

An Application of Process Mining to Personalized Health Care

Motivation - Health Care

Noncommunicable diseases (NCDs) kill 38 million people each year. Such diseases include, for example, cardiovascular diseases, diabetes, osteoporosis, and certain types of cancer. (WHO, 2014)

- Activities of daily living are important for assessing changes in physical and behavioral profiles
- In context of medicine, a correct compliance is important.
- We want use modern techniques to support people and improve their healthiness.

Motivation - Self-Tracking

Customary smart-phone platforms are equipped with a rich set of sensors which enable self-tracking.

- Positioning technologies, sensor networks, and spatiotemporal data are available
- Personal behavior and processes can be derived to *learn* the daily routine and allows to detect specific patterns.
- Resulting predictions and recommendations could help to achieve a healthier life

Motivation - Scenario

In general, current self-tracking approaches are helpful in many scenarios

However, fine grain monitoring is not possible but necessary.

Normally, (elder) people get a brief instruction from the doctor how they have to take their pills, e.g., three pills every eight hours without eating one hour after the intake.

Actual Daily Routine

12:00 take pills

12:10 eating/drinking

20:12 take pills

21:00 eating/drinking

06:25 take pills

14:55 take pills

Optimal Daily Routine

12:00 take pills

13:00 eating/drinking

20:00 take pills

21:00 eating/drinking

04:00 take pills

12:00 take pills

Time-based monitoring makes sense.

Related Work

Smartphone and Healthcare

 Activity recognition from accelerometer data on a mobile phone, 2009

- Review of Healthcare Applications for Smartphones, 2012
- Smartphone Based Healthcare Platform and Challenges, 2015

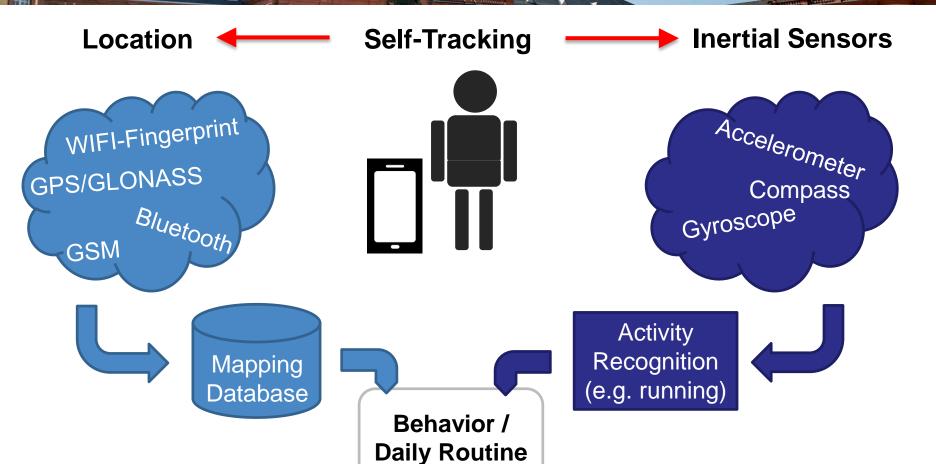
Processes

- Trajectory pattern mining, 2007
- Trace clustering in process mining, 2009
- Process mining: discovery, conformance and enhancement of business processes, 2011

Overview

- 1. Motivation
- 2. Related Work
- 3. Personalized Health Care
 - Self-Tracking
 - Use Cases and Experiments
- 4. Challenges
- 5. Summary

Personalized Health Care — Self-Montoring

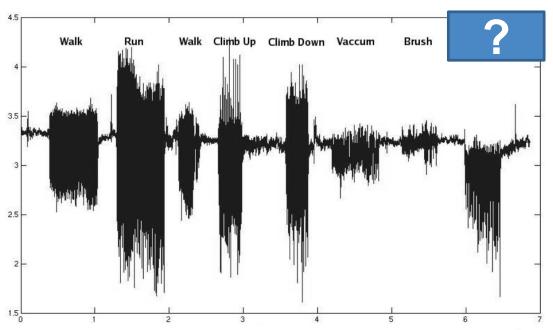


UNIVERSITY OF MANNHEIM

Personalized Health Care – Example

Activity Recognition

Activity Recognition is a learning problem but there are still many open issues ...



Accelormeter, X-axis readings for different activities (Ravi et. al., 2005)

Personalized Health Care – Data Gathering

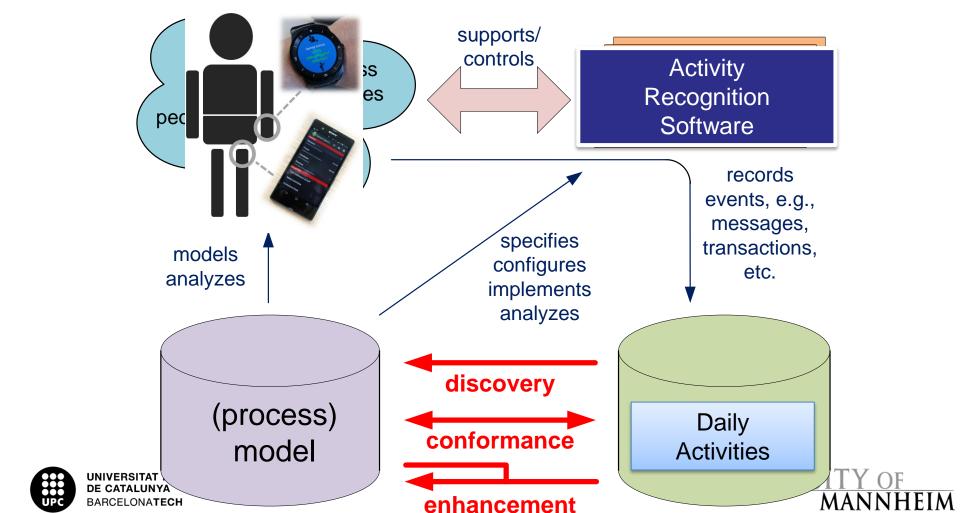
- ~12 hours/day, 2 weeks, 8 subjects
- recording inertial sensors and location
- subjects have to label their activities (e.g., "playing football")
- it was possible to combine activities (e.g., "desk work" and "drinking coffee")

- Recorded: 74 cases, 1386 events
- Average duration of one day: 12.1 hours

Labels	Records (avg±sd)
Activities	20±7
Postures	80±62
Location	16±4
Dev. Position	8±6

UNIVERSITY OF Mannheim

Personalized Health Care as Process Mining



Overview

- 1. Motivation
- 2. Related Work
- 3. Personalized Health Care
 - Self-Tracking
 - Use Cases and Experiments
- 4. Challenges
- 5. Summary

Personalized Health Care – Use Cases Overview

I. Monitoring

Record and analyze the personal behavior

Visualize their personal processes to highlight unconscious behavior.

II. Deviations

Compare personal processes with reference processes to detect deviations.

Optimize the daily routine by adding missing activities or reorder them.

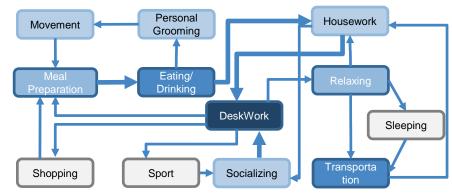
III. Operational Support

Combining spatio-temporal data and activity data to make predictions.

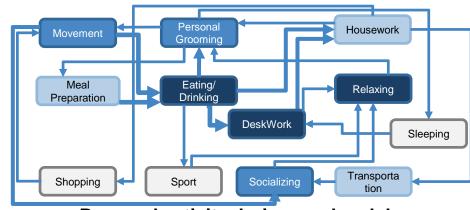
Make <u>recommendations</u> in order to accomplish certain goals.

Personalized Health Care - Use Case I

- Variability: for each individual,
 #process variants = #traces !!
- Fuzzy Models (using Disco) allowed to focus on the main activity
- Confirm tendencies:
 - Working vs. weekend days
 - Student vs. not Student



Personal activity during working week days

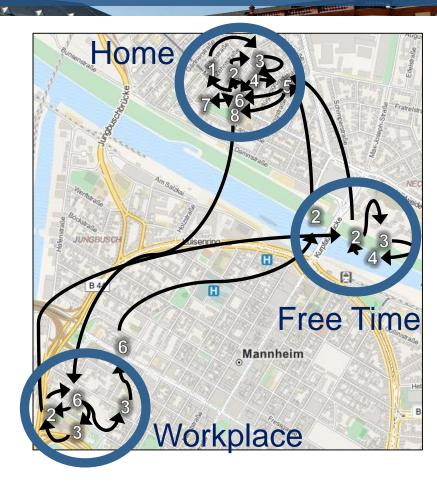


Personal activity during weekend days

Personalized Health Care - Use Case I

Model Enhancement Using Personal Data

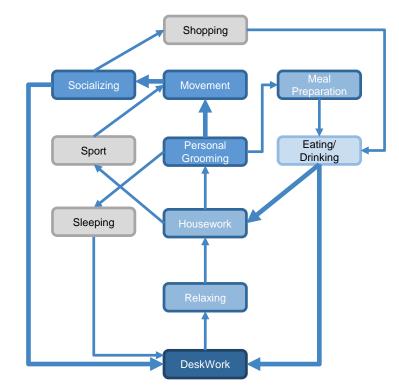
- personal activity-position map
- space, time, and activity (trajectory pattern)
- New possibilities:
 - Geographical Label Splitting
 - Geographical Abstraction and Clustering



Personalized Health Care - Use Case II

Reference Models

- They can be obtained by
 - An expert (e.g., a doctor)
 - Using elite data
 - Elicitating them from textual information using NLP+Process Extraction (Friedrich et al.)
- Starting point to
 - Check deviations
 - Forensics

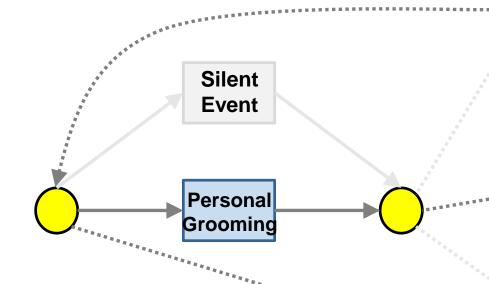


Main Personal Activity

Personalized Health Care - Use Case II

Reference Models

- specific order, explicit choices, concurrency actions
- (flexible) conformance checking
- deviations, costs, and quantities



could be expensive!

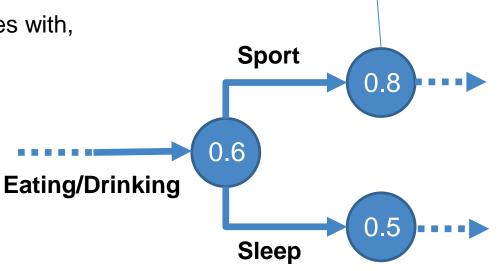
<u>Simplification</u>: rules or patterns which should be satisfied by an individual.

Personalized Health Care - Use Case III

State-based prediction

- probability to reach a particular goal
- process models help to determine the influence of the next step
- aggregate historical data/activities with, e.g., amount of calories.
- amount of calories vs. labels

Probability of a balanced day (calories consumption vs. burning)



Personalized Health Care – Use Case III

State-based prediction

- Important question: Does concurrency plays an important role?
 - Yes: then event-based models may be used for operational support
 - No: state-based models like the one before are sufficient
- Potential concurrency pairs in our context:
 - Movement/Transportation
 - Transportation/Socializing
 - Deskwork/Socializing
 - ... but in practice they were not so common!

Overview

- 1. Motivation
- 2. Related Work
- 3. Personalized Health Care
- 4. Challenges
- 5. Summary

Challenges

1. Trace Alignment

 The behavior of a person is very individual any may depend on the day (working day vs weekend) and other factors.

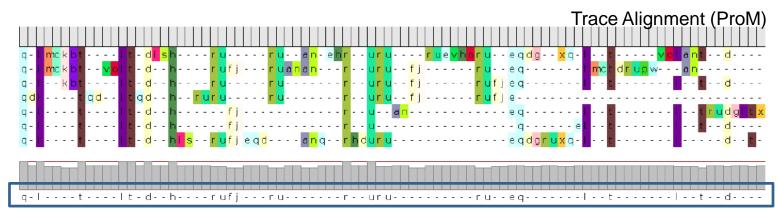
2. Uncertainty

 The daily routine of a person is flexible and does not follow a fix order of activities.

3. Analytics

 Several different dimensions such as space, time, and activity has to be considered in context of the daily routine.

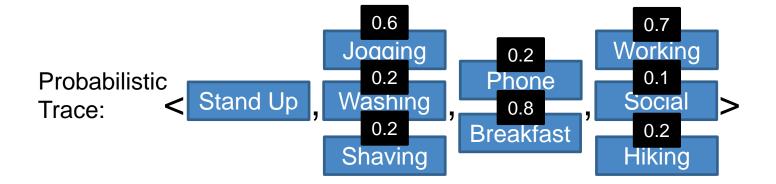
Challenges (1) - Trace Alignment & Clustering [5]



Cluster Trace

- Aims to extract common and frequent behavior but also highlight exceptional behavior.
- Cluster Log: (multi)set of cluster traces that may be the starting point for analysis (discovery, conformance, ...)
- How many clusters?

Challenges (2) - Uncertainty



A new theory for probabilistic process mining is needed

Models?

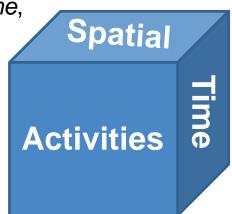
Algorithms?

Challenges (3) - Analytics

Process Cubes

• Process Cubes as a solution to handle, i.e., *Spatial*, *Time*, *Activity*, and *Transportation Modes*.

- Find tailored behaviors (e.g., reference models) according to particular goals
- May open the door to gamification (e.g., try to match a very particular behavior)



Summary

Personal Healthcare is important and we want to support people automatically and we believe this is a very promising field for process mining.

We outlined our ideas and challenges to support the following use cases:

- Monitoring
- Deviations
- Operational Support

However, we just started ...

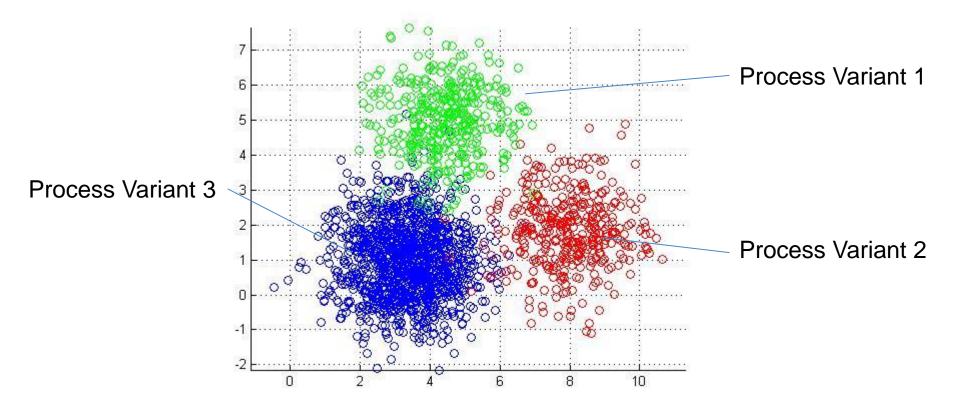
... and these are the things we are working on. We hope for ideas for future work.

Thank you for your attention

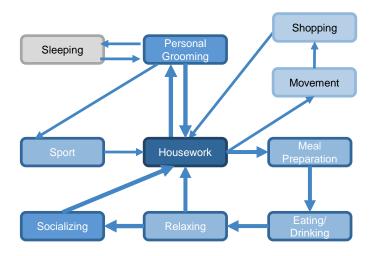
References

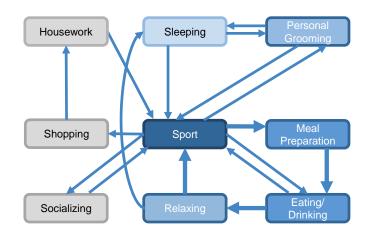
- 1. WORLD HEALTH ORGANIZATION, et al. Global status report on alcohol and health-2014. World Health Organization, 2014.
- 2. RAVI, Nishkam, et al. Activity recognition from accelerometer data. In: AAAI. 2005. S. 1541-1546.
- 3. GIANNOTTI, Fosca, et al. Trajectory pattern mining. In: *Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining*. ACM, 2007. S. 330-339.
- 4. ZHENG, Yu. Trajectory data mining: an overview. *ACM Transactions on Intelligent Systems and Technology* (TIST), 2015, 6. Jq., Nr. 3, S. 29.
- 5. BOSE, RP Jagadeesh Chandra; VAN DER AALST, Wil MP. Process diagnostics using trace alignment: opportunities, issues, and challenges. *Information Systems*, 2012, 37. Jg., Nr. 2, S. 117-141.
- 6. DE LEONI, Massimiliano; VAN DER AALST, Wil MP. Aligning event logs and process models for multiperspective conformance checking: An approach based on integer linear programming. In: *Business Process Management*. Springer Berlin Heidelberg, 2013. S. 113-129.
- 7. GÜNTHER, Christian W.; VAN DER AALST, Wil MP. Fuzzy mining–adaptive process simplification based on multi-perspective metrics. In: *Business Process Management*. Springer Berlin Heidelberg, 2007. S. 328-343.
- 8. VAN DER AALST, Wil MP. Process cubes: Slicing, dicing, rolling up and drilling down event data for process mining. In: *Asia Pacific Business Process Management*. Springer International Publishing, 2013. S. 1-22.
- 9. VAN DER AALST, Wil MP; DE BEER, H. T.; VAN DONGEN, Boudewijn F. *Process mining and verification of properties: An approach based on temporal logic.* Springer Berlin Heidelberg, 2005.

Backup - Challenges (1) - Variability



Backup - Challenges (3) - Analytics - Example





Daily activity in the period 2013-2014 for females between 20-30 years old, non-smokers Daily activity in the period 1980-1981 for athletes between 20-30 years old, non-smokers

