cable $50
t4 BayTours SC Bus $100
t5 BayTours SC Boat $250
t6 BayTours MRY Boat $400
t7 HarborCruz MRY Boat $200
t8 HarborCruz Carmel Train $90

Tuple locations: A(t1),A(t2),A(〈FunTravel, SJ, 415-2400〉), . . .
Database instance: {A(t1),A(t2),E (t3),E (t4), . . . ,E (t8) }

16 / 43



Lineage

Definition (informal)

The lineage of a tuple t (w.r.t. a query) consists of all tuples of the input
data that “contributed to” or “helped produce” t.

Example

Agencies (A)

Name BasedIn Phone
t1 BayTours SFO 415-1200
t2 HarborCruz SC 831-3000

ExternalTours (E)

Name Dest. Type Price
t3 BayTours SFO Cable $50
t4 BayTours SC Bus $100
t5 BayTours SC Boat $250
t6 BayTours MRY Boat $400
t7 HarborCruz MRY Boat $200
t8 HarborCruz Carmel Train $90

BoatAgencies(n, p)←
Agencies(n, , p),
ExternalTours(n, , ’Boat’, ).

BoatAgencies

Name Phone Lineage
BayTours 415-1200 {A(t1),E(t5),E(t6) }

HarborCruz 831-3000 {A(t2),E(t7) }
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Lineage & query rewriting

Example

Two equivalent queries:

q(x , y)← R(x , y)

q′(x , y)← R(x , y),R(x , z).

R
A B

t1 1 2
t2 1 3
t3 4 2

q(R)

A B Lineage
1 2 {R(t1) }
1 3 {R(t2) }
4 2 {R(t3) }

q′(R)

A B Lineage
1 2 {R(t1),R(t2) }
1 3 {R(t1),R(t2) }
4 2 {R(t3) }

Theorem

Lineage is sensitive to query rewriting.
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Application: Lineage tracing in data warehouses

Data warehouses integrates data from multiple sources

Warehouse directly used for coarse-grained analysis

In-depth analysis requires access to source data
→ view data lineage problem

Lineage tracing in the WHIPS data warehouse system

19 / 43Cui et al., TODS 25(2), 2000.
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Witness

Definition

Let I be a database instance over R, q a query over R, and t ∈ q(I). An
instance J ⊆ I is a witness for t with respect to q if t ∈ q(J). The set of
all witnesses is given by Wit(q, I, t) = { J ⊆ I | t ∈ q(J) }.

Example

Agencies (A)

Name BasedIn Phone
t1 BayTours SFO 415-1200
t2 HarborCruz SC 831-3000

ExternalTours (E)

Name Dest. Type Price
t3 BayTours SFO Cable $50
t4 BayTours SC Bus $100
t5 BayTours SC Boat $250
t6 BayTours MRY Boat $400
t7 HarborCruz MRY Boat $200
t8 HarborCruz Carmel Train $90

BoatAgencies

Name Phone Lineage
t9 BayTours 415-1200 {A(t1),E(t5),E(t6) }

t10 HarborCruz 831-3000 {A(t2),E(t7) }

Witnesses for

t9: {A(t1),E(t5) }, {A(t1),E(t6) },
{A(t1),E(t5),E(t6) }, . . .

t10: {A(t2),E(t7) }, {A(t1),A(t2),E(t7) },
. . .

I is a witness for both t9 and t10
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Minimal why-provenance

Definition

A minimal witness is a minimal element of Wit(q, I, t). The set of minimal
witnesses is called minimal why-provenance and is given by
MWhy(q, I, t) =

{
J ∈Wit(q, I, t) | (∀J′ ∈Wit(q, I, t)) J′ = J ∨ J′ 6⊂ J

}
.

Example

Agencies (A)

Name BasedIn Phone
t1 BayTours SFO 415-1200
t2 HarborCruz SC 831-3000

ExternalTours (E)

Name Dest. Type Price
t3 BayTours SFO Cable $50
t4 BayTours SC Bus $100
t5 BayTours SC Boat $250
t6 BayTours MRY Boat $400
t7 HarborCruz MRY Boat $200
t8 HarborCruz Carmel Train $90

BoatAgencies

Name Phone Minimal why-provenance
t9 BayTours 415-1200 { {A(t1),E(t5) } , {A(t1),E(t6) } }

t10 HarborCruz 831-3000 { {A(t2),E(t7) } }
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Minimal why-provenance & query rewriting

Example

Two equivalent queries:

q(x , y)← R(x , y)

q′(x , y)← R(x , y),R(x , z).

R
A B

t1 1 2
t2 1 3
t3 4 2

q(R)

A B Min. why
1 2 { {R(t1) } }
1 3 { {R(t2) } }
4 2 { {R(t3) } }

q′(R)

A B Min. why
1 2 { {R(t1) } }
1 3 { {R(t2) } }
4 2 { {R(t3) } }

Theorem

Minimal why-provenance is insensitive to query rewriting.
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Application: View deletion problem

Let I be a database instance and consider view V = q(I)
View deletion problem: Find the set of tuples ∆I to remove from I so
that a tuple t is removed from V
Intuitively, all minimal witnesses must be destroyed; many ways, e.g.,

1 Source side-effect problem: Minimize changes to the source (|∆I|)
2 View side-effect problem: Minimize changes to the view (|∆V |)

Both NP-hard for PJ and JU queries!

Example
BayTours does not offer boat tours anymore → delete t9.

BoatAgencies

Name Phone Min. why
t9 BayTours 415-1200 { {A(t1),E(t5) } , {A(t1),E(t6) } }

t10 HarborCruz 831-3000 { {A(t2),E(t7) } }

Examples:

delete A(t1): optimum for both problems

delete E(t5) and E(t6): optimum for (1) when A on E is taken as source
24 / 43Buneman et al., PODS, 2002.
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How-provenance

Definition (informal)

The how-provenance of a tuple t describes how t is derived according to
the query. It makes use of two “operations”: combine (·) and merge (+).

Example

Agencies (A)

Name BasedIn Phone
t1 BayTours SFO 415-1200
t2 HarborCruz SC 831-3000

ExternalTours (E)

Name Dest. Type Price
t3 BayTours SFO Cable $50
t4 BayTours SC Bus $100
t5 BayTours SC Boat $250
t6 BayTours MRY Boat $400
t7 HarborCruz MRY Boat $200
t8 HarborCruz Carmel Train $90

BoatAgencies

Name Phone How-provenance
BayTours 415-1200 A(t1) · E(t5) + A(t1) · E(t6)

HarborCruz 831-3000 A(t2) · E(t7)
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How-provenance & query rewriting

Example

Two equivalent queries:

q(x , y)← R(x , y)

q′(x , y)← R(x , y),R(x , z).

R
A B

t1 1 2
t2 1 3
t3 4 2

q(R)

A B How
1 2 R(t1)
1 3 R(t2)
4 2 R(t3)

q′(R)

A B How
1 2 R(t1)2 + R(t1) · R(t2)
1 3 R(t2)2 + R(t1) · R(t2)
4 2 R(t3)2

Theorem

How-provenance is sensitive to query rewriting.
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Application: Debugging of schema mappings

Data exchange between two applications (source and target)
Schema mapping relates data from source application to data from
target application
Schema debuggers help in developing such a mapping

28 / 43Alexe et al., VLDB, 2006.
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Provenance through annotations

Example
Agencies

Name BasedIn Phone
BayTours SFO 415-1200 t1

HarborCruz SC 831-3000 t2

ExternalTours
Name Dest. Type

BayTours SFO Cable t3
BayTours SC Bus t4
BayTours SC Boat t5
BayTours MRY Boat t6

πDest,Phone(Agencies on
[
πName,Dest(ρBasedIn→Dest(Agencies))
∪πName,Dest(ExternalTours)

]
Dest Phone
SFO 415-1200 t1 · (t1 + t3)
SC 831-3000 t22
SC 415-1200 t1 · (t4 + t5)

MTY 415-1200 t1 · t6
We need a way to annotate relations and propagate these annotations.
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K -relation

Definition

A K-relation is a function R that maps each tuple in the relation to
nonzero elements of K , and each tuple not in the relation to a special
element 0 ∈ K . R has finite support supp(R) = { t | R(t) 6= 0 }.

Intuivitely, each tuple t is annotated with an element of K .

Example

1 B-relations correspond to ordinary relations (zero element: FALSE)

2 N-relations correspond to multisets or bags (zero element: 0)

3 C -relations correspond to boolean c-tables (zero element: FALSE)

4 TupleLoc-relations (zero element: ⊥)

A (1)

Name
BayTours TRUE

HarborCruz TRUE

A (2)

Name
BayTours 2

HarborCruz 5

A (3)

Name
BayTours x

HarborCruz ¬x

A (4)

Name
BayTours A(t1)

HarborCruz A(t2)
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Positive K -relational algebra

Definition

Let (K , 0, 1,+, ·) be an algebraic structure with two binary operators +
(merge) and · (combine) and two distinguished elements 0 (not in
relation) and 1 (in relation). Let qK (I )t be the annotation of t in q(I ).
The operations of the positive K -relational algebra are defined as follows:

Value ({ 〈A : a〉 })K (I )t =

{
1 if t = 〈A : a〉
0 otherwise

1

Relation RK (I )t = I (R)t Copy

Selection (σθ(q))K (I )t =

{
qK (I )t if θ(t)

0 otherwise
Copy

Projection (πU(q))K (I )t =
∑

t′∈supp(qK (I )), t′[U]=t q
K (I )t ′ Merge

Union (q1 ∪ q2)K (I )t = qK1 (I )t + qK2 (I )t Merge

Join (q1 on q2)K (I )t = qK1 (I )t[U1] · qK2 (I )t[U2] Combine
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Commutative semiring

Relational algebra over bags has the following properties:

Union (+) is associative and commutative, and has identity ∅
Join (·) is associative, commutative, and distributes over union

Projection and selection commute with each other as well as with
union and join

Goal: Retain these properties with positive K-relational algebra.

Definition

(K , 0, 1,+, ·) is a commutative semiring if:

(K ,+, 0) is a commutative monoid (associative, commutative, identity 0),

(K , ·, 1) is a commutative monoid (associative, commutative, identity 1),

· distributes over +,

0 · a = a · 0 = 0 for all a ∈ K .
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Common semirings

How-provenance: (N[TupleLoc], 0, 1,+, ·)
I TupleLoc denotes set of all tuple locations
I N[K ] = set of polynomials with coefficients in N and variables from K
I + and · have usual definitions
I Start with RK (I )t = (R, t) if t ∈ I (R), else 0

Called positive algebra provenance semiring.
Bag semantics: (N, 0, 1,+, ·)

I + and · have usual definitions
I Start with RK (I )t = multiplicity of t in R(I )

Lineage: (P(TupleLoc) ∪ {⊥} ,⊥, ∅,∪L,∪S)

I lazy union ∪L: ⊥ ∪ X = X ∪ ⊥ = X Merge

I strict union ∪S: ⊥ ∪ X = X ∪ ⊥ = ⊥ Combine
I Start with RK (I )t = { (R, t) } if t ∈ I (R), else ⊥

Minimal why-provenance: (P(P(TupleLoc)), ∅, { ∅ } ,∪Min,dMin)
I Min operator computes minimal elements

(e.g., Min { { 1 } , { 1, 2 } } = { { 1 } })
I pairwise union: X dMin Y = Min { x ∪ y | x ∈ X , y ∈ Y } Combine
I Start with RK (I )t = { { (R, t) } } if t ∈ I (R), else ⊥
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Common semirings (examples)

Example

Query:
q(x , y)← R(x , y),R(x , z)

q(R) = πA,B(R on ρB→C (R))

How-provenance Bags Lineage Min. why-provenance

R
A B
1 2 t1
1 3 t2
4 2 t3

R
A B
1 2 2
1 3 3
4 2 1

R
A B
1 2 { t1 }
1 3 { t2 }
4 2 { t3 }

R
A B
1 2 { { t1 } }
1 3 { { t2 } }
4 2 { { t3 } }

q(R)

A B
1 2 t21 + t1 · t2
1 3 t22 + t1 · t2
4 2 t23

q(R)

A B
1 2 10
1 3 15
4 2 1

q(R)

A B
1 2 { t1, t2 }
1 3 { t1, t2 }
4 2 { t3 }

q(R)

A B
1 2 { { t1 } }
1 3 { { t2 } }
4 2 { { t3 } }
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Proof tree

Proof-theoretic semantics of datalog: A fact is in the result if there exists
a proof for it using the rules and the database facts.

Definition

A proof tree of a fact A is a labeled tree where:

Each vertex of the tree is labeled by a fact.

Each leaf is labeled by an EDB fact from the base data.

The root is labeled by A.

For each internal vertex, there exists an instantiation A1 ← A2, . . . ,An

of a rule r such that the vertex is labeled A1, its children are
respectively labeled A2, . . . ,An and the edges are labeled r .
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Proof tree (example)

Example

r1 : ExpensiveRoom(r , h) ← Room(r , h, , p), p > $500
r2 : ExpensiveRoom(r , h) ← Room(r , h, t, ), t = ’suite’
r3 : ExpensiveHotelRoom(h, r) ← Hotel(h, , ), ExpensiveRoom(r , h)
r4 : ExpensiveHotel(h) ← ExpensiveHotelRoom(h, )

Room (R)

RoomNo Type HotelNo Price
R1 Suite H1 $50
R2 Single H1 $600
R3 Double H1 $80

Hotel (H)

HotelNo Name City
H1 Hilton SB

EH(H1)

EHR(H1,R1)

H(H1,Hilton,SB)

r3

ER(R1,H1)

R(R1,Suite,H1,$50)

r2

r3

r4

EH(H1)

EHR(H1,R2)

H(H1,Hilton,SB)

r3

ER(R2,H1)

R(R2,Single,H1,$600)

r1

r3

r4
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Lineage tree

Goal: Capture all ways of deriving an output fact.

Definition

A lineage tree of an nr-datalog query is computed with respect to the
semiring (PosBool(V ), FALSE, TRUE, ∨, ∧), where

V is a countable set of boolean variables,

PosBool(V ) is the set of sets of equivalent boolean expressions
involving TRUE, FALSE, variables from V , ∨, and ∧,

Each fact is tagged with a representative from its class in
PosBool(V ),

Each EDB fact is tagged with a distinct variable from V .

Example

PosBool({ t1, t2 }) = { { FALSE } , { TRUE }
{ t1, t1 ∨ t1, t1 ∧ TRUE, . . . } ,
{ t2, . . . } , { t1 ∨ t2, . . . } , { t1 ∧ t2, . . . } }
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Lineage tree (example)

Example

πHotelNo(πHotelNo,RoomNo(Hotel on πRoomNo,HotelNo(σprice>500∨ type=’suite’(Room))))

Room (R)

RoomNo Type HotelNo Price
R1 Suite H1 $50 t1
R2 Single H1 $600 t2
R3 Double H1 $80 t3

Hotel (H)

HotelNo Name City
H1 Hilton SB t4

ExpensiveHotels

HotelNo
H1 t4 ∧ (t1 ∨ t2)

EH(H1)

∧

H(H1,Hilton,SB)

r3

∨

R(R1,Suite,H1,$50)

r1

R(R2,Single,H1,$600)

r2

r3

r4
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Outline

1 Datalog
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How-provenance
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4 How-Provenance for nr-datalog

5 Summary

41 / 43



Lessons learned

Datalog is a declarative language for relations
I Based on Prolog
I Collection of if-then rules
I Closely related to relational algebra

Provenance describes origins and history of data;
Annotation management allows and propagates data annotations

I Data warehousing, curated databases, annotated databases, update
languages, uncertain databases, . . .

Different types of provenance provide different amount of detail
1 Lineage: what contributed to the output (tuples)
2 Why-provenance: why an output tuple was produced (db instances)
3 How-provenance: how an output tuple was produced (polynomial)

Semirings are a natural way to study provenance

Positive K -relational algebra can compute many forms of provenance

Lineage trees are the preferred form of how-provenance for datalog
(boolean formula)
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Suggested reading

Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom
Database Systems: The Complete Book, 2nd ed. (ch. 5.3 & 5.4)
Pearson Prentice Hall, 2009

Serge Abiteboul, Richard Hull, Victor Vianu
Foundations of Databases: The Logical Level (ch. 12)
Addison Wesley, 1994

James Cheney, Laura Chiticariu, Wang-Chiew Tan
Provenance in Databases: Why, How, and Where
Foundations and Trends in Databases, 1(4), 2007
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Overview

In this lecture

Refresher: Finite probability (not presented)

What is a probabilistic database?

How can probabilistic information be represented?

How expressive are these representations?

How to query probabilistic databases?

Not in this lecture

Complexity

Efficiency

Algorithms
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Sample space

Definition

The sample space Ω of an experiment is the set of all possible outcomes.
We henceforth assume that Ω is finite.

Example

Toss a coin: Ω = {Head,Tail }
Throw a dice: Ω = { 1, 2, 3, 4, 5, 6 }

In general, we cannot predict with certainty the outcome of
an experiment in advance.
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Event

Definition

An event A ⊆ Ω is a subset of the sample space. ∅ is called the empty
event, Ω the trivial event. Two events A and B are disjoint if A ∩ B = ∅.

Example

Coin:
Outcome is a head: A = {Head }
Outcome is head or tail: A = {Head,Tail } = {Head } ∪ {Tail }
Outcome is both head and tail: A = ∅ = {Head } ∩ {Tail }
Outcome is not head: A = {Tail } = {Head }c

Die:
Outcome is an even number: A = { 2, 4, 6 } = { 2 } ∪ { 4 } ∪ { 6 }
Outcome is even and ≤ 3: A = { 2 } = { 2, 4, 6 } ∩ { 1, 2, 3 }

When A,B ⊆ Ω are events, so are A ∪ B, A ∩ B, and Ac,
representing ’A or B’, ’A and B’, and ’not A’, respectively.
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Probability space

Definition

A probability measure (2Ω,P) is a function P : 2Ω → [0, 1] satisfying

a) P ( ∅ ) = 0, and P ( Ω ) = 1,

b) If A1, . . . ,An are pairwise disjoint, P (
⋃n

i=1 An ) =
∑n

i=1 P (An ).

The triple (Ω, 2Ω,P) is called a probability space.

Example

For ω ∈ Ω, we write P (ω ) for P ( {ω } ); {ω } called elementary event.

Coin: 2Ω = { ∅, {Head } , {Tail } , {Head,Tail } }
Fair coin: P ( Head ) = P ( Tail ) = 1

2
Implied: P ( ∅ ) = 0, P ( {Head,Tail } ) = 1

Fair dice: P ( 1 ) = · · · = P ( 6 ) = 1
6 (rest implied)

Outcome is even: P ( { 2, 4, 6 } ) = P ( 2 ) + P ( 4 ) + P ( 6 ) = 1
2

Outcome is ≤ 3: P ( { 1, 2, 3 } ) = P ( 1 ) + P ( 2 ) + P ( 3 ) = 1
2
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Conditional probability

Definition

If P (B ) > 0, then the conditional probability that A occurs given that B
occurs is defined to be

P (A | B ) =
P (A ∩ B )

P (B )
.

Example

Two dice; prob. that total exceeds 6 given that first shows 3?

Ω = { 1, . . . , 6 }2

Total exceeds 6: A = { (a, b) : a + b > 6 }
First shows 3: B = { (3, b) : 1 ≤ b ≤ 6 }
A ∩ B = { (3, 4), (3, 5), (3, 6) }
P (A | B ) = P (A ∩ B ) /P (B ) = 3

36/
6

36 = 1
2
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Independence

Definition

Two events A and B are called independent if P (A ∩ B ) = P (A )P (B ).

If P (B ) > 0, implies that P (A | B ) = P (A ).

Example

Two independent events:

Die shows an even number: A = { 2, 4, 6 }
Die shows at most 4: B = { 1, 2, 3, 4 }:
P (A ∩ B ) = P ( { 2, 4 } ) = 1

3 = 1
2 ·

2
3 = P (A )P (B )

Not independent:

Die shows an odd number: C = { 1, 3, 5 }
P (A ∩ C ) = P ( ∅ ) = 0 6= 1

2 ·
1
2 = P (A )P (C )

Disjointness 6= independence.
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Conditional independence

Definition

Let A,B,C be events with P (C ) > 0. A and B are conditionally
independent given C if P (A ∩ B | C ) = P (A | C )P (B | C ).

Example

Die shows an even number: A = { 2, 4, 6 }
Die shows at most 3: B = { 1, 2, 3 }
P (A ∩ B ) = 1

6 6=
1
2 ·

1
2 = P (A )P (B )

→ A and B are not independent

Die does not show multiple of 3: C = { 1, 2, 4, 5 }
P (A ∩ B | C ) = 1

4 = 1
2 ·

1
2 = P (A | C )P (B | C )

→ A and B are conditionally independent given C
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Product space

Definition

Let (Ω1, 2
Ω1 ,P1) and (Ω2, 2

Ω2 ,P2) be two probability spaces. Their
product space is given by (Ω12, 2

Ω12 ,P12) with Ω12 = Ω1 × Ω2 and

P12 (A1 × A2 ) = P1 (A1 )P2 (A2 ) .

Example

Toss two fair dice.

Ω1 = Ω2 = { 1, 2, 3, 4, 5, 6 }
Ω12 = { (1, 1), . . . , (6, 6) }
First die: A1 = { 1, 2, 3 } ⊆ Ω1

Second die: A2 = { 2, 3, 4 } ⊆ Ω2

P12 (A1 × A2 ) = P1 (A1 )P2 (A2 ) = 1
2 ·

1
2 = 1

4

Product spaces combine the outcomes of several independent
experiments into one space.
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Random variable

Definition

A random variable is a function X : Ω→ R. We will write {X = x } or
{X ≤ x } for the events {ω : X (ω) = x } and {ω : X (ω) ≤ x },
respectively. The probability mass function of X is the function
fX : R→ [0, 1] given by fX (x) = P (X = x ); its distribution function is
given by FX (x) = P (X ≤ x ).

Example

Toss two dice:

Sum of outcomes: X ((a, b)) = a + b

fX (6) = P (X = 6 ) = P ( { (1, 5), (2, 4), (3, 3), (4, 2), (5, 1) } ) = 5
36

FX (3) = P (X ≤ 3 ) = P ( { (1, 1), (1, 2), (2, 1) } ) = 1
12

The notions of conditional probability, independence (consider events
{X = x } and {Y = y } for all x and y), and conditional independence
also apply to random variables.
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Expectation

Definition

The expected value of a random variable X is given by

E [X ] =
∑
x

x fX (x).

If g : R→ R, then

E [ g(X ) ] =
∑
x

g(x)fX (x).

Example

Fair die (with X being identity)

E [X ] = 1 · 1
6 + 2 · 1

6 + · · ·+ 6 · 1
6 = 3.5

Consider g(x) = bx/2c
E [ g(x) ] = 0 · 1

6 + 1 · 1
6 + · · ·+ 3 · 1

6 = 1.5

But: g(E [X ]) = 1!
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Flaw of averages

Mean correct, variance ignored. E [ g(X ) ] 6= g(E [X ])

Be careful with expected values!

13 / 46Savage, 2009.

http://www.flawofaverages.com/


Conditional expectation

Definition

Let X ,Y be random variables. The conditional expection of Y given X is
the random variable ψ(X ) where

ψ(x) = E [Y | X = x ] =
∑
y

y fY |X (y | x),

where fY |X (y | x) = P (Y = y | X = x ).

Example

Indicator variable: IA(ω) =

{
1 if ω ∈ A

0 otherwise

Fair die; set X = Ieven = I{ 2,4,6 }; Y is identity

E [Y | X = 1 ] = 1 · 0 + 2 · 1
3
+ 3 · 0 + 4 · 1

3
+ 5 · 0 + 6 · 1

3
= 4

E [Y | X = 0 ] = 1 · 1
3
+ 2 · 0 + 3 · 1

3
+ 4 · 0 + 5 · 1

3
+ 6 · 0 = 3

E [Y | X ](ω) =

{
4 if X (ω) = 1

3 if X (ω) = 0
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Important properties

We use shortcut notation P (X ) for P (X = x ).

Theorem

P (A ∪ B ) = P (A ) + P (B )− P (A ∩ B )

P (Ac ) = 1− P (A )

If B ⊇ A, P (B ) = P (A ) + P (B \ A ) ≥ P (A )

P (X ) =
∑
y

P (X ,Y = y ) (sum rule)

P (X ,Y ) = P (Y | X )P (X ) (product rule)

P (A | B ) =
P (B | A )P (A )

P (B )
(Bayes theorem)

E [ aX + b ] = aE [X ] + b (linearity of expectation)
E [X + Y ] = E [X ] + E [Y ]

E [E [X | Y ] ] = E [X ] (law of total expectation)
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Amateur bird watching

Bird watcher’s observations
Sightings

Name Bird Species
Mary Bird-1 Finch: 0.8 ‖ Toucan: 0.2 t1

Susan Bird-2 Nightingale: 0.65 ‖ Toucan: 0.35 t2

Paul Bird-3 Humming bird: 0.55 ‖ Toucan: 0.45 t3

Which species may have been sighted? → CWA, possible tuples

ObservedSpecies

Species
Finch 0.80 (t1, 1)

Toucan 0.71 (t1, 2) ∨ (t2, 2) ∨ (t3, 2)
Nightingale 0.65 (t2, 1)

Humming bird 0.55 (t3, 1)

Probabilistic databases quantify uncertainty.
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What do probabilities mean?

Multiple interpretations of probability

Frequentist interpretation
I Probability of an event = relative frequency when repeated often
I Coin, n trials, nH observed heads

lim
n→∞

nH

n
=

1

2
=⇒ P ( H ) =

1

2

Bayesian interpretation
I Probability of an event = degree of belief that event holds
I Reasoning with “background knowledge” and “data”
I Prior belief + model + data → posterior belief

F Model parameter: θ = true “probability” of heads
F Prior belief: P ( θ )
F Likelihood (model): P ( nH, n | θ )
F Bayes theorem: P ( θ | nH, n ) ∝ P ( nH, n | θ )P ( θ )
F Posterior belief: P ( θ | nH, n )
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But... what do probabilities really mean? And where do
they come from?

Answers differ from application to application, e.g.,
I Information extraction → from probabilistic models
I Data integration → from background knowledge & expert feedback
I Moving objects → from particle filters
I Predictive analytics → from statistical models
I Scientific data → from measurement uncertainty
I Fill in missing data → from data mining
I Online applications → from user feedback

Semantics sometimes precise, sometimes less so
Often: Convert model scores to [0, 1]

I Larger value → higher confidence
I Carries over to queries: higher probability of an answer → more credible
I Ranking often more informative than precise probabilities

Many applications can benefit from a platform that manages
probabilistic data.
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Probabilistic database

Example
Sightings

Name Bird Species
Mary Bird-1 Finch: 0.8 ‖ Toucan: 0.2
Susan Bird-2 Nightingale: 0.65 ‖ Toucan: 0.35
Paul Bird-3 Humming bird: 0.55 ‖ Toucan: 0.45

Possible worlds:
N B S
M 1 F
S 2 N
P 3 H

N B S
M 1 F
S 2 N
P 3 T

N B S
M 1 F
S 2 T
P 3 H

N B S
M 1 F
S 2 T
P 3 T

N B S
M 1 T
S 2 N
P 3 H

N B S
M 1 T
S 2 N
P 3 T

N B S
M 1 T
S 2 T
P 3 H

N B S
M 1 T
S 2 T
P 3 T

0.286 0.234 0.154 0.126 0.0715 0.0585 0.0385 0.0315

Definition

A (finite) probabilistic database (p-database, PDB) is a probability space
D = (I,P) over a (finite) incomplete database I in which w.l.o.g.
P ( I ) > 0 for all I ∈ I.

A PDB associates a nonzero probability to each possible world I ∈ I.
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Possible answer set semantics (example)

Example

What did Mary see? → q(R) = σName=’Mary’(R)

N B S
M 1 F
S 2 N
P 3 H

N B S
M 1 F
S 2 N
P 3 T

N B S
M 1 F
S 2 T
P 3 H

N B S
M 1 F
S 2 T
P 3 T

N B S
M 1 T
S 2 N
P 3 H

N B S
M 1 T
S 2 N
P 3 T

N B S
M 1 T
S 2 T
P 3 H

N B S
M 1 T
S 2 T
P 3 T

0.286 0.234 0.154 0.126 0.0715 0.0585 0.0385 0.0315

N B S
M 1 F

N B S
M 1 F

N B S
M 1 F

N B S
M 1 F

N B S
M 1 T

N B S
M 1 T

N B S
M 1 T

N B S
M 1 T

0.286 0.234 0.154 0.126 0.0715 0.0585 0.0385 0.0315

N B S
M 1 F

N B S
M 1 T

0.8 0.2

q q q q q q q q
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Possible answer set semantics

Definition

The possible answer set to a query q on a probabilistic database
D = (I,P) is the probability space Dq = (q(I),Pq), where q(I) is the
possible answer set to q on I, and

Pq ( J ) = P ( q(I ) = J ) = P ( { I ∈ I : q(I ) = J } ) =
∑

I∈I:q(I )=J

P ( I ) .

We refer to Dq as the image of D under q.

Cf. definition for incomplete databases

|q(I)| ≤ |I| since each instance of I gives precisely one result q(I )
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Possible tuple semantics (example)

Example

Which species have been sighted? → q(R) = πSpecies(R)

N B S
M 1 F
S 2 N
P 3 H

N B S
M 1 F
S 2 N
P 3 T

N B S
M 1 F
S 2 T
P 3 H

N B S
M 1 F
S 2 T
P 3 T

N B S
M 1 T
S 2 N
P 3 H

N B S
M 1 T
S 2 N
P 3 T

N B S
M 1 T
S 2 T
P 3 H

N B S
M 1 T
S 2 T
P 3 T

0.286 0.234 0.154 0.126 0.0715 0.0585 0.0385 0.0315

S
F
N
H

S
F
N
T

S
F
T
H

S
F
T

S
T
N
H

S
T
N

S
T
H

S
T

0.286 0.234 0.154 0.126 0.0715 0.0585 0.0385 0.0315

S
F

S
N

S
H

S
T

0.8 0.65 0.55 0.714

q q q q q q q q

S P
F 0.8
T 0.714
N 0.65
H 0.55
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Possible tuple semantics

Definition

Let D = (I,P) be a probabilistic database. A tuple t is a possible answer
to a query q if there exists a possible world I ∈ I such that t ∈ q(I ). The
marginal probability of t is given by

P ( t ∈ q(I ) ) =
∑

I∈I:t∈q(I )

P ( I ) .

A tuple t is a certain answer if P ( t ∈ q(I ) ) = 1;
equivalently, (∀I ∈ I) t ∈ q(I )
→ Certain answer tuple semantics as before (q-information).
→ Weak representation results carry over.

Possible tuple semantics is the main focus of probabilistic databases
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Motivating example

Example

Form 1 Form 2
Ambiguity:

Is Smith single or married?

What is the martial status of Brown?

What is Smith’s social security number: 185 or 785?

What is Brown’s social security number: 185 or 186?

Probabilistic database:

Here: 2 · 4 · 2 · 2 = 32 possible readings → can easily store all of them

200M people, 50 questions, 1 in 10000 ambiguous (2 options)

→ 2106

possible readings

Each reading is a table with 50 columns and 200M rows!
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Probabilistic representation system

Finiteness assumption: Throughout our entire treatment of PDBs.

Definition

A probabilistic representation system consists of a set T of tables and a
function Mod that associates to each table T ∈ T a probabilistic
database Mod(T ).

Definition

A probabilistic representation system is complete if it can represent any
probabilistic database.

Definition

Let (T ,Mod) be a probabilistic representation system and L be a query
language. The probabilistic representation system obtained by closing T
under L is the set of tables { (T , q) | T ∈ T , q ∈ L } and function
Mod(T , q) = q(Mod(T )).
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pc-table (example)

Example

FID SSN Name
1 185 Smith X = 1
1 785 Smith X 6= 1
2 185 Brown Y = 1 ∧ X 6= 1
2 186 Brown Y 6= 1 ∨ X = 1

V D P
X 1 0.2
X 2 0.8

Y 1 0.3
Y 2 0.7

FID SSN Name
1 185 Smith
2 186 Brown

FID SSN Name
1 785 Smith
2 185 Brown

FID SSN Name
1 785 Smith
2 186 Brown

{X 7→ 1,Y 7→ 1 } {X 7→ 2,Y 7→ 1 } {X 7→ 2,Y 7→ 2 }
{X 7→ 1,Y 7→ 2 }
0.2 · 0.3 + 0.2 · 0.7 0.8 · 0.3 0.8 · 0.7

= 0.2 = 0.24 = 0.56
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pc-tables

Definition

A probabilistic c-table (pc-table) is pair (T ,P), where T ia a c-table and P
a probability distribution over the set of assignments Θ of Var(T ) such
that all variables are independent.

Mod(T ) = { θ(T ) : θ ∈ Θ }

P ( I ) =
∑

θ∈Θ:θ(T )=I

P ( θ )

Variables are independent
→ need only specify probabilities of form P (X = a )

P can be stored in a standard relation storing (variable, value,
probability)-triples
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Completeness of pc-tables

Theorem

pc-tables are a complete representation system.

Proof.

Let D = (I,P) be a probabilistic database with I =
{
I 1, . . . , I n

}
and

I k = { tk1, . . . , tknk }. Let X be a random variable with domain
{ 1, . . . , n }. Set P (X = k ) = P

(
Ik
)

and use the c-table:

α(I)
t11 X = 1
...

t1n1 X = 1
t21 X = 2
...

t2n2 X = 2
t31 X = 3
...

.
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Completeness of pc-tables (example)

Example

I 1

FID SSN Name
1 185 Smith
2 186 Brown

I 2

FID SSN Name
1 785 Smith
2 185 Brown

I 3

FID SSN Name
1 785 Smith
2 186 Brown

0.2 0.24 0.56

FID SSN Name
1 185 Smith X = 1
2 186 Brown X = 1
1 785 Smith X = 2
2 185 Brown X = 2
1 785 Smith X = 3
2 186 Brown X = 3

V D P
X 1 0.2
X 2 0.24
X 3 0.56
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pc-tables are strong

Theorem

pc-tables are strong under RA.

Proof.

Given a pc-table (T ,P) and a query q, the resulting pc-table is given by
(q̄(T ),P), where q̄ is the c-table algebra query corresponding to q.

Example
R
FID SSN Name
1 185 Smith X = 1
1 785 Smith X 6= 1
2 185 Brown Y = 1 ∧ X 6= 1
2 186 Brown Y 6= 1 ∨ X = 1

V D P
X 1 0.2
X 2 0.8

Y 1 0.3
Y 2 0.7

πSSN(R)

SSN
185 X = 1 ∨ (Y = 1 ∧ X 6= 1)
785 X 6= 1
186 Y 6= 1 ∨ X = 1
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Tuple-independent databases (p?-tables)

Definition

In a tuple-independent probabilistic database T , each tuple t ∈ T is
marked with a probability pt > 0. We have Mod(T ) = (I,P) where
I = { I ⊆ T : P ( I ) > 0 } and

P ( I ) =
(∏

t∈I
pt
)(∏

t /∈I

(1− pt)
)
.

Example (Nell)
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Completeness

Theorem

Tuple-independent databases are not complete.

Proof.

They can only represent databases in which all tuples are independent
events. E.g., they cannot represent

{
a

0.5
,

b

0.5

}
or


0.1

,
a

0.1

,
b

0.1

,
a
b

0.7

 .

Theorem

The closure of tuple-independent databases under positive RA is not
complete.
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Closure under RA

Theorem

The closure of tuple-independent databases under RA is complete.

Proof.

Let D = (I,P) be a probabilistic database with I =
{
I 1, . . . , I n

}
. To

obtain a tuple-independent database, use n certain EDB predicates
R1, . . . ,Rn with I (Rk) = I k and one tuple-independent table W that
contains tuples { 1, . . . , n } with pk = P

(
I k | { I1, . . . , Ik−1 }c

)
. Write a

query that selects relation Rk iff argmint:W (t) = k :

R(x) ←W (1),R1(x) p1 = P
(
I 1
)

R(x) ← ¬W (1),W (2),R2(x) p2 = P
(
I 2 |

{
I 1
}c )

R(x) ← ¬W (1),¬W (2),W (3),R3(x) p3 = P
(
I 3 |

{
I 1, I 2

}c )
...

...
R(x) ← ¬W (1), . . . ,¬W (n − 1),W (n),Rn(x) pn = 1
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Closure under RA (example)

Example

I 1 = I (R1)
FID SSN Name

1 185 Smith
2 186 Brown

I 2 = I (R2)
FID SSN Name

1 785 Smith
2 185 Brown

I 3 = I (R3)
FID SSN Name

1 785 Smith
2 186 Brown

0.2 0.24 0.56

R(f , s, n) ←W (1),R1(f , s, n) p1 = 0.2
R(f , s, n) ← ¬W (1),W (2),R2(f , s, n) p2 = 0.24/(1− 0.2)
R(f , s, n) ← ¬W (1),¬W (2),W (3),R3(f , s, n) p3 = 0.56/(1− 0.2− 0.24)

W
World P

1 0.2 P( argmint:W (t) = 1 ) = 0.2

2 0.3 P( argmint:W (t) = 2 ) = 0.3 · (1− 0.2) = 0.24

3 1 P( argmint:W (t) = 3 ) = 1 · (1− 0.2) · (1− 0.3) = 0.56
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Probabilistic database design

Database normalization → Minimize redundancy/correlations
Tuple-independent databases are good building blocks

I No correlations between tuples
I No constraints
I Database normalization can be applied

Decompose complex databases into tuple-independent databases

Example (Nell)

nellExtraction: extracted relations
(tuple probability = belief that extracted tuple is correct)

nellSource: source of extraction
(tuple probability = belief that source is correct)

Correlation via views

ProducesProduct(x , y) ← nellExtraction(x , ’ProducesProduct’, y , s), nellSource(s)

Tuple-independent databases can be stored in standard relations.
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BID tables

Relations are partitioned into blocks

Events within a block a disjoint; events across blocks are independent
→ Block-independent-disjoint database

Blocks are identified by key attributes

Example

FID SSN Name
1 185 Smith X = 1
1 785 Smith X = 2
2 175 Brown Y = 1
2 186 Brown Y = 2

V D P
X 1 0.8
X 2 0.2

Y 1 0.5
Y 2 0.5

→

FID SSN Name P
1 185 Smith 0.8
1 785 Smith 0.2

2 175 Brown 0.5
2 186 Brown 0.5

Theorem

BID-tables extended with PJR queries are a complete representation
system.
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U-tables (MayBMS)

Goal: completeness + natural representation in RDBMS
Restrict pc-table conditions to forms X1 = a1 ∧ . . . ∧ Xk = ak
Conditions → U-tables (usually: one per set of correlated attributes)
Distribution over assignments → BID-table (world table)

Example
R
FID SSN Name
1 185 Smith X = 1
1 785 Smith X = 2
2 185 Brown Y = 1 ∧ X = 2
2 186 Brown Y = 2
2 186 Brown X = 1

W
V D P
X 1 0.2
X 2 0.8

Y 1 0.3
Y 2 0.7

T
V1 D1 V2 D2 FID SSN Name
X 1 X 1 1 185 Smith
X 2 X 2 1 785 Smith
Y 1 X 2 2 185 Brown
Y 2 Y 2 2 186 Brown
X 1 X 1 2 186 Brown

Reconstruction via joins: R(f , s, n)← T (v1, d1, v2, d2, f , s, n),W (v1, d1),W (v2, d2)

Theorem

U-databases are complete. They can compute/represent results of
nr-datalog queries conveniently (i.e., in polynomial time and space).
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Or-set tables

Example

Probabilistic or-set tables (= probabilistic finite-domain Codd tables):

Sightings

Name Bird Species
Mary Bird-1 Finch: 0.8 ‖ Toucan: 0.2
Susan Bird-2 Nightingale: 0.65 ‖ Toucan: 0.35
Paul Bird-3 Humming bird: 0.55 ‖ Toucan: 0.45

Probabilistic ?-or-set tables (Trio):

Sightings

Name Bird Species
Mary Bird-1 Finch: 0.8 ‖ Toucan: 0.2
Susan Bird-2 Nightingale: 0.65 ‖ Toucan: 0.10 ?
Paul Bird-3 Humming bird 0.55
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Lessons learned

Probabilistic databases quantify uncertainty

Probabilistic database = incomplete database + probability
distribution

Many notions and results from incomplete databases carry over

Queries can be analyzed in terms of
1 Possible answer sets
2 Certain answer tuples (same as incomplete databases)
3 Possible answer tuples (main focus of PDBs)

pc-tables → complete, strong under RA
Tuple-independent tables → complete when closed under RA
(Good probabilistic database design)

BID-tables → complete when closed under PJR queries

U-databases → complete, handle positive RA well, easy to represent
in an RDBMS
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Suggested reading

Charu C. Aggarwal (Ed.)
Managing and Mining Uncertain Data (Chapter 2)
Springer, 2009

Dan Sucio, Dan Olteanu, Christopher Ré, Christoph Koch
Probabilistic Databases (Chapter 2)
Not yet published (But you’ll get copies!)

Charu C. Aggarwal (Ed.)
Managing and Mining Uncertain Data (Chapter 5 → Trio)
Springer, 2009

Charu C. Aggarwal (Ed.)
Managing and Mining Uncertain Data (Chapter 6 → MayBMS)
Springer, 2009
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Overview

In this lecture

Primer: relational calculus

Understand complexity of query evaluation

How to determine whether a query is “easy” or “hard”

How to efficently evaluate easy queries
→ extensional query evaluation

How to evaluate hard queries
→ intensional query evaluation

How to approximately evaluate queries

Not in this lecture

Possible answer set semantics

Most representation systems but tuple-independent databases
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Relational calculus (RC)

Similar to nr-datalog¬, but uses a single query expression
Suitable to reason over query expressions as a whole
Queries are built from logical connectives

q ::= u = v | R(x) | ∃x .q1 | q1 ∧ q2 | q1 ∨ q2 | ¬q1,

where u, v are either variables of constants
Extended RC: adds arithmetic expressions
Free variables in q are called head variables

Example
RA query:

πHotelNo,Name,City(Hotel on σPrice>500∨Type=’suite’(Room))

RC query and its abbreviation:

q(h, n, c)← ∃r .∃t.∃p.Hotel(h, n, c) ∧ Room(r , h, t, p) ∧ (p > 500 ∨ t = ’suite’)

q(h, n, c)← Hotel(h, n, c) ∧ Room(r , h, t, p) ∧ (p > 500 ∨ t = ’suite’)

Alternative RC query:

q(h, n, c)← Hotel(h, n, c) ∧ ∃r .∃t.∃p.Room(r , h, t, p) ∧ (p > 500 ∨ t = ’suite’)
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Boolean query

Definition

A Boolean query is an RC query with no head variables.

Asks whether the query result is empty
Can be obtained from RC-query by

1 Adding existential quantifiers for the head variables
2 Replacing head variables by constants (potential results)

Example
RC-query:

q(h, n, c)← Hotel(h, n, c) ∧ ∃r .∃t.∃p.Room(r , h, t, p) ∧ (p > 500 ∨ t = ’suite’)

Boolean RC-query (“Is there an answer?”):

q ← ∃h.∃n.∃c.Hotel(h, n, c) ∧ ∃r .∃t.∃p.Room(r , h, t, p) ∧ (p > 500 ∨ t = ’suite’)

Another Boolean RC-query (“Is (H1,Hilton,Paris) an answer?”):

q ← Hotel(’H1’, ’Hilton’, ’Paris’)∧∃r .∃t.∃p.Room(r , ’H1’, t, p)∧ (p > 500 ∨ t = ’suite’)
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Query semantics

Active domain: set of all constants occurring in the database
Active domain semantics

1 Every quantifier ∃x ranges over active domain
2 Query answers are restricted to active domain

Domain-independent query: query result independent of domain
(cf. safe queries for datalog)
Domain-independent queries and query evaluation under active
domain semantics are equally expressive

Example

Active domain of R: { 1, 2 }
Domain-independent query

q(x)← ∃y .R(x , y)

Domain-dependent queries

q(x)← ∃y .∃z .R(y , z)

q(x)← ∃y .¬R(x , y)
6 / 119
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Relationships between query languages

Theorem

Each row of languages in the following table is equally expressive (we
consider only safe rules with a single output relation for nr-datalog¬ and
domain-independent rules for RC).

Relational algebra nr-datalog¬ Relational calculus

SPJR No repeated head ∃, ∧
predicates, no negation (conjunctive queries: CQ)

SPJRU No negation ∃, ∧, ∨
(positive RA) (nr-datalog) (unions of CQ: UCQ)

SPJRUD – ∃,∧,∨,¬
(RA) (nr-datalog¬) (RC)
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The query evaluation problem

Database systems are expected to scale to large datasets and
parallelize to a large number of processors
→ Same behavior is expected from probabilistic databases

We consider the possible tuple semantics, i.e., a query answer is an
ordered set of answer-probability pairs

{ (t1, p1), (t2, p2), . . . } with p1 ≥ p2 ≥ . . .

Definition (Query evaluation problem)

Fix a query q. Given a (representation of a) probabilistic database D and a
possible answer tuple t, compute its marginal probability P ( t ∈ q(D) ).
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Questions of interest

Characterize which queries are hard
→ Understand what makes query evaluation hard

Given a query, determine whether it is hard
→ Guide query processing

Given an easy query, solve the QEP
→ Be efficient whenever possible

Given a hard query, solve the QEP (exactly or approximately)
→ Don’t give up on hard queries
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Query evaluation on deterministic databases

Definition

The data complexity of a query q is the complexity of evaluating it as a
function of the size of the input database. A query is tractable if its data
complexity is in polynomial time; otherwise, it is intractable.

Example

Fix a relation schema R and consider an instance I with n tuples

q(R) = R → O(n)

q(R) = σE (R)→ O(n)

q(R) = πU(R)→ O(n2); can be tightened

Theorem

On deterministic databases, the data complexity of every RA query is in
polynomial time. Thus query evaluation is always tractable.
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Query evaluation on probabilistic databases

Corollary

Query evaluation over probabilistic databases is tractable.

Proof.

Fix query q. Given a probabilistic database D = (I,P) with
I =

{
I 1, . . . , I n

}
, perform the following steps:

1 Compute q(I k) for 1 ≤ k ≤ n → polynomial time

2 For each tuple t ∈ q(I k) for some k, compute

P ( t ∈ q(D) ) =
∑

k:t∈q(I k )

P( I k )

→ polynomially many tuples, polynomial time per tuple

This result is treacherous: It talks about probabilistic
databases but not about probabilistic representation systems!
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Lineage trees and the query evaluation problem

Example

q(h)← ∃n.∃c.Hotel(h, n, c) ∧ ∃r .∃t.∃p.Room(r , h, t, p) ∧ (p > 500 ∨ t = ’suite’)

Room (R)

RoomNo Type HotelNo Price
R1 Suite H1 $50 X1

R2 Single H1 $600 X2

R3 Double H1 $80 X3

Hotel (H)

HotelNo Name City
H1 Hilton SB X4

ExpensiveHotels

HotelNo
H1 X4 ∧ (X1 ∨ X2)

Theorem

Fix a RA query q. Given a boolean pc-table (T ,P), we can compute the
lineage Φt of each possible output tuple t in polynomial time, where Φt is
a propositional formula. We have

P ( t ∈ q(T ) ) = P ( Φt ) .
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How can we compute Φt?

A naive approach

Let ω(Φ) be the set of assignments over Var(T ) that make Φ true. Then
apply P ( Φ ) =

∑
θ∈ω(Φ) P ( θ ).

Exponential time: n variables → 2n assignments to check!

Definition (Model counting problem)

Given a propositional formula Φ, count the number of satisfying
assignments #Φ = |ω(Φ)|.

Definition (Probability computation problem)

Given a propositional formula Φ and a probability P ( X ) ∈ [0, 1] for each
variable X , compute the probability P ( Φ ) =

∑
θ∈ω(Φ) P ( θ ).
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Model counting is a special case of probability computation

Suppose we have an algorithm to compute P ( Φ )

We can use the algorithm to compute #Φ

Define P ( X ) = 1
2 for every variable X

P ( θ ) = 1/2n for every assignment (n = number of variables)

#Φ = P ( Φ ) · 2n

Example

Φ = (X1 ∨ X2) ∧ X4; n = 3

#Φ = 3

P ( Φ ) = 3
8 = #Φ

2n

X1 X2 X4 Φθ P ( θ )
0 0 0 FALSE 1/8
0 0 1 FALSE 1/8
0 1 0 FALSE 1/8
0 1 1 TRUE 1/8
1 0 0 FALSE 1/8
1 0 1 TRUE 1/8
1 1 0 FALSE 1/8
1 1 1 TRUE 1/8
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The complexity class #P

Definition

The complexity class #P consists of all function problems of the following
type: Given a polynomial-time, non-deterministic Turing machine,
compute the number of accepting computations.

Theorem (Valiant, 1979)

Model counting (#SAT) is complete for #P.

NP asks whether there exists at least one accepting computation

#P counts the number of accepting computations

SAT is NP-complete

#SAT is #P-complete

Directly implies that probability computation is hard for #P!
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A graph problem

Definition (Bipartite vertex cover)

Given a bipartite graph (V ,E), compute |{S ⊆ V : (u,w) ∈ E → u ∈ S ∨ w ∈ S }|.

Example

X1

X2 Y1

X3 Y2

X4 Y3

X5

80 possible ways

Theorem (Provan and Ball, 1983)

Bipartite vertex cover is #P-complete.
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#PP2DNF and #PP2CNF

Definition

Let X1,X2, . . . and Y1,Y2, . . . be two disjoint sets of Boolean variables.

A positive, partitioned 2-CNF propositional formula (PP2CNF) has
form Ψ =

∧
(i ,j)∈E (Xi ∨ Yj).

A positive, partitioned 2-DNF propositional formula (PP2DNF) has
form Φ =

∨
(i ,j)∈E XiYj .

Theorem

#PP2CNF and #PP2DNF are #P-complete.

Proof.

#PP2CNF reduces to bipartite vertex cover. For any given E , we have
#Φ = 2n −#Ψ, where n is the total number of variables.

Note: 2-CNF is in P.
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A hard query

Theorem

The query evaluation problem of the CQ query H0 given by

H0 ← R(x) ∧ S(x , y) ∧ T (y)

on tuple-independent databases is hard for #P.

Proof.

Given a PP2DNF formula Φ =
∨

(i ,j)∈E XiYj , where
E = { (Xe1 ,Ye1), (Xe2 ,Ye2), . . . }, construct the tuple-independent DB:

R
X
X1 1/2
X2 1/2
...

S
X Y

Xe1 Ye1 1
Xe2 Ye2 1

...
...

...

T
Y
Y1 1/2
Y2 1/2
...

Then #Φ = 2n P ( H0 ), where n is the total number of variables.
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More hard queries

Theorem

All of the following RC queries on tuple-independent databases are
#P-hard:

H0 ← R(x) ∧ S(x , y) ∧ T (y)

H1 ← [R(x0) ∧ S(x0, y0)] ∨ [S(x1, y1) ∧ T (y1)]

H2 ← [R(x0) ∧ S1(x0, y0)] ∨ [S1(x1, y1) ∧ S2(x1, y1)]

∨ [S2(x2, y2) ∧ T (y2)]

...

Queries can be tractable even if they have intractable subqueries!
q(x , y)← R(x) ∧ S(x , y) ∧ T (y) is tractable

q ← H0 ∨ T (y) is tractable
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Extensional and intensional query evaluation

We’ll say more about data complexity as we go

Extensional query evaluation
I Evaluation process guided by query expression q
I Not always possible
I When possible, data complexity is in polynomial time

Extensional plans
I Extensional query evaluation in the database
I Only minor modifications to RDBMS necessary
I Scalability, parallelizability retained

Intensional query evaluation
I Evaluation process guided by query lineage
I Reduces query evaluation to the problem of computing the probability

of a propositional formula
I Works for every query
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Problem statement

Tuple-independent database
I Each tuple t annotated with a unique boolean variable Xt

I We write P ( t ) = P ( Xt )
Boolean query Q

I With lineage ΦQ

I We write P ( Q ) = P ( ΦQ )
Goal: compute P ( Q ) when Q is tractable

I Evaluation process guided by query expression q
I I.e., without first computing lineage!

Example

Birds
Species P
Finch 0.80 X1

Toucan 0.71 X2

Nightingale 0.65 X3

Humming bird 0.55 X4

P ( Finch ) = P ( X1 ) = 0.8

Is there a finch? Q ← Birds(Finch)
I ΦQ = X1

I P ( Q ) = 0.8

Is there some bird? Q ← Birds(s)?
I ΦQ = X1 ∨ X2 ∨ X3 ∨ X4

I P ( Q ) ≈ 99.1%
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Overview of extensional query evaluation

Break the query into “simpler” subqueries

By applying one of the rules
1 Independent-join
2 Independent-union
3 Independent-project
4 Negation
5 Inclusion-exclusion (or Möbius inversion formula)
6 Attribute ranking

Each rule application is polynomial in size of database

Main results for UCQ queries
I Completeness: Rules succeed iff query is tractable
I Dichotomy: Query is #P-hard if rules don’t succeed
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Unifiable atoms

Definition

Two relational atoms L1 and L2 are said to be unifiable (or to unify) if
they have a common image. I.e., there exists substitutions such that
L1[a1/x1] = L2[a2/x2], where x1 are the variables in L1 and x2 are the
variables in L2.

Example
Unifiable:

R(a), R(a) via [], []

R(x), R(y) via [a/x ], [a/y ]

R(a, y), R(x , y) via [b/y ], [(a, b)/(x , y)]

R(a, b), R(x , y) via [], [(a, b)/(x , y)]

R(a, y), R(x , b) via [b/y ], [a/x ]

Not unifiable:

R(a), R(b)

R(a, y), R(b, y)

R(x), S(x)

Unifiable atoms must use the same relation symbol.
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Syntactic independence

Definition

Two queries Q1 and Q2 are called syntactically independent if no two
atoms from Q1 and Q2 unify.

Example

Syntactically independent:

R(a), R(b)

R(a, y), R(b, y)

R(x), S(x)

R(a, x) ∨ S(x), R(b, x) ∧ T (x)

Not syntactically independent:

R(a), R(x)

R(x), R(y)

R(x), S(x) ∧ ¬R(x)

Checking for syntactic independence can be done in polyno-
mial time in the size of the queries.
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Syntactic independence and probabilistic independence

Proposition

Let Q1,Q2, . . . ,Qk be pairwise syntactically independent. Then
Q1, . . . ,Qk are independent probabilistic events.

Proof.

The sets Var(ΦQ1), . . . ,Var(ΦQk
) are pairwise disjoint, i.e., the lineage

formulas do not share any variables. Since all variables are independent
(because we have a tuple-independent database), the proposition
follows.

Example
Syntactically independent:

R(a), R(b)

R(a, y), R(b, y)

R(x), S(x)

R(a, x) ∨ S(x), R(b, x) ∧ T (x)

Not syntactically independent:

R(a), R(x)

R(x), R(y)

R(x), S(x) ∧ ¬R(x)
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Probabilistic independence and syntactic independence

Proposition

Probabilistic independence does not necessarily imply syntactic
independence.

Example

Consider

Q1 ← R(x , y) ∧ R(x , x)

Q2 ← R(a, b)

If ΦQ1 does not contain XR(a,b), Q1 and Q2 are independent

Otherwise, ΦQ1 contains XR(a,b) and therefore XR(a,b) ∧ XR(a,a)

Then, ΦQ1 also contains XR(a,a) ∧ XR(a,a) = XR(a,a)

Thus, by the absorption law,

(XR(a,b) ∧ XR(a,a)) ∨ XR(a,a) = XR(a,a)

XR(a,b) can be eliminated from ΦQ1 so that Q1 and Q2 are independent
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Base case: Atoms

Definition

If Q is an atom, i.e., of form Q = R(a), simply lookup its probability in
the database.

Example

Sightings

Name Species P
Mary Finch 0.8 X1

Mary Toucan 0.3 X2

Susan Finch 0.2 X3

Susan Toucan 0.5 X4

Susan Nightingale 0.6 X5

Did Mary see a toucan?

Q = Sightings(Mary,Toucan)

P ( Q ) = 0.3
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Rule 1: Independent-join

Definition

If Q1 and Q2 are syntactically independent, then

P ( Q1 ∧ Q2 ) = P ( Q1 ) · P ( Q2 ) . (independent-join)

Example

Sightings

Name Species P
Mary Finch 0.8 X1

Mary Toucan 0.3 X2

Susan Finch 0.2 X3

Susan Toucan 0.5 X4

Susan Nightingale 0.6 X5

Did both Mary and Susan see a toucan?

Q = S(Mary,Toucan) ∧ S(Susan,Toucan)

Q1 = S(Mary,Toucan) P ( Q1 ) = 0.3

Q2 = S(Susan,Toucan) P ( Q2 ) = 0.5

P ( Q ) = P ( Q1 ) · P ( Q2 ) = 0.15
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Rule 2: Independent-union

Definition

If Q1 and Q2 are syntactically independent, then

P ( Q1 ∨ Q2 ) = 1− (1− P ( Q1 ))(1− P ( Q2 )). (independent-union)

Example

Sightings

Name Species P
Mary Finch 0.8 X1

Mary Toucan 0.3 X2

Susan Finch 0.2 X3

Susan Toucan 0.5 X4

Susan Nightingale 0.6 X5

Did Mary or Susan see a toucan?

Q = S(Mary,Toucan) ∨ S(Susan,Toucan)

Q1 = S(Mary,Toucan) P ( Q1 ) = 0.3

Q2 = S(Susan,Toucan) P ( Q2 ) = 0.5

P ( Q ) =
1− (1− P ( Q1 ))(1− P ( Q2 )) = 0.65
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Root variables and separator variables

Definition

Consider atom L and query Q. Denote by Pos(L, x) the set of positions
where x occurs in Q (maybe empty). If Q is of form Q = ∃x .Q ′:

Variable x is a root variable if it occurs in all atoms, i.e.,
Pos(L, x) 6= ∅ for every atom L that occurs in Q ′.

A root variable x is a separator variable if for any two atoms that
unify, x occurs on a common position, i.e.,
Pos(L1, x) ∩ Pos(L2, x) 6= ∅.

Example

Q1 ← ∃x .Likes(a, x) ∧ Likes(x , a)

Pos(Likes(a, x), x) = { 2 }
Pos(Likes(x , a), x) = { 1 }
x is root variable

x is no separator variable

Q2 ← ∃x .Likes(a, x) ∧ Likes(x , x)

x is root variable

x is a separator variable

Q3 ← ∃x .Likes(a, x) ∧ Popular(a)

x is no root variable
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Separator variables and syntactic independence

Lemma

Let x be a separator variable in Q = ∃x .Q ′. Then for any two distinct
constants a, b, the queries Q ′[a/x ], Q ′[b/x ] are syntactically independent.

Proof.

Any two atoms L1, L2 that unify in Q ′ do not unify in Q ′[a/x ] and
Q ′[b/x ]. Since x is a separator variable, there is a position at which both
L1 and L2 have x ; at this position, L1[a/x ] has a and L2[b/x ] has b.

Example

Sightings

Name Species P
Mary Finch 0.8 X1

Mary Toucan 0.3 X2

Susan Finch 0.2 X3

Susan Toucan 0.5 X4

Susan Nightingale 0.6 X5

Has anybody seen a toucan?

Q = ∃x .Sightings(x ,Toucan)

Q ′(x) = Sightings(x ,Toucan)

Q ′[Mary/x ] = Sightings(Mary,Toucan)

Q ′[Susan/x ] = Sightings(Susan,Toucan)
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Rule 3: Independent-project

Definition

If Q is of form Q = ∃x .Q ′ and x is a separator variable, then

P ( Q ) = 1−
∏

a∈ADom

(
1− P

(
Q ′[a/x ]

))
, (independent-project)

where ADom is the active domain of the database.

Example

Sightings

Name Species P
Mary Finch 0.8 X1

Mary Toucan 0.3 X2

Susan Finch 0.2 X3

Susan Toucan 0.5 X4

Susan Nightingale 0.6 X5

Has anybody seen a toucan?

Q = ∃x .S(x ,Toucan)

Q ′ = S(x ,Toucan)

P ( Q ) = 1−
∏

x∈{M,S,F,... }

(1− P ( S(x ,T) ))

= 1− (1− 0.3)(1− 0.5)1 · · · 1
= 0.65
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Rule 4: Negation

Definition

If the query is ¬Q, then

P (¬Q ) = 1− P ( Q ) (negation)

Example

Sightings

Name Species P
Mary Finch 0.8 X1

Mary Toucan 0.3 X2

Susan Finch 0.2 X3

Susan Toucan 0.5 X4

Susan Nightingale 0.6 X5

Did nobody see a toucan?

Q = ¬[∃x .S(x ,Toucan)]

P ( Q ) = 1− P (∃x .S(x ,Toucan) ) = 0.35
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Rule 5: Inclusion-exclusion

Definition

Suppose Q = Q1 ∧ Q2 ∧ . . .Qk . Then,

P ( Q ) = −
∑

∅6=S⊆{ 1,...,k }

(−1)|S| P
( ∨
i∈S

Qi

)
(inclusion-exclusion)

Example

Q1

Q2 Q3

123

1

23

12 13

2 3

1 2 3 12 13 23 123 P ( Q1 ∧ Q2 ∧ Q3 ) =
1 0 0 1 1 0 1 +P ( Q1 )
1 1 0 2 1 1 2 +P ( Q2 )
1 1 1 2 2 2 3 +P ( Q3 )
0 0 1 1 1 1 2 −P ( Q1 ∨ Q2 )
-1 0 0 0 0 0 1 −P ( Q1 ∨ Q3 )
-1 -1 -1 -1 -1 -1 0 −P ( Q2 ∨ Q3 )
0 0 0 0 0 0 1 +P ( Q1 ∨ Q2 ∨ Q3 )
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Inclusion-exclusion for independent-project
Goal of inclusion-exclusion is to apply the rewrite

(∃x1.Q1)∨ (∃x2.Q2) ≡ ∃x .(Q1[x/x1]∨Q2[x/x2]).

Example

Sightings

Name Species P
Mary Finch 0.8
Mary Toucan 0.3
Susan Finch 0.2
Susan Toucan 0.5
Susan Nightingale 0.6

Has both Mary seen some bird and someone seen a finch?

P ( (∃x .S(M, x)) ∧ (∃y .S(y ,F)) ) (ie)

= P (∃x .S(M, x) ) + P (∃y .S(y ,F) )− P ( (∃x .S(M, x)) ∨ (∃y .S(y ,F)) ) (ip/ip/rewrite)

= 0.86 + 0.84− P ( ∃x .S(M, x) ∨ S(x ,F) )

= 1.7− P ( ∃x .S(M, x) ∨ S(x ,F) )

Now we are stuck → Need another rule (attribute-constant ranking)!
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Rule 6: Attribute ranking

Definition

Attribute-constant ranking. If Q is a query that contains a relation name
R with attribute A, and there exists two unifiable atoms such that the first
has constant a at position A and the second has a variable, substitute each
occurence of form R(. . .) by R1(. . .) ∨ R2(. . .), where

R1 = σA=a(R), R2 = σA6=a(R).

Attribute-attribute ranking. If Q is a query that contains a relation name
R with attributes A and B, substitute each occurence of form R(. . .) by
R1(. . .) ∨ R2(. . .) ∨ R3(. . .), where

R1 = σA<B(R), R2 = σA=B(R), R3 = σA>B(R).

Syntactic rewrites. For selections of form σA=·, decrease the arity of the
resulting relation by 1 and add an equality predicate.
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Attribute-constant ranking (continues prev. example)
Example
Has both Mary seen some bird and someone seen a finch?

P ( (∃x .S(M, x)) ∧ (∃y .S(y ,F)) )
= 1.7− P ( ∃x .S(M, x) ∨ S(x ,F) ) (rank (Name=Mary))
= 1.7− P ( ∃x .SM(x) ∨ S¬M(M, x) ∨ [SM(F) ∧ x = M] ∨ S¬M(x ,F) ) (simplify)
= 1.7− P ( ∃x .SM(x) ∨ SM(F) ∨ S¬M(x ,F) ) (rank (Species=Finch))
= 1.7− P ( ∃x .[SMF() ∧ x = F] ∨ SM¬F(x) ∨ SMF() ∨ S¬M(x ,F) ) (push ∃x)
= 1.7− P ( SMF() ∨ ∃x .SM¬F(x) ∨ S¬M(x ,F) ) (iu)
= 1.7− 1 + (1− P ( SMF() ))(1− P ( ∃x .SM¬F(x) ∨ S¬M(x ,F) ) (base/ip)
= 0.7 + (1− 0.8)

[∏
x∈{M,S,F,T,N }(1− P ( SM¬F(x) ∨ S¬M(x ,F) )

]
(iu)

= 0.7 + 0.2
[∏

x∈{M,S,F,T,N }(1− P ( SM¬F(x) ))(1− P ( S¬M(x ,F) ))
]

(product)

= 0.7 + 0.2[11 · 1(1− 0.2) · 11 · (1− 0.3)1 · 11]
= 0.812
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N S P
M F 0.8
M T 0.3
S F 0.2
S T 0.5
S N 0.6
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S P
F 0.8
T 0.3

S¬M
N S P
S F 0.2
S T 0.5
S N 0.6

SMF

P
0.8

SM¬F
S P
T 0.3



Attribute-attribute ranking (example)

The goal of attribute ranking is to establish syntactic inde-
pendence and new separators by exploiting disjointness.

Example
Are there two people who like each other?

P ( ∃x .∃y .Likes(x , y) ∧ Likes(y , x) ) (rank)

= P (∃x .∃y .
(Likes<(x , y) ∨ (Likes=(x) ∧ x = y) ∨ Likes>(x , y))∧
(Likes<(y , x) ∨ (Likes=(x) ∧ x = y) ∨ Likes>(y , x))) (expand , disjoint)

= P (∃x .∃y .L<(x , y)L>(y , x) ∨ (L=(x) ∧ x = y) ∨ L>(x , y)L<(y , x) ) (push ∃)

= P ( (∃x .∃y .L<(x , y)L>(y , x))

∨ (∃x .L=(x))

∨ (∃x .∃y .L>(x , y)L<(y , x)) ) (1st ≡ 3rd)

= P ( (∃x .∃y .L<(x , y)L>(y , x))

∨ (∃x .L=(x)))

Now we can apply independent-union, then independent-project, then independent-join.
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Inclusion-exclusion and cancellation

Consider the query

Q ← (Q1 ∨ Q3) ∧ (Q1 ∨ Q4) ∧ (Q2 ∨ Q4)

Apply inclusion exclusion to get

P (Q ) =P (Q1 ∨ Q3 ) + P (Q1 ∨ Q4 ) + P (Q2 ∨ Q4 )

− P (Q1 ∨ Q3 ∨ Q4 ) − P (Q1 ∨ Q2 ∨ Q3 ∨ Q4 )− P (Q1 ∨ Q2 ∨ Q4 )

+ P (Q1 ∨ Q2 ∨ Q3 ∨ Q4 )

=P (Q1 ∨ Q3 ) + P (Q1 ∨ Q4 ) + P (Q2 ∨ Q4 )

− P (Q1 ∨ Q3 ∨ Q4 )− P (Q1 ∨ Q2 ∨ Q4 )

One can construct cases in which Q1 ∨ Q2 ∨ Q3 ∨ Q4 is hard, but any
subset is not (e.g., consider H3 on slide 20).

The inclusion-exclusion formula needs to be replaced by the
Möbius inversion formula.
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Möbius inversion formula (example)

Given a query expression of form Q1 ∧ . . . ∧ Qk :
1 Put the formulas QS =

∨
i∈S Qi , ∅ 6= S ⊆ { 1, . . . , j }, in a lattice

(plus special element 1̂)
2 Eliminate duplicates (equivalent formulas)
3 Use the partial order QS1 ≥ QS2 iff QS1 ⇐ QS2

4 Label each node by its Möbius value

µ(1̂) = 1

µ(u) = −
∑

u<w≤1̂

µ(w)

5 Use the inversion formula

P ( Q1 ∧ . . . ∧ Qk )

= −
∑

u<1̂:µ(u)6=0

µ(u)P ( Qu )
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1̂

Q1 ∨ Q4Q1 ∨ Q3 Q2 ∨ Q4

Q1 ∨ Q2 ∨ Q3 ∨ Q4Q1 ∨ Q3 ∨ Q4 Q1 ∨ Q2 ∨ Q4

Q1 ∨ Q2 ∨ Q3 ∨ Q4

1

-1

-1

-1

1 1

0

Q ← (Q1 ∨ Q3) ∧ (Q1 ∨ Q4) ∧ (Q2 ∨ Q4)

P ( Q ) =P ( Q1 ∨ Q3 ) + P ( Q1 ∨ Q4 ) + P ( Q2 ∨ Q4 )

− P ( Q1 ∨ Q3 ∨ Q4 )− P ( Q1 ∨ Q2 ∨ Q4 )



An nondeterministic algorithm

Consider the algorithm:

1 As long as possible, apply one of the rules R1–R6

2 If all formulas are atoms, SUCCESS

3 If there is a formula that is not an atom, FAILURE

Definition

A rule is R6-safe if the above algorithm succeeds.

Order of rule application does not affect SUCCESS

Algorithm is polynomial in size of database
I Easy to see for independent-join, independent-union, negation, Möbius

inversion formula, attribute ranking → do not depend on database
I Independent-project increases number of queries by a factor of |ADom|
→ applied at most k times, where k is the maximum arity of a relation
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How the rules fail

Example

Consider the hard query

H0 ← ∃x .∃y .R(x) ∧ S(x , y) ∧ T (y)

independent-join, independent-union, independent-project, negation,
Möbius inversion formula all do not apply

But we could rank S :

H0 ← H01 ∨ H02 ∨ H03

H01 ← ∃x .∃y .R(x) ∧ S<(x , y) ∧ T (y)

H02 ← ∃x .R(x) ∧ S=(x) ∧ T (x)

H03 ← ∃x .∃y .R(x) ∧ S>(y , x) ∧ T (y)

Now we are stuck at H01 and H03
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Dichotomy theorem for UCQ
Safety is a syntactic property

Tractability is a semantic property

What is their relationship?

Theorem (Dalvi and Suciu, 2010)

For any UCQ query Q, one of the following holds:

Q is R6-safe, or

the data complexity of Q is hard for #P.

No queries of “intermediate” difficulty

Can check for tractability in time polynomial in database size
(can be done by assuming an active domain of size 1)

Query complexity is unknown (Möbius inversion formula)

For RC, completeness/dichotomy unknown

We can handle all safe UCQ queries!
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Overview of extensional plans

Can we evaluate safe queries directly in an RDBMS?

Extensional query evaluation
I Based on the query expression
I Uses rules to break query into simpler pieces
I For UCQ, detects whether queries are tractable or intractable

Extensional operators
I Extend relational operators by probability computation
I Standard database algorithms can be used

Extensional plans
I Can be safe (correct) or unsafe (incorrect)
I For tractable UCQ queries, we can always produce a safe plan
I Plan construction based on R6 rules
I Can be written in SQL (though not “best” approach)
I Enables scalable query processing on probabilistic databases
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Basic operators

Definition

Annotate each tuple by its probability. The operators

Independent join (oni)

Independent project (πi)

Independent union (∪i)

Construction / selection / renaming

correspond to the positive K -relational algebra over ([0, 1], 0, 1,⊕, ·),
where p1 ⊕ p2 = 1− (1− p1)(1− p2).

(Union needs to be replaced by outer join for non-matching schemas; see
Sucio, Olteneau, Ré, Koch, 2011.)

([0, 1], 0, 1,⊕, ·) is not a semiring → unsafe plans!
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Example plans

Who incriminates someone
who has an alibi?

Q1(w)← ∃s.∃x .Incriminates(w , s) ∧ Alibi(s, x)

Q2(w)← ∃s.Incriminates(w , s) ∧ ∃x .Alibi(s, x)

πi
w

oni
s

Incriminates(w , s) Alibi(s, x)

M 1− (1− p1q1)(1− p1q2)(1− p2q3)
S p3q3

M P C p1q1

M P F p1q2

M J B p2q3

S J B p3q3

πi
w

oni
s

Incriminates(w , s)

πi
s

Alibi(s, x)

M 1− [1− p1(1− (1− q1)(1− q2))][1− p2q3]
S p3q3

M P p1(1− (1− q1)(1− q2))
M J p2q3

S J p3q3

P 1− (1− q1)(1− q2)
J q3

Plan 1 Plan 2
Incorrect (unsafe) Correct (safe)

Not all plans are safe!
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Incriminates
Witness Suspect

Mary Paul p1

Mary John p2

Susan John p3

Alibi
Suspect Claim

Paul Cinema q1

Paul Friend q2

John Bar q3



Weighted sum

How to deal with the Möbius inversion formula?

Definition

The weighted sum of relations R1, . . . ,Rk with parameters µ1, . . . , µk is
given by:(

µ1,...,µk∑
U

(R1, . . . ,Rk)

)
[] = R1 on · · · on Rk(

µ1,...,µk∑
U

(R1, . . . ,Rk)

)
(t) = µ1(R1(t)) + · · ·µk(Rk(t))

Intuitively,

Computes the natural join

Sums up the weighted probabilities of joining tuples
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Weighted sum (example)

Example

Consider relations/subqueries V1(A,B) and V2(A,C ) and the query:

Q(x , y , z)← V1(x , y) ∧ V2(x , z)

Suppose we apply the Möbius inversion formula to get:

Q1(x , y) = V1(x , y) with µ1 = 1

Q2(x , z) = V2(x , z) with µ2 = 1

Q3(x , y , z) = V1(x , y) ∨ V2(x , z) with µ3 = −1

We obtain:

1,1,−1∑
{ A,B,C }

(Q1,Q2,Q3)[] = Q1 on Q2 on Q3 = V1 on V2

1,1,−1∑
{ A,B,C }

(Q1,Q2,Q3) = { (t, pt1 + pt2 − pt3 ) : t[AB] = t1 ∈ Q1, t[AC ] = t2 ∈ Q2,
t[ABC ] = t3 ∈ Q3 }
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Complement

How to deal with negation?

Definition

The complement of a deterministic relation R of arity k is given by

C (R) =
{

(t, 1− P ( t ∈ R )) : t ∈ ADomk
}
.

In practice, every complement operation can be replaced by difference
(since queries are domain-independent).

Example

Query: Q ← R(x) ∧ ¬S(x)

Result: R −i S = { (t,P ( t ∈ R ) (1− P ( t ∈ S ))) : t ∈ R }
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Computation of safe plans (1)

Definition

A query plan for Q is safe if it computes the correct probabilities for all
input databases.

Theorem

There is an algorithm A that takes in a query Q and outputs either FAIL
of a safe plan for Q. If Q is a UCQ query, A fails only if Q is intractable.

Key idea: Apply rules R1–R6, but produce a query plan instead of
computing probabilities

Extension to non-Boolean queries: treat head variables as “constants”

Ranking step produces “views” that are treated as base tables
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Computation of safe plans (2)

1: if Q = Q1 ∧ Q2 and Q1,Q2 are syntactically independent then
2: return plan(Q1) oni plan(Q2)
3: end if
4: if Q = Q1 ∨ Q2 and Q1,Q2 are syntactically independent then
5: return plan(Q1) ∪i plan(Q2)
6: end if
7: if Q(x) = ∃z .Q1(x, z) and z is a separator variable then
8: return πi

x(plan(Q1(x, z)))
9: end if

10: if Q = Q1 ∧ . . . ∧ Qk , k ≥ 2 then
11: Construct CNF lattice Q ′1, . . . ,Q

′
m

12: Compute Möbius coefficients µ1, . . . , µm

13: return
∑µ1,...,µm (plan(Q ′1), . . . , plan(Q ′m))

14: end if
15: if Q = ¬Q1 then
16: return C(planQ1)
17: end if
18: if Q(x) = R(x) where R is a base table (possibly ranked) then
19: return R(x)
20: end if
21: otherwise FAIL
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Computation of safe plans (example)

Q(w)← ∃s.∃x .Incriminates(w , s) ∧ Alibi(s, x)
1 Apply independent-project to Q on s

I Q1(w , s)← ∃x .Incriminates(w , s) ∧ Alibi(s, x)

2 x is not a root variable in Q1 → push ∃x :
Q2(w , s)← Incriminates(w , s) ∧ ∃x .Alibi(s, x)

3 Apply independent-join to Q2

I Q3(w , s)← Incriminates(w , s)
I Q4(s)← ∃x .Alibi(s, x)

4 Q3 is an atom
5 Apply independent-project to Q4 on x

I Q5(s, x) = Alibi(s, x)

6 Q5 is an atom
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Safe plans with PostgreSQL (example)

Q(w)← ∃s.∃x .Incriminates(w , s) ∧ Alibi(s, x)

Q4 ← πi
Suspect(Alibi)

Q2 ← Incriminates oni
Suspect Q4

Q ← πi
Witness(Q2)

SELECT Witness , 1-PRODUCT(1-P) AS P

FROM (

SELECT Witness , Incriminates.Suspect ,

Incriminates.P * Q4.P as P

FROM Incriminates ,

(

SELECT Suspect , 1-PRODUCT(1-P) AS P

FROM Alibi

GROUP BY Suspect

) AS Q4

WHERE Incriminates.Suspect = Q4.Suspect

) AS Q2

GROUP BY Witness 59 / 119
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Deterministic tables

Often: Mix of probabilistic and deterministic tables
Naive approach: Assign probability 1 to tuples in a deterministic table
→ Suboptimal: Some tractable queries are missed!

Example

If T is known to be deterministic, the query

Q ← R(x), S(x , y),T (y)

becomes tractable!

Why? S on T now is a tuple-independent table!

We can use the safe plan
πi
∅
[
R(x) oni

x (S(x , y) ony T (y))
]

Additional information about the nature of the tables (e.g.,
deterministic, tuple-independent with keys, BID tables) can
help extensional query processing.
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Overview

Given a query Q(x), a TI database D; for each output tuple t

1 Compute the lineage Φ = ΦDQ(t)

I |Φ| = O(|ADom|m), where m is the number of variables in Φ
I Data complexity is polynomial time
I Difference to extensional query evaluation: |Φ| depends on input
→ rules exponential in |Φ| also exponential in the size of the input!

2 Compute the probability P( Φ )
I Intensional query evaluation ≈ probability computation on

propositional formulas
I Studied in verification and AI communities
I Different approaches: rule-based evaluation, formula compilation,

approximation

Can deal with hard queries.
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Example (tractable query)

Example

q(h)← ∃n.∃c.Hotel(h, n, c) ∧ ∃r .∃t.∃p.Room(r , h, t, p) ∧ (p > 500 ∨ t = ’suite’)

Room (R)

RoomNo Type HotelNo Price
R1 Suite H1 $50 X1

R2 Single H1 $600 X2

R3 Double H1 $80 X3

Hotel (H)

HotelNo Name City
H1 Hilton SB X4

ExpensiveHotels

HotelNo
H1 X4 ∧ (X1 ∨ X2)

Φ = X4 ∧ (X1 ∨ X2)

P ( Φ ) = P (X4 ) [1− (1− P (X1 ))(1− P (X2 ))]

E.g., P (Xi ) = 1
2

for all i → P ( Φ ) = 0.375

ExpensiveHotels

HotelNo P
H1 0.375
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Example (intractable query)

Example

X1

X2 Y1

X3 Y2

X4

R
X1 0.5
X2 0.5
X3 0.5
X4 0.5

S
X2 Y1 1
X3 Y2 1

T
Y1 0.5
Y2 0.5

H0 ← ∃x .∃y .R(x),S(x , y),T (y)

Φ = X2Y1 ∨ X3Y2

P ( Φ ) = 1− (1− P ( X2 )P ( Y1 ))(1− P ( X3 )P ( Y2 )) = 0.4375

Model counting: #Φ = 26 P ( Φ ) = 28

Bipartite vertex cover: #Ψ = 26 −#Φ = 36 = 2 · 3 · 3 · 2
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Overview of rule-based intensional query evaluation

Break the lineage formula into “simpler” formulas

By applying one of the rules
1 Independent-and
2 Independent-or
3 Disjoint-or
4 Negation
5 Shannon expansion

Rules work on lineage, not on query → data dependent

Rules always succeed

Rule 5 may lead to exponential blowup

Can be used on any query but data complexity can be expo-
nential. However, depending on the database, even a hard
query might be “easy” to evaluate.
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Support

Definition

For a propositional formula Φ, denote by V (Φ) the set of variables that
occur in Φ. Denote by Var(Φ) the set of variables on which Φ depends;
Var(Φ) is called the support of Φ. X ∈ Var(Φ) iff there exists an
assignment θ to all variables but X and constants a 6= b such that
Φ[θ ∪ {X 7→ a }] 6= Φ[θ ∪ {X 7→ b }].

Example

Φ = X ∨ (Y ∧ Z )

V (Φ) = {X ,Y ,Z }
Var(Φ) = {X ,Y ,Z }

Φ = Y ∨ (X ∧ Y ) ≡ Y

V (Φ) = {X ,Y }
Var(Φ) = {Y }
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Syntactic independence

Definition

Φ1 and Φ2 are syntactically independent if they have disjoint support, i.e.,
Var(Φ1) ∩ Var(Φ2) = ∅.

Example

Φ1 = X Φ2 = Y Φ3 = ¬X¬Y ∨ XY

Φ1 and Φ2 are syntactically independent

All other combinations are not

Checking for syntactic independence is co-NP-complete in general.

Practical approach:

Proposition

A sufficient condition for syntactic independence is V (Φ1) ∩ V (Φ2) = ∅.
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Probabilistic independence

Proposition

If Φ1,Φ2, . . . ,Φk are pairwise syntactically independent, then the
probabilistic events Φ1,Φ2, . . . ,Φk are independent.

Note that pairwise probabilistic independence does not imply
probabilistic independence!

Example

Φ1 = X Φ2 = Y Φ3 = ¬X¬Y ∨ XY

Φ1 and Φ2 are probabilistically independent

Φ1, Φ2, Φ3 are not pairwise syntactically independent

Assume P ( X ) = P ( Y ) = 1/2

Φ1, Φ2, Φ3 are pairwise independent

Φ1, Φ2, Φ3 are not independent!
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Rules 1 and 2: independent-and, independent-or

Definition

Let Φ1 and Φ2 be two syntactically independent propositional formulas:

P ( Φ1 ∧ Φ2 ) = P ( Φ1 ) · P ( Φ2 ) (independent-and)
P ( Φ1 ∨ Φ2 ) = 1− (1− P ( Φ1 ))(1− P ( Φ2 )) (independent-or)
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Independent-and, independent-or (example)
Incriminates
Witness Suspect

Mary Paul X1 (p1)
Mary John X2 (p2)
Susan John X3 (p3)

Alibi
Suspect Claim

Paul Cinema Y1 (q1)
Paul Friend Y2 (q2)
John Bar Y3 (q3)

Q(w)← ∃s.∃x .Incriminates(w , s) ∧ Alibi(s, x)

πWitness

onSuspect

Incriminates

πSuspect

Alibi

M X1(Y1 ∨ Y2) ∨ X2Y3

S X3Y3

M P X1(Y1 ∨ Y2)
M J X2Y3

S J X3Y3

P Y1 ∨ Y2

J Y3

ΦS = X3Y3

1 Independent-and: P ( ΦS ) = p3q3

ΦM = X1(Y1 ∨ Y2) ∨ X2Y3

1 Independent-or:
P ( ΦM ) = 1− (1− P ( X1(Y1 ∨ Y2) ))(1− P ( X2Y3 ))

2 Independent-and: P ( X2Y3 ) = p2q3

3 Independent-and:
P ( X1(Y1 ∨ Y2) ) = p1 P ( Y1 ∨ Y2 )

4 Independent-or:
P ( Y1 ∨ Y2 ) = 1− (1− q1)(1− q2)

5 P ( ΦM ) = 1− [1− p1(1− (1− q1)(1− q2))](1− p2q3)
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Rule 3: Disjoint-or

Definition

Two propositional formulas Φ1 and Φ2 are disjoint if Φ1 ∧ Φ2 is not
satisfiable.

Definition

If Φ1 and Φ2 are disjoint:
P ( Φ1 ∨ Φ2 ) = P ( Φ1 ) + P ( Φ2 ) (disjoint-or)

Example

P ( X ) = 0.2; P ( Y ) = 0.7

Φ1 = XY ; P ( XY ) = P ( X )P ( Y ) = 0.14

Φ2 = ¬X ; P (¬X ) = 0.8

P ( Φ1 ∨ Φ2 ) = P ( Φ1 ) + P ( Φ2 ) = 0.94

Checking for disjointness is NP-complete in general. But
disjoint-or will play a major role for Shannon expansion.
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Rule 4: Negation

Definition

P (¬Φ ) = 1− P ( Φ ) (negation)

Example

P ( X ) = 0.2; P ( Y ) = 0.7

P ( XY ) = P ( X )P ( Y ) = 0.14

P (¬(XY ) ) = 1− 0.14 = 0.86
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Shannon expansion

Definition

The Shannon expansion of a propositional formula Φ w.r.t. a variable X
with domain { a1, . . . , am } is given by:

Φ ≡ (Φ[X 7→ a1] ∧ (X = a1)) ∨ . . . ∨ (Φ[X 7→ am] ∧ (X = am))

Example

Φ = XY ∨ XZ ∨ YZ

Φ ≡ (Φ[X 7→ TRUE] ∧ X ) ∨ (Φ[X 7→ FALSE] ∧ ¬X )
= (Y ∨ Z )X ∨ YZ¬X

In the Shannon expansion rule, every ∧ is an independent-and;
every ∨ is a disjoint-or.
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Rule 5: Shannon expansion

Definition

Let Φ be a propositional formula and X be a variable:

P ( Φ ) =
∑

a∈dom(X )

P ( Φ[X 7→ a] )P ( X = a ) (Shannon expansion)

Example

Φ = XY ∨ XZ ∨ YZ

P ( Φ ) = P ( Y ∨ Z )P ( X ) + P ( YZ )P (¬X )

Can always be applied

Effectively eliminates X from the formula

But may lead to exponential blowup!
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Shannon expansion (example)
Incriminates
Witness Suspect

Mary Paul X1 (p1)
Mary John X2 (p2)
Susan John X3 (p3)

Alibi
Suspect Claim

Paul Cinema Y1 (q1)
Paul Friend Y2 (q2)
John Bar Y3 (q3)

Q(w)← ∃s.∃x .Incriminates(w , s) ∧ Alibi(s, x)

πWitness

onSuspect

Incriminates Alibi

M X1Y1 ∨ X1Y2 ∨ X2Y3

S X3Y3

M P C X1Y1

M P F X1Y2

M J B X2Y3

S J B X3Y3

ΦM = X1Y1 ∨ X1Y2 ∨ X2Y3
1 Independent-or:

P ( ΦM ) = 1− (1− P (X1Y1 ∨ X1Y2 ))(1− P (X2Y3 ))

2 Independent-and: P ( X2Y3 ) = p2q3

3 Shannon expansion: P ( X1Y1 ∨ X1Y2) ) =
P ( Y1 ∨ Y2 )P ( X1 ) + P ( FALSE )P (¬X1 )

4 Independent-or:
P ( Y1 ∨ Y2 ) = 1− (1− q1)(1− q2)

5 P ( ΦM ) = 1− [1− p1(1− (1− q1)(1− q2))](1− p2q3)

The intensional rules work on all plans!
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A non-deterministic algorithm

1: if Φ = Φ1 ∧ Φ2 and Φ1,Φ2 are syntactically independent then
2: return P ( Φ1 ) · P ( Φ2 )
3: end if
4: if Φ = Φ1 ∨ Φ2 and Φ1,Φ2 are syntactically independent then
5: return 1− (1− P ( Φ1 ))(1− P ( Φ2 ))
6: end if
7: if Φ = Φ1 ∨ Φ2 and Φ1,Φ2 are disjoint then
8: return P ( Φ1 ) + P ( Φ2 )
9: end if

10: if Φ = ¬Φ1 then
11: return 1− P ( Φ1 )
12: end if
13: Choose X ∈ Var(Φ)
14: return

∑
a∈dom(X ) P ( Φ[X 7→ a] )P ( X = a )

Should be implemented with dynamic programming to avoid
evaluating the same subformula multiple times.
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Materialized views in TID databases (1)

TID databases complete only with views
How to deal with views in a PDBMS?

1 Store just the view definition
2 Store the view result and probabilities
3 Store the view result and lineage
4 Store the view results and “compiled lineage”

Trade-off between precomputation and query cost (just as in DBMS)

Example (ExpensiveHotel view)
q(h)← ∃n.∃c.Hotel(h, n, c) ∧ ∃r .∃t.∃p.Room(r , h, t, p) ∧ (p > 500 ∨ t = ’suite’)

Room (R)

RoomNo Type HotelNo Price
R1 Suite H1 $50 X1

R2 Single H1 $600 X2

R3 Double H1 $80 X3

Hotel (H)

HotelNo Name City
H1 Hilton SB X4

ExpensiveHotels

HotelNo
H1 0.375

ExpensiveHotels

HotelNo
H1 X4 ∧ (X1 ∨ X2)

ExpensiveHotels

HotelNo
H1 X4 ∧i (X1 ∨i X2)

(2) (3) (4)
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Materialized views in TID databases (2)

Example (Continued)

Consider the query

q(h)← ∃c .ExpensiveHotel(h),Hotel(h, ’Hilton’, c),

which asks for expensive Hilton hotels using a view. Can we answer this
query when ExpensiveHotel is a precomputed materialized view?

ExpensiveHotels

HotelNo
H1 X4 ∧ (X1 ∨ X2)

ExpensiveHotels

HotelNo
H1 0.375

ExpensiveHotels

HotelNo
H1 X4 ∧i (X1 ∨i X2)

Yes, combine lineages No, dependency
between
ExpensiveHotels and
Hotels lost

Yes, combine “compiled
lineages” → Need to be
able to combine compiled
lineages efficiently!

ExpensiveHiltons

HotelNo
H1 [X4 ∧ (X1 ∨ X2)] ∧ X4

ExpensiveHiltons

HotelNo
H1 X4 ∧i (X1 ∨ X2)
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HotelNo Name City
H1 Hilton SB X4



Query compilation

“Compile” Φ into a Boolean circuit with certain desirable properties

P ( Φ ) can be computed in linear time in the size of the circuit

I Many other tasks can be solved in polynomial time
I E.g., combining formulas Φ1 ∧ Φ2 (even when not independent!)
I Key application in PDBMS: Compile materialized views

Tractable compilation = circuit of size polynomial in database
→ Implies tractable computation of P ( Φ ) (converse may not be true)

Compilation targets
1 RO (read-once formula)
2 OBDD (ordered binary decision diagram)
3 FBDD (free binary decision diagram)
4 d-DNF (deterministic-decomposable normal form)

Goals: (1) Reusability. (2) Understand complexity of intensional QE.
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Restricted Boolean circuit (RBC)

Rooted, labeled DAG

All variables are Boolean

Each node (called gate) representents a propositional formula Ψ

Let Ψ be represented by a gate with children representing Ψ1, . . . ,Ψn;
we consider the following gates & restrictions:

I Independent-and (∧i): Ψ1, . . . ,Ψn are syntactically independent
I Independent-or (∨i): Ψ1, . . . ,Ψn syntactically independent
I Disjoint-or (∨d): Ψ1, . . . ,Ψn are disjoint
I Not (¬): single child, represents ¬Ψ
I Conditional gate (X ): two children representing X ∧Ψ1 and ¬X ∧Ψ2,

where X /∈ Var(Ψ1) and X /∈ Var(Ψ2)
I Leaf node (0, 1, X ): represents FALSE, TRUE, X

The different compilation targets restrict which and where
gates may be used.
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Restricted Boolean circuit (example)

Example

Who incriminates someone who has an alibi?
Lineage of unsafe plan: ΦM = X1Y1 ∨ X1Y2 ∨ X2Y3

∨i

X1

0

0

∨i

Y1 Y2

1

∧i

X2 Y3

“Documents” the non-deterministic algorithm for intensional
query evaluation.
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Deterministic-decomposable normal form (d-DNF)

Restricted to gates: ∧i, ∨d, ¬
I ∧i-gates are called decomposable (D)
I ∨d-gates are called deterministic (d)

Example

Φ = XYU ∨ XYZ¬U

∨d

∧i ∧i

X Y Z U ¬
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RBC and d-DNF

Theorem

Every RBC with n gates can be transformed into an equivalent d-DNF
with at most 5n gates, a polynomial increase in size.

Proof.

We are not allowed to use ∨i and conditional nodes. Apply the
transformations:

∨i

Ψ1 Ψ2

→

¬

∧i

¬

Ψ1

¬

Ψ2

X

Ψ1

0

Ψ2

1
→

∨d

∧i

¬

X

Ψ1

∧i

Ψ2

A ∨i-node is replaced by 4 new nodes. A conditional node is replaced by
(at most) 5 new nodes.
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Application: knowledge compilation

Tries to deal with intractability of propositional reasoning
Key idea

1 Slow offline phase: Compilation into a target language
2 Fast online phase: Answers in polynomial time

→ Offline cost amortizes over many online queries
Key aspects

I Succinctness of target language (d-DNF, FBDD, OBDD, ...)
I Class of queries that can be answered efficiently once compiled

(consistency, validity, entailment, implicants, equivalence, model
counting, probability computation, ...)

I Class of transformations that can be performed efficiently once
compiled (∧, ∨, ¬, conditioning, forgetting, ...)

How to pick a target language?
1 Identify which queries/transformations are needed
2 Pick the most succinct language

Which queries admit polynomial representation in which target language?
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Free binary decision diagram (FBDD)

Restricted to conditional gates
Binary decision diagram: Each node decides on the value of a variable
Free: Each variable occurs only on every root-leaf path

Example

Who incriminates someone who has an alibi?
Lineage of safe plan: ΦM = X1(Y1 ∨ Y2) ∨ X2Y3

X1

Y1

Y2

X2

Y3

0 1

1

0

1

0

1

0

1

0

0 1
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Ordered binary decision diagram (OBDD)

An ordered FBDD, i.e.,
I Same ordering of variables on each root-leaf path
I Omissions are allowed

Example

The FBDD on slide 88 is an OBDD with ordering X1,Y1,Y2,X2,Y3.

Theorem

Given two ODDBs Ψ1 and Ψ2 with a common variable order, we can
compute an ODDB for Ψ1 ∧Ψ2, Ψ1 ∨Ψ2, or ¬Ψ1 in polynomial time.
Note that Ψ1 and Ψ2 do not need to be independent or disjoint.

(Many other results of this kind exist. Many BDD software packages exist,
e.g., BuDDy, JDD, CUDD, CAL).
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Read-once formulas (RO)

Definition

A propositional formula Φ is read-once (or repetition-free) if there exists a
formula Φ′ such that Φ ≡ Φ′ and every variable occurs at most once in Φ′.

Example

Φ = X1 ∨ X2 ∨ X3 → read-once

Φ = X1Y1 ∨ X1Y2 ∨ X2Y3 ∨ X2Y4 ∨ X2Y5

I Φ′ = X1(Y1 ∨ Y2) ∨ X2(Y3 ∨ Y4 ∨ Y5) → read-once

Φ = XY ∨ XU ∨ YU → not read-once

Theorem

If Φ is given as a read-once formula, we can compute P ( Φ ) in linear time.

Proof.

All ∧’s and ∨’s are independent, and negation is easily handled.
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When is a formula read-once? (1)

Definition

Let Φ be given in DNF such that no conjunct is a strict subset of some
other conjunct. Φ is unate if every propositional variable X occurs either
only positively or negatively. The primal graph G (V ,E ) where V is the set
of propositional variables in Φ and there is an edge (X ,Y ) ∈ E if X and Y
occur together in some conjunct.

Example

Unate: XY ∨ ¬ZX

Not unate: XY ∨ Z¬X

XU ∨ XV ∨ YU ∨ YV XY ∨ YU ∨ UV XY ∨ XU ∨ YU

X

Y

U

V

X

Y

U

V

X

Y

U
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When is a formula read-once? (2)

Definition

A primal graph G for Φ is P4-free if no induced subgraph is isomorphic to
P4 ( ). G is normal if for every clique in G , there is a conjunct
in Φ that contains all of the clique’s variables.

Example

XU ∨ XV ∨ YU ∨ YV XY ∨ YU ∨ UV XY ∨ XU ∨ YU

X

Y

U

V

X

Y

U

V

X

Y

U

P4-free Not P4-free P4-free
Normal Normal Not normal

Read-once Not read-once Not read-once

Theorem

A unate formula is read-once iff it is P4-free and normal.
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Query compilation hierarchy

Denote by L (T ) the class of queries from L that can be compiled
efficiently to target T . The following relationships hold for UCQ-queries:
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Why approximation?

Exact inference may require exponential time → expensive

Often absolute probability values of little interest; ranking desired
→ Good approximations of P ( Φ ) suffice

Desiderata
I (Provably) low approximation error
I Efficient
I Polynomial in database size
I Anytime algorithm (gradual improvement)

Approaches
I Probability intervals
I Monte-Carlo approximation

We will show: Approximation is tractable for
all RA-queries w.r.t. absolute error and for all
UCQ-queries w.r.t. relative error!
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Probability bounds

Theorem

Let Φ1 and Φ2 be propositional formulas. Then,

max(P ( Φ1 ) ,P ( Φ2 )) ≤ P ( Φ1 ∨ Φ2 ) ≤
Boole’s inequality / union bound︷ ︸︸ ︷

min(P ( Φ1 ) + P ( Φ2 ) , 1)
max(0,P ( Φ1 ) + P ( Φ2 )− 1)︸ ︷︷ ︸

via inclusion-exclusion

≤ P ( Φ1 ∧ Φ2 ) ≤ min(P ( Φ1 ) ,P ( Φ2 )).

Example

Border cases:
P

Φ1

Φ2

P

Φ2

Φ1

P

Φ1 Φ2

P ( Φ1 ∨ Φ2 ) P ( Φ1 ) + P ( Φ2 ) P ( Φ2 ) 1
P ( Φ1 ∧ Φ2 ) 0 P ( Φ1 ) P ( Φ1 ) + P ( Φ2 )− 1
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Computation of probability intervals

Theorem

Let Φ1 and Φ2 be propositional formulas with bounds [L1,U1] and
[L2,U2], respectively. Then,

Φ1 ∨ Φ2 : [L,U] = [max(L1, L2),min(U1 + U2, 1)]

Φ1 ∧ Φ2 : [L,U] = [max(0, L1 + L2 − 1),min(U1,U2)]

¬Φ1 : [L,U] = [1− U1, 1− L1]

Example (Does Mary incriminate someone who has an alibi?)

Φ = X1Y1 ∨ X1Y2 ∨ X2Y3

X1Y1 : [0.75, 0.85]

X1Y2 : [0.65, 0.75]

X2Y3 : [0.45, 0.65]

X1Y1 ∨ X1Y2 ∨ X2Y3 : [0.75, 1]

Bounds can be computed in linear time in size of Φ.
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Witness Suspect P

Mary Paul 0.9 X1

Mary John 0.8 X2

Alibi
Suspect Claim P

Paul Cinema 0.85 Y1

Paul Friend 0.75 Y2

John Bar 0.65 Y3



Probability intervals and intensional query evaluation

1: if Φ = Φ1 ∧ Φ2 and Φ1,Φ2 are syntactically independent then
2: return [L,U] = [L1 · L2,U1 · U2]
3: end if
4: if Φ = Φ1 ∨ Φ2 and Φ1,Φ2 are syntactically independent then
5: return [L,U] = [L1 ⊕ L2,U1 ⊕ U2]
6: end if
7: if Φ = Φ1 ∨ Φ2 and Φ1,Φ2 are disjoint then
8: return [L,U] = [L1 + L2,min(U1 + U2, 1)]
9: end if

10: if Φ = ¬Φ1 then
11: return [L,U] = [1− U1, 1− L1]
12: end if
13: Choose X ∈ Var(Φ)
14: Shannon expansion to Φ =

∨
i Φi ∧ (X = ai )

15: return [L,U] = [
∑

i Li P ( X = ai ) ,min(
∑

i Ui P ( X = ai ) , 1)]

Independence and disjointness allow for tighter bounds.
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Probability intervals and intensional query evaluation (2)

Example
Incriminates
Witness Suspect P

Mary Paul 0.9 X1

Mary John 0.8 X2

Alibi
Suspect Claim P

Paul Cinema 0.85 Y1

Paul Friend 0.75 Y2

John Bar 0.65 Y3

Φ = X1Y1∨X1Y2∨X2Y3

X1Y1 : [0.75, 0.85]

X1Y2 : [0.65, 0.75]

X2Y3 : [0.45, 0.65]

Φ : [0.75, 1]

∨i

X1Y1 ∨ X1Y2 ∧i

X2 Y3

[0.88, 1]

[0.52, 0.52]

[0.8, 0.8] [0.65, 0.65]

[0.75, 1]

∨i

X1

F

0

Y1 ∨ Y2

1

∧i

X2 Y3

[0.8872, 0.952]

[0.52, 0.52]

[0.8, 0.8] [0.65, 0.65]

[0.765, 0.9]

[0.85, 1][0, 0]
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Discussion

Incremental construction of RBC circuit
If all leaf nodes are atomic, computes exact probability
If some leaf nodes are not atomic, computes probability bounds
Anytime algorithm (makes incremental progress)
Can be stopped as soon as bounds become accurate enough

I Absolute ε-approximation: U − L ≤ 2ε → choose p̂ ∈ [U − ε, L + ε]
I Relative ε-approximation:

(1− ε)U ≤ (1 + ε)L → choose p̂ ∈ [(1− ε)U, (1 + ε)L]

But: no apriori runtime bounds!

Definition

A value p̂ is an absolute ε-approximation of p = P ( Φ ) if

p − ε ≤ p̂ ≤ p + ε;

it is an relative ε-approximation of p if

(1− ε)p ≤ p̂ ≤ (1 + ε)p.
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Monte-Carlo approximation w/ naive estimator

Let Φ be a propositional formula with V (Φ) = {X1, . . . ,Xl }.
Pick a value n and for k ∈ { 1, 2, . . . , n }, do

1 Pick a random assignment θk by setting

Xi =

{
TRUE with probability P ( Xi )

FALSE otherwise

2 Evaluate Zk = Φ[θk ]

Return p̂ = 1
n

∑
k Zk

How good is this algorithm?

N

p̂

10 100 1000 10000 100000

0.
0

0.
4

0.
8
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Φ = X1Y1 ∨ X1Y2 ∨ X2Y3

X1 X2 Y1 Y2 Y3 Zk p̂
1 1 1 1 1 1 1.00
1 0 1 1 0 1 1.00
1 0 0 0 1 0 0.66
1 0 1 1 1 1 0.75
1 1 1 0 1 1 0.80
1 1 1 1 1 1 0.83
1 1 1 0 0 1 0.85
1 1 1 1 1 1 0.88
1 1 1 1 1 1 0.89
1 1 1 1 1 1 0.90



Naive estimator: expected value

Theorem

The naive estimator p̂ is unbiased, i.e., E [ p̂ ] = P ( Φ ) so that p̂ is correct
in expectation.

Proof.

E [ p̂ ] = E [
1

n

n∑
k=1

Zk ] =
1

n

n∑
k=1

E [ Zk ]

= E [ Z1 ]

=
∑
θ

Φ[θ]P ( θ )

= P ( Φ ) .

But: Is the actual estimate likely to be close to the expected value?
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Chernoff bound (1)

Theorem (Two-sided Chernoff bound, simple form)

Let Z1, . . . ,Zn be i.i.d. 0/1 random variables with E [ Z1 ] = p and set
Z̄ = 1

n

∑
k Zk . Then,

P
( ∣∣Z̄ − p

∣∣ ≥ γp
)
≤ 2 exp

(
− γ2

2 + γ
pn

)
In words:

Take a coin with (unknown) probability of heads p (thus tail 1− p)
Flip the coin n times: outcomes Z1, . . . ,Zn

Compute the fraction Z̄ of heads
Estimate p using Z̄
Then: Probability that relative error larger than γ

1 Decreases exponentially with increasing number of flips n
2 Decreases with increasing error bound γ
3 Decreases with increasing probability of heads p

Very important result with many applications!
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Chernoff bound (2)

Theorem (Two-sided Chernoff bound, simple form)

Let Z1, . . . ,Zn be i.i.d. 0/1 random variables with E [ Z1 ] = p and set
Z̄ = 1

n

∑
k Zk . Then,

P
( ∣∣Z̄ − p

∣∣ ≥ γp
)
≤ 2 exp

(
− γ2

2 + γ
pn

)
Proof (outline).

We give the first steps of the proof of the one-sided Chernoff bound. First,

P (Z ≥ q ) = P( etZ ≥ etq ).

for any t > 0. Use the Markov inequality P ( |X | ≥ a ) ≤ E [ |X | ]/a to obtain

P (Z ≥ q ) ≤ E [ etZ ]/etq

= E [ etZ1 · · · etZn ]/etq = E [ etZ1 ] · · ·E [ etZn ]/etq = E [ etZ1 ]
n
/etq

Use definition of expected value and find the value of t that minimizes RHS to obtain
the precise one-sided Chernoff bound. Relax the RHS to obtain the simple form.
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Naive estimator: absolute (ε,δ)-approximation (1)

Theorem (sampling theorem)

To obtain an absolute ε-approximation with probability at least 1− δ, it
suffices to run

n ≥ 2 + ε

ε2
ln

2

δ
= O

(
1

ε2
ln

1

δ

)
sampling steps.

Proof.

Take γ = ε/p and apply the Chernoff bound to obtain

P
( ∣∣Z̄ − p

∣∣ ≥ ε ) ≤ 2 exp

(
− ε2/p2

2 + ε/p
pn

)
= 2 exp

(
− ε2

2p + ε
n

)
≤ 2 exp

(
− ε2

2 + ε
n

)
since p ≤ 1. Now solve RHS ≤ δ for n.
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Naive estimator: absolute (ε,δ)-approximation (2)

The number of sampling steps given by the sampling theorem
is independent of Φ.

ε

N

0.02 0.04 0.06 0.08 0.10

10
00

10
00
0

10
00
00

1− δ = 0.9
1− δ = 0.95
1− δ = 0.99
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Naive estimator: relative (ε,δ)-approximation (1)

Theorem

To obtain a relative ε-approximation with probability at least 1− δ, it
suffices to run

n ≥ 2 + ε

pε2
ln

2

δ
= O

(
1

pε2
ln

1

δ

)
sampling steps.

Proof.

Take γ = ε and apply the Chernoff bound to obtain

P
( ∣∣Z̄ − p

∣∣ ≥ εp ) ≤ 2 exp

(
− ε2

2 + ε
pn

)
Now solve RHS ≤ δ for n.
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Naive estimator: relative (ε,δ)-approximation (2)

The number of sampling steps given by the sampling theorem now is de-
pendent on Φ; we cannot compute the number of required steps in ad-
vance! Obtaining small relative error for small p (i.e., Φ is often false)
requires a large number of sampling steps.

ε

N

0.02 0.04 0.06 0.08 0.10

10
00

10
00
0

10
00
00

10
00
00
0

p = 0.9
p = 0.5
p = 0.1
p = 0.01
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Why care about relative ε-approximation?
1 Absolute error ill-suited to compare estimates of small probabilities

I p1 = 0.001, p2 = 0.01, ε = 0.1
I Absolute error: I1 = [0, 0.101], I2 = [0, 0.11]
I Relative error: I1 = [0.0009, 0.0011], I2 = [0.009, 0.011]

→ Ranking of tuples more sensitive to absolute error

2 For p ∈ [0, 1), relative error ε is always tighter than absolute error ε
(esp. when probabilities are small)

Can we get a relative ε-approximation in which the minimum
number of sampling steps does not depend on P ( Φ )?
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The problem with the naive estimator

Φ = X1Y1 ∨ X1Y2 ∨ X2Y3

N

p̂

10 100 1000 10000 100000

0.
0

0.
4

0.
8

N

p̂

10 100 1000 10000 1000000.
00
00
0

0.
00
01
0

0.
00
02
0

Large probabilities Small probabilities (×10−2)

When P ( Φ ) is small, Φ not satisfied on most samples
→ Slow convergence

Idea: Change the sampling strategy so that Φ is satisfied on
every sample.
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Karp-Luby estimator (basic idea)

Let Φ be a propositional DNF formula with V (Φ) = {X1, . . . ,Xl }, i.e.,

Φ = C1 ∨ C2 ∨ · · · ∨ Cm.
Easy to find satisfying assignments!

Set qi = P ( Ci ) and Q =
∑

i qi . Note that p ≤ Q (union bound).

P ( Φ ) = P ( C1 ) + P (¬C1 ∧ C2 ) + · · ·
+ P (¬(C1 ∨ · · · ∨ Cm−1) ∧ Cm )

= P ( TRUE | C1 )P ( C1 ) + P (¬C1 | C2 )P ( C2 ) + · · ·
+ P (¬(C1 ∨ · · · ∨ Cm−1) | Cm )P ( Cm )

= Q [P ( TRUE | C1 ) q1/Q + P (¬C1 | C2 ) q2/Q + · · ·
+ P (¬(C1 ∨ · · · ∨ Cm−1) | Cm ) qm/Q]

Idea of Karp-Luby estimator:
1 qi/Q is computed exactly (in linear time)
2 P (¬(C1 ∨ · · · ∨ Ci−1) | Ci ) are estimated

I Impact of estimate proportional to P ( Ci )
→ Focus on clauses with highest probability
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Karp-Luby estimator

Pick a value n and for k ∈ { 1, 2, . . . , n }, do
1 Pick a random clause Ci (with probability qi/Q)
2 Pick a random assignment θk

F For a variable X ∈ V (Ci )

X =

{
TRUE if X is positive in Ci

FALSE if X is negative in Ci

→ Clause Ci is satisfied (and thus Φ)
F For the other variables X /∈ V (Ci )

X =

{
TRUE with probability P (X )

FALSE otherwise

→ All other variables take random values
3 Evaluate

Zk =

{
1 if ¬(

∨
1≤j<i Cj [θ])

0 otherwise

Return p̂ =
Q

n

n∑
k=1

Zk
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Example of KL estimator

Φ = X1Y1 ∨ X1Y2 ∨ X2Y3

m = 3, probabilities of X1 and Y3 reduced to 1/10th

C1 = X1Y1, q1 = 0.09 · 0.85 = 0.0765, q1/Q ≈ 0.39

C2 = X1Y2, q2 = 0.09 · 0.75 = 0.0675, q2/Q ≈ 0.34

C3 = X2Y3, q3 = 0.8 · 0.065 = 0.052, q3/Q ≈ 0.27

Q = 0.196, p ≈ 0.134

i X1 X2 Y1 Y2 Y3 C1 C2 C3 Zk p̂
1 1 1 1 1 0 1 1 0 1 0.196
3 0 1 1 1 1 0 0 1 1 0.196
2 1 1 1 1 0 1 1 0 0 0.131
1 1 1 1 1 0 1 1 0 1 0.147
1 1 1 1 1 0 1 1 0 1 0.157
2 1 0 1 1 0 1 1 0 0 0.131
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KL estimator: expected value

Theorem

The KL estimator p̂ is unbiased, i.e., E [ p̂ ] = P ( Φ ) so that p̂ is correct in
expectation.

Proof.

E [ p̂ ] = E [
Q

n

n∑
k=1

Zk ] = Q E [ Z1 ] = Q E [E [ Z1 | Ci picked ] ]

= Q
m∑
i=1

qi

Q
E [ Z1 | Ci picked ]

=
m∑
i=1

P ( Ci )P(¬
∨

1≤j<i

Cj | Ci )

= P ( Φ ) .
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KL estimator: relative (ε,δ)-approximation

Theorem

To obtain a relative ε-approximation with probability at least 1− δ, it
suffices to run

n ≥ m
2 + ε

ε2
ln

2

δ
= O

(
m

ε2
ln

1

δ

)
sampling steps of the KL estimator.

Proof.

Use the Chernoff bound with γ = ε and E [ Z̄ ] = Q−1p.

P
( ∣∣Z̄ − Q−1p

∣∣ ≥ εQ−1p
)
≤ 2 exp

(
−ε2/(2 + ε)Q−1pn

)
P
( ∣∣Q−1p̂− Q−1p

∣∣ ≥ εQ−1p
)

= P ( |p̂− p| ≥ εp )

≤ 2 exp
(
−ε2/(2 + ε)m−1n

)
,

since mp ≥ Q. Now solve RHS ≤ δ for n.
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KL estimator: discussion

KL estimator provides relative (ε,δ)-approximation in polynomial time
in size of Φ and 1

ε
→fully polynomial-time randomized approximation scheme (FPTRAS)

Example: Φ = X1Y1 ∨ X1Y2 ∨ X2Y3

N

p̂

10 100 1000 10000 100000

0.
0

0.
4

0.
8

N

p̂

10 100 1000 10000 1000000.
00
00
0

0.
00
01
0

0.
00
02
0

Large probabilities Small probabilities (×10−2)
Requires DNF (=why-provenance; polynomial in DB size for UCQ)

For ε, δ fixed and relative error, the naive estimator requires O(p−1) sam-
pling steps and the KL estimator requires O(m) steps. In general, the
naive estimator is preferable when the DNF is very large. The KL estimator
preferable if probabilities are small.
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Outline

1 Primer: Relational Calculus

2 The Query Evaluation Problem

3 Extensional Query Evaluation
Syntactic Independence
Six Simple Rules
Tractability and Completeness
Extensional Plans

4 Intensional Query Evaluation
Syntactic independence
5 Simple Rules
Query Compilation
Approximation Techniques

5 Summary
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Lessons learned

Relational calculus is a great tool for query analysis & manipulation

Query evaluation computes marginal probabilities P ( t ∈ q(D) )

On tuple-independent DBs and UCQ, data complexity either P or #P

Extensional query evaluation
I Detects and evaluates the subset of safe queries (P)
I Leverages query structure to obtain polynomial-time algorithm
I Uses R6-rules to create an extensional plan that can be executed in an

(extended) RDBMS → highly scalable
I Rules are sound and complete for UCQ

Intensional query evaluation
I Applies to all queries, but focus is on hard (sub)queries
I Ignores query structure, leverages data properties
I Computes probabilities of propositional lineage formulas
I Rule-based evaluation computes probabilities precisely, but potentially

exponential blow-up → stop early to obtain probability bounds
I Sampling techniques apply to all formulas; FPTRAS for UCQ

Hybrids of extensional and intensional query evaluation promising

118 / 119



Suggested reading

Serge Abiteboul, Richard Hull, Victor Vianu
Foundations of Databases: The Logical Level (ch. 12)
Addison Wesley, 1994

Dan Sucio, Dan Olteanu, Christopher Ré, Christoph Koch
Probabilistic Databases (ch. 3–5)
Morgan&Claypool, 2011

Michael Mitzenmacher, Eli Upfal
Probability and Computing: Randomized Algorithms and Probabilistic
Analysis (ch. 10)
Cambridge University Press, 2005
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Overview

In this lecture

Statistical relational learning (SRL)

Introduction to probabilistic graphical models (PGM)

Basics of undirected models (called Markov networks)

Markov logic as a template for undirected models

Basics of inference in Markov logic networks

Not in this lecture

Directed models (called Bayesian networks)

Other SRL approaches (such as probabilistic relational models)

High coverage and in-depth discussion of inference

Learning Markov logic networks
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Outline

1 Introduction to Markov Logic Networks

2 Probabilistic Graphical Models
Introduction
Preliminaries

3 Markov Networks

4 Markov Logic Networks
Grounding Markov logic networks
Log-Linear Models

5 Inference in MLNs
Basics
Exact Inference
Approximate Inference

6 Summary
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Correlations in probabilistic databases

Simple probabilistic models
I Tuple-independent databases
I Block-disjoint independent databases
I Key/foreign key constraints, . . .

Correlations (mainly) through RA queries/views
I Any discrete probability distribution can be modeled
I Queries describe precisely how result is derived

Example (Nell)
NellExtraction

Subject Pattern Object Source P
Sony produces Walkman 1 0.96
IBM produces PC 1 0.96
IBM produces PC 2 1

Microsoft produces MacOS 2 0.9
AlbertEinstein bornIn Ulm 1 0.9

Produces(x , y)←NellExtraction(x , ’produces’, y , s),

NellSource(s)

NellSource
Source P

1 0.99
2 0.1

Produces
Subject Object P

Sony Walkman 0.9504
IBM PC 0.95536

Microsoft MacOS 0.09
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Statistical relational learning (I)

Does John smoke?

Learn correlations from structured data, then apply to new data.
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Statistical relational learning (II)

Goal: Declarative modelling of correlations in structured data
Idea: Use (subsets of) first-order logic

I Very expressive formalism; lots of knowledge bases use it
I Symmetry: ∀x .∀y .Friends(x , y) ⇐⇒ Friends(y , x)
I Everybody has a friend: ∀x .∃y .Friends(x , y)
I Transitivity: ∀x .∀y .∀z .Friends(x , y) ∧ Friends(y , z) =⇒ Friends(x , z)
I Smoking causes cancer: ∀x .Smokes(x) =⇒ Cancer(x)
I Friends have similar smoking habits:
∀x .∀y .Friends(x , y) =⇒ (Smokes(x) ⇐⇒ Smokes(y))

Problem: Real-world knowledge is incomplete, contradictory, complex
→ Above rules do not generally hold, but they are “likely” to hold!
Approach: Combine first-order logic with probability theory

I Expressiveness of first-order logic
I Principled treatment of uncertainty using probability theory

There are many approaches of this kind. Our focus is on
Markov logic, a recent and very successful language.
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Markov logic networks

Definition

A Markov logic network is a set of pairs (Fi ,wi ), where Fi is a formula in
first-order logic and the weight wi is a real number.

Example

1.5
{ Smoking causes cancer
∀x .Smokes(x) =⇒ Cancer(x)

1.1
{ Friends have similar smoking habits
∀x .∀y .Friends(x , y) =⇒ (Smokes(x) ⇐⇒ Smokes(y))

Formulas may or may not hold
Weights express confidence

I High positive weight → confident that formula holds
I High negative weight → confident that formula does not hold
I But careful: weights actually express confidence of certain

“groundings” of a formula and not the formula as a whole (more later)

Formulas may introduce complex correlations 7 / 78



Simple MLN for entity resolution

Which citations refer to the same publication?

author Richardson, Matt
and Domingos,
Pedro

M. Richardson and
P. Domingos

Domingos, Pedro and
Richardson, Matthew

title Markov Logic
Networks

Markov logic
networks

Markov Logic: A Unifying
Framework for Statistical
Relational Learning

year 2006 2006 2007

// predicates
HasToken(token, field, citation ) // e.g ., HasToken(’Logic’, ’ title ’, C1)
SameField(field, citation , citation ) // Semantic equality of values in a field
SameCitation(citation, citation ) // Semantic equality of citations

// formulas
HasToken(+t, +f, c1) ˆ HasToken(+t, +f, c2) => SameField(+f, c1, c2)
SameField(+f, c1, c2) => SameCitation(c1, c2)
SameCitation(c1, c2) ˆ SameCitation(c2, c3) => SameCitation(c1, c3)

Rule weights are usually learned from data. The same rule may
have different weights for different constants (indicated by “+”).
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Alchemy

Alchemy is well-known software package for Markov logic

Developed at University of Washington

Supports a wide range of tasks
I Structure learning
I Weight learning
I Probabilistic inference

Has been used for wide range of applications
I Information extraction
I Social network modeling
I Entity resolution
I Collective classification
I Link prediction

Check out http://alchemy.cs.washington.edu/
I Code
I Real-world datasets
I Real-world Markov logic networks
I Literature
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From Markov logic to graphical models (example)
Friends
Name1 Name2 Value
Anna Bob Yes
Bob Anna Yes

Anna Anna Yes
Bob Bob Yes

Smokes
Name Value
Anna Yes

Cancer
Name Value
Anna No

10 / 78

1.5
{ Smoking causes cancer

∀x .Smokes(x) =⇒ Cancer(x)

1.1
{ Friends have similar smoking habits

∀x .∀y .Friends(x , y) =⇒ (Smokes(x) ⇐⇒ Smokes(y))

Friends(A,B)

Friends(A,A) Smokes(A) Smokes(B) Friends(B,B)

Cancer(A) Friends(B,A) Cancer(B)

Inference result

P ( Bob smokes ) = 84.6%

P ( Bob has cancer ) = 76.9%

Example is simplified;

actual semantics are

slightly different.

Inference (conceptual)

S(B) C(B) #R1 #R2
∑

w P
No No 1 1 2.6 7.7%
No Yes 1 1 2.6 7.7%
Yes No 0 3 3.3 15.4%
Yes Yes 1 3 4.8 69.2%



Probabilistic databases and graphical models

Probabilistic databases Graphical models

Probabilistic
model

Simple
(disjoint-independent tuples)

Complex
(independencies given by graph)

Query Complex
(e.g., ∃x .∃y .R(x , y) ∧ S(x))

Simple
(e.g., P (X1,X2 | Z1,Z2,Z3 ))

Network Dynamic
(database + query)

Static
(Bayesian or Markov network)

Complexity
measured in
size of

Database Network

Complexity
parameter

Query Treewidth

System Extension to RDBMS Stand-alone

Hybrid approaches have many potential applications and are under
active research.
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Reasoning with uncertainty

Goal: Automated reasoning system
I Take all available information

(e.g., patient information: symptoms, test results, personal data)
I Reach conclusions

(e.g., which diseases the patient has, which medication to give)

Desiderata
1 Separation of knowledge and reasoning

F Declarative, model-based representation of knowledge
F General suite of reasoning algorithms, applicable to many domains

2 Principled treatment of uncertainty
F Partially observed data
F Noisy observations
F Non-deterministic relationships

Lots of applications
I medical diagnosis, fault diagnosis, analysis of genetic and genomic

data, communication and coding, analysis of marketing data, speech
recognition, natural language understanding, segmenting and denoising
images, social network analysis, . . .
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Probabilistic models

Multiple interrelated aspects may relate to the reasoning task
I Possible diseases
I Hundreds of symptoms and diagnostic tests
I Personal characteristics

1 Characterize data by a set of random variables
I Flu (yes / no)
I Hayfever (yes / no)
I Season (Spring / Sommer / Autumn / Winter)
I Congestion (yes / no)
I MusclePain (yes / no)

→ Variables and their domain are important design decision
2 Model dependencies by a joint distribution

I Diseases, season, and symptoms are correlated
I Probabilistic models construct joint probability space
→ 2 · 2 · 4 · 2 · 2 outcomes (64 values, 63 non-redundant)

I Given joint probability space, interesting questions can be answered

P ( Flu | Season=Spring,Congestion,¬MusclePain )

Specifying a joint distribution is infeasible in general!
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Probabilistic graphical models

A graph-based representation of direct probabilistic interactions
A break-down of high-dimensional distributions into smaller factors
(here: 63 vs. 17 non-redundant parameters)
A compact representation of a set of (conditional) independencies

Example (directed graphical model)

Graph representation Season

Flu Hayfever

CongestionMusclePain

Factorization P ( S ,F ,H,M,C )
= P (S )P (F | S )P (H | S )P (C | F ,H )P (M | F )

Independencies (F ⊥ H | S), (C ⊥ S | F ,H), (M ⊥ H,C , S | F )
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Main components
1 Representation

I Tractability
F Variables tend to interact directly only with very few others
F Natural and compact encoding as graphical model

I Transparency
F Models can be understood/evaluated by human experts

2 Inference
I Answer queries using the distribution as model of the world
I Work on graph structure
→ orders of magnitude faster than working on joint probability

3 Learning
I Learn a model from data that captures past experience to a good

approximation
I Human experts may provide rough guidance
I Details filled in by fitting the model to the data
→ Often better reflection of domain than hand-constructed models,
sometimes surprising insights

Graphical models exploit locality structure that appears in
many distributions that arise in practice.
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Notation

Let X and Y be sets of random variables with domain Dom(X) and
Dom(Y). Let x ∈ Dom(X) and y ∈ Dom(Y).

Expression Shortcut notation

P (X = x ) P ( x )
P (X = x | Y = y ) P ( x | y )
∀x.P (X = x ) = f (x) P (X ) = f (X)
∀x.∀y.P (X = x | Y = y ) = f (x, y) P (X | Y ) = f (X,Y)

P (X ) and P (X | Y ) are entire probability distributions

Can be thought of as functions from Dom(X)→ [0, 1] or
(Dom(X),Dom(Y))→ [0, 1], respectively

fy(X) = P (X | y ) is often referred to as conditional probability
distribution (CPD)

For discrete variables, may be represented as a table (CPT)
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Conditional independence

Definition

Let X,Y and Z be sets of random variables. X and Y are said to be
conditionally independent given Z if and only if

P (X,Y | Z ) = P (X | Z )P (Y | Z ) .

We write (X ⊥ Y | Z) for this conditional independence statement. If
Z = ∅, we write (X ⊥ Y) for marginal independence.

Example

Season

Flu Hayfever

CongestionMusclePain

(F ⊥ H | S), (C ⊥ S | F ,H)
(M ⊥ H,C ,S | F )

P (S ,F ,H,M,C )
= P (S ) · P (F | S ) · P (H | S )
·P (C | F ,H ) · P (M | F )
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Properties of conditional independence

Theorem

In general, (X ⊥ Y) does not imply nor is implied by (X ⊥ Y | Z)

The following relationships hold:

(X ⊥ Y | Z) ⇐⇒ (Y ⊥ X | Z) (symmetry)
(X ⊥ Y,W | Z) =⇒ (X ⊥ Y | Z) (decomposition)
(X ⊥ Y,W | Z) =⇒ (X ⊥ Y | Z,W) (weak union)

(X ⊥W | Z,Y) ∧ (X ⊥ Y | Z) =⇒ (X ⊥ Y,W | Z) (contraction)

For positive distributions and mutally disjoint sets X,Y,Z,W:

(X ⊥ Y | Z,W) ∧ (X ⊥W | Z,Y) =⇒ (X ⊥ Y,W | Z) (intersection)

Proof.

Discussed in exercise group.
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Querying a distribution (1)

Consider a joint distribution on a set of variables X
Let E ⊆ X be a set of evidence variables that takes values e

Let W = X − E be the set of latent variables

Let Y ⊆W be a set of query variables

Let Z = W − Y be the set of non-query variables

Example

X = { Season,Congestion,MusclePain,Flu,Hayfever }
E = {Season,Congestion,MusclePain }
e = { Spring,Yes,No }
W = {Flu,Hayfever }
Y = {Flu }
Z = {Hayfever }
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Querying a distribution (2)
1 Conditional probability query

I Compute the posterior distribution of the query variables
P (Y | e )

2 MAP query
I Compute the most likely value of the latent variables

MAP(W | e) = argmaxw P (w | e ) = argmaxw P (w, e )
3 Marginal MAP query

I Compute the most likely value of the query variables
MAP(Y | e) = argmaxy P ( y | e ) = argmaxy

∑
z P ( y, z, e )

Example

P (W | e ) Flu ¬Flu

Hayfever 5% 35%
¬Hayfever 40% 20%

1 P ( Flu | Spring,Congestion,¬MusclePain ) → Yes (45%), No (55%)

2 MAP(Flu,Hayfever | Spring,Congestion,¬MusclePain) → Only flu

3 MAP(Flu | Spring,Congestion,¬MusclePain) → No flu (!)
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Querying graphical models

Graphical models induce conditional independences

Queries reason about dependencies between variables

Can we evaluate queries more efficiently given a graphical
model and its associated independences?

Example

Independence properties help inference!

Season

Flu Hayfever

CongestionMusclePain

Table known to satisfy (F ⊥ H | E)
P (W | e ) Flu ¬Flu

Hayfever 24% 16% 40%
¬Hayfever 36% 24% 60%

60% 40%

Thus, for example, monotonicity is now known to hold for MAP:
MAP(Flu,Hayfever | E) = (MAP(Flu | E),MAP(Hayfever | E))
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Misconception example

Example

Alice, Bob, Charles, and Debbie study in pairs for the SUM exam

A

D B

C

Lecturer misspoke in class, giving rise to a possible misconception

Some students figured out the problem, others did not

Which of the students has the misconception?

If A does not have the misconception, he may help B and D
→ Students influence each other

If A has the misconception, he may be helped by B and D
→ Influence has no natural “direction”

A does not study with C → No direct influence between A and C
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Markov network

Definition

A Markov network is an undirected graph H = (X , E), where X is a set of
random variables and E ⊆ X × X is the set of edges.

Example

A

D B

C

X = {A,B,C ,D }
E = { (A,B), (B,C ), (C ,D), (D,A) }

We will see that Markov networks encode a set of conditional
independence assumptions between its variables.
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Local models

Definition

Let D be a set of random variables. A factor φ is a function from
Dom(D)→ R. A factor is nonnegative if has range R+. The set D is
called the scope of the factor and is denoted Scope[φ].

We restrict attention to nonnegative factors.

Example

A B φ1

a0 b0 30
a0 b1 5
a1 b0 1
a1 b1 10

B C φ2

b0 c0 100
b0 c1 1
b1 c0 1
b1 c1 100

C D φ3

c0 d0 1
c0 d1 100
c1 d0 100
c1 d1 1

D A φ4

d0 a0 100
d0 a1 1
d1 a0 1
d1 a1 100

A

D B

C

Factors describe “compatibility” between values (not normalized)

φ1: More “weight” when A and B agree than when they disagree

φ1: More weight when A and B are both right than when both are wrong

φ1: If they disagree, more weight when A is right than when B is right
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Combining local models

Definition

Let X, Y, Z be three disjoint sets of random variables and let φ1(X,Y)
and φ2(Y,Z) be two factors. The factor product ψ = φ1 × φ2 is given by
the factor ψ : Dom(X,Y,Z)→ R with

ψ(X,Y,Z) = φ1(X,Y) · φ2(Y,Z).

Example

A B φ1

a0 b0 30
a0 b1 5
a1 b0 1
a1 b1 10

B C φ2

b0 c0 100
b0 c1 1
b1 c0 1
b1 c1 100

A B C ψ
a0 b0 c0 3000
a0 b0 c1 30
a0 b1 c0 5
a0 b1 c1 500
a1 b0 c0 100
a1 b0 c1 1
a1 b1 c0 10
a1 b1 c1 1000
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Factor products and the product rule of probability

Recall the product rule of probability

P (X,Y ) = P (Y )P (X | Y ) .

Example
MusclePain

M P
Yes 0.1
No 0.9

Flu | MusclePain

M F P
Yes Yes 0.8
Yes No 0.2

No Yes 0.1
No No 0.9

Flu, MusclePain
M F P

Yes Yes 0.08
Yes No 0.02
No Yes 0.09
No No 0.81

Set φ1(MusclePain) = P ( MusclePain )

Set φ2(MusclePain,Flu) = P ( Flu | MusclePain )

Set ψ(MusclePain,Flu) = P ( MusclePain,Flu )

Then ψ = φ1 × φ2

Factor products generalize the product rule of probability.
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Gibbs distribution

Definition

A distribution PΦ is a Gibbs distribution parameterized by a set of factors
Φ = {φ1(D1), . . . , φm(Dm) } if it is defined by

PΦ (X1, . . . ,Xn ) =
1

Z
P̃Φ (X1, . . . ,Xn )

P̃Φ (X1, . . . ,Xn ) = φ1(D1)× φ2(D2)× · · · × φm(Dm)

Z =
∑

X1,...,Xn

P̃Φ (X1, . . . ,Xn )

Here, P̃Φ (X1, . . . ,Xn ) is an unnormalized measure and Z a normalizing
constant called the partitioning function.

Factors contribute to the overall joint distribution
Overall dist. takes into consideration the contribution from all factors

A set of factors defines a Gibbs distribution, i.e., a joint prob-
ability distribution over all variables.
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Gibbs distribution for Misconception example

A

D B

C

A B φ1

a0 b0 30
a0 b1 5
a1 b0 1
a1 b1 10

B C φ2

b0 c0 100
b0 c1 1
b1 c0 1
b1 c1 100

C D φ3

c0 d0 1
c0 d1 100
c1 d0 100
c1 d1 1

D A φ4

d0 a0 100
d0 a1 1
d1 a0 1
d1 a1 100

A B C D P̃ P
a0 b0 c0 d0 300,000 0.04
a0 b0 c0 d1 300,000 0.04
a0 b0 c1 d0 300,000 0.04
a0 b0 c1 d1 30 4.1 · 10−6

a0 b1 c0 d0 500 6.9 · 10−5

a0 b1 c0 d1 500 6.9 · 10−5

a0 b1 c1 d0 5,000,000 0.69
a0 b1 c1 d1 500 6.9 · 10−5

a1 b0 c0 d0 100 1.4 · 10−5

a1 b0 c0 d1 1,000,000 0.14
a1 b0 c1 d0 100 1.4 · 10−5

a1 b0 c1 d1 100 1.4 · 10−5

a1 b1 c0 d0 10 1.4 · 10−6

a1 b1 c0 d1 100,000 0.014
a1 b1 c1 d0 100,000 0.014
a1 b1 c1 d1 100,000 0.014

Z = 7,201,840 32 / 78



Factorization and factor graphs

Definition

A distribution PΦ with Φ = {φ1(D1), . . . , φm(Dm) } factorizes over a
Markov network H if each Di is a complete subgraph of H. The factors φi
are often called clique potentials.

Example

H1 H2 FΦ FΨ

A

D B

C

A

D B

C

A

D B

C

φ1

φ2φ3

φ4

A

D B

C

ψ1

ψ2

Φ = {φ1(A,B), φ2(B,C ), φ3(C ,D), φ4(D,A) }
Ψ = {ψ1(A,B,D), ψ2(B,C ) }
PΦ factorizes over both H1 and H2

PΨ factorizes over only H2 33 / 78



Active paths

Definition

Let X1—. . . —Xk be a path in H = (X , E). Let Z ⊆ X be a set of
observed variables. The path X1—. . . —Xk is active given Z if Xi /∈ Z for
1 ≤ i ≤ k.

Example

A

D B

C

All active paths given A:

D–C

C–B

D–C–B

Some inactive paths given A:

D–A–B

C–D–A–B
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Separation and independencies for Markov networks

Definition

We say that a set of nodes Z separates X and Y in H, denoted
sepH(X;Y | Z), if there is no active path between any node in X and any
node in Y given Z. We associate with H the following set of
independencies:

I(H) = { (X ⊥ Y | Z) : sepH(X;Y | Z) }

Example

AA

D BBB

CC

∅ does not separate any nodes

{A } does not separate any nodes

{A,C } separates {B } and {D }
{A,B,C } does not separate any nodes

I(H) = { (B ⊥ D | A,C ), (D ⊥ B | A,C )

(A ⊥ C | B,D), (C ⊥ A | B,D) }
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Relationship Gibbs distributions and Markov networks

Definition

Let P be a probability distribution over X. Define I(P) to be the set
of independence assertions of the form (X ⊥ Y | Z) that hold in P.

A Markov network H is an I-map for P if I(H) ⊆ I(P).

Theorem

Let P be a distribution and H be a Markov network over X . If P is a
Gibbs distribution that factorizes over H, then H is an I-map for P.

Theorem (Hammersley-Clifford theorem)

Let P be a positive distribution and H be a Markov network over X . If H
is an I-map for P, then P is a Gibbs distribution that factorizes over H.

Theorem

If X and Y are not separated given Z in H, then X and Y are dependent
for some distribution P that factorizes over H.
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Application: Image denoising

37 / 78

Original Noisy image Denoised image

Li and Huttenlocher, ECCV 2008

http://portal.acm.org/citation.cfm?id=1478201


Application: Stanford Named Entity Recognizer

Named Entity Recognition (NER) labels sequences of words in a text
which are the names of things, such as person and company names, or
gene and protein names.

Local evidence often strong clue for label

Long-range evidence (label consistency) helps when local evidence is
insufficient

38 / 78Finkel, Grenager, and Manning, ACL 2005

http://nlp.stanford.edu/software/CRF-NER.shtml
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Semantics of Markov logic networks

Definition

A Markov logic network L = { (Fi ,wi ) } is a template for constructing
Markov networks. Given a set of constants C , a ground Markov logic ML,C

specifies a distribution over the possible worlds as follows

P (X = x ) ∝ exp

[∑
i

wini (x)

]
,

where ni (x) is the number of “true groundings” of formula Fi in the
possible world x.

A possible world x is likely if
1 It satisfies many groundings with positive weight
2 If satisfies few groundings with negative weight
3 It satisfies groundings with high positive weight
4 It does not satisfy groundings with high negative weight
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How many true groundings does a formula have?

F1 = M(A)

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

n1 = 1 n1 = 0

F2 = M(A) ∨M(B)

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

n2 = 1 n2 = 1 n2 = 0
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How many true groundings does a formula have? (2)

F3 = M(A) ∧M(B)
M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

FOL: 1 0 0 (strict)
MLN: n3 = 2 n3 = 1 n3 = 0 (smoothed)

F4 = ∀x .M(x)
M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

FOL: 1 0 0 (strict)
MLN: n4 = 4 n4 = 3 n4 = 0 (smoothed)

Conjunctions in FOL are sensitive to noise: If just one of the conjuncts is unsat-

isfied, the formula is also unsatisfied. MLNs count how many of the conjuncts

are true and thus are less sensitive to noise. 43 / 78



How many true groundings does a formula have? (3)

F5 = ∃x .M(x)

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

FOL: 1 1 0 (strict)
MLN: n4 = 1 n4 = 1 n4 = 0 (strict)

Disjunctions in FOL are insensitive to noise, so we are fine.
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Grounding a formula in Markov logic

Let F be a formula and C = { c1, . . . , cd } be a set of constants.
Conceptually, we obtain the set G (F ) of ground formulas as follows:

1 Whenever a subformulas of form ∃x .F ′(x) occurs, replace by
(F ′(c1) ∨ · · · ∨ F ′(cd))

2 Convert the formula to form ∀x.F ′(x), where F ′ is in conjunctive
normal form and is quantifier-free, optionally simplify, denote result
by cnf(F )

3 For all c ∈ C |x|, set G (F , c) = {G : G is a clause in F ′(c) }
4 Set G (F ) =

{
G (F , c) : c ∈ C |x|

}
Example

C = {A,B }
F1 = ∀x .Smokes(x) =⇒ Cancer(x)

1 No existential quantifiers → nothing to do
2 cnf(F1) = ∀x .¬S(x) ∨ C(x)
3 G (F1,A) = {¬S(A) ∨ C(A) }

G (F1,B) = {¬S(B) ∨ C(B) }
4 G (F1) = { {¬S(A) ∨ C(A) } , {¬S(B) ∨ C(B) } } 45 / 78



Grounding a formula (example)

Example

C = {A,B }
F2 = ∀x .∀y .Friends(x , y) =⇒ (Smokes(x) ⇐⇒ Smokes(y))

1 No existential quantifiers → nothing to do

2 cnf(F2) = ∀x .∀y .[¬F(x , y)∨ S(x)∨¬S(y)]∧ [¬F(x , y)∨¬S(x)∨ S(y)]

3 G(F2, (A,A)) = {¬F(A,A) ∨ S(A) ∨ ¬S(A), ¬F(A,A) ∨ ¬S(A) ∨ S(A) }
G(F2, (A,B)) = {¬F(A,B) ∨ S(A) ∨ ¬S(B), ¬F(A,B) ∨ ¬S(A) ∨ S(B) }
G(F2, (B,A)) = {¬F(B,A) ∨ S(B) ∨ ¬S(A), ¬F(B,A) ∨ ¬S(B) ∨ S(A) }
G(F2, (B,B)) = {¬F(B,B) ∨ S(A) ∨ ¬S(B), ¬F(B,B) ∨ ¬S(A) ∨ S(B) }

4 G (F2) = {{¬F(A,A) ∨ S(A) ∨ ¬S(A), ¬F(A,A) ∨ ¬S(A) ∨ S(A) } ,
{¬F(A,B) ∨ S(A) ∨ ¬S(B), ¬F(A,B) ∨ ¬S(A) ∨ S(B) } ,
{¬F(B,A) ∨ S(B) ∨ ¬S(A), ¬F(B,A) ∨ ¬S(B) ∨ S(A) } ,
{¬F(B,B) ∨ S(A) ∨ ¬S(B), ¬F(B,B) ∨ ¬S(A) ∨ S(B) } }
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Grounding a Markov logic network

Given an MLN { (Fi ,wi ) } and a set of constants C .

1 Create a Boolean variable R(c) for each predicate that occurs in one
of the formulas and each c ∈ Cm, where m is the arity of the relation

2 For each formula Fi
1 Ground Fi to obtain G (Fi )
2 For each ground set of clauses G (Fi , c) ∈ G (Fi )

1 Split weight evenly among clauses: w ′i = wi/|G(Fi , c)|
2 For each clause Fij in G(Fi , c), create a factor

φ(Dij) = w ′i fij(Dij),

where Dij is the set of variables that occur in Fij , and

fij(Dij) =

{
1 if j-th clause in in G(Fi , c) is satisfied for assignment Dij

0 otherwise

is an “indicator feature” with weight w ′i .

The weight of a ground CNF formula is split evenly among its clauses.
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Grounding a Markov logic network (example)

F1: 1.5
{ Smoking causes cancer

∀x.Smokes(x) =⇒ Cancer(x)

F2: 1.1
{ Friends have similar smoking habits

∀x.∀y.Friends(x, y) =⇒ (Smokes(x) ⇐⇒ Smokes(y))

C = {A, B }
G(F1) = {{¬S(A) ∨ C(A) } , f11,w

′
11 = 1.50

{¬S(B) ∨ C(B) } } f12,w
′
12 = 1.50

G(F2) = {{¬F(A, A) ∨ S(A) ∨ ¬S(A), f21,w
′
21 = 0.55

¬F(A, A) ∨ ¬S(A) ∨ S(A) }, f22,w
′
22 = 0.55

{¬F(A, B) ∨ S(A) ∨ ¬S(B), f23,w
′
23 = 0.55

¬F(A, B) ∨ ¬S(A) ∨ S(B) }, f24,w
′
24 = 0.55

{¬F(B, A) ∨ S(B) ∨ ¬S(A), f25,w
′
25 = 0.55

¬F(B, A) ∨ ¬S(B) ∨ S(A) }, f26,w
′
26 = 0.55

{¬F(B, B) ∨ S(A) ∨ ¬S(B), f27,w
′
27 = 0.55

¬F(B, B) ∨ ¬S(A) ∨ S(B) } } f28,w
′
28 = 0.55
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Cancer(A) Cancer(B)Friends(B,A)

φ11 φ12

φ23 φ24

φ25 φ26

φ21

φ22

φ27

φ28
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Log-linear model

Definition

A positive distribution P is a log-linear model over a Markov network H if
it is associated with

a set of features F = { f1(D1), . . . , fm(Dm) }, where each Di is a
complete subgraph in H
a set of weights w1, . . . ,wm

such that

P (X1, . . . ,Xn ) ∝ exp

[
m∑
i=1

wi fi (Di )

]
.

The terms εi (Di ) = −wi fi (Di ) are called energy functions.

logP (X1, . . . ,Xn ) is a linear combination of the the features.
The linearity allows us to detect and eliminate redundancy in
the features (using standard linear algebra techniques).
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From factors to features

Definition

Let D be a subset of variables. An indicator feature is a function
f (D) : D→ { 0, 1 }.

Theorem

Every factor of a graphical model on discrete variables can be expressed in
terms of a linear combination of weighted indicator features.

Proof (Boolean case).

Consider a factor φ(X1, . . . ,Xk) on k Boolean variables. Let Θ be the set
of all assignments of values to X1, . . . ,Xk . Set

wθ = lnφ(X1[θ], . . . ,Xk [θ]) (constants)

fθ(X1, . . . ,Xk) =

{
1 if X1 = X1[θ], . . . ,Xk = Xk [θ]

0 otherwise
(indicator features)

lnφ(X1, . . . ,Xk) =
∑
θ∈Θ wθfθ(X1, . . . ,Xk) (decomposition)
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From factors to features (example)

Example

Consider three friends with similiar interests and let A, B, C be Boolean
variables that indicate whether each of the friends likes football.

A

φ

B C

φ
X1 X2 X3 φ w
F F F 10 2.3
F F T 1 0
...

...
...

...
...

T F T 1 0
T T F 1 0
T T T 10 2.3

We have

lnφ(A,B,C ) =
∑
θ

wθfθ(A,B,C ) = 2.3 · fFFF (A,B,C ) + 2.3 · fTTT (A,B,C ).

Even more compact: lnφ(A,B,C ) = 2.3 · IABC∨¬A¬B¬C
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From Gibbs distribution to log-linear models

Theorem

Every positive Gibbs distribution P over H on Boolean variables X1, . . . ,Xn

has a log-linear model over H with only indicator features and vice versa.

Proof.

P (X1, . . . ,Xn ) =
1

Z

m∏
i=1

φi (Di )

=
1

Z
exp

[
m∑
i=1

lnφi (Di )

]

=
1

Z
exp

 m∑
i=1

∑
θ∈ΘDi

wθfθ(Di )

 .
Markov logic networks are “templates” for constructing log-
linear models. Any positive Gibbs distribution with finite-
domain variables can be modeled.
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Inference in probabilistic graphical models

Recall the queries of interest
1 Conditional probability query
2 MAP query
3 Marginal MAP query

Definition

Let PΦ be a Gibbs distribution over variables {X ,X1, . . . ,Xn }.
1 The PΦ-decision problem asks whether PΦ (X = x ) > 0,

2 The PΦ-probability computation problem asks for PΦ (X = x ).
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Complexity of inference in probabilistic graphical models

Theorem
The PΦ-decision problem is NP-complete, PΦ-probability computation is #P-hard.

Proof (by reduction from 3-SAT and #3-SAT).

Take a 3-SAT formula Ψ = C1 ∧ C2 ∧ . . . ∧ Cm over variables X = {X1,X2, . . . ,Xn }.
Consider the following Gibbs distribution PΦ over Boolean variables:

X1 X2 X3 X4 · · · Xn

C1 C2 C3 · · · Cm−1 Cm

A1 A2 · · · Am−2 X

∨1 ∨2 ∨3 ∨m−1 ∨m

∧
∧ ∧ ∧

Here, ∨i (Ci ,Xi ) = 1 if for assignment Xi the truth value of clause Ci equals variable Ci ,
else ∨i (Ci ,Xi ) = 0; similarly for ∧-factors. PΦ can be computed in polynomial time in
the size of Ψ. Assertion 1 follows since PΦ (X = TRUE ) > 0 if and only if Ψ is
satisfiable. PΦ (X = TRUE ) = P ( Ψ ) where P (Xi = TRUE ) = 1/2 and the {Xi } are
i.i.d. Assertion 2 follows since #Ψ = 2n P ( Ψ ) = 2n PΦ (X = TRUE ).
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Queries in Markov logic

Standard PGM queries, e.g.,
P ( Smokes(B),Cancer(B) | Smokes(A) ∧ Friends(A,B) ∧ . . . )
→ #P-hard
More general queries of form “What is the probability that formula F1

holds given that formula F2 holds?”, e.g.,
P ( ∃x .Cancer(x) | ∀x .Smokes(x) )
Let L be an MLN and C be a set of constants

P (F1 | F2, L,C ) = P (F1 | F2,ML,C )

=
P (F1 ∧ F2 | ML,C )

P (F2 | ML,C )

=

∑
x∈XF1

∩XF2
P (X = x | ML,C )∑

x∈XF2
P (X = x | ML,C )

,

where XF is the set of worlds in which F holds

We focus on standard PGM queries.
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Naive approach

A

D B

C

A B φ1

a0 b0 30
a0 b1 5
a1 b0 1
a1 b1 10

B C φ2

b0 c0 100
b0 c1 1
b1 c0 1
b1 c1 100

C D φ3

c0 d0 1
c0 d1 100
c1 d0 100
c1 d1 1

D A φ4

d0 a0 100
d0 a1 1
d1 a0 1
d1 a1 100

A B C D P̃ P
a0 b0 c0 d0 300,000 0.04
a0 b0 c0 d1 300,000 0.04
a0 b0 c1 d0 300,000 0.04
a0 b0 c1 d1 30 4.1 · 10−6

a0 b1 c0 d0 500 6.9 · 10−5

a0 b1 c0 d1 500 6.9 · 10−5

a0 b1 c1 d0 5,000,000 0.69
a0 b1 c1 d1 500 6.9 · 10−5

a1 b0 c0 d0 100 1.4 · 10−5

a1 b0 c0 d1 1,000,000 0.14
a1 b0 c1 d0 100 1.4 · 10−5

a1 b0 c1 d1 100 1.4 · 10−5

a1 b1 c0 d0 10 1.4 · 10−6

a1 b1 c0 d1 100,000 0.014
a1 b1 c1 d0 100,000 0.014
a1 b1 c1 d1 100,000 0.014

Z = 7,201,840 60 / 78
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Grounding with evidence (1)

Denote by M the weighted ground clauses in a ground Markov logic
network ML,C . Given evidence E, we can partition M into:

1 Clauses M1 that involve only observed variables
2 Clauses M2 that involve both observed and latent variables
3 Clauses M3 that involve only latent variables

log P ( W | E ) = − log Z +
∑

φ=(f ,w)∈M

wf (Wf , Ef )

= − log Z +
∑

(f ,w)∈M1

wf (Ef )

︸ ︷︷ ︸
Constant

+
∑

(f ,w)∈M2

wf (Wf , Ef ) +
∑

(f ,w)∈M3

wf (Wf )

Example
Friends(A,B)

Smokes(A) Smokes(B)Friends(A,A) Friends(B,B)

Cancer(A) Cancer(B)Friends(B,A)

φ11 φ12

φ23 φ24

φ25 φ26

φ21

φ22

φ27

φ28

M1 = {φ11, φ21, φ22 }
M2 = {φ23, φ24, φ25, φ26, φ27, φ28 }

M3 = {φ12 }

61 / 78



Grounding with evidence (2)

Denote by M the weighted ground clauses in a ground Markov logic
network ML,C . Given evidence E, we can partition M into:

1 Clauses M1 that involve only observed variables
2 Clauses M2 that involve both observed and latent variables
3 Clauses M3 that involve only latent variables

log P ( W | E ) = − log Z +
∑

φ=(f ,w)∈M

wf (Wf , Ef )

= − log Z ′ +
∑

(f ,w)∈M2

wf (Wf , Ef )

︸ ︷︷ ︸
Replace observed variables by their values

+
∑

(f ,w)∈M3

wf (Wf )

Example
Friends(A,B)

Smokes(A) Smokes(B) Friends(B,B)

Cancer(B)Friends(B,A)

φ12

φ23 φ24

φ25 φ26

φ27

φ28

M2 = {φ23, φ24, φ25, φ26, φ27, φ28 }

M3 = {φ12 }
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Grounding with evidence (3)

Denote by M the weighted ground clauses in a ground Markov logic
network ML,C . Given evidence E, we can partition M into:

1 Clauses M1 that involve only observed variables
2 Clauses M2 that involve both observed and latent variables
3 Clauses M3 that involve only latent variables

log P ( W | E ) = − log Z +
∑

φ=(f ,w)∈M

wf (Wf , Ef )

= − log Z ′ +
∑

(f ,w)∈M′
2

wf (Wf ) +
∑

(f ,w)∈M3

wf (Wf )

= − log Z ′ +
∑

(f ,w)∈M′
wf (Wf )

Example

Smokes(B)

Cancer(B)

φ12

φ′23
φ′24

φ′25 φ′26

φ′27

φ′28

M′
2 =

{
φ′

23, φ
′
24, φ

′
25, φ

′
26, φ

′
27, φ

′
28

}
M3 = {φ12 }
M ′ = M ′2 ∪M3

φ24 = ¬F (A,B) ∨ ¬S(A) ∨ S(B)

φ′24 = FALSE ∨ FALSE ∨ S(B)

= S(B)
63 / 78
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MAP inference for MLNs (1)

Example

What is the most likely world for a given Markov logic network?

Friends(A,B)

Smokes(A) Smokes(B)Friends(A,A) Friends(B,B)

Cancer(A) Cancer(B)Friends(B,A)

φ11 φ12

φ23 φ24

φ25 φ26

φ21

φ22

φ27

φ28

Corresponds to weighted CNF formula:
Ψ = f11 ∧ f12 ∧ f23 ∧ f24 ∧ f25 ∧ f26 ∧ f27 ∧ f28
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MAP inference for MLNs (2)

Definition

Consider a CNF formula F over variables X , in which each of the clauses
f1, . . . , fm is associated with a corresponding weight w1, . . . ,wm. The
Weighted MAX-SAT problem is to find an assignment x∗ ∈ XF that
maximizes the sum of the weights of satisfied clauses, i.e.,
x∗ = argmaxx

∑
i wi fi .

Consider the following transformation:

argmax
x

P ( x ) = argmax
x

[ 1

Z
exp

∑
(f ,w)∈ML,C

wf (x)
]

= argmax
x

∑
(f ,w)∈ML,C︸ ︷︷ ︸

F

w︸︷︷︸
wi

f (x)︸︷︷︸
fi

= x∗

There are many algorithms and solvers for Weighted MAX-SAT, both
exact and approximate. Specialized algorithms for MLNs do exist;
they try to reduce grounding by computing ML,C only partially.
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MAP inference for MLNs (3)

World

P
ro

ba
bi

lit
y

World

P
ro

ba
bi

lit
y

World

P
ro

ba
bi

lit
y

MAP world character-
izes distribution well

MAP world not dis-
tinguished from other
words

MAP world(s) charac-
terize only a part of
the distribution

MAP estimates provide the “most consistent” world, i.e., the
world that satisfies most of the rules. This world may or may
not characterize the entire distribution well.
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Variable elimination (idea)

Goal: Eliminate non-query variables from the graph.
A

D B

C

φ1

φ2φ3

φ4

φ1

A B φ
a0 b0 30
a0 b1 5
a1 b0 1
a1 b1 10

φ2

B C φ
b0 c0 100
b0 c1 1
b1 c0 1
b1 c1 100

φ3

C D φ
c0 d0 1
c0 d1 100
c1 d0 100
c1 d1 1

φ4

D A φ
d0 a0 100
d0 a1 1
d1 a0 1
d1 a1 100

A

D φ12

C

φ3

φ4

φ1 × φ2

A B C φ
a0 b0 c0 3000
a0 b0 c1 30
a0 b1 c0 5
a0 b1 c1 500
a1 b0 c0 100
a1 b0 c1 1
a1 b1 c0 10
a1 b1 c1 1000

φ12

A C φ
a0 c0 3005
a0 c1 530
a1 c0 110
a1 c1 1001

67 / 78

B has been eliminated (“margin-
alized out”). The resulting factor
graph represents P (A,C ,D ).



Variable elimination (why it works)

Recall that

P (A,B,C ,D ) =
1

Z
φ1(A,B)× φ2(B,C )× φ3(C ,D)× φ4(D,A)

and thus

P (A,C ,D ) = P
(
A, b0,C ,D

)
+ P

(
A, b1,C ,D

)
=

1

Z
[φ1(A, b0)× φ2(b0,C )× φ3(C ,D)× φ4(D,A)

+ φ1(A, b1)× φ2(b1,C )× φ3(C ,D)× φ4(D,A)]

=
1

Z

{ ∑
b∈{ b0,b1 }

φ1(A, b)× φ2(b,C )
}
× φ3(C ,D)× φ4(D,A)


=

1

Z
[φ12(A,C )× φ3(C ,D)× φ4(D,A)]
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Variable elimination (remarks)

Also called sum-product variable elimination

Whenever we eliminate a variable B
I We remove all factors connected to B
I We introduce a single factor that is connected to the neighbors of B
I If B has k neighbors, the new factor has 2k rows
→ Potentially exponential blow-up

Computational cost
I Dominated by sizes of intermediate factors
I Depends strongly on elimination ordering
I NP-hard to find optimal ordering
I Lots of useful heuristics exist
I “Conditioning” can be used to avoid large factors for increased

processing time

Similar observations give rise to other important algorithms, e.g.,
“message passing” in “clique trees”
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Sampling methods

Also called particle-based approximate inference

Idea: Obtain samples from the distribution underlying the graphical
model

If samples were independent, we could count how often each variables
is true/false and apply the sampling theorem
Sampling is much more difficult in Markov networks → samples are
generally dependent

I Goal is to minimize the dependencies
I More samples needed than “implied” by the sampling theorem
I If dependencies vanish between far-apart samples → correctness and

convergence
Many techniques

I Forward sampling (for directed models)
I Likelihood weighting
I Importance sampling
I Gibbs sampling
I Other Markov Chain Monte Carlo (MCMC) methods
I Collapsed particles
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Gibbs sampling (idea)

Gibbs sampling is a simple algorithm to sample from P (X ,Y ). It is used
when it is hard to sample from P (X ,Y ), but easy to sample from
P (X | Y ) and P (Y | X ).

1 Pick an initial point (x0, y0)
2 For n = 1, 2, . . .

1 Generate xn ∼ P (X | Y = yn−1 )
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Gibbs sampling (idea)

Gibbs sampling is a simple algorithm to sample from P (X ,Y ). It is used
when it is hard to sample from P (X ,Y ), but easy to sample from
P (X | Y ) and P (Y | X ).

21 Pick an initial point (x0, y0)
2 For n = 1, 2, . . .

1 Generate xn ∼ P (X | Y = yn−1 )
2 Generate yn ∼ P (Y | X = xn )
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Gibbs sampling for Markov networks

Recall that

P (A,B,C ,D ) =
1

Z
φ1(A,B)× φ2(B,C )× φ3(C ,D)× φ4(D,A).

Sampling from P (A,B,C ,D ) is hard but sampling from

P (A | B,C ,D ) =
P (A,B,C ,D )

P (B,C ,D )

=
1
Z [φ1(A,B)× φ2(B,C )× φ3(C ,D)× φ4(D,A)]

1
Z

∑
a∈{ a0,a1 }[φ1(a,B)× φ2(B,C )× φ3(C ,D)× φ4(D, a)]

=
φ1(A,B)× φ4(D,A)∑

a∈{ a0,a1 } φ1(a,B)× φ4(D, a)

is easy. Only the factors connected to A remain.

When resampling a variable A, we only have to look at the
factors connected to A, and thus only the subset of variables
connected to A. These variables are called the Markov blan-
ket of A.
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Gibbs sampling for Markov networks (remarks)

Variables are picked according to a schedule
→ sequential, random, . . .
An instance of the more general class of MCMC methods

I Markov chains describe how the sampling process moves through the
set of worlds

I Irreducible if all worlds can be reached from all other worlds
I Convergence speed depends on how fast the sampling process moves

(mixing time)

World
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y

World
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World

P
ro
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Gibbs sampling works
well (fast mixing)

Gibbs sampling works
reasonable (slow mixing)

Gibbs sampling does not
work (not irreducible)

MCMC methods can perform “bigger” steps than Gibbs sampling;
they change multiple variables simultaneously 75 / 78
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Lessons learned

Probabilistic databases and graphical models focus on different
aspects of probabilistic reasoning
Probabilistic graphical models

I Describe and reason about probability distributions and independencies
I Exploit locality structure (conditional independence)
I Main components: representation, inference, learning

Markov logic
I Combines first-order logic and probability theory
I Set of formulas with weights
I Template for generating undirected graphical models

Inference
I #P-hard in general
I MAP inference on MLNs corresponds to Weighted MAX-SAT
I Exact methods for probability computation (e.g., variable elimination)

may work when graph has no dense regions
I Approximate methods often based on MCMC sampling
I Gibbs sampling is the simplest MCMC method; it changes one variable

at a time
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Daphne Koller, Nir Friedman
Probabilistic Graphical Models: Principles and Techniques
The MIT Press, 2009
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Michael Mitzenmacher, Eli Upfal
Probability and Computing: Randomized Algorithms and Probabilistic
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Cambridge University Press, 2005
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