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Motivation

A DNNs are gaining popularity for estimating solutions to various complex tasks including numerous vision tasks.

A For reliability, it is pertinent to know if the DNNs are learning meaningful representations or merely learning
shortcuts to map inputs to the target distributiortl.

A Here, adversarial attacks play a key role, especially whitbox attacks that attempt to fool a DNN by optimizing
an adversary using loss gradient information from the DNN.

A However, most adversarial attacks were proposed for image classification, these do not utilize the pixeise
information available in the other pixelwise prediction vision tasks.

A Thus, we present CosPGD, which leverages a simple alignment score computed from any pixgse prediction
and its target to scale the loss in a smooth and differential way.

A CosPGD extends to all pixelvise prediction tasks and encourages more balanced error over the entire image
domain.
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Preliminaries

For an ImageX, with ground truthY and modelf; and attack step size and Loss
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Equation 1 considersL which is the sum of pixelwise loss L, giving us,
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Preliminaries

XV = X o signV e, Y L (f o (XN, Yi) (4)
icH xW

AHowever, as seen here in Equation 4, this does ntike into accountthe pixelwise
iInformation available.

AWhen optimizing an adversarial attack, our objective would be to fool the network on
as many pixels as possible.

AThus, it seems logical to focusing the attack at fooling the network on pixels where it
IS more correct.

AWnhile reducing focus on pixels at which the network is already sufficiently fooled.
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Related Wtk

SegPGIMH, a previous pixelwise loss scaling approach,
proposed a different nonsmooth scaling, modifying Equation 4 to,
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the total number of attack iterations. Equation 5 can be formulated as,
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v/ _ one-hot encoding(Y ;), 1f Semantic Segmenation
! softmaz(Y ;) otherwise
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Here, argmax is non-differentiable, fluctuating the direction of the gradient
update during attack iterations, leading to slower convergence.
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Prediction AlignmentSseainag
Thus, we present CosPGD, which smoothly scales the pixelise loss before
summing, modifying Equation 4 to,

Xadvern — x2dve L L sionV yadv, Z COS (-a;f-'(fa(Xa‘d“)z')_- Yfi) L (fH(Xadvt)ir Yi) (7)
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P.Y

cos(P,Y) = Py and  (fe(X)) = softmax( fo(X)).

ACosPGD uses cosine similarities between the prediction and target distributions to
scale the pixelwise loss.

ASuch that, for untargeted attacks, on pixels where predictions are close to the target,
the loss is scaled higher.

AWnhile, on the pixels where the predictions are far away from the target, the loss is
scaled lower. Vice-versalis true for targeted attacks.

Slide 6



Prediction AliginmentSsealnag
A Here, we report, change in pixelvise image gradients over _— /M

attack iterations on DeepLabV38! performing semantic
40000 A -~ SegPGD

segmentation on PASCAL VOC 20%validation subset.

A We observe that the absolute difference between gradient e /
values (top) is larger for PGD and increasing f&egPGD _

while being stable for CosPGD. 0 20 40 60 80 100

Attack Iteration

Absolute value of
gradient difference

A Further, CosPGD has fewer changes in gradient direction

8134

over attack iterations (bottom) compared to PGD and -
SegPGD gmo
A This shows CosPGD is more stable during optimization .
compared to PGD andsegPGD 3 18

0 20 40 60 80 100
Attack Iteration
Figure 1
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Semamntic Segneniaion
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Slide9

[ Xie, Enze, et al. "SegFormer: Simple and efficient design for semantic segmentation with transformers." Advances in neural information processing systems 34 (2021): 12077-12090.
121 Scene Parsing through ADE20K Dataset. Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso and Antonio Torralba. Computer Vision and Pattern Recognition (CVPR), 2017



Semantic Segneeniaitton

A Predictions of DeepLabV3 on PASCAL VOC 20i# set Ground Truth PGD SegPGD CosPGD
with 40 iterations.

A The ground truth segmentations are given on the left.

A Both PGD andSegPGDare able tosuccessfully change
most of the predicted labels to one of the ground truth
labels (here in green).

A Yet, the region with this label is predicted correctly.
Here, only CosPGD changes the prediction in this region
to a third class. Figure 3

A Thus, CosPGD encourages more balanced error over the
entire image domain, leading to a stronger and more
effective adversarial attack.
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Optical Rlow Estimation

S
(a) Target flow (b) PGD 5 itrs epe = 14.42 (c) PGD 40 itrs epe = 7.32
(d) Initial flow epe = 31.1 (e) CosPGD 5 itrs epe = 14.28 (f) CosPGD 40 itrs epe = 4.84

Figure 4

OYUdGel RUNDWA] 2 wWe UT W9 \q-inoN’r]u coriskéainddl atidid ol RIBFIFay$ing KJ]V[I'IlS validation sé&t over
2¢l RYet WRaqWI ¢qRYUt IOWbicb Wt 6 Y5t WasWWagel NWaqdT WGI BT RAGQRY
by the network before adversarial attacks. EPEs between the target and the final prediction are reported, thus lower
epeis better. (b) and (c) show flow predictions after PGD attack over 5 and 40 iterations respectively, while figures (e)
and (f) show flow predictions after CosPGD attack over 5 and 40 iterations respectively. CosPGD significantly reduces
the gap to target (a).

[l Teed, Zachary, and Jia Deng. "Raft: Recurrent all-pairs field transforms for optical flow." Computer Visioni ECCV 2020: 16th European Conference, Glasgow, UK, August 23i 28, 2020,
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Adversatial Treanag

A Predictions usingUNetl with ConvNeX{2
backbone on PASCAL VOC2012 validation
dataset after 100 iterations adversarial
attacks onadversariallytrained models.

A We observe that the modelsadversarially
trained with CosPGD are predicting
reasonable masks even after 100 attack
iterations, while the model trained with
SegPGDOs providing much worse results
under both SegPGDand CosPGD attacks.

A Thus, CosPGD leads to more stable

adversarial training. Figure 5
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