Compact Open Information Extraction on Large Corpora

Kiril Gashtevskii
University of Mannheim
Data and Web Science Group
Motivation

Making the knowledge from unstructured text more accessible
Open Information Extraction

- Extract relations and their arguments from unstructured text in unsupervised manner

 "AT&T, which is based in Dallas, is a telecommunication company."

 ("AT&T"; "is based in"; "Dallas")

 ("AT&T"; "is"; "telecommunication company")

- Common problem: relations/arguments can be overly specific

 ("The great R. Feynman"; "worked jointly with"; "F. Dyson")

 ("Richard Feynman"; "worked with"; "Freeman Dyson")

MinIE - OIE system for minimizing and annotating facts
MinIE: Open Information Extraction System

https://github.com/uma-pi1/minie
MinIE: Minimize by Annotating and Structuring Information

- **Polarity**: is the triple positive (+) or negative (−)?
 - (“H. Clinton”; “is not president of”; “U.S.”) ⇒ (“H. Clinton”; “is president of”; “U.S.”) (−)

- **Modality**: is the triple a certainty (CT) or a possibility (PS)?
 - (“Bill Cosby”; “may go to”; “jail”) ⇒ (“Bill Cosby”; “go to”; “jail”) (PS)

- **Attribution**: consider the source of information
 - (“D. T.”; “said that”; “B. O. may have been born in Kenya”) ⇒ (“B. Obama”; “have been born in”; “Kenya”) (+, PS)

 Attribution: (Donald Trump, +, CT)

- **Quantities**: phrases expressing an amount of something
 - e.g. 9 cats, all cats, almost about 100 cats
 ⇒ QUANT cats
MinIE on Wikipedia: Example Triples

- **Combinations of factuality + frequency**
 - (“Barack Obama”; “be”; “president”) (+, CT): 8,930
 - (“Barack Obama”; “be”; “president”) (–, CT): 1
 - (“Barack Obama”; “be”; “president”) (–, PS): 1

- **Consider the source of information: factuality + attribution**
 - (“Barack Obama”; “be born in”; “U.S.”) (–, CT): 1
 - **attribution**: Orly Taitz (+, CT) ← conspiracy theorist
 - (“Barack Obama”; “be born in”; “U.S.”) (+, CT): 1
 - **attribution**: Joshua A. Wisch (+, CT) ← asst. attorney gen.

- **How reliable is the attribution?**
 - E.g: what is attributed to Donald Trump?
 - (“Donald Trump”; “be”; “pro-choice”) (+, CT): 1
 - (“Donald Trump”; “be”; “pro-life”) (+, CT): 1
 - (“Barack Obama”; “be born in”; “Kenya”) (+, PS): 1
 - (“Barack Obama”; “be born in”; “United States”) (+, CT): 1
MinIE: Minimize by Dropping Overly Specific Words

(“The great R. Feynman“; ”worked jointly with“; ”F. Dyson“) ⇒
(“Richard Feynman“; ”worked with“; ”Freeman Dyson“)

- MinIE-S: drop words considered to be safe
 - determiners, adverbs modifying verbs, ...
 - e.g. “the President” ⇒ “President”

- MinIE-D: drop words modifying noun phrases
 - adjectives, adverbs, etc.
 - keep constituents that are found frequently in the corpus
 - additional fuel: enrich dictionary with domain knowledge
 - “very long cold war” ⇒ “cold war”

- MinIE-A: aggressive strategy of dropping of words
 - drop constituents (prepositional attachments, quantities, ...)
 - (J. Cleese; starred as Lancelot in national tour of; Spamalot) ⇒
 (John Cleese; starred in tour of; Spamalot)
MinIE: Comparative Analysis

<table>
<thead>
<tr>
<th></th>
<th>MinIE-S</th>
<th>MinIE-D</th>
<th>MinIE-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>precisionwiki</td>
<td>0.73</td>
<td>0.72</td>
<td>0.60</td>
</tr>
<tr>
<td>precisionnyt</td>
<td>0.79</td>
<td>0.77</td>
<td>0.68</td>
</tr>
<tr>
<td>triple length ((\mu \pm \sigma))</td>
<td>7.2 ± 4.2</td>
<td>6.9 ± 4.0</td>
<td>4.7 ± 1.9</td>
</tr>
</tbody>
</table>
Applications of MinIE: SalIE

Fact salience: “generate machine-readable representation of the most prominent info. in text document as a set of facts” (Ponza et al., 2018)

- Top-3 salient facts automatically extracted from a sample of two NYT documents
- **Human Summary:** Body of Toni Grossi Abrams, widow and Staten Island socialite, is found in warehouse on outskirts of Panama City, Panama, where she had moved to begin career in real estate; Debra Ann Ridgley, one of her tenants, is charged with stabbing Abrams to death in her apartment on April 9.
- **SalIE:**
 1. (Abrams, had been stabbed to death in, apartment)
 2. (Remains, were discovered beside warehouse at, edge of cinder-topped soccer field on outskirts of Panama City)
 3. (Apartment, tending wounds at time of, murder)
MinScIE: OIE w/h Semantic Information about Citations

- Current OIE systems perform significantly worse when applied to the science domain (Groth et al. 2018)
- MinScIE: OIE system based on MinIE
 - provides fixes for most of the issues identified by Groth et al. (2018)
 - designed to handle citations
 - semantically enrich triples when applied to scientific content
- Provides triples enriched with semantic information about citations
 - citation polarity
 - purpose
- Code on GitHub: https://github.com/gkiril/MinSCIE
OPIEC: An Open Information Extraction Corpus

https://www.uni-mannheim.de/dws/research/resources/opiec/
OPIEC: An Open Information Extraction Corpus

- The **largest OIE corpus** to date (341M triples)
- **Rich with meta-data:** many syntactic/semantic annotations
- Ran MinIE-SpaTe on the **entire English Wikipedia**
 - the original **golden links** from a Wikipedia article are kept

Golden Link: Mission_Record

("Mission Records"; "was created by"; "Glenn Frey")

T: (in, 1998) Conf: 0.92 Attribution: Rolling Stone

Space/Time Annotations Confidence Score The Supplier of the Information (e.g. who said that?)

"Rolling Stone wrote that Mission Records ... "
Provenance: Source Sentence and its Syntactic Annotations (Dependency Parse, POS tags, ...)
OPIEC: Underspecific Triples

- Large portion of the triples are underspecific (∼ 25%)
 ("he"; "founded"; "Microsoft")
 ("this"; "leads to"; "controversy")
- Entity mentions are broken up (∼ 1%)
 ("Zip"; "Goes"; "a Million")
OPIEC-Clean

- Triple filters
 - entity mentions are broken up → e.g. ("Zip"; "Goes"; "a Million")
 - triple has an empty object → e.g. ("Albert Einstein"; "died")
 - are underspecific → e.g. ("He"; "co-founded"; "Microsoft")

- Argument constraints
 - fully linked
 - recognized named entity (person, location, organization, ...)
 - matches a Wikipedia page title (e.g. Super Bowl, biology, ...)

Preprocessing + OIE → OPIEC 341 M → Filters → OPIEC (clean) 104 M
Table 1: Most frequent open relations between persons and locations

<table>
<thead>
<tr>
<th>PERSON-PERSON</th>
<th>LOCATION-LOCATION</th>
<th>PERSON-LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>"have" (130,019)</td>
<td>"be in" (2,126,562)</td>
<td>"be bear in" (203,091)</td>
</tr>
<tr>
<td>"marry" (49,405)</td>
<td>"have" (40,298)</td>
<td>"die in" (37,952)</td>
</tr>
<tr>
<td>"be son of" (40,265)</td>
<td>"be village in administrative district of" (9,130)</td>
<td>"return to" (36,702)</td>
</tr>
<tr>
<td>"be daughter of" (37,089)</td>
<td>"be north of" (3,816)</td>
<td>"move to" (36,072)</td>
</tr>
<tr>
<td>"be bear to" (29,043)</td>
<td>"be suburb of" (3,291)</td>
<td>"be in" (25,847)</td>
</tr>
<tr>
<td>"be know as" (25,607)</td>
<td>"be west of" (3,238)</td>
<td>"live in" (22,399)</td>
</tr>
<tr>
<td>"defeat" (22,151)</td>
<td>"be part of" (3,188)</td>
<td>"grow up in" (17,571)</td>
</tr>
</tbody>
</table>
OPIEC-Linked

Example

("Michael Jordan"; "grew up in"; "Wilmington")
Analysis: OPIEC and KBs

- DBpedia and YAGO: KBs constructed from same resource as OPIEC (Wikipedia)
- **KB hit**: exploiting the distant supervision assumption
 - for each OIE triple: ("subject", "relation", "object")
 - search for any KB triple (db:subject, db:rel, db:object) or (db:object, db:rel, db:subject)
 - ~30% of OPIEC-Linked has KB hits in either DBpedia or YAGO
- **Relation alignment**: relation is aligned with db:rel
- **Example**:
 ("Kachin Independence Army"; "has headquarters near"; "Laiza") ⇔
 (dbr:Kachin_Independence_Army; dbp:headquarters; dbr:Laiza)
Analysis: OPIEC and KBs

- No 1:1 correspondence between open relations and KB relations
- Open relations can be more specific than KB relations
- Although “semantically correlated”, open relations may be semantically different than their KB rel. counterparts

Table 2: Most frequent open relations aligned to DBpedia relations
OPIEC-Linked: Alignment with KBs

- We selected top-100 most freq open rels (38% of OPIEC-Clean)
- the fraction of KB hits is low (averaging at 14.7%)
- on average, there are about 40 KB relations per open relation

<table>
<thead>
<tr>
<th>Open relation</th>
<th>Frequency in OPIEC-Link</th>
<th># KB hits</th>
<th># distinct KB rel.s</th>
<th>Top-3 aligned DBpedia rel. and hit frequency</th>
</tr>
</thead>
</table>
| “be” | 1,475,332 | 162,438 (11.0%) | 403 | type 72,542
| | | | | occupation 12,254
| | | | | isPartOf 6,776 |
| “have” | 216,332 | 118,625 (54.8%) | 320 | author 11,678
| | | | | director 9,429
| | | | | writer 8,751 |
| “be in” | 1,150,667 | 734,330 (63.8%) | 221 | country 269,189
| | | | | isPartOf 200,851
| | | | | state 65,242 |
| “include” | 14,746 | 1,364 (9.2%) | 127 | type 376
| | | | | associatedBand 75
| | | | | associatedMusicalArtist 75 |
| “be bear in” | 7,138 | 1,478 (20.7%) | 31 | birthPlace 1,172
| | | | | isPartOf 68
| | | | | deathPlace 60 |
Take-aways

- Motivation: make natural language text data more structured and useful
- MinIE: OIE System for compact extractions
 - Improve content by adding semantic annotations on extracted triples (polarity, modality, attribution, quantities)
 - Minimize relations and arguments by dropping overly specific words
 - Different levels of minimization: complete, safe, dictionary and aggressive
- OPIEC: the largest OIE corpus to date
 - Aims to spur research in AKBC, open Q&A, ...
 - Rich with meta-data: many syntactic/semantic annotations
 - Multiple sub-corpora from noisy to clean
 - Analyzed and compared with Wikipedia-based KBs

Thank you for your attention!
Fixed time points

- Explicit date
 - (“J.F.K.”; “was assassinated by L.H.O. on”; “22.11.1963”) ⇒
 (“John F. Kennedy”; “was assassinated by”; “Lee H. Oswald”)
 Time: 22.11.1963

- Textual temporal expression
 - (“John F. Kennedy”; “was assassinated by”; “Lee H. Oswald”)
 Time: “yesterday”; “many years ago”, etc.

- Discretized temporal references (past, present, future)
 - “*In times past, Donald Trump was a Democrat.*” ⇒
 - (“Donald Trump”; “was Democrat in”; “times past”) ⇒
 - (“Donald Trump”; “was”; “Democrat”)
 Time ref: past
Arguments can contain temporal information of their own

“Isabella II opened the 17th-century Parque del Retiro in 1868.”

(“Isabella II”; “opened 17th-century Parque del Retiro in”; “1868”)

(“Isabella II”; “opened“; “17th-century Parque del Retiro”)

Time: 1868

(“Isabella II”; “opened“; “Parque del Retiro”)

Time: 1868

↓

17th-century